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Fixed-Final-Time-Constrained Optimal Control of
Nonlinear Systems Using Neural Network

HJB Approach
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Abstract—In this paper, fixed-final time-constrained optimal
control laws using neural networks (NNS) to solve Hamilton–Ja-
cobi–Bellman (HJB) equations for general affine in the constrained
nonlinear systems are proposed. An NN is used to approximate
the time-varying cost function using the method of least squares
on a predefined region. The result is an NN nearly -constrained
feedback controller that has time-varying coefficients found by a
priori offline tuning. Convergence results are shown. The results
of this paper are demonstrated in two examples, including a
nonholonomic system.

Index Terms—Constrained input systems, finite-horizon optimal
control, Hamilton–Jacobi–Bellman (HJB), neural network (NN)
control.

I. INTRODUCTION

THE constrained input optimization of dynamical systems
has been the focus of many papers during the last few

years. Several methods for deriving constrained control laws are
found in [50], [56], and [10]. However, most of these methods do
not consider optimal control laws for general constrained non-
linear systems. Constrained-input optimization possesses chal-
lenging problems; a great variety of versatile methods have been
successfully applied in [4], [11], [17], and [51]. Many problems
can be formulated within the Hamilton–Jacobi–Bellman (HJB)
and Lyapunov’s frameworks, but the resulting equations are dif-
ficult or impossible to solve, such as [40]–[42].

Successful neural networks (NNs) controllers not based on
optimal techniques have been reported in [15], [32], [53], [22],
[47], and [49]. It has been shown that NN can effectively extend
adaptive control techniques to nonlinearly parameterized sys-
tems. NN applications to optimal control via the HJB equation
were first proposed by Werbos [43].

We were motivated by the important results in [1], [8], and
[36]–[40]. However, [1] focuses on constrained policy itera-
tion control with infinite horizon and [8] focuses on uncon-
strained policy iteration with finite-time horizon. The authors of
[36]–[42] showed how to formulate constrained input in terms
of a nonquadratic performance index, but did not provide formal
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solution algorithms. In contrast to these works, we study finite-
time horizon system with constrained control without policy it-
eration, establishing an innovative methodology that incorpo-
rates control constraints into the framework of the HJB philos-
ophy. We use NN to approximately solve the time-varying HJB
equation for constrained control nonlinear systems. In [16], we
considered this problem. In this paper, we extend the results to
the case of constrained controls. It is shown that using an NN
approach, one can simply transform the problem into solving
a nonlinear ordinary differential equation (ODE) backwards in
time. The coefficients of this ODE are obtained by the weighted
residuals method. We provide uniform convergence results over
a Sobolev space.

II. BACKGROUND ON FIXED-FINITE-TIME

HJB OPTIMAL CONTROL

Consider an affine in the control nonlinear dynamical system
of the form

(1)

where , , , and the input
. The dynamics and are assumed to be

known and . Assume that is Lip-
schitz continuous on a set containing the origin, and
that system (1) is stabilizable in the sense that there exists a con-
tinuous control on that asymptotically stabilizes the system.
It is desired to find the constrained input control that min-
imizes a generalized functional

(2)

with and positive definite on , i.e., ,
, , and .
Definition 1 (Admissible Controls): A control is defined

to be admissible with respect to (2) on , denoted by ,
if is continuous on , , stabilizes (1) on ,
and , is finite.

Under regularity assumptions, i.e., , an in-
finitesimal equivalent to (2) is [33]

(3)

where . This is a time-varying partial dif-
ferential equation with being the cost function for any
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given and it is solved backward in time from . By
setting in (2), its boundary condition is seen to be

(4)

According to Bellman’s optimality principle [33], the optimal
cost is given by

(5)

Assuming , this yields the optimal control

(6)

where is the optimal value function and is positive
definite and assumed to be symmetric for simplicity of analysis.
Substituting (6) into (5) yields the well-known time-varying
HJB equation [33]

(7)

Equations (6) and (7) provide the solution to fixed-final-time
optimal control for affine nonlinear systems. However, closed-
form solution for (7) is, in general, impossible to find. In [16],
we showed how to approximately solve this equation using NN.

III. HJB EQUATION WITH CONSTRAINTS ON

THE CONTROL SYSTEM

Consider now the case when the control input is constrained
by a saturated function , e.g., , etc. To guarantee
bounded controls, [1], Lyshevski [36] introduced a generalized
nonquadratic functional

(8)

where is a scalar

, and is a bounded one-to-one func-
tion that belongs to and . Define
notation , where

is
a scalar, for , , and

. Moreover, is a monotonic odd function with its
first derivative bounded by a constant . Note that is
positive definite because is monotonic odd and is
positive definite.

When (8) is used, (2) becomes

(9)

and (5) becomes

Minimizing the Hamiltonian of the optimal control problem
with regard to gives

so

(10)

This is constrained as required.
Lemma 1: The smooth bounded control law (10) guarantees

at least a strong relative minimum for the performance cost (9)
for all on . Moreover, if an optimal control
exists, it is unique and represented by (10).

Proof: See [40].
When (10) is used, (5) becomes

HJB

(11)

If this HJB equation can be solved for the value function
, then (10) gives the optimal-constrained control. This

HJB equation cannot generally be solved. There is currently
no method for rigorously solving for the value function of this
constrained optimal control problem.

Remark 1: The HJB equation requires that is con-
tinuously differentiable function. Usually, this requirement is
not satisfied in constrained optimization because the control
function is piecewise continuous. But control problems do not
necessarily have smooth or even continuous value functions
[24], [6]. Lio [34] used the theory of viscosity solutions to
show that for infinite-horizon optimal control problems with
unbounded cost functional, under certain continuity assump-
tions of the dynamics, the value function is continuous on
some set , . Bardi [6] showed that if the
Hamiltonian is strictly convex and if the continuous viscosity
solution is semiconcave, then satisfying
the HJB equation everywhere. In this paper, all derivations are
performed under the assumption of smooth solutions to (7).
A similar assumption was made by Van der schaft [57] and
Isidori [26].
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IV. NONLINEAR FIXED-FINAL-TIME HJB SOLUTION BY NN
LEAST SQUARES APPROXIMATION

The HJB (11) is difficult to solve for the cost function
. In this section, NNs are used to solve approximately

for the value function in (11) over by approximating the
cost function uniformly in . The result is an efficient,
practical, and computationally tractable solution algorithm to
find nearly optimal state feedback controllers for nonlinear
systems.

A. NN Approximation of the Cost Function

It is well known that an NN can be used to approximate
smooth time-invariant functions on prescribed compact sets
[23]. Since the analysis required here is restricted to the region
of asymptotical stability (RAS) of some initial stabilizing
controller, NNs are natural for this application. In [52], it is
shown that NNs with time-varying weights can be used to
approximate uniformly continuous time-varying functions. We
assume that is smooth, and so uniformly continuous on
a compact set. Therefore, one can use the following equation to
approximate for on a compact set :

(12)

This is an NN with activation functions ,
. The NN weights are and is the number

of hidden-layer neurons.
is the vector of activation function and

is the vector of NN weights.
It is assumed that is large enough so that

, i.e., there exist weights
that exactly satisfy the approximation at .

The next result shows that initial conditions can be se-
lected to guarantee that for .

Lemma 2: Let be a compact set. Then ,
s.t., for system (1), , , .

The set is selected to be independent. Then, without
loss of generality, they can be assumed to be orthonormal,
i.e., select equivalent basis functions to that are also
orthonormal [8]. The orthonormality of the set on

implies that, if a real-valued function , then

where is an outer product, and are
continuous functions, and the series converges pointwise, i.e.,
for any and , one can choose sufficiently large
to guarantee that for

all ; see [9].
Note that, since one requires in (11), the NN

weights are selected to be time varying. This is similar to
methods such as assumed mode shapes in the study of flexible
mechanical systems [5]. However, here, is an NN
activation vector, not a set of eigenfunctions. That is, the NN
approximation property significantly simplifies the specifica-
tion of . For the infinite final-time case, the NN weights

are constant [1]. The NN weights will be selected to minimize
a residual error in a least squares sense over a set of points
sampled from a compact set inside the RAS of the initial
stabilizing control [21].

Note that

(13)

where is the Jacobian and that

(14)

Therefore, approximating by uniformly in in
the HJB (11) results in

(15)

or

HJB (16)

where is a residual equation error. From (10), the cor-
responding constrained optimal control input is

(17)

To find the least squares solution for , the method
of weighted residuals is used [21]. The weight derivatives

are determined by projecting the residual error onto
and setting the result to zero and

using the inner product, i.e.,

(18)

From (15), we can get

(19)

Therefore, we obtain

(20)
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so that

(21)

with boundary condition
. Note that, given a mesh of (see

Section IV-C), the boundary condition allows one to determine
.

Therefore, the NN weights are simply found by integrating
this nonlinear ODE backwards in time.

We now show that this procedure provides a nearly optimal
solution for the time-varying optimal control problem if is
selected large enough.

B. Uniform Convergence in for Time-Varying Function of
the Method of Least Squares

In what follows, one shows convergence results as in-
creases for the method of least squares when NNs are used to
uniformly approximate the cost function in . The following
definitions and facts are required.

Let be piecewise continuous in and satisfy the Lip-
schitz condition

, . Then,
there exists some such that the state equation
with has a unique solution over . Pro-
vided the Lipschitz condition holds uniformly in for all in a
given interval of time, function is called globally Lips-
chitz if it is Lipschitz on [27].

Definition 2 (Convergence in the Mean for Time-Varying
Functions): A sequence of functions that is
Lebesgue integrable on a set , , is said to converge
(uniformly in ) in the mean to on if , ,

: .
Definition 3 (Uniform Convergence for Time-Varying Func-

tions): A sequence of functions converges to
(uniformly in ) on a set if , , :

, or equivalently
.

Definition 4 (Sobolev Space): : Let be an open
set in and let . Define a norm on by

This is the Sobolev norm in which the integration is Lebesgue.
The completion of : with respect to

is the Sobolev space . For , the Sobolev
space is a Hilbert space.

The convergence proofs of the least squares method are done
in the Sobolev function space setting [2], since one
requires to prove the convergence of both and its gra-
dient. The following technical lemmas are required.

Technical Lemma 1: Given a linearly independent set of
functions , then for the series , it follows that

Proof: See [1].
Technical Lemma 2: Suppose that , then

-linearly independent -linearly inde-
pendent.

Proof: See [8].
Technical Lemma 3: If and

are continuous on , then con-
verges to zero uniformly in on iff the following are true:

1) is continuous on ;
2) ;

where means pointwise decreasing on .
Proof: See [8].

The following assumptions are required.
Assumption 1: The system’s dynamics and the performance

integrands are such that the solution of the cost
function is continuous and differentiable and belongs to the
Sobolev space . Here, and satisfy
the requirement of existence of smooth solutions.

Assumption 2: We can choose a complete coordinate
elements such that the solutions

and
can be uniformly approximated in by the infinite series built
from .

Assumption 3: The coefficients are uniformly
bounded in for all .

The first two assumptions are standard in optimal control and
NNs control literature. Completeness follows from [23].

We now show the following convergence results.
Lemma 3 (Convergence of Approximate HJB Equation):

Given , let satisfy
and ,

and let and

satisfy and
. Then

HJB uniformly in on as increases
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Proof: The hypotheses imply that are in
. Note that

(22)

Since the set is orthogonal, .

Therefore, (23), shown at the bottom of the page, holds,
where the first equation shown at the bottom of the next
page, also holds. Assumptions 2–4 imply that is com-
pact and the functions , ,

, and
are continuous on and are in , and the co-

efficients are uniformly bounded for all , so the
orthonormality of the set implies that ,

, , and the fourth term on the right-hand side
can be made arbitrarily small by an appropriate choice of

. Therefore, and

.

This means that uniformly in on
as increases.

Lemma 4 (Convergence of NN Weights): Given
, suppose the hypotheses of Lemma 3 hold. Then,

uniformly in as increases.
Proof: Define

HJB

(23)
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and

(24)

Then, . From
the hypotheses, one has that

HJB HJB

(25)

substituting the series expansion for and , and
moving the terms in the series that are greater than to the right-
hand side one obtains (26), shown at the bottom of the page.

The final condition is

(27)

Taking the inner product of both sides over and taking into
account the orthonormality of the set , one obtains
the third equation shown at the bottom of the page, with the
final condition

(28)

Let , where is scalar.
Define and consider

(29)

where the fourth equation, shown at the bottom of the page,
is continuously differentiable in a neighborhood of a point

. Since this is an ordinary differential equation, satis-
fying a local Lipschitz condition [27], it has a unique solution,

(26)
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namely, , . Noting that the first equation,
shown at the bottom of the page, is continuous in , one invokes
the standard result from the theory of ordinary differential equa-
tions [3] that a continuous perturbation in the system equations
and the initial state imply a continuous perturbation of the solu-
tion [2]. There exists a such that, , the
second equation shown at the bottom of the page holds. From
Technical Lemma 3, as increases. Therefore, for
all , such

(30)

This means that uniformly in on
as increases.

Now, we are in a position to prove our main results.
Theorem 1 (Convergence of Approximate Value Function):

Under the hypotheses of Lemma 3, one has

uniformly in on as increases

Proof: From Lemma 4, we have

(31)

By the mean value theorem, Technical Lemmas 3, such
that the third equation shown at the bottom of the page holds.

Theorem 2 (Convergence of Value Function Gradient):
Under the hypotheses of Lemma 3

uniformly in on as increases

Proof: From Lemma 4, we have
and the equation shown at the bottom of the next page. By the
mean value theorem, Technical Lemmas 1–3, such that

Since is linearly independent and
, then

uniformly in on as increases
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Through Theorem 1 and 2, we have shown that the HJB ap-
proximating solution (12) guarantees convergence in Sobolev
space .

Theorem 3 (Convergence of Control Inputs): If the conditions
of Lemma 3 are satisfied and

then in on as increases.
Proof: Denote

and .
By Theorem 2 and the fact that is continuous and, there-

fore, bounded on , hence

Because is smooth and under the assumption that its first
derivative is bounded, we have

. Therefore

hence in on as
increases.

At this point, we have proven uniform convergence in in the
mean of the approximate HJB equation, the NN weights, the ap-
proximate value function, and the value function gradient. This
demonstrates uniform convergence in in the mean in Sobolev
space . In fact, the next result shows even stronger
convergence properties, namely, uniform convergence in both

and .
Lemma 5 (Uniform Convergence): Since a local Lipschitz

condition holds on (29), then

and

Proof: This follows by noticing that
uniformly in and the series with is uniformly con-

vergent in and Technical Lemma 1.
The final result shows that if the number of hidden layer

units is large enough, the proposed solution method yields an
admissible control.

Theorem 4 [Admissibility of ]: If the conditions of
Lemma 3 are satisfied, then , .

Proof: Define
. We must show that for sufficiently

large, when . However, the
solution of (1) depends continuously on , i.e., small variations
in result in small variations in solution of (1). Also, since

can be made arbitrarily close to ,
can be made arbitrarily close to . Therefore,

for sufficiently large, and, hence, is
admissible.

C. Optimal Algorithm Based on NN Approximation

Solving the integration in (20) is expensive computationally,
since evaluation of the inner product over is required.
This can be addressed using the collocation method [21]. The
integrals can be well approximated by discretization. A mesh of
points over the integration region can be introduced on of
size . The terms of (21) can be rewritten as follows:

where in represents the number of points of the mesh. Re-
ducing the mesh size, we have (32)–(34), shown at the bottom
of the next page. This implies that (20) can be converted to

(35)
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then

(36)

This is a nonlinear ODE that can easily be integrated back-
wards using final condition to find the least squares op-
timal NN weights. Then, the nearly optimal value function is
given by

and the nearly optimal control by

(37)

Note that in practice, we use a numerically efficient least squares
relatively to solve (35) without matrix inversion.

V. SIMULATION

We now show the power of our NN control technique for
finding nearly optimal fixed-final-time-constrained controllers.
Two examples are presented.

A. Linear System

1) We start by applying the algorithm obtained previously for
the linear system

(38)

Define performance index

(39)

Here, and , where is an iden-
tity matrix. It is desired to control the system with input
constraints and . In order to ensure the
constrained control, a nonquadratic cost performance term
(9) is used. To show how to do this for the general case of

Fig. 1. Nonquadratic cost.

, we use for . Hence, the
nonquadratic cost is

The plot is shown in Fig. 1. This nonquadratic cost per-
formance is used in the algorithm to calculate the optimal-
constrained controller. The algorithm is run over the re-
gion defined by , , and

. To find a nearly optimal time-varying con-
troller, the following smooth function is used to approxi-
mate the value function of the system:

This is an NN with polynomial activation functions, and
hence, .
In this example, six neurons are chosen and

. Our algorithm was used to determine
the nearly optimal time-varying-constrained control law by
backwards integrating to solve (35). The required quanti-
ties , , , , and in (35) were evaluated for 5000

(32)

(33)

(34)
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Fig. 2. Constrained linear system weights.

Fig. 3. State trajectory of linear system with bounds.

points in . A least square algorithm from MATLAB was
used to compute at each integration time. The so-
lution was obtained in 30 s. From Fig. 2, it is obvious that
about 25 s from , the weights converge to constant. The
states and control signal obtained by a forward integration
of (38) using these weights in (37) are shown in Figs. 3 and
4. The control is bounded as required.

2) Now, let so that the control constraints are effec-
tively removed. The algorithm is run and the plots of ,

, and and function of time are shown in Fig. 5.
These plots converge to steady-state values of

, , and . These cor-
respond exactly to the algebraic Riccati equation solution
obtained by standard optimal control methods [33], which is

Fig. 4. Optimal NN control law with bounds.

Fig. 5. Unconstrained control system weights.

B. Nonlinear Chained Form System

One can apply the results of this paper to a mobile robot,
which is a nonholonomic system [29]. It is known [14] that
there does not exist a continuous time-invariant feedback con-
trol law that minimizes the cost. Some methods for deriving
stable controls of nonholonomic systems are found in [12], [13],
[18]–[20], [45], [46], [48], and [55]. Our method will yield a
time-varying gain. From [32], under some sufficient conditions,
a nonholonomic system can be converted to chained form as

(40)

Define performance index (39). Here, and are chosen as
identity matrices. It is desired to control the system with control
limits of and . A similar nonquadratic cost
performance term is used as in the last example. Here, the region
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Fig. 6. Nonlinear system weights.

is defined by , , and
. To solve for the value function of the related optimal control

problem, we selected the smooth approximating function

(41)

The selection of the NN is usually a natural choice guided
by engineering experience and intuition. This is an NN with
polynomial activation functions, and hence, .
This is a power series NN with 21 activation functions con-
taining powers of the state variable of the system up to the
fourth order. Convergence was not observed using an NN
with only second-order powers of the states. The number
of neurons required is chosen to guarantee the uniform
convergence of the algorithm. In this example,

and
30 s. The required quantities , , , , and in (35)

were evaluated for 5000 points in . Fig. 6 indicates that
the weights converge to constants when they are integrated
backwards. The time-varying controller (37) is then applied to
(40). Fig. 7 shows that the systems’ states responses, including

, , and , are all bounded. It can be seen that the states do
converge to a value close to the origin. Fig. 8 shows the optimal
control is constrained as required and converges to zero.

VI. CONCLUSION

We use NN to approximately solve the time-varying HJB
equation for constrained input nonlinear systems. The technique
can be applied to both linear and nonlinear systems. Full condi-
tions for convergence have been derived. Simulation examples
have been carried out to show the effectiveness of the proposed
method.

Fig. 7. State trajectory of nonlinear system.

Fig. 8. Optimal NN-constrained control law.
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