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Abstract Distributed resource allocation is a very im-
portant and complex problem in emerging horizontal
dynamic cloud federation (HDCF) platforms, where
different cloud providers (CPs) collaborate dynami-
cally to gain economies of scale and enlargements of
their virtual machine (VM) infrastructure capabilities
in order to meet consumer requirements. HDCF plat-
forms differ from the existing vertical supply chain
federation (VSCF) models in terms of establishing fed-
eration and dynamic pricing. There is a need to develop
algorithms that can capture this complexity and easily
solve distributed VM resource allocation problem in a
HDCF platform. In this paper, we propose a coopera-
tive game-theoretic solution that is mutually beneficial
to the CPs. It is shown that in non-cooperative environ-
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ment, the optimal aggregated benefit received by the
CPs is not guaranteed. We study two utility maximiz-
ing cooperative resource allocation games in a HDCF
environment. We use price-based resource allocation
strategy and present both centralized and distributed
algorithms to find optimal solutions to these games.
Various simulations were carried out to verify the pro-
posed algorithms. The simulation results demonstrate
that the algorithms are effective, showing robust per-
formance for resource allocation and requiring minimal
computation time.

Keywords Horizontal dynamic cloud federation ·
Vertical supply chain federation · Distributed resource
allocation · Cooperative games

1 Introduction

In recent years, horizontal dynamic cloud federation
(HDCF) models have emerged (Bittman 2008; Celesti
et al. 2010a, b; Dodda et al. 2009), in which various CPs
(smaller, medium, and large) collaborate dynamically to
gain economies of scale and enlarge their virtual ma-
chine (VM) infrastructure capabilities (e.g. enlargement
of Infrastructure-as-a-Service (IaaS) capability) to meet
consumers’ quality of service (QoS) targets, becoming
themselves at the same time both ‘users’ and ‘resource
providers’. They differ from the existing vertical sup-
ply chain federation (VSCF) models (Rochwerger and
Breitgand 2009; Ranjan and Buyya 2008; Buyya et al.
2010; Maximilien et al. 2009; Elmroth and Larsson 2009;
OpenQRM 2010; di Costanzo et al. 2009; Costanzo
et al. 2009; Assunção et al. 2010), in which CPs leverage
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cloud-based services of other clouds for seamless provi-
sioning, and a priori agreements among the parties are
needed to establish the federation. A HDCF platform
dissolves as soon as the demand has been completed.

Previous research works (Bittman 2008; Celesti et al.
2010a, b; Dodda et al. 2009) have mainly focused on
developing architecture, discovery, match-making, au-
thentication and middleware solutions to build HDCF
platforms among different CPs. One of the major re-
search issues in an HDCF platform is the develop-
ment of efficient distributed VM resource allocation
policies, a topic that has gone unexplored in prior
works. Distributed VM resource allocation is a chal-
lenge in an HDCF platform since the CPs (both re-
source users and providers) are inherently rational (i.e.,
self-interested and welfare-maximizing) due to their
different ownerships and their dynamic, on-demand
collaboration.

In an HDCF environment, there are two types of
participants, a buyer CP, called a primary CP (pCP),
and a seller or cooperating CP, known as a cCP. A CP
can be simultaneously both a pCP and/or cCP. A
pCP initiates an HDCF platform when it realizes that,
at a certain time in the future, it will not be able
to continue to provide services to its clients. Conse-
quently, it transparently and dynamically enlarges its
own virtualization infrastructure capabilities by asking
for further VM resources from other cCPs for a specific
period of time. Each pCP needs to comply with the
QoS requirements specified in the Service Level Agree-
ment (SLA) contracts with the clients. The goal is
to maximize the pCP revenues from the SLAs while
minimizing the cost of use of the VM resources supplied
by the cCPs. Conversely, the cCPs want to maximize
the revenues obtained from providing VM resources
to the pCPs. Therefore, there is a need to develop an
efficient mechanism for the economics of VM resource
supply among CPs (pCPs and cCPs) with heteroge-
neous cost functions. Such a mechanism needs to be fair
and ensure mutual benefits so that the participants are
encouraged to join or form an HDCF platform.

To capture the inherently contradictory interests of
the resource users (pCPs) and the resource providers
(cCPs) in a HDCF platform, a natural modeling frame-
work involves seeking an equilibrium or stable operat-
ing point for the system. In this context, game theoretic
methods allow an in-depth, analytical understanding
of the distributed VM resource-provisioning problem
in an HDCF platform. Recently, game theory-based
resource allocation mechanisms have received a con-
siderable amount of attention in literature on cloud
computing (Wei et al. 2010; Jalaparti et al. 2010; Lee
et al. 2010; Teng and Magoulès 2010; Li et al. 2010).

However, most of these works focus on optimal re-
source allocation using game theory in a single provider
scenario. A few applicable studies have been found, fo-
cusing on developing effective VM resource allocations
that differentiate the self-interested CPs and encourage
them to contribute their VM resources to a HDCF
platform.

In this paper, we analyze cooperative game theory-
based VM resource allocation mechanisms for self-
interested IaaS CPs that motivate them to participate in
a HDCF platform. We show that, in a non-cooperative
environment, the IaaS CPs (pCPs and cCPs) selfishly
optimize their own utility. Thus the optimal aggregated
benefit received by the IaaS CPs is not guaranteed, and
the outcome may not meet expectations. In a HDCF
platform, IaaS CPs (pCPs and cCPs) dynamically col-
laborate to complete tasks cooperatively on an on-
demand basis, so that the performance requirements
of all of the tasks can be satisfied without increasing
the amount of VM resources. The contributions of this
paper are as follows:

– We study cooperative game theoretic approaches
to model the economics of VM resource supply
among the IaaS CPs (pCPs and cCPs) in a HDCF
environment. The games motivate the coopera-
tion of different IaaS CPs with heterogeneous cost
functions. We use price-based resource allocation
strategies in these games to ensure proportional
fairness of resource supplies.

– We propose two utility maximizing cooperative
games- one for pCPs (UtilMaxpCP game) and the
other for cCPs (UtilMaxcCP game), which led to
two different optimal situations: a maximized total
profit for pCPs and a maximized social welfare
for cCPs. We also analyze a non-cooperative util-
ity maximization game for cCPs (NonCopUtilMax-
cCP) to show the necessity of cooperation for
achieving individual optima and maximum social
welfare in a HDCF platform.

– Both centralized and distributed algorithms are
used in these games in order to achieve optimal
solutions. These algorithms have low overhead
and robust performance against dynamic pricing
and stability. Various simulations were conducted
to measure the effectiveness of these algo-
rithms. The simulation results demonstrate that the
UtilMaxcCP game is suitable in an HDCF platform
as it is effective in terms of cost and enables the best
set of cCPs to supply VM resources.

The paper is organized as follows: In Section 2,
we describe the related literature regarding HDCF
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platforms and resource allocation mechanisms. In
Section 3, we present the overall system architecture
of a HDCF platform, and the mathematical problem
formulation. In Section 4, we describe the two resource
allocation games in detail. In Section 5, we evaluate the
effectiveness of the proposed resource allocation games
in a HDCF environment, and finally, in Section 6, we
present our conclusions.

2 Related works

In this section, we provide an overview of the current
cloud federation initiatives and present a comparative
analysis of research related to horizontal dynamic cloud
federation. We then discuss it in terms of the existing
distributed resource allocation mechanisms in order to
ascertain the feasibility of our proposed approaches.

2.1 Emergence of horizontal dynamic
cloud federation

Cloud federation is gaining popularity in the research
community, due to its flexibility and effectiveness in
improving performance for end-users and achieving
pervasive geographical coverage with increased capac-
ity for a CP. Rochwerger and Breitgand (2009) first pro-
posed an architecture for open federated cloud comput-
ing called the Reservoir model. The authors attempted
to use grid interfaces and protocols to realize interoper-
ability between the clouds or infrastructure providers;
however, their work was in the model stage. Ranjan
and Buyya (2008) described a decentralized overlay
for a federation of enterprise Clouds called Aneka-
Federation. Aneka is a .NET-based service-oriented
resource management platform, which is based on
the creation of containers that host the services. It
is in charge of initializing services and act as a sin-
gle point for interaction with the rest of the Aneka
Cloud. Buyya et al. (2010) presented a vision and chal-
lenges of InterCloud for a utility-oriented federation
of Cloud computing environments. IBM Altocumulus
(Maximilien et al. 2009), a cloud middleware plat-
form from IBM Almaden Services Research, aimed to
solve the issue of managing applications across multiple
clouds.

An analysis of the aforementioned works reveals
that they focus on vertical supply chain federation
(VSCF) Models, in which cloud providers leverage
cloud services from other cloud providers for seamless
provisioning (Celesti et al. 2010a, b; Bittman 2008).
However, in the near future, we can expect that hun-
dreds of cloud providers will compete to provide ser-

vices to the thousands of users who want to run their
complex heterogeneous applications on cloud comput-
ing environments. In these open Cloud collaboration
scenarios, the existing VSCF models are not applicable.
In fact, while clouds are typically heterogeneous and
dynamic, the existing VSCF models are designed for
static environments where a priori agreements among
the parties are needed to establish the federation
(Dodda et al. 2009; Celesti et al. 2010a).

Recent works like Bittman (2008), Celesti et al.
(2010a, b) and Dodda et al. (2009) focus on horizontal
collaborative Cloud service solutions, in which cloud
providers (smaller, medium, and large) collaborate dy-
namically on an on-demand basis to gain economies of
scale and enlarge their virtual infrastructure capabili-
ties to meet the QoS targets of heterogeneous cloud
service requirements. The author in Bittman (2008)
first hypothesized the near future evolution of cloud
computing in three stages: stage 1 ‘Monolithic’ (now),
cloud services are based on independent proprietary
architectures; stage 2 ‘Vertical Supply Chain’ (now)
and stage 3 ‘Horizontal Federation’. In Celesti et al.
(2010a), the authors proposed a HDCF solution based
on a cross-cloud federation manager, a new component
located within the cloud architectures, allowing a cloud
to establish a federation with other clouds according to
a three-phase model of discovery, match-making and
authentication. An architecture for cross-cloud system
management is proposed in Dodda et al. (2009), aimed
at facilitating the management of computing resources
from different cloud providers in an homogeneous
manner. The primary goal is to provide flexibility and
adaptability.

However, all of the aforementioned works only pro-
vide frameworks and policies required to achieve a
HDCF model among CPs, excluding the decision mak-
ing mechanisms for allocating VM resources to collab-
orators and the strategies for motivating and forming
federations. VM resource allocation is challenging in a
HDCF platform, since the CPs (both resource users and
suppliers) are inherently rational (i.e. self-interested
and welfare- maximizing) due to their different owner-
ships and collaborate dynamically on an on-demand ba-
sis. Rational CPs make their own decisions according to
their budgets, capabilities, goals and local knowledge,
without considering the global good. Furthermore,
there is no omniscient designer who can develop a
resource allocation mechanism that satisfies the prefer-
ences of all rational resource users and suppliers while
maximizing the global efficiency. Global efficiency is
generated through interactions among agents from the
bottom up. Thus, we address this issue and focus
on developing an efficient mechanism to model the
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economics of VM resource supply among CPs (pCPs
and cCPs) with heterogeneous cost functions.

2.2 Distributed resource allocation mechanisms
for a HDCF platform

In a HDCF environment, distributed VM resource al-
location mechanisms should be established from the
bottom up, meaning that every rational CP (resource
user/ pCP or supplier/cCP) makes individual decisions
based on local knowledge and preferences, without
considering the global good. The global efficiency is
generated from the bottom up through interactions
among CPs (pCP and cCPs). Each CP can be affected
by the actions of all CPs, not only her own action.
In this setting, a natural modeling framework involves
seeking an equilibrium, or a stable operating point, for
the system.

Economic-based approaches like commodity market-
based or auction-based resource allocation mechanisms
(Gomes et al. 2010; An et al. 2010; Auyoung et al. 2004;
Fu et al. 2003; Lai et al. 2005; Macias and Guitart 2010)
can be useful to build a distributed VM resource allo-
cation mechanism in a HDCF platform. For example,
the authors in Gomes et al. (2010) investigate the ap-
plication of market oriented mechanisms based on the
General Equilibrium Theory of Microeconomics to co-
ordinate the sharing of resources between the clouds in
the federated cloud. However, the most obvious weak-
ness of the commodity market-based/auction-based
mechanism for resource allocation in a HDCF platform
is that no such real market exists. The difficulty lies in
verifying that the empirical results in the experimen-
tal settings can be duplicated in real markets (Wolski
et al. 2003). Also in such a market setting we have
to ensure truth-elicitation of CPs since the economic
incentives tends to induce self-interested and welfare-
maximizing providers to alter their bids or prices in
order to increase their revenue (He and Ioerger 2005).
In these contexts, game theory based market-model
for resource allocation is the most preferable solution.
It allows for an in-depth analytical understanding of
the distributed VM resource provisioning problem in
a HDCF platform.

Game-theory based distributed resource allocation
mechanisms have received a considerable amount of
attention in different areas, such as grid computing
(He and Ioerger 2005; Carroll and Grosu 2010; Subrata
and Zomaya 2008; Andrade et al. 2007; Wilkins et al.
2010; Penmatsa and Chronopoulos 2011; Cheng et al.
2010; Khan and Ahmad 2006), P2P network (Ma et al.
2006; Kumar et al. 2011; Park and van der Schaar

2010), and recently in Cloud computing area (Ardagna
et al. 2011; Wei et al. 2010; Jalaparti et al. 2010; Lee
et al. 2010; Teng and Magoulès 2010; Li et al. 2010;
Antoniadis et al. 2010; An et al. 2010). In cloud com-
puting, researchers have (Wei et al. 2010) proposed a
game-theoretic method for scheduling cloud-based
computing services with collaborative QoS require-
ments. In Jalaparti et al. (2010), the authors modeled
the complex client-client and client-provider interac-
tions in a cloud using game theory. A new game
theory based resource allocation using the Bayesian
Nash Equilibrium was proposed in Teng and Magoulès
(2010). In Li et al. (2010), the authors addressed the
problem of optimal resource allocation in computa-
tional cloud. An evolutionary game theoretical mech-
anism for adaptive and stable application deployment
in clouds was proposed in Lee et al. (2010). In Ardagna
et al. (2011) a game theory based approach for the run
time management of a IaaS provider capacity among
multiple competing Software-as-a-Services (SaaSs) is
proposed.

However, a little research is directly applicable in an
HDCF scenario. In this context, a federation of cloud
providers was analyzed to try to determine the profit
share with the notion of diversity using a coalitional
game theory in Antoniadis et al. (2010). However,
the researchers assumed a static federation of cloud
providers and thus did not address the issues of dy-
namic and distributed coalition formation, nor did they
include the motivations that would encourage CPs to
join or form a horizontal cloud federation.

In An et al. (2010), the authors proposed a market-
based resource allocation approach where consumers
(buyers) are dynamic and can bid for a set of cloud re-
sources from multiple cloud providers (sellers). Instead
of using auction-based approaches, they proposed a dis-
tributed negotiation mechanism where agents (buyers
and sellers) negotiate over both a contract price and a
decommitment penalty, which allows agents to decom-
mit from contracts at a cost. Although the work seems
to be applicable in an HDCF platform, it has some ma-
jor drawbacks. First, it is different from an HDCF plat-
form, since it considers a combinatorial market where
consumers/users can get multiple cloud resources from
multiple providers. Second, the resource allocation
model assumes that each agent (buyer and seller) can
know the demand/supply ratio of each resource. In
reality, an agent may not know the demand/supply
ratio. Fourth, the proposed approach also assumes that
each buyer agent knows each seller’s expected cost of
providing a resource. In a distributed dynamic environ-
ment, this is impractical. Finally the proposed approach
does not investigate the agent’s rational strategies and
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equilibrium criteria, which are important in dynamic
resource allocation scenarios.

He and Ioerger (2005) showed that providing in-
centives for agents to share their resources with oth-
ers is the key to making computational grids realistic.
However, they did not evaluate the social welfare of
a coalition formation-based resource allocation mech-
anism, which reflects the level of satisfaction of the
participants in the coalition. Carroll and Grosu (2010)
proposed a coalition game theory-based resource com-
position framework among self-interested grid service
providers for creating virtual organizations in Grids.
The authors tried to compute the worth of each coali-
tion for an agent that maximizes its profit. However,
a service provider cannot possibly compute the worth
of all coalitions and, thus, has limited information
on which to base its decision. Andrade et al. (2007)
proposed an incentive mechanism based on the local
history in P2P grids, which makes it in the interest
of each participating peer to contribute its spare re-
sources. It is well-known that incentive mechanisms
using local history are not effective in all settings
(Feldman et al. 2004). In Cheng et al. (2010), a novel
approach for enabling grid users to perform resource
federation using intelligent agent negotiation is pro-
posed. The features of the agents were autonomous
and distributed and were designed to address the fed-
eration problems in grids, such as resource selection
and policy reconciliation. Khan and Ahmad (2006) pro-
posed non-cooperative, semi-cooperative and cooper-
ative games of resource allocation for computational
grid environments. However, their cooperative method
has a high computational complexity and is difficult to
implement.

The main differences between the aforementioned
related works and our work are as follows:

1. Firstly, we address the problem of finding effec-
tive VM resource allocation mechanisms that
differentiate the self-interested CPs and motivate
them to contribute their VM resource to a HDCF
platform. To the best of our knowledge this is the
first paper analyzing VM resource allocation in a
HDCF platform.

2. Secondly, we motivate the providers to supply VM
resource based on a defined price function, which
ensures proportional fairness of resource supply.

3. Thirdly, we propose two distributed cooperative
algorithms for implementing the games. These have
low overhead and robust performance against sta-
bility and dynamic pricing. We also analyze a non-
cooperative game to show the effectiveness of
cooperation.

4. Finally, a cost effective resource allocation game is
achieved among IaaS CPs which encourages them
to form an HDCF platform.

3 System model and problem formulation

In this section, we first present the overall system
architecture of a HDCF platform. Then, we describe
our mathematical problem formulation of the resource
allocation games.

3.1 Overview of horizontal dynamic cloud
federation platform

Let us provide an overview of a HDCF platform as
described in Celesti et al. (2010a, b). We assume that
CPs are rational (self-interested and well fare max-
imizing) and make their own decisions according to
their budgets, capabilities, goals and local knowledge.
The formation of an HDCF platform is initiated by a
IaaS CP, known as a primary cloud provider (pCP),
when it realizes that at a certain time in the future
it cannot continue providing services to its clients
(i.e. other clouds, enterprises, generic end users, etc).
Consequently, it transparently and dynamically en-
larges its own virtualization infrastructure capabilities
by asking for further VM resources from other collabo-
rating clouds, called cCPs, for a specific period of time.
A IaaS cloud provider could be simultaneously both a
pCP and/or a cCP.

The Fig. 1 shows a formed horizontal dynamic cloud
federation platform. We can see that the pCP is already
in VSCF model because it is able to provide services to
other clouds (top part of the Fig. 1). Moreover it is also
dynamically collaborating with other CPs, that is, cCP’s,
to enlarge its capabilities when it realizes that its vir-
tualization infrastructure would be unable to continue
providing services to its clients. Thus, a HDCF platform
allows IaaS CPs to cooperatively achieve greater scales
and reaches, as well as service qualities and perfor-
mances, than could otherwise be attained individually.
Its significance can be better understood through the
following two example applications:

– Emerging Cloud applications like Social networks
(e.g. Facebook, MyS- pace etc.) deployed on a CP
serve dynamic content to millions of users, whose
access and interaction patterns are hard to predict.
In addition, the dynamic creation of new plug-ins
by independent developers may require additional
resources which may not be provided by the hosting
cloud provider at certain periods in time. In this
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Fig. 1 A formed horizontal
dynamic cloud federation
Platform
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situation, load spikes (cloud bursting) can occur
at different locations at any time, for instance,
whenever new system features become popular or a
new plug-in application is deployed. This results in
an SLA violation and ends up incurring additional
costs for the CP (Buyya et al. 2010). This necessi-
tates building mechanisms for horizontal dynamic
collaborations of CPs for seamless provisioning of
VM resources.

– Other example applications that need horizon-
tal dynamic cloud federation are massively multi-
player online role-playing games (MMORPGs).
World of Warcraft (http://www.worldofwarcraft.
com/cataclysm/), for example, currently has 11.5
million subscribers; each of whom designs an avatar
and interacts with other subscribers in an on-
line universe. Second Life (http://secondlife.com/)
is an even more interesting example of a social

space that can be created through dynamic Cloud
collaboration. Any of the 15 million users can
build virtual objects, create their own virtual land,
buy and sell virtual goods, attend virtual con-
certs, bars, weddings, and churches, and communi-
cate with any other member of the virtual world.
These MMORPGs require huge amount of Cloud
resources/services which cannot be provided by a
single cloud provider at that time. This necessitates
building mechanisms for the seamless collaboration
of different CPs supporting dynamic scaling of re-
sources across multiple domains in order to meet
the QoS targets of MMORPGs customers.

However, an effective VM resource allocation that
differentiates the self- interested IaaS CPs and mo-
tivates them to contribute their VM resources to a
HDCF platform is a complex issue, as is how to decide

http://www.worldofwarcraft.com/cataclysm/
http://www.worldofwarcraft.com/cataclysm/
http://secondlife.com/
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the resources that each cCP should contribute to the
platform and the resource that each pCP can utilize.
In game theory, coalition/federation formation is a
cooperative game among self- interested agents. There-
fore, we studied different cooperative game theory-
based distributed VM resource allocation mechanisms
for IaaS CPs in HDCF platforms.

From the pCPs perspective, VM resources should
continue providing services to their clients at lower
operating systems costs. Thus, they define various price
functions, which specify how much price per hour
should be given to cCPs for each unit of the VM re-
source supplied in the HDCF platform. From the cCPs
perspective, the goal is to maximize their utilities by
selling the VM resources based on the price functions
of the pCPs. A IaaS CP (pCP or cCP) will not join
the platform if its net profit is zero. In this paper, we
analyzed the interactions among IaaS CPs (pCPs and
cCps) under different resource allocation games.

3.2 Mathematical model formulation
in a HDCF platform

The notations used in the paper are summarized in
Table 1. A pCP requires VM resources with specific
QoS requirements during a certain period t to continue
providing services to its clients. A set of cCPs P =
{Pt

i |i = 1 . . . m} is available during that period which
can form a HDCF platform with pCP by providing VM
resources with the required QoS. Let Rt

VM be the total
VM resources supplied in a HDCF platform for period
t, rt

i be the units of VM resource supplied by a CP i for
period t, and C̃t

i be its maximum capacity during that
period. The sum of the VM resources supplied to any

pCP should be
m∑

i=1
rt

i = Rt
VM. We know that the pCP

can buy these VMs cheaper than the revenue it obtains

from selling them to clients (Goiri et al. 2010). The
definitions used for the mathematical model formula-
tion are as follows:

Definition 1 (Profit) Let Revt
cCP(Rt

VM) be the revenue
a pCP can provide for getting Rt

VM resources from cCPs
at certain period t and Prt

cCP(Rt
VM) be the price per hour

set by a pCP to cCPs for each unit of VM resource
supplied in period t. Then, the expected profit of a pCP
obtained from executing tasks on Rt

VM resources from
cCPs is defined as follows:

Profitt
pCP

(
Rt

VM

)

= Revt
cCP

(
Rt

VM

) − Rt
VM · t

Pr
cCP

(
Rt

VM

)
(1)

As shown in Eq. 1, the total profit is determined
by the total VM resource Rt

VM supplied in the HDCF
platform and a pCP can only influence the value of
Rt

VM by setting a proper price function Prt
cCP(Rt

VM).
Threfore, the pCP can strategically define the price
function Prt

cCP(Rt
VM) in such a way that it can motivate

the available cCPs to contribute their resources to a
HDCF platform and get profit from this transaction.

Definition 2 (Cost function) Let Mt
i be the production

cost of the first unit of VM resource for any provider
i during a certain period t and αi is its learning factor.
Then, in order to supply rt

i units of the VM resource,
any cCP i has to pay Cost(ri

t), which is defined as
follows (Amit and Xia 2011):

Cost
(
rt

i

) = Mt
i · rt1+log2α

i

1 + log2α
(2)

s.t. 0 ≤ rt
i ≤ C̃t

i (3)

Table 1 Summary of notations

Parameters Description

Rt
VM Total VM resources supplied in a HDCF platform in period t

P = {
Pt

i |i = 1...m
}

Total number of cloud providers present in period t
rt

i VM resource supplied by provider i in period t

C̃t
i Total VM capacity of provider i in period t

Cost
(
rt

i

)
Cost of supplying rt

i unit of VM resource by provider i in period t
Mt

i Cost of the first unit of VM resource by provider i in period t
αi Learning factor of provider i where 0.75 < αt

i < 0.9

ω Parameter defining the rate of revenue in a HDCF platform
Profitt

pCP

(
Rt

VM

)
Profit of any pCP with Rt

VM resources supplied from cCPs in period t
Revt

cCP

(
Rt

VM

)
Revenue function estimated by a pCP for Rt

VM resources supplied by cCPs in period t
Prt

cCP

(
Rt

VM

)
Price per hour given to cCPs by a pCP for each unit of VM resource supplied in period t

Util
(
rt

i

)
Utility of any cCP i by providing rt

i unit of VM resources in period t
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This cost function is based on the learning curve
model (Amit and Xia 2011) which assumes that as the
number of production units are doubled the marginal
cost of production decreases by a fixed factor α. The
marginal cost function of Eq. 2 is as follows:

MCost
(
rt

i

) = Mt
i · rtlog2α

i (4)

The cost function can be heterogeneous for different
cCPs based on α and M. The higher the value of α

and M, the higher the production cost for the provider.
It has been reported (Amit and Xia 2011) that for a
typical CP, as the total number of servers in the house
doubles, the marginal cost of deploying and maintain-
ing each server decreases 10–25%, thus the learning
factors are typically within the range (0.75, 0.9).

Definition 3 (Revenue function) Let ω be the increas-
ing rate of revenue. A pCP can estimate the revenue
function of the HDCF platform as follows:

Revt
cCP

(
Rt

VM

) = M · (
1 − e−Rt

VM·ω)

ω
(5)

The function Revt
cCP(Rt

VM) is a non-decreasing and
concave function which means that the more resources
supplied by cCPs, the higher the revenue. However,
the marginal revenue decrease as the resource increase.
The product of the price and the total available VM unit
Rt

VM should not exceed the corresponding revenue.
The pCP has the freedom to decide how much revenue
is to be provided to the cCPs by varying the parameters
M and ω.

Definition 4 (Price function) Based on the revenue
function of Eq. 5, the price per hour given to the cCPs
by a pCP for each unit of VM resource supplied in
period t is defined as follows:

t
Pr

cCP

(
Rt

VM

) = M · e−Rt
VM·ω (6)

s.t. Rt
VM > 0 (7)

The function Prt
cCP(Rt

VM) is the marginal gain of
the HDCF platform. When the amount of VM re-
source increase, the price per hour of each unit of
VM resource decrease. Also this function represents
the proportional fairness of contributing resources by
cCPs.

Price/hour

Revenue

Cost

MC
MR

VMsr

d

b

e

Profit

Fig. 2 Maximum profit using marginal revenue and cost

Definition 5 (Utility of any cCP) The utility of any cCP
i which represent its level of satisfaction of supplying rt

i
units of VM resources is defined as follows:

Util(rt
i) = rt

i · t
Pr

cCP

(
Rt

VM

) − Cost
(
rt

i

)
(8)

s.t. 0 ≤ rt
i ≤ C̃t

i (9)

All cCPs are rational, and they strategically choose
the amount of rt

i so as to maximize their profit. A cCP
can get maximum profit when the marginal costs (MC)
equal the marginal price (MR). Figure 2 shows the MC
and MR of our model based on Eqs. 4 and 6. The profit
or utility is maximized when MC = MR at point b , thus
r VMs. Beyond r, each VM costs more than the revenue
offered (MC > MR). Until r VMs is reached, the cost
for each unit of VM is less than the revenue obtained
from it (MC < MR). For r VMs, the total cost and
revenue are e and d respectively; so the maximum profit
is d − e.

4 Resource allocation games in a HDCF platform

The objective of a resource allocation game in a
HDCF platform is to dynamically allocate VM re-
sources among the IaaS CPs (pCPs and cCPs) on an
on-demand basis without exceeding their resource ca-
pacities and expense prices, thus satisfying all involved.
We study two cooperative resource allocation games in
a HDCF platform. Both games are repeated and asyn-
chronous. In both games, a pCP strategically defines a
price function Prt

cCP(Rt
VM) and publicizes it along with

the total amount of VM resources supplied. Each cCP
only knows this information and can update its own
strategy during each move so as to maximize its utility.
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In one game, pCPs, acting as leaders, tried to maximize
their utilities, with cCPs also trying to maximize their
utilities in a non-cooperative manner. In another game,
pCPs just announced their prices and did not attempt to
maximize their profit or utilities. The cCPs in this game
cooperatively tried to maximize their social welfare or
utilities, by deciding collectively the amount of VM
resources to supply based on the prices of pCPs.

4.1 Utility maximization game for pCPs
(UtilMaxpCP)

In this cooperative game of price-based resource allo-
cation, a pCP, acting as a Stackelberg leader (Drew
and Jean 1993), strategically decides a price function
and the cCPs react by selecting the ideal amount of
VM resources to supply. The objective of this game is
to find the Stackelberg Equilibrium (SE), from which
neither the leader (pCP) nor the followers (cCPs) have
incentives to deviate. A pCP tries to set a proper price
so as to maximize its profit, whereas the cCPs try to
maximize their benefits based on that price. In this
game, cooperation means that the cCPs are following
the pCP or the leader to reach a SE. The formulation
of this game in an HDCF platform can be described as
follows:

1. Players: There are two types: the pCP as a leader
and the available cCPs as followers.

2. Strategies: The strategy for a pCP is to maxi-
mize its Prof itt

pCP(Rt
VM) in the HDCF platform

by defining a price function Prt
cCP(Rt

VM). However,
for a defined price function Prt

cCP(Rt
VM), there is

no guarantee that a pCP will maximize its total
profit. Thus, a pCP can set an initial constant or
uniform price and can choose a proper price Prt

cCP
to maximize its total profit. The strategy for the
cCPs are to maximize their benefits based on rt

i and
the price Prt

cCP. They play a non-cooperative game
with each other to maximize their own utilities.

3. Payoffs: The payoff for a pCP is the utility it can
gain by using VM resources for a minimal amount
from the available cCPs. For a cCP it is the utility
gained from selling its own VM resources to a pCP.

For the aforementioned game model, the objective
of the pCP is to maximize its profit/utility by finding
a proper price Prt

cCP. This is obtained by solving the
following optimization problem:

Max Profitt
pCP

(
Rt

VM

)

= Revt
cCP

(
Rt

VM

) − Rt
VM · t

Pr
cCP

(10)

s.t.
t

Pr
cCP

≥ 0 (11)

0 ≤ rt
i ≤ C̃t

i (12)

The objective of each cCP i is to selfishly maximize
its profit/utility based on the price Prt

cCP from a pCP.
Mathematically, for each cCP i, this problem can be
formulated as:

Max Util
(
rt

i

) = rt
i · Prt

cCP − Cost
(
rt

i

)
(13)

s.t. 0 ≤ rt
i ≤ C̃t

i (14)

The problems in Eqs. 10 and 13 form a Stackelberg
game. Generally, he SE for a Stackelberg game can
be obtained by finding its sub game perfect Nash
Equilibrium (NE). In the proposed game, it was not
difficult to see that the cCPs strictly competed in a
non-cooperative fashion. Therefore, a non- cooperative
resource allocation sub game was formulated for the
cCPs. For a non-cooperative game, NE is defined as
the operating point(s) at which no player can improve
utility by changing its strategy unilaterally, assuming
everyone else continues to use their current strategy.
For the pCPs, since there is only one player, the best
response of the pCP is to solve the problem in Eq. 10.
To achieve this, the best response functions for the fol-
lowers (cCPs) must be obtained first by solving Eq. 13,
since the leader (pCP) derives its best response function
based on those of the followers or cCPs.

The problem in Eq. 13 is a concave function over
Prt

cCP , and the boundary constraint 0 ≤ rt
i ≤ C̃t

i is
affine. Thus, the optimal solution must satisfy the
Karush–Kuhn–Tucker (KKT) conditions. Therefore,
by solving the KKT conditions, the optimal solution
for the problem in Eq. 13 can be easily obtained in the
following lemma.

Lemma 1 For a given price Prt
cCP, the optimal solution

for the problem in Eq. 13 is given by

rt∗
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
Mt

i

Prt
cCP

]− 1
log2αi

, 0 ≤ rt
i ≤ C̃t

i,

C̃t
i, rt

i > C̃t
i,

0, rt
i ≤ 0

(15)

Proof Since the problem in Eq. 13 has a boundary
constraint for the variable rt

i , that is, 0 ≤ rt
i ≤ C̃t

i , it can
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be formulated as a constrained optimization, which can
be solved by the method of Lagrangian Multiplier.

L = Util
(
rt

i

) −
m∑

i=1

γ rt
i +

m∑

i=1

ϕ
(

rt
i − C̃t

i

)
(16)

where γ and ϕ are the Lagrangian constant. The Karush
Kuhn Tucker (KKT) condition is as follows:

∂L
∂rt

i
= Util′

(
rt

i

) − γ + ϕ = 0, i = 1, ....., m (17)

γ � 0, ϕ � 0, γ rt
i = 0, ϕ

(
rt

i − C̃t
i

)
= 0,

0 ≤ rt
i ≤ C̃t

i, i = 1, ....., m (18)

Util′
(
rt

i

) = Mt
i · rtlog2αi

i = Prt
cCP (19)

rt
i =

[
Mt

i

Prt
cCP

]− 1
log2αi

(20)

By solving rt
i of Eq. 19, the optimal rt∗

i of each cCP
i is either rt

i if the maximum located in the range of
(0, C̃t

i), or the boundary value 0 or C̃t
i . Lemma 1 is thus

proved. ��

From Lemma 1, it is observed that for some cCPs,
the rt∗

i value can be less than or equal to 0. So those
cCPs will be removed from the game. So, given the
value of proper price Prt

cCP, a pCP can predict the total
VM resource Rt∗

VM contributed to the system, that is

Rt∗
VM =

m∑

i=1

rt∗
i (21)

Now, let’s consider the optimization problem of a
pCP in Eq. 10. If the pCP knows the parameters M and
α of all the cCPs, it can formulate its own maximization,
which aims at maximizing the total profit with respect
to Rt∗

VM

Max Profitt
pCP

(
Rt∗

VM

)=Revt
cCP

(
Rt∗

VM

)−Rt∗
VM · t

Pr
cCP

(22)

s.t.
t

Pr
cCP

≥ 0 (23)

0 ≤ rt
i ≤ C̃t

i (24)

Since the total amount of VM resources Rt∗
VM solely

depends on the value of price Prt
cCP through Eqs. 15

and 21, the objective function can be rewritten by
substituting Rt∗

VM in terms of Prt
cCP as follows:

Max Pr of itt
pCP

(
t

Pr
cCP

)

= Revt
cCP

⎛

⎝
m∑

i=1

[
Mt

i

Prt
cCP

]− 1
log2αi

⎞

⎠

−
⎛

⎝
m∑

i=1

[
Mt

i

Prt
cCP

]− 1
log2αi

⎞

⎠ · t
Pr

cCP
(25)

=
M ·

⎛

⎝1 − e
−

m∑

i=1

[
Mt

i
PrtcCP

]− 1
log2αi ·ω

⎞

⎠

ω

−
⎛

⎝
m∑

i=1

[
Mt

i

Prt
cCP

]− 1
log2αi

⎞

⎠ · t
Pr

cCP
(26)

s.t. 0 ≤ rt
i ≤ C̃t

i (27)

Although it is difficult to find a close-form solu-
tion of Prt∗

cCP for Eq. 26, we can solve this optimiza-
tion efficiently without derivative using a direct search
method, for example, pattern search method as de-
scribed in Kolda et al. (2003) was applied to solve the
value of the optimal price Prt∗

cCP. Once the pCP finds the
optimal price, it can calculate the value of all rt∗

i using
Eq. 15. However, the boundary constraints in Eq. 27
may be violated, and in which case the problem be-
comes more complicated. Still the solution can be found
using Lagrangian multiplier. Without the constraints,
the objective function in Eq. 26 is a concave function.
Hence, there exists a unique solution that satisfies the
KKT-conditions of Eq. 26 as follows:

L = Pr of itt
pCP

(
t

Pr
cCP

)

−
m∑

i=1

γ rt
i +

m∑

i=1

ϕ
(

rt
i − C̃t

i

)
(28)

∂L
∂ Prt

cCP

=
∂

[
Pr of itt

pCP

(
Prt

cCP

)]

∂ Prt
cCP

−
∂

[
m∑

i=1
γ rt

i

]

∂ Prt
cCP

+
∂

[
m∑

i=1
ϕ

(
rt

i − C̃t
i

)]

∂ Prt
cCP

= 0 (29)

γ � 0, ϕ � 0, γ rt
i = 0, ϕ

(
rt

i − C̃t
i

)
= 0,

0 � rt
i � C̃t

i, i = 1, ....., m (30)
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From the KKT conditions, if γ = 0, and ϕ = 0, then
all the rt

i lie between [0, C̃t
i]. When the boundary con-

straints are violated (γ �= 0, or ϕ �= 0), the value of rt
i

are forced to be the boundary value [either 0 or C̃t
i].

If rt
i is less than or equal to zero for a certain cCP i,

this cCP is not eligible for contributing as the cost of
supplying the VM is comparatively high. Similarly, if rt

i

is greater than C̃t
i , the cCP has optimal value of rt

i . This
cCP should provide as much VM resource as possible
since the cost is comparatively low. Thus, some cCPs
can be eliminated, whose values of rt

i are already known
from the problem formulation and we can resolve the rt

i
for the remaining cCPs.

Until now, we assume that the pCP knows the char-
acteristics of the cost function of each cCP such that it
can determine the behavior of the cCPs, and it can con-
struct its own objective function. However, in distrib-
uted environment, the pCP can only observe the action
of each cCP by setting a probing price. The cCPs choose
the best rt

i to maximize their net utility. The pCP keeps
adjusting the price gradually until a desirable profit is
obtained. Now we present a distributed algorithm to
find the optimal value of Prt

cCP.
The algorithm is described step by step as follows:

Step 1: Initialize the probing price Prt
cCP = 0.1 and

{rt
i}P

i=1 = 0.
Step 2: Send Prt

cCP = 0.1 to all cCPs and receive cor-

responding Rt
VM =

P∑

i=1
rt

i .

Step 3: if Profitt
pCP(Rt∗

VM) = Revt
cCP(Rt∗

VM) − Rt∗
VM ·

t
Pr

cCP
is maximized or

∂
[
Pr of itt

pCP(Prt
cCP)

]

∂ Prt
cCP

= 0, the

optimal Prt
cCP is found and break. Otherwise

update Prt
cCP based on old price and the per-

centage change of the net profit.
Step 4: If 0 ≤ rt

i ≤ C̃t
i for all i ∈ P, then break.

Step 5: Now for some cCP, i ∈ P, If rt
i ≤ 0, remove

those cCPs from the list of P. Also for some
cCP, i ∈ P, If rt

i ≥ C̃t
i , set rt

i = C̃t
i .

The aforementioned search method is a zero-order
method (or maximization method without derivatives).
However, this simple search method may result in lo-
cal optima. Thus, some advanced direct search meth-
ods can be applied in a Price Establishing Protocol
to achieve global optimization with fast converging
speeds, such as the Pattern Search Method (Kolda et al.
2003).

Next, we consider the computational complexity of
this distributed algorithm. For each stage of this itera-
tive algorithm, the pCP handles each cCP once, so each
stage takes O(m) computational steps where m is the

number of cCPs. As we used a direct search method, at
most O(ε−2) iterations or O((b + 1)ε−2) objective func-
tion (Eq. 10) evaluations (when using positive spanning
sets with b + 1 directions) are needed for a pCP to drive
the norm of the gradient of the objective function below
ε (for ε > 0 arbitrarily small) (Vicente 2011).

Here, by O(M), M = ε−2 means a multiple of M,
where the constant multiplying of M does not depend
on the dimension b of the problem or on the iteration
counter k of the method under analysis (thus depending
only on f or on algorithmic constants set at the initial-
ization of the method). Thus, the overall computation
time is O(m + (b + 1)ε−2).

4.2 Utility maximization game for cCPs
(UtilMaxcCP)

In this resource allocation game, we assume that a pCP
can set a fixed budget based on its price function so that
the revenue it will give to cCPs is always lower than
the revenue it can get from clients. Thus, in this game,
the pCPs just announce their prices and do not intend
to maximize their profit or utilities over cCPs. The
cCPs in this game cooperatively try to determine their
best coalition or Nash equilibrium point that maximizes
their individual profits and thus achieves higher social
welfare. Not all the cCPs participate in this game at a
steady state. The formulation of this resource allocation
game in a HDCF platform among seller cCPs can be
described as follows:

1. Players: There are two types of players, the pCP
and the available cCPs.

2. Strategies: The strategy for a pCP is to motivate
the available CPs to form a HDCF platform to
contribute resources by defining the price function
Prt

cCP(Rt
VM). The strategy for the cCPs is to maxi-

mize the social welfare of the HDCF platform.
3. Payoffs: The payoff for the pCP is the utility it can

gain by getting VM resources from available cCPs
with the defined price function. For the cCPs, the
payoff is the social welfare, which is defined as the

total net utility summed over all cCPs i.e.
m∑

i=1
Util(rt

i)

The global objective is to maximize the social welfare
among the cCPs in the HDCF platform, that is,

Max
m∑

i=1

Util
(
rt

i

) = Max
m∑

i=1

[

rt
i · t

Pr
cCP

(
Rt

VM

) − Cost
(
rt

i

)
]

(31)

s. t. 0 ≤ rt
i ≤ C̃t

i (32)
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We can simplify the objective function in Eq. 31 as
follows:

Max
m∑

i=1

Util
(
rt

i

)

= Max
[

Rt
VM · t

Pr
cCP

(
Rt

VM

) − Min Cost
(
Rt

VM

)
]

(33)

s. t. 0 ≤ rt
i ≤ C̃t

i, Rt
VM =

m∑

i=1

rt
i, 0 � Rt

VM �
m∑

i=1

C̃t
i

(34)

The first term Rt
VM · t

Pr
cCP

(Rt
VM) in Eq. 33 is the rev-

enue the cCPs will get by providing Rt
VM resources,

while the second term
m∑

i=1
Cost(rt

i) represents the total

cost of providing Rt
VM units of VM by the cCPs. Now

with the fixed Rt
VM quantity, the maximum social wel-

fare can be obtained when the total cost of providing
the VM resource is minimized. Once we can solve
the minimum cost problem, we can also determine the
optimal quantity of VM resource Rt

VM that results in
maximum social welfare (Eq. 33). Now our goal is to
find the minimum cost to supply a fixed quantity of VM
resource Rt

VM among the cCPs, that is,

Min Cost
(
Rt

VM

)
(35)

s. t. 0 ≤ rt
i ≤ C̃t

i, Rt
VM =

m∑

i=1

rt
i (36)

As the function in Eq. 35 is a concave function.
minimizing it over a linear convex region is complex.
We can find a local minimum which is not necessarily
a global minimum. To solve this problem algorithmi-
cally, we can use a dynamic programming method as
described in Fontes et al. (2006). However, this is a cen-
tralized algorithm which requires the full knowledge
of every cCPs cost functions to execute the algorithm.
As a consequence, a distributive algorithm is generally
preferred to solve the problem. A cCP coordinator is
required to run the algorithm.

Similar to the approach mentioned earlier in
Section 4.1, the cCP coordinator will take the role of
a pCP and try to find out the minimum cost to obtain
a fixed quantity of Rt

VM resource. The cCP coordina-
tor introduces an initial shadow price σ and notifies
the cCPs. Each cCP reacts to the shasow price with

rt
i =

[
Mt

i
σ

]− 1
log2

αi

which is similar to the Eq. 20. The co-
ordinator updates the shadow price based on the total

VM resource contributed to the system. If the total VM
resource supply is more than required, the σ value is
reduced. If the VM supply is insufficient, the σ value
should be increased. The process continues until the

optimal value is achieved, i.e.
m∑

i=1
rt

i = Rt
VM. The coor-

dinator updates the shadow price as follows:

σ (n+1) ← σ (n) +
σ (n) · ξ ·

(

Rt
VM −

m∑

i=1
rt

i

)

Rt
VM

(37)

The parameter n is the game stage and ξ is the factor
that controls the converging speed of the algorithm.
The method is executed periodically to ensure that the
cost remains minimal after any cCPs join or leave. In
a steady state, the σ leads to a VM allocation with
minimal costs. The cCP coordinator has the additional
task of determining whether the resource constraints of
the cCPs are violated. If rt

i is less than or equal to zero
for a certain cCP i, the cCP is not eligible to contribute,
as the cost of supplying the VM is comparatively high.
Similarly, if rt

i is greater than C̃t
i , the cCP has an optimal

value of rt
i . This cCP should provide as much VM

resource as possible since the cost is comparatively
low. Thus, we can eliminate some cCPs, whose values
of rt

i are already known, and resolve the rt
i for the

remaining cCPs. The algorithm is described step by step
as follows:

Step 1: Initialize Rt
′

VM = Rt
VM−

m∑

i=1
rt

i as new VM re-

source requirement, the shadow price σ =0.1,
VM resource rt

i =0 and P={Pt
i|i=1...m} is the

set of available cCPs.
Step 2: Send σ = 0.1 to all cCPs and receive corre-

sponding rt
i =

[
Mt

i
σ

]− 1
log2αi

Step 3: If Rt
′

VM =
m∑

i=1
rt

i , then the algorithm finds the

optimal rt
i and break.

Otherwise, we have to adjust σ according to σ ←
σ + σ ·ξ ·

(
Rt

′
VM

)

Rt
VM

.

Step 4: If 0 ≤ rt
i ≤ C̃t

i for all i ∈ P, then break.
Step 5: Now for some cCP, i ∈ P, If rt

i ≤ 0, remove
those cCPs from the list of P. Also for some
cCP, i ∈ P, If rt

i ≥ C̃t
i , set rt

i = C̃t
i .

Now to determine the optimal quantity of VM re-
source Rt

VM that results in maximum social welfare in
Eq. 33, we cannot rely on any optimization method that
involves derivative of the objective function since we
do not have the close form solution for the minimum
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cost problem, We use direct search method like pattern
search method as described in Kolda et al. (2003) to
find the optimal value of Rt

VM as follows:

Initialization

Let f denotes
m∑

i=1
Util(rt

i) or Util(Rt
VM) in Eq. 33. We have

to maximize f in terms of Rt
VM s.t. 0� Rt

VM �
m∑

i=1
C̃t

i .

Let � denotes the feasible region (0� Rt
VM �

m∑

i=1
C̃t

i).

Let Rt0

VM ∈ � be the initial guess.
Let �tol >0 be the step-length convergence tolerance.
Let �0 > �tol be the initial value of the step-length

control parameter.
Let θmax < 1 be an upper bound reduction parameter

for the step-length control parameter.

Algorithm For each iteration k = 0, 1, 2, . . . .

Step 1: Let Dk be the set of search directions for
iteration k. The search directions need to pos-
itively span the search space to generate the
trial points.

Step 2: If there exists dk ∈ Dk such that trial point
f (Rtk

VM+�kdk)> f (Rtk

VM) or f (Rtk

VM−�kdk)>

f (Rtk

VM) and (Rtk

VM+�kdk) or (Rtk

VM−�kdk)∈
�, then do the following:

– Set Rtk+1

VM = Rtk

VM + �kdk or Rtk

VM − �kdk

(change the iterate).
– Set �k+1 = φk�k, where φk ≥ 1 (op-

tionally expand the step-length control
parameter).

Step 3: Otherwise, either (Rtk

VM + �kdk) or (Rtk

VM −
�kdk) /∈ � or f (Rtk

VM + �kdk) ≤ f (Rtk

VM)

or f (Rtk

VM − �kdk) ≤ f (Rtk

VM), then do the
following:

– Set Rtk+1

VM = Rtk

VM(no change the iterate).
– Set �k+1 =θk�k, where 0<θk <θmax <1

(reduce the step-length control parameter).
– If Rtk+1

VM < �tol, then terminate.

The solution to the optimal VM quantity problem
guarantes maximum social welfare among the cCPs in
the HDCF platform. The optimal VM resource sup-
plied by each cCP is determined through the minimum
cost method and the price is set according to the price
function.

Now let us consider the computational complexity
of the UtilMaxcCP game. The objective of this game
is to maximize the social welfare of the cCPs and two
sub-problems must be solved: (1) For a fixed quan-
tity of VM resource requirement, the minimum cost
from cCPs that maximizes the social welfare must be
determined. As each cCP must be handled once, each
stage takes O(m) computational steps. (2) The opti-
mal quantity of the total VM resource that guarantees
the best social welfare among the cCPs. As the direct
search method like a pattern search method is used
to solve the problem, at most O(ε−2) iterations or
O((b + 1)ε−2) objective function (Eq. 31) evaluations
are needed for a cCP to drive the norm of the gradient
of the objective function below ε (for ε > 0 arbitrar-
ily small). Therefore, the overall computation time is
O(m(b + 1)ε−2).

4.2.1 Non-cooperative utility maximization game
for cCPs (NonCopUtilMaxcCP)

We develop a non-cooperative utility maximization
game for cCPs (Non-CopUtilMaxcCP) in an HDCF
environment to show the effectiveness of coopera-
tion among cCPs to achieve individual optimum as
well as maximum social welfare in the cooperative
UtilMaxcCP game.

In the NonCopUtilMaxcCP game of resource allo-
cation, the cCPs make decision to maximize their own
utilities regardless of other cCPs. They choose rt

i based
on the public information: the aggregated VM resource
Rt

VM and the price function Prt
cCP(Rt

VM) defined by a
pCP and sequentially negotiate with each other to reach
a Nash Equilibrium. There is no central authority in this
game. Formally, cCP i needs to perform:

Max Util
(
rt

i

) = rt
i · t

Pr
cCP

(
Rt

VM

) − Cost
(
rt

i

)
(38)

s. t. 0 ≤ rt
i ≤ C̃t

i (39)

If the net utility of a cCP is less than or equal to
zero, it will not participate in the game, and it will
be removed from the list of cCPs. Note that Rt

VM is
implicitly depends on rt

i . If the value of rt
i is changed, the

value of Rt
VM, as well as Prt

cCP(Rt
VM), will be changed

accordingly. Thus, in the optimization, the value of
Rt

VM would be better presented in terms of rt
i . Let rt

−i
be the amount of VM resource collectively supplied
by the cCPs except cCP i, then rt

−i = Rt
′

VM − rt
′

i , where

Rt
′

VM and rt
′

i are the total amount of VM resources
and the amount of VM resources supplied by cCP i
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respectively in the previous round. The equivalent op-
timization problem of Eq. 38 can be re-written by using
Eqs. 2 and 6 as follows:

Max Util
(
rt

i

) = rt
i · M · e−(rt

i+rt
−i)·ω − Mt

i · rt1+log2αi

i

1 + log2αi
(40)

s. t. 0 ≤ rt
i ≤ C̃t

i (41)

Now to obtain the optimal value of (rt
i) for each cCP

i, we take the derivative of Eq. 40 with respect to rt
i as

follows:

Util′
(
rt

i

) = M · e−(rt
i+rt

−i)·ω − rt
i · M · ω · e−(rt

i+rt
−i)·ω

− Mt
i · rtlog2αi

i = 0 (42)

From Eq. 42, it is difficult to find the close form solu-
tion of optimal rt

i for cCP i. A direct search method with
linear constraint like pattern search method (Kolda
et al. 2003), can be used with with multiple initial
guesses for the optimal VM quantity rt

i . In general, the
game will converge to a Nash equilibrium.

However, for a defined price function, the Nash
equilibrium of this non-cooperative game may not
be unique as the order of movement will influence
the equilibrium point. The game may converge to a
different equilibrium, depending on the sequence of
moves of the cCPs. So there is no guarantee that the
equilibrium will be socially optimal. Hence, the out-
come may not meet their expectation: that is, the utility
may be worse than the achievable individual optimal,
in which the cCPs cooperatively decide how many VM
resources to supply.

For the non-cooperative situation, once the price
function is set and publicized, the pCP has no control
over the value of Rt

VM, which is the Nash equilibrium
point resulting from the moves of the cCPs over many
iterations.The non-cooperative game is not desirable
for maximizing the pCP’s profit because it does not lead
to a unique Nash equilibrium. There is no guarantee for
the pCPs to set a particular pricing function that leads
to a desirable outcome, maximizing its total profit (see
Eq. 10).

The computational complexity of the NonCopUtil-
MaxcCP game can be calculated as follows: In this
game, the cCPs (m) sequentially negotiate with each
other to reach a Nash Equilibrium based on the defined
price function of the pCPs. There is no central author-
ity. As the pattern search method is utilized by each
cCP, the overall computation time is O(m(b + 1)ε−2).

5 Evaluation

In this section, we present our evaluation methodology
and simulation results to show the effectiveness of the
proposed cooperative resource allocation games- the
utility maximization game for pCPs (UtilityMaxpCP)
and the utility maximization game for cCPs (Utility-
MaxcCP), in a HDCF platform. We used a mathemat-
ical simulation example to demonstrate how different
CPs (pCPs and cCPs) interact with each other. We also
analyzed a non-cooperative utility maximization game
for cCPs (NonCopUtilMaxcCP) in this environment
to show the necessity of cooperation. The coopera-
tive games provide strong motivations to different CPs
(pCPs and) to form or join in an HDCF platform.
The mathematical simulation was implemented using
MATLAB 7.0. The built-in Pattern Search Tool was
used to solved the search problem.

5.1 Evaluation methodology

We considered an example scenario of one pCP and
six cCPs in an HDCF platform and applied different
resource allocation games to them. Since no real trace
data of an HDCF platform have been published by any
cloud provider, we conducted the experiments using
synthetic data, as with other research (An et al. 2010;
Antoniadis et al. 2010; Ardagna et al. 2011) . The ex-
perimental parameters used in the resource allocation
games for cCPs are shown in Table 2. Using Amazon
(EC2) as the example, we assumed that the range of
production costs of first unit varied from 2$/hr to 3$/hr
and that the service availability for all providers was
99.95% (Amit and Xia 2011). The learning factors were
typically within the range (0.75, 0.9). For simplicity, we
assumed that each cCP had almost the same amount
of VM resource capacity in period t. Table 3 shows the
parameters value used by a pCP in the resource alloca-
tion games to determine the price function. For all of
the games, the converging speed factor ξ is set to 0.3.

Table 2 Parameters used in the resource allocation games for
cCPs

cCPs i Production cost Learning Total
of first unit factor capacity
per hr Mt

i αi C̃t
i

1 2.8 0.79 300
2 2.7 0.84 302
3 2.0 0.83 305
4 2.3 0.80 304
5 2.9 0.78 303
6 2.4 0.78 301



Inf Syst Front

Table 3 Parameters used by a pCP in the resource allocation
games

The rate of revenue Production cost of first unit
function ω per hr set for cCP M

0.01 3

The performance measures we considered for the
games were: the social welfare, total profit, and return
on investment, cost effectiveness and scalability. The
social welfare defines the total value that an HDCF
platform has for all participants, the return on invest-
ment is the ratio between the utility and the cost, and
the cost effectiveness implies finding the best set of low-
cost cCPs in the resource allocation games.

5.2 Simulation results

5.2.1 Convergence of the resource allocation games

Convergence is a basic requirement, as the VM re-
sources allocated by the cCPs should converge in each
game. We analyzed the behavior of each game based
on the VM resources supplied at the steady state. The
initial strategy of each cCP i is the zero vector. Each
cCP then refines and updates its strategy at each itera-
tion. We assumed that the cCPs updated their strategy
in a sequential manner. Figures 3 and 4 depict the
quantity of VM resources supplied by the six cCPs in
each iteration of the three games.

As can be seen from the Figs. 3 and 4, the resource
allocation games converged to a steady state after a
number of iterations whereby no cCP has a tendency to

Fig. 3 VM resource supplied by each cCP in utility maximization
game for pCPs

Fig. 4 VM resource supplied by each cCP in the utility maximiza-
tion game for cCPs

unilaterally changes its strategy (a unique Nash equi-
librium does exist in the game). However, changes to
the strategy may be needed in the next period due
to changes in the system’s states (revenue function
parameters, learning factor etc.). The algorithms are
executed once by the players, which takes relatively
little computation time.

5.2.2 Performance analysis of cooperative resource
allocation games

We first evaluated the total profit in the cooperative
resource allocation games. Figure 5 plots the total profit

Fig. 5 Total profit in each resource allocation game
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Fig. 6 Individual utility of cCPs in pCP utility maximization
game

or the utility of the pCP in the two resource allocation
games. The utility maximization game for the pCP
generated a higher total profit (110) compared to the
utility maximization game for the cCPs (60). The utility
maximization game for the cCPs performed the worst,
because it tried to maximize the social welfare in the
platform by trading off the net profit of the pCP.

Next, we evaluate the social welfare and return on in-
vestment in the cooperative resource allocation games.
Figures 6 and 7 demonstrate the individual utility of
the cCPs. Only the cCPs with positive utility supplied
VM resources to the HDCF platform. Figure 8 shows
the social welfare in the two cooperative resource
allocation games. The social welfare achieved by the

Fig. 7 Individual utility of cCPs in cCP utility maximization game

Fig. 8 Social welfare of cCPs in each resource allocation game

UtilMaxcCP game is much higher (142) than the the
UtilMaxpCP game (92). Furthermore, the maximum
social welfare was achieved in the UtilMaxcCP game
when the VM resource quantity was around 398 (see
Fig. 4). The return on investment in the UtilMaxcCP
game was 6.2. In contrast, the return on investment for
the UtilMaxpCP game was 2.4. The UtilMaxcCP game
was more effective in terms of cost, as few low-cost
cCPs (cCP6 and cCP4) provided more VM resources

We subsequently investigated the scalability issue for
both resource allocation games. We varied the number
of cCPs available in the HDCF system from 6 to 24 for
ω value 0.01 and evaluated its effect on the convergence

Fig. 9 Performance of two resource allocation games in terms of
convergence with different number of cCPs
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Fig. 10 Performance of two resource allocation games in terms
of social welfare with 24 cCPs under different revenue function

of the two games. The six types of cCPs (shown in the
Table 2) were preserved in this simulation. Figure 9
shows the number of iterations required to reach equi-
librium as the number of cCPs in the HDCF system
increased in both the games. The number of iterations
required remained relatively stable for both games as
the number of cCPs varied between 6 and 24. However,
the utility maximization game for cCPs converged fast,
as only the cCPs that provided cost-effective VMs re-
mained in a steady state.

We also evaluated the scalability of the two games in
terms of social welfare with different revenue function
ω. Here we considered the number of cCPs to be
24. The larger the ω the higher the revenue was for
the same quantity of VM resource. A small ω implies
that more VM resource is required to obtain the same
amount of revenue (Fig. 10). The UtilMaxcCP game
outperformed the other game in social welfare maxi-
mization. Moreover, the social welfare of the UtilMax-
pCP game decreased with as ω. increased.

5.3 Discussion

From the simulation results, we can see that pro-
posed cooperative game settings motivate different
self-interested CPs (pCPs and cCPs) to form or join a
HDCF platform. In fact, the UtilMaxpCP game max-
imized total profit for pCPs whereas the UtilMaxcCP
game maximized sofial welfare for cCPs. In general,
the UtilMaxpCP game, which is a Stackelberg game,
is suitable for a system that contains a centralized
authority, like the pCP, and the UtilMaxcCP game is
good for a non-coordinated P2P-like application. As

Fig. 11 VM resource supplied by each cCP in NonCopUtilMax-
cCP game

a HDCF platform becomes decentralized (i.e. there is
no fixed central authority or leader) and the pCP or
cCPs join or leave dynamically, the UtilMaxpCP game
is more suitable as a distributed resource allocation
game. Since this game achieved higher social welfare
and return on investment, it strongly motivated the
cCPs to participate in an HDCF platform. Also, this
game provided effective resource supply in terms of
cost to an HDCF platform and thus admits the best set
of cCPs to participate.

We subsequently compared the performance of the
UtilMaxcCP game with the non-cooperative utility
maximization game for cCPs (NonCopUtilMaxcCP) in

Fig. 12 Individual utility of cCPs in NonCopUtilMaxcCP game
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Fig. 13 Social welfare of cCPs in the NonCopUtilMaxcCP game
and cooperative UtilMaxcCP game

a HDCF environment to show the effectiveness of co-
operation among cCPs to achieve individual optimum
as well as maximum social welfare. The same parameter
settings were used (shown in Table 2). Figures 11,
12 and 13 show the experimental results. The Non-
CopUtilMaxcCP game converged based on the VM
resources supplied at the steady state (Fig. 11).

From Figs. 7 and 12 we can see that the individual
utility of cCPs in the NonCopUtilMaxcCP game was
much lower than that of in the cooperative UtilMaxcCP
game. The social welfare was also at a maximum in the
cooperative UtilMaxcCP game (Fig. 13). These results
demonstrate that in a non-cooperative environment,
the cCPs selfishly optimize their own utilities. As a
result, the optimal aggregated benefits received by the
cCPs are not guaranteed. The outcome may not meet
their expectations and the utility may be worse than
the achievable individual optimal, in which the cCPs
would cooperatively decide how many VM resources
to supply.

5.4 Practical and theoretical implications
of the proposed game theoretic approaches

Modern clouds function in an open world characterized
by continuous changes which occur autonomously and
unpredictably. They are rational (i.e. self-interested
and welfare-maximizing) and make individual decisions
based on local knowledge and preferences without con-
sidering the global good. The global efficiency is gener-
ated through interactions among CPs. In this context,
the proposed cooperative game theoretical methods
allow for an in-depth analytical understanding of the

distributed VM resource provisioning problem in an
HDCF platform, as they allow us to account for the
inherently contradictory interests of the resource users
(pCPs) and the resource providers (cCPs).

In addition, our proposed cooperative game theoret-
ical approaches of resource allocation can help a CP to
determine rational strategies for pricing and resource
provision decisions. They enable a quantitative frame-
work for a CP for obtaining management solutions
and encourage a CP to learn and react to the critical
parameters in the operation management process by
gaining useful business insights. Furthermore, the use
of a learning curve model in the cost functions of a CP
can help to understand customers’ cloud adoption de-
cisions and explain quantitatively why cloud computing
is the most attractive to small and medium businesses.

6 Conclusions and future works

In this paper, we analyzed cooperative game theory
based optimal VM resource allocation mechanisms
among IaaS CPs (pCPs and cCPs) with a heterogeneous
cost function in a HDCF environment. In particular,
we studied the question of motivation for each self-
interested IaaS CP, motivating them to form or join an
HDCF platform and how much VM resource should
be allocated. We proposed two utility maximizing co-
operative games, one for pCPs and the other for cCPs,
that led to two different optimal situations: maximized
total profit for pCPs and maximized social welfare
for cCPs. By evaluating the total profit and the social
welfare received by the CPs (pCPs and cCPs), we
demonstrated that the proposed game settings moti-
vated different CPs to cooperate in an HDCF plat-
form. Both centralized and distributed algorithms with
guaranteed convergence were presented to determine
optimal solutions. We also carried out extensive simu-
lations to measure the effectiveness of these algorithms
in an HDCF platform. Under a utility maximization
game for pCPs, desirable outcomes (e.g. social wel-
fare, return on investment etc.) cannot be maximized.
However, under the utility maximization game for the
cCPs, the IaaS CPs were strongly motivated to con-
tribute VM resources among themselves. Also, this
game was effective in terms of cost and was scalable,
as only the collaborators with low-costs participated in
an HDCF platform. We also compared its performance
with a non-cooperative utility maximization game for
cCPs and showed that no system-wide property (e.x.
individual optimum, maximum social welfare etc.) was
achieved.
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Our paper opens up several exciting avenues for
future works, such as:

– evaluating the performances of resource allocation
games in real HDCF platforms where hundreds of
clouds dynamically join and leave the federation

– improving utility functions of CPs for more efficient
negotiations and extending their terms to include
other economic or performance goals

– finding methods for the maximization of util-
ity functions that include fuzzy values for non-
deterministic data

– considering the dependencies across multiple types
of applications hosted in a HDCF environment

– developing local task and resource allocation
mechanisms that interact with HDCF platforms
from CPs

– developing a single sign on authentication mecha-
nism for enabling a HDCF platform, establishing
trust contexts between different CPs

– developing information and data models that can
capture the concepts and semantics of the resources
and services offered by HDCF platforms
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