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Abstract—This brief presents an area-efficient relaxed half-
stochastic nonbinary low-density parity-check (NB-LDPC) de-
coder. A novel decoding algorithm, namely, cumulative tracking
forecast memory with concealing channel values (CTFM-CC) is
proposed to reduce algorithm complexity and maintain bit-error-
rate performance as well. Furthermore, the hardware complexity
of variable node units (VNUs) is reduced through a truncated
architecture, which only keeps the most reliable n probability
density functions. To deal with the sum-product-algorithm-to-
stochastic conversion of VNU, a dynamic random number genera-
tion method, which is used for sampling a stochastic symbol, is also
proposed. With these features, a (168, 84) regular-(2,4) NB-LDPC
code over GF(16) decoder is implemented in a 90-nm process.
According to the results of postlayout simulation, this decoder
can deliver a throughput of 1.13 Gb/s with a hardware efficiency
of 0.90 Mb/s/K-gate at 286 MHz. Compared to related rate-1/2
NB-LDPC decoders, the proposed decoder achieves the highest
hardware efficiency with similar error-correcting capability.

Index Terms—Nonbinary low-density parity-check (LDPC)
codes, relaxed half-stochastic (RHS) algorithm, stochastic decoding.

I. INTRODUCTION

NONBINARY low-density parity-check (NB-LDPC) codes,
investigated by Davey and Mackay [1], are defined on the

null space of a parity-check matrix H, in which the nonzero en-
tries are the elements of a Galois field GF(q = 2p). Compared
to binary LDPC codes, it has been shown that NB-LDPC codes
can achieve better bit-error-rate (BER) performance for higher
order modulation schemes or multi-input–multi-output commu-
nication systems [2]. Despite its remarkable decoding capa-
bility, the complicated computational units and huge memory
usage are main challenges to implement an NB-LDPC decoder.
In this respect, a large amount of literatures with hardware-
oriented algorithms have been reported. Declercq and Fossorier
[3] proposed the fast Fourier transform (FFT) algorithm to
transfer the complicated convolution operations into simpler
multiplications. The extended min-sum (EMS) algorithm [4]
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was proposed to simplify check node unit (CNU) and truncate
message vectors from field size q to a limited number nm.
In [5]–[8], the min-max decoding algorithm was introduced
to further reduce the complexity of CNU with acceptable
performance degradation. On the other hand, the authors in [9]
and [10] showed a simplified serial algorithm for a generalized
bit-flipping algorithm and a message compression algorithm to
reduce the complexity and storage resources required by the
variable node unit (VNU).

Stochastic computation is a promising decoding method for
error control codes. It is a bit-serial representation of probability
and has a great potential to reduce complicated computa-
tion. Due to its sequential property, a single wire and simple
logic gates can be used to manipulate multiple bits arithmetic.
The state-of-the-art works provide high-throughput and area-
efficient binary stochastic LDPC decoders for IEEE 802.3an
applications [11], [12]. In recent years, stochastic decoding
provides alternative methods for NB-LDPC codes [13], [14].
However, more than thousands of decoding cycles in the shift-
register edge memory (SR-EM) and tracking forecast memory
(TFM) algorithms remain a bottleneck for high-throughput
decoders. The relaxed half-stochastic (RHS) algorithm pro-
vides higher convergence speed, but it is more complicated
than the SR-EM or TFM algorithm due to the conversion of
two domains. A field-programmable gate array (FPGA) imple-
mentation based on the adaptive multiset stochastic algorithm
(AMSA) [14] is introduced to reduce runtime and area cost,
but the hardware complexity is still high due to a large amount
of memory. Nowadays, pursuing a high-throughput and low-
cost decoder is still a design challenge of stochastic NB-LDPC
decoding.

In this brief, we propose an area-efficient RHS decoding
architecture for NB-LDPC codes. A cumulative TFM with
concealing channel values (CTFM-CC) algorithm is proposed
to reduce the operations and maintain BER performance. A
truncated TFM architecture, as well as its updating criterion,
is designed to achieve lower complexity of VNUs. A dynamic
random number generation method is provided to generate an
output symbol of VNU. The organization of this brief is as
follows: In Section II, the background of stochastic decoding
for NB-LDPC codes is briefly introduced. Section III presents
the proposed stochastic NB-LDPC decoder. Implementation
results and comparison are discussed in Section IV. Finally, the
conclusion is given in Section V.

II. RHS DECODING OF NONBINARY LDPC CODES

A stochastic NB-LDPC decoder consists of three types of
processing units, including VNUs, CNUs, and permutation
node units (PNUs), as shown in Fig. 1. It is noted that the
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Fig. 1. Architecture of stochastic NB-LDPC decoder.

message representation in the stochastic NB-LDPC decoder
is a symbol over GF(q) rather than a probability vector of
length q. Therefore, received channel values are converted to
stochastic symbol streams over GF(q). The occurrence of a
specific element in the stochastic symbol stream is equal to the
probability of symbol to be converted. The location of elements
in the stream is not important; in other words, the representation
of the stochastic symbol stream is not unique. For example, the
streams {0, 1, 1, α, 0, α2, α, α2} and {1, α, 0, 1, 0, α2, α, α2}
are the same for Lv[0] = 0.25, Lv[1] = 0.25, Lv[α] = 0.25,
Lv[α

2] = 0.25 over GF(4), where Lv[γ] is the probability of
symbol and γ ∈ GF(4).

In the early research of stochastic LDPC decoding, the main
challenge is performance degradation. The reason is the hold
state problem, which refers to a case where a set of variable
nodes are stuck to a fixed state [11]. Therefore, variable nodes
would employ memory devices to track previous symbols and
create the random symbol z. The SR-EM and TFM algorithms
were proposed to accurately generate a symbol [13]. However,
it is hard to implement these algorithms for practical applica-
tions due to long decoding cycles. To enhance the rate of decod-
ing convergence, the RHS algorithm for stochastic decoding of
NB-LDPC codes was proposed [13]. It was a hybrid decoding
technique such that VNUs are operated in the probability
domain, but CNUs are operated in the stochastic domain. In
other words, the messages to be computed are probabilities
in the VNUs, but they are symbols in the CNUs. Compared
to other related stochastic works, the number of iterations
in an RHS decoder is significantly decreased. Moreover, the
complexity of CNUs in a sum-product algorithm (SPA) decoder
can be reduced by the stochastic approach. In the following
subsections, the functional blocks and the RHS algorithm are
described, where the notations are the same with those in [3]
except an overline for a stochastic message.

A. CNU

The complexity of CNUs is the highest in the SPA decoder
because of the convolution operations. Since the check equa-
tions of the RHS algorithm are operated in the symbol domain,
the convolution operators can be simplified to finite field sum-
mations. Therefore, a CNU is implemented by EXCLUSIVE-
OR gates.

Fig. 2. Architecture of VNU in the RHS algorithm.

B. PNU

In the RHS algorithm, a PNU is fulfilled by a finite field
multiplier since the output of PNU equals the product of the
input and the corresponding nonzero element in H. In general,
a lookup table and a combination of XOR gates is used for the
small and high-order field, respectively, since the table size is
proportional to the field size.

C. VNU

Fig. 2 shows the architecture of VNU. Since VNUs are
operated in the probability domain but inputs/outputs are still
symbols, two conversions are required. The first one is a
stochastic-to-SPA message conversion. It is performed by a
successive-relaxation method [13], in which the probability
mass function (PMF) of each symbol γ is stored in TFMs.
This updating rule is identical to that in the TFM algorithm.
For an incoming message x, the PMFs are updated using the
following equation:

V (t)
pv [γ] =

{
(1− β)V

(t−1)
pv [γ] + β, γ = x

(1− β)V
(t−1)
pv [γ], otherwise

(1)

where V
(t)
pv [γ] is the PMF of symbol γ ∈ GF(q), and β < 1 is

a relaxation factor.
After the stochastic-to-SPA message conversion, the VNU v

computes a temporal message Uvp based on all other PMFs Vpv

and channel message Lv connected to v as (2), where × is the
term-by-term product of vectors, as follows:

U (t)
vp = Lv ×

dv∏
z=1,z �=p

V (t)
zv . (2)

To generate stochastic symbols, the SPA-to-stochastic mes-
sage conversion will be activated right after (2). Since the final
result of cumulation cq is between 0 and 1, a cumulative density

function (CDF) cl =
∑l

k=1 U
(t,k)
vp , l = 1, 2, . . . , q should be

calculated then normalized, such that cq =
∑q

k=1 U
(t,k)
vp = 1,

where k means the kth symbol of the temporal message Uvp.
Finally, sampling a stochastic symbol is performed by compar-

ing a uniform random number R to CDF cl. The output U
(t)
vp is

the first symbol γ ∈ GF(q) that its CDF is larger than random
number R.

III. PROPOSED STOCHASTIC NB-LDPC DECODER

Although the RHS algorithm reduces the number of itera-
tions compared to other related stochastic works and alleviates
the complexity compared to the SPA decoder, it is necessary to
further reduce computations for real applications. For example,
VNUs involve term-by-term multiplications to update U

(t)
vp

messages in (2); therefore, area-consuming multipliers should
be implemented to finish the operations. Here, we introduce a
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Fig. 3. Decoding process of proposed VNU.

hardware-efficient stochastic NB-LDPC decoder. Fig. 3 sum-
marizes the decoding process of the proposed VNU. The details
will be discussed in the following subsections.

A. CTFM-CC

We propose a novel decoding algorithm called CTFM-CC.
The feature of CTFM-CC is that the term-by-term multiplica-
tions and the computations of CDFs of the RHS algorithm are
eliminated, so that it is possible to achieve low complexity of
VNUs for NB-LDPC decoders. The CTFM-CC modifies the
stochastic-to-SPA message conversion of the RHS algorithm,
while retaining the SPA-to-stochastic message conversion as in
[13]. The main idea of CTFM-CC comes from the computation
of CDFs. Let us observe the following equation, where i, j ∈
GF(q) and j is equal to the incoming message x:

cl=

l∑
k=1

U (t,k)
vp =

l∑
k=1

Lv × V (t,k)
pv

= . . .+ Lv[i]× V (t)
pv [i] + Lv[j]× V (t)

pv [j]

= . . .+
(
Lv[i]× (1− β)V (t−1)

pv [i]
)

+
(
Lv[j]×

(
(1− β)V (t−1)

pv [j] + β
))

= . . .+(1−β)×
(
Lv[i]×V (t−1)

pv [i]+Lv[j]×V (t−1)
pv [j]

)
+ Lv[j]× β.

The previous equation is similar to the successive-relaxation
method, as shown in (1), except the value with an underline.
Therefore, in the proposed CTFM-CC, TFMs store and up-
date the results of Lv[γ]×V

(t−1)
pv [γ] instead of V (t−1)

pv [γ] only.
Namely, the effect of channel values are concealed in the TFMs.
The computation of CTFM-CC does not require any multiplier
since the term-by-term multiplication of (2) disappears. More-
over, to eliminate the calculation of CDF ci in each decoding
cycle, the TFMs of the proposed algorithm store and update
cumulative values rather than individual probability of each
symbol. As a result, the TFMs are initialized as

∑l
k=1 L

2
v[γ]

in place of Lv[γ]. The updating criterion of the TFMs is the
same as (1).

TABLE I
ILLUSTRATION OF THE PROPOSED ALGORITHM

Table I demonstrates an example of how to reduce the oper-
ations of VNUs by using the proposed CTFM-CC technique.
The initialization of TFMs is accomplished by a multiply-
accumulate operation; in other words, the value of each TFM
equals to the summation of precedent TFM and square value
of channel probability. After that, TFMs are updated based
on (1) during decoding cycles. Since the channel values are
concealed in TFMs, the multiplication and CDF computation
can be eliminated from the operation of VNUs. As shown in
step 5 of Table I, the final results of the proposed CTFM-CC
and the RHS algorithm are identical.

B. Truncated TFM Architecture

In the conventional RHS decoder, there are q set of registers
in each edge of VNUs to keep all the PMFs of q symbols.
Namely, the complexity of VNUs is proportional to field size
q. To achieve higher area efficiency, the storage requirement of
TFMs should be reduced. Based on the experimental results,
the symbols can be classified to two categories: only n(n � q)
symbols with larger PMFs are the candidates of the output
symbol, and the other q − n symbols with smaller PMFs can
be ignored. For this reason, the truncated TFM with n set of
registers to keep the n-largest PMFs is proposed. Therefore, the
complexity of VNUs can be reduced by q/n times compared to
the conventional RHS decoder.

Different from the TFM algorithm [13], the status of an
edge is not considered in this work. Assuming that x is the
input symbol and STFM is a symbol set of a truncated TFM,
the truncated TFM is directly updated as follows. First, x
is checked whether it is included in the STFM or not. The
truncated TFM is updated based on (3) in case that STFM

contains x, denoted by x ∈ STFM. Otherwise, the symbol y
with the smallest PMF in the truncated TFM is dropped then
x is put into the STFM. In addition, the PMF of x remains the
same with the smallest PMF. As a result, the updating criterion
of the truncated TFM is summarized in (3), where γ ∈ GF(q)
and l = 1, 2, . . . , n is the lth TFM.

The truncated length n is a design parameter, which affects
the critical path and area requirement of the decoder. Fig. 4
depicts the BER performance of the proposed decoder under
different truncated lengths. It can be observed that using n = 4
in the PMFs achieves an acceptable BER performance loss and
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Fig. 4. BER performance and gate count of different truncated lengths.

efficient hardware cost. This truncated length is used in our
implementation and comparison. That is

TFM(t)
l [γ]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TFM(t−1)
l [γ], if x �∈ STFM

(1−β)TFM(t−1)
l [γ], if x ∈ STFM

& γ �= x

(1− β)TFM(t−1)
l [γ]+β∗Lv[x], otherwise

STFM =

{
STFM, if x ∈ STFM

{STFM \ y} ∪ x, otherwise.
(3)

C. Sampling Unit

During the SPA-to-stochastic conversion of VNU, a stochas-
tic symbol is generated from the truncated TFM according to
the PMF values. We use the transformation method [15] as
in the RHS algorithm. However, the maximum value of the
truncated TFM, which is between 0 and 1, is not a constant in
each decoding cycle. The method of the proposed CTFM-CC
algorithm is that each TFM(t)

l [γ] is normalized by TFM(t)
n [β]

to ensure TFM(t)
n [β]=1, where γ, β∈GF(q). Then, sampling

a stochastic symbol is performed by comparing a uniform
random number R to each TFM(t)

l [γ]. The output symbol is the

first symbol γ∈GF(q), such that TFM(t)
l [γ]>R. In this case,

the penalty for complicated normalization is larger area and
longer latency.

In order to provide a solution with low complexity and
latency, we propose a dynamic random number generation
method. In the proposed decoder, the normalization of each
TFM(t)

l [γ] is eliminated; instead, the uniform random number

R is limited to the range between 0 and TFM(t)
n [β]. Supposed

that the bit width of TFM is M bits. First, the location of leading
one of TFM(t)

n [β], assuming that it is located at the kth bit and
k≤M , will be sorted. Then, a random number is generated
by least significant k+1 bits of an M -bit linear-feedback shift
register (LFSR). Since the random number may be larger than
TFM(t)

n [β], a clipping will be used for controlling the range of
random numbers. Finally, the output symbol is generated by
comparing the random number to each TFM(t)

l [γ] as in the RHS
algorithm.

Fig. 5. BER performance of proposed decoder.

D. Decoding Process

The operations of the proposed decoder are summarized as
follows.

1) Initialization: In the beginning, the channel values of
each variable node are converted to a set of probabilities
Lv[γ] for each symbol in GF(q). In addition, the trun-
cated TFM with n set of registers of each variable node
are initialized by the largest n probabilities, such that
TFM(t)

l [β] = TFM(t)
(l−1)[γ] + L2

v[β], where γ, β ∈ GF(q)
and l = 1, 2, . . . , n.

2) Variable node update: The VNUs follow the procedure,
as shown in Fig. 3. Moreover, the overall belief is also
generated by argmaxLv[x], where Lv[x] is the likeli-
hood of the input symbol x for each variable node v [14].

3) Symbol permutation.
4) Check nodes update: The CNUs execute the finite field

addition.
5) Termination: The decoder will be terminated whenever

all of the beliefs satisfy check equations. Otherwise, the
decoder generates an attempted codeword after a preset
number of decoding cycles.

IV. PERFORMANCE EVALUATION

Based on the proposed CTFM-CC decoding algorithm and
truncated TFM architecture, a (168, 84) regular-(2, 4) NB-
LDPC code over GF(16) is implemented with a fully parallel
architecture. To verify the functionality of the proposed de-
coder, computer-based software and postlayout simulations are
adopted. Fig. 5 shows the BER performance of the proposed
decoder. The simulation environments are binary phase-shift
keying modulation and additive white Gaussian noise channel.
The resolution of TFM is 11 bits, and the maximum decoding
cycle is equal to 105 with enabled early termination. The
performance curves reveal that the proposed decoder achieves
the same performance compared to a floating-point FFT-SPA
decoder with ten iterations (I = 10) under SNR equal to 3 dB.
Furthermore, it outperforms the floating-point EMS decoder
when BER is below 10−3. Compared to the EMS decoder in
[16], the proposed decoder achieves better BER performance
above 10−6 even if the block length of the proposed decoder is
shorter than [16].
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART NB-LDPC DECODERS

The proposed decoder is implemented in a UMC 90-nm
CMOS technology. Based on the synthesis result of Cadence
SOC Encounter, the total gate count of proposed decoder is
1253 K. Since the decoding cycle under early termination mode
is 170, the data rate of the proposed decoder achieves 1.13 Gb/s
at an SNR of 3.5 dB. Table II summarizes the implementation
result of the proposed decoder. To the best of our knowledge,
the proposed decoder is the first over Gb/s stochastic NB-LDPC
decoder.

A comparison with state-of-the-art NB-LDPC decoders is
given in Table II. In [14], an FPGA-based stochastic NB-LDPC
decoder using the AMSA algorithm was presented. The authors
implemented a (192, 96) over GF(64) NB-LDPC decoder,
where it achieved a throughput of 698 Mb/s using custom
memory. In [18], a trellis-based max-log-QSPA decoder using
bidirectional forward–backward recursion for a (837, 726) over
GF(32) NB-LDPC code was implemented. It showed a result
of a throughput of 33.53 Mb/s with 8.51 M gate count under
the postlayout simulations. In [19], a relaxed check node pro-
cessing scheme for the min-max NB-LDPC decoding algorithm
was proposed. Based on its synthesis results, a throughput of
66 Mb/s with 871 K gate count (837, 726) NB-LDPC decoder is
provided. Recently, the first silicon-proven NB-LDPC decoder
was reported in [16]. A fully parallel EMS decoder for a (160,
80) over GF(64) NB-LDPC achieved a throughput of 1.15 Gb/s
with 2.78 M gate count. In summary, our proposed decoder
can provide a higher throughput with both better hardware and
energy efficiency among related NB-LDPC decoders.

V. CONCLUSION

In this brief, an area-efficient stochastic decoder for NB-
LDPC codes has been presented. The CTFM-CC decoding
algorithm has been proposed to simplify operations of the
variable node, and a truncated TFM architecture has been
provided to reduce the complexity of VNUs under negligible
performance degradation. The dynamic random number gen-
eration method has been also proposed to generate the output
symbol of the SPA-to-stochastic conversion of VNU. Hence,
the throughput and hardware efficiency of the decoder are
enhanced. A (168, 84) over GF(16) NB-LDPC decoder for
wireless communication has been implemented to demonstrate
the feasibility of our proposal. The proposed decoder achieves
a throughput of 1.13 Gb/s, leading to a hardware efficiency of
0.90 Mb/s/K-gate. Compared to other state-of-the-art works,
our proposed design can achieve the highest hardware effi-
ciency among available NB-LDPC decoders.
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