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Abstract. In this paper, we consider a multi-channel cognitive radio network
with multiple secondary users (SUs) and analyze the performance of users in the

network. We assume primary users (PUs) adopt the automatic repeat request

(ARQ) protocol at the medium access control layer. We have two main goals.
Our first goal is to develop a cross-layer performance model of the cognitive

radio network by considering the retransmission characteristics of the ARQ

protocol and the interference between PUs and SUs due to imperfect channel
sensing. Using the cross-layer performance model we analyze the throughput

performance of SUs and the delay performance of PUs.

Our second goal is to propose an optimal channel sensing method that
maximizes the throughput performance of SUs while a given delay requirement

of PUs is guaranteed. To this end, using our cross-layer performance model,
we formulate an optimization problem and solve it to get an optimal channel

sensing method that satisfies the design objectives. Numerical and simulation

results are provided to validate our analysis and to investigate the performance
of the optimal channel sensing method.

1. Introduction. As the number of new wireless services has been rapidly in-
creased, available radio spectrum resources have become scarce. In addition, recent
measurements of spectrum usage by the FCC show that most spectrum resources
have been underutilized [7, 8]. The concept of cognitive radio (CR) has been pro-
posed to solve this scarcity and underutilization problem in spectrum resources
[18]. The basic concept of CR networks is as follows: A new network is allowed
on top of a preexisting network. Even though the users in the new network, called
secondary users (SUs), have no license for the spectrum resources of the preexist-
ing network, they are allowed to utilize unused spectrum resources as long as they
cause no interference to the licensed users, called primary users (PUs). In the last
decade, a number of research works on CR networks have been published in the
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open literature. The IEEE 802.22 standard aiming at how to utilize CR techniques
is completed recently, so that CR networks are expected to be used to accommodate
more wireless applications in the network.

In this paper we consider a multi-channel CR network with multiple SUs. We
consider a generic channel sensing method for SUs where each SU uses a predeter-
mined threshold to determine whether a channel is busy (i.e., occupied by a PU) or
not. Each SU determines the state of the channel by comparing the threshold with
a detection metric obtained by measuring the channel. Obviously, there exists the
possibility of errors in channel sensing, i.e., the misdetection and false alarm prob-
abilities, and the imperfect channel sensing significantly affects the performance of
SUs as well as that of PUs.

We have two main goals. Our first goal is to develop and analyze a cross-layer
performance model for the CR network where PUs adopt the automatic repeat re-
quest (ARQ) protocol at the medium access control (MAC) layer and the channel
sensing of SUs is imperfect. In most of the existing studies on CR networks, the
channel occupancy process by PUs are assumed to be a predetermined stochastic
process, for instance, Bernoulli process or two state Markov process [9, 13, 23, 28].
However, such assumption does not capture the direct interference between PUs
and SUs. Moreover, most existing research works do not consider the characteris-
tics of the protocols implemented at PUs. For instance, suppose that PUs use the
ARQ protocol which is widely used in wireless networks. In this case, when there
occurs interference in PUs’ transmission by SUs due to imperfect channel sensing of
SUs, the interfered information (packet) of PUs is retransmitted by the ARQ pro-
tocol and consequently the channel occupancy process by PUs is affected by such
retransmissions. Hence, the channel occupancy process of a PU cannot be a priori
given. Furthermore, the more retransmissions occur, the more busy channels SUs
have, which consequently affects the performance of SUs. With the above observa-
tion, we develop a cross-layer performance model where the queueing performance
of a PU is considered to model the direct interaction between PUs and SUs due
to imperfect channel sensing of SUs and the characteristics of the ARQ protocol
of PUs. Using our cross-layer performance model, we can obtain the throughput
performance of SUs and the delay performance of PUs.

Based on the cross-layer performance model, our second goal is to propose an op-
timal channel sensing method that maximizes the throughput performance of SUs,
while guaranteeing the requirement for PUs on packet delay. That is, we will deter-
mine the optimal threshold value in the channel sensing of SUs with which each SU
achieves its maximum throughput performance while a given delay requirement of
PUs is guaranteed. We use our cross-layer performance model to investigate the re-
lation between throughput performance and the threshold and then find the optimal
threshold value from the cross-layer viewpoint. Note that this is a cross-layer de-
sign problem because we propose an optimal channel sensing method at the physical
(PHY) layer by considering the PHY layer performance (the channel sensing errors)
as well as the MAC layer performance (throughput and delay) simultaneously in
the problem.

From our cross-layer analysis we show that the use of a strict requirement for
channel sensing, for instance the sensing requirement in the IEEE 802.22 standard,
is not suitable for distributed CR networks and the optimal channel sensing policy
should be designed from the cross-layer viewpoint, which is the main contribution
of this paper. For details, refer to Section 6.
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There are a number of previous works to improve the performance of SUs. Within
the scope of the MAC layer, most research works in the literature focus on medium
access protocols, e.g., [4, 10]. For the PHY layer performance, there are also a
number of research works, most of which are devoted to design efficient and accurate
algorithms for detecting PU signals, e.g., [26, 27]. We will provide a brief summary
on existing works in Section 2.

The remainder of this paper is organized as follows: In section 2, we present
a brief summary on related works. In section 3, we provide a description of our
network model. In section 4, we develop a cross-layer performance model to consider
the interaction between PUs and SUs. In section 5, we analyze the performance
of users based on our cross-layer performance model. In section 6, we consider
and analyze a cross-layer optimization problem to get an optimal channel sensing
method. We also investigate the performance of the optimal channel sensing method
through numerical and simulation studies in the section. In Section 7, we investigate
the impact of the interference from SUs on the cross-layer performance model.
Finally, we give our conclusions in section 8.

2. Related Works. Channel sensing at the PHY layer is one of the key function-
alities in CR networks and sensing accuracy is an important performance metric
at the PHY layer. A number of channel sensing techniques are proposed in the
literature, e.g., the energy-based detector, the cyclostationary feature detector, the
matched filter [24, 27]. In addition, in order to improve sensing accuracy coopera-
tive sensing techniques are proposed [2, 26], and Singh et. al. find the threshold of
a cooperative sensing method that minimizes the average of false alarm probability
and misdetection probability under single channel CR networks with two SUs [20].
Although sensing accuracy is important in CR networks, there exists a tradeoff
between sensing time and performance. In [15], Liang et al. provide the optimal
design of sensing time subject to the constraint on the false alarm and misdetection
probabilities. In [13], a framework for channel sensing is provided to maximize spec-
trum efficiency by using the optimal sensing and transmission durations. In [19],
Peh et al. consider a single channel CR network with a fusion center and propose
an optimization algorithm that controls the parameters of a cooperative sensing to
maximize the throughput of an SU.

From the viewpoint of MAC layer performance in CR networks, it is important
to distribute the channel accesses of SUs to alleviate packet collision between SUs
as well as interference to PUs. There are many works on the design of CR MAC
protocols [16, 17, 21, 28]. Also, there are several works about distributed random
access policies in which SUs determine their channel access probabilities. In [23],
Wang et. al. consider time slotted CR networks with multiple channels and multiple
SUs. The delay performance is analyzed based on fluid flow approximation and
Poisson driven stochastic differential equations. In [9], the queueing performance
of SUs in multi-channel CR networks is analyzed by using the effective bandwidth
approach. In order to improve the performance, they suggest a random access policy
that stochastically determines channel access probabilities based on the number of
idle channels. Both studies propose the optimal access probabilities that maximize
the performance of SUs. However, channel sensing errors at the PHY layer are not
considered in [23] and [9]. In CR networks, channel sensing errors are not avoidable
and affect performances of users. In [6], they investigate the effect of channel sensing
errors on the stability region of users for a single channel CR networks with multiple
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Figure 1. Channel sensing and packet transmission.

PUs and SUs. They show that the stability region is significantly degraded due to
channel sensing errors. To alleviate the effect of channel sensing errors, they propose
an adaptive channel access policy in which channel access probabilities depend on
the received signal power.

3. System Description. We consider a time slotted system with N primary users
(PUs) and M secondary users (SUs). There are N channels such that each channel
is licensed to each PU. The time domain is slotted with equal duration and time
slots of all users are synchronized.

At each slot, a user who has a packet in the queue at the MAC layer transmits
the packet via a channel. The packet may not be successfully transmitted to its
receiver due to interference from other users. In other words, when there are two
or more users transmitting their packets through the same channel simultaneously,
all transmitted packets are collided. We want to investigate the impact of the in-
teraction between PUs and SUs from throughput and delay performance viewpoint.
We therefore assume that the packet transmission fails only when there occurs a
collision. That is, there are no other sources of packet loss such as link failure, noise
or channel fading during the packet transmission.

For a reliable packet transmission, all PUs use the ARQ protocol. Thus, if a
packet transmission of a PU fails due to the interference by SUs, the PU retransmits
the interfered packet until it is successfully transmitted. For simplicity, we assume
that a PU knows whether its packet transmission is successful or not at the end of
the slot where the transmission occurs. So the PU can retransmit immediately the
interfered packet at the next slot.

Each SU independently tries to exploit channels. At the beginning of each slot,
an SU randomly selects a channel and performs the channel sensing to determine
whether the channel is idle or not. After the channel sensing, the SU transmits its
packet if the channel is sensed as idle. However, due to the limitation in channel
sensing, the channel sensing result potentially contains an error. There are two
types of errors. The first type is the false alarm, which implies that the SU senses
an idle channel as busy. The second type is the misdetection, which implies that
the SU senses a busy channel as idle. While the false alarm makes the SU lose
its opportunity for transmission, the misdetection causes a packet collision between
the SU and a PU. In addition, the misdetection makes the channel busier due
to the packet retransmission by the PU. Both errors might significantly affect the
performance of PUs and SUs. Thus, it is important to analyze the impact of channel
sensing errors on the performance of PUs and SUs. To this end, we assume that all
SUs always have packets to transmit, i.e., all SUs are saturated from now on.
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In the following, the PU network and the SU network are assumed to be homoge-
neous. In other words, users in the same network have the same system parameters,
for example, all PUs have the same packet arrival rate and all SUs have the same
misdetection probability and the same false alarm probability.

4. Mathematical Modeling.

4.1. Channel Sensing. In order to exploit channel resources, it is important to
correctly sense whether a channel is idle or not with high probability. A number of
channel sensing methods have been proposed in the literature to improve the accu-
racy of channel sensing. This paper considers a generic channel sensing method, so
that our mathematical model is independent of the details of channel sensing meth-
ods. Most existing channel sensing methods decide the channel state by comparing
a predetermined threshold τ with a decision metric D which is obtained by mea-
suring the channel [26, 29]. Without loss of generality, we assume that the generic
channel sensing method decides the channel is idle if D < τ and the channel is busy
if D ≥ τ .

A channel sensing method can be mathematically formulated as a binary hy-
pothesis test. Let H0 and H1 refer to the hypothesis on the idle channel state and
the hypothesis on the busy channel state, respectively. Then the false alarm and
misdetection probabilities of the generic channel sensing method are given by

pf := Pr{D > τ |H0}, (1)

pm := Pr{D < τ |H1}. (2)

In order to construct a rigorous analytic model, we assume that pf (τ) and pm(τ)
are continuous in τ and have their inverse functions. To the best of our knowledge,
these two assumptions hold for most existing channel sensing methods. From (1)
and (2) we know that pf = pf (τ) is a decreasing function in τ and pm = pm(τ)
is an increasing function in τ . This implies that, if we increase pf (by decreasing
τ), then pm decreases. Accordingly, there is a continuous decreasing function f :
[0, 1]→ [0, 1] such that pm = f(pf ), which will be used later.

4.2. Channel Occupancy Modeling based on Imperfect Channel Sensing.
In this subsection, we develop a mathematical model to describe the channel occu-
pancy of PUs by using a Markov chain. Since we assume that each PU has a license
to access its designated channel, each PU transmits its packet through the channel
whenever it has a packet to transmit. This implies that the channel occupancy
process of a PU is completely determined by the queueing process of the PU. So
we consider the queueing process of a PU to model the channel occupancy process.
Each PU has a queue at the MAC layer in order to store its packets. We tag an
arbitrary PU as our reference and we consider the queueing process of the tagged
PU. Since the consideration of a CR network implicitly implies that each PU in the
CR network has a small packet arrival rate, the queue size is less important in the
analysis of CR networks. Consequently, we assume the queue size is infinite in this
paper.

Each PU generates a packet at the beginning of a slot. Let At (t = 1, 2, · · · )
denote the number of generated packets at the beginning of slot t. The packet
arrival process {At, t ≥ 1} is modulated by a two state stationary Markov chain
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Figure 2. Illustration of the queueing process of the tagged PU.

with state space {0, 1} and transition probability matrix

R :=

(
1− a a
b 1− b

)
.

When the Markov chain of At is in state 0 (state 1, resp.) at slot t, At = 0 (At = 1,
resp.).

The stationary probability vector φ of R (i.e. φR = φ) is given by

φ = (1− λ, λ) , λ =
a

a+ b
.

Since one packet is generated at a slot with state 1, the average packet arrival rate
of the tagged PU is equal to λ.

Let Qt (t = 1, 2, · · · ) denote the number of packets in the queue of the tagged
PU at the middle of slot t. Let St (t = 1, 2, · · · ) denote the service capacity of the
tagged PU to transmit packets during slot t. Thus, St = 1 if no SU transmits via
the designated channel of the tagged PU, called the tagged channel, during slot t,
and St = 0 otherwise. Since a packet transmission of the tagged PU is completed at
the end of a slot, the packet is removed from the queue at the end of the slot if the
packet is successfully transmitted at the slot. The queueing process is illustrated in
Fig. 2. Then, the queueing process {Qt, t ≥ 1} satisfies the following equation:

Q1 = 0, Qt = (Qt−1 − St−1)+ +At, for t ≥ 2, (3)

where a+ is defined by the maximum value of a and 0.
The success of a packet transmission of the tagged PU depends on the decisions

of SUs who select the tagged channel at slot t. St depends on the number of SUs
that select the tagged channel at slot t, denoted by Mt. Since each SU randomly
selects a channel, {Mt, t ≥ 1} are independent and identically distributed (i.i.d.)
with binomial distribution having parameters M and 1/N .

The channel access by an SU depends on its channel sensing result. When the
tagged channel is busy at slot t (i.e. Qt > 0), an SU transmits with probability pm
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due to its misdetection of the busy channel. It immediately follows that

Pr{St = 1 |Qt > 0} =

M∑
k=0

Pr{St = 1 |Mt = k, Qt > 0}Pr{Mt = k |Qt > 0}

=

M∑
k=0

(1− pm)k
(
M

k

)(
1

N

)k (
N − 1

N

)M−k
=

(
N − 1

N
+

1− pm
N

)M
=
(

1− pm
N

)M
. (4)

The second equality holds because Qt and Mt are independent. Note here that
Pr{St = 1 | Qt > 0} decreases in pm, which will be used later.

We now denote p′m by the probability that at least one of SUs transmits through
the tagged channel when the channel is busy. By its definition, we have

p′m = 1− Pr{St = 1 |Qt > 0}

= 1−
(

1− pm
N

)M
. (5)

So each packet of the tagged PU is successfully transmitted with probability 1−p′m
and is interfered by SUs with probability p′m. This implies that the number of slots
needed to successfully transmit a packet, called the transmission time of a packet,
follows the geometric distribution with parameter p′m. Therefore, the offered load
of the queueing process {Qt, t ≥ 1}, which is defined by the fraction of its arrival
rate over its service rate, is given by λ/(1− p′m) . Since the transmission times of
packets are i.i.d., the steady state probability πbusy that the tagged channel is busy
at an arbitrary slot is equal to the offered load, provided that the queueing process
{Qt, t ≥ 1} is stable, i.e., λ < 1 − p′m. The stable condition of {Qt, t ≥ 1} will be
discussed in section 5.1. We thus have

πbusy =
λ

1− p′m
,

πidle = 1− λ

1− p′m
, (6)

where πidle is the probability that the tagged channel is idle at an arbitrary slot.
From (5), we know p′m is monotonically increasing in pm. Consequently, πidle is
monotonically decreasing in pm.

Note that the transmission time has no limit in our model, while the ARQ pro-
tocol in practice always has an upper limit for the number of retransmissions. The
throughput of an SU and the delay of a PU without an upper limit become worse
than those with an upper limit. So our model provides lower bounds of the per-
formance metrics of interest for the ARQ protocol. However, this lower bounds are
tight because the transmission time of a packet follows the geometric distribution
with parameter 1−p′m. For instance, let K be the upper limit of the ARQ protocol.
Then the probability that a packet continuously fails to be transmitted K times, is

p′m
K

which decays exponentially fast. That is, most of the packets are transmitted
successfully before the retransmission time reaches the upper limit K even when K
is not so large. In fact, we confirm that the impact of the upper limit is negligible in
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our model through simulation even though we do not include our simulation results
in this paper to save space. Since the consideration of the upper limit makes the
analysis more complex without any significant merit, we do not consider the upper
limit for the retransmission in our model.

Before we end this section, it is worth mentioning the following remark. In
many existing studies in the literature, e.g. [9, 13, 14, 23, 28], they assume that
the channel occupancy process by PUs are according to a predetermined stochastic
process, e.g., a 2-state Markov chain, and do not consider the interference from SUs
due to imperfect channel sensing. However, the probabilities related to the channel
occupancy process, πbusy and πidle, given in (6) are obtained in our model after
considering the interference from SUs due to imperfect channel sensing. This shows
our model is more practical than those in the existing studies. Later in Section 7, we
will show that the consideration of interference from SUs in the channel occupancy
model is important through numerical analysis and simulation.

5. Performance Analysis. In this section, we first analyze the delay performance
of a PU, and then analyze the throughput performance of an SU.

5.1. Delay Analysis for a PU. The packet delay of the tagged PU is defined by
the time duration from the arrival epoch of an arbitrary packet of the tagged PU
to the successful transmission epoch of the packet. To obtain the packet delay, we
now revisit the queueing process {Qt, t ≥ 1} given in (3) and analyze the queueing
behavior of the tagged PU. Note that the queueing process {Qt, t ≥ 1} in (3) itself is
unfortunately not a Markov chain. So we introduce an auxiliary process {At, t ≥ 1}
to form the stochastic process {(Qt, At), t ≥ 1}, which is a Markov chain with state
space S = {0, 1, 2, · · · }×{0, 1} and transition probability matrix P = (Pi,j , i, j ∈ S)
of the form

P :=


U1 U0 O O O · · ·
V2 V1 V0 O O · · ·
O V2 V1 V0 O · · ·
...

...
...

...
...

. . .

 ,

where each component is a 2× 2 matrix and

U1 :=

(
1− a 0
b 0

)
,

U0 :=

(
0 a
0 1− b

)
,

V2 := (1− p′m)U1,

V1 := p′mU1 + (1− p′m)U0,

V0 := p′mU0,

O :=

(
0 0
0 0

)
.

The Markov chain {(Qt, At), t ≥ 1} is a quasi birth death (QBD) queueing pro-
cess. If φV0e < φV2e where e is a 2 × 1 column vector whose elements are all 1,
then the QBD process {(Qt, At), t ≥ 1} is known to be stable. Hence, pm should
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satisfy

1− p′m =

(
1− pm

N

)M
> λ. (7)

When the QBD process is stable, it has the stationary probability vector π :=
(πn, n ≥ 0) of P where πn := (π(n,0), π(n,1)) for n ≥ 0. Here, πn, n ≥ 0, are given
as follows [12].

π0 = (πidle, 0),

πn =
1

p′m
π0G

n, n ≥ 1,

where the matrix G is the nonnegative minimal solution of the equation

G = V0 +GV1 +G2V2,

and πidle is given in (4).
By applying Little’s formula, the average packet delay Dp of the tagged PU is

given by

Dp :=
E[limt→∞Qt]

λ

=
1

λ

∞∑
n=1

nπne

=
1

λ

∞∑
n=1

n∑
k=1

π0G
ne

=
1

λ

∞∑
k=1

∞∑
n=k

π0G
ne.

It is well known that the spectral radius of G is less than 1 when the stability
condition holds. In the case, using the fact that,

(I −G)−1 =

∞∑
k=0

Gk,

we finally obtain

Dp =
1

λ

∞∑
k=1

π0G
k(I −G)−1e

=
1

λ
π0G(I −G)−2e.

5.2. Throughput Analysis for an SU. We now consider the throughput perfor-
mance of an SU. The throughput Ts of an SU is defined by

Ts := lim
t→∞

E[c(t)]

t
,

where c(t) denotes the number of successfully transmitted packets of the SU until
slot t.

In order to derive the throughput performance of an SU, we tag an arbitrary
SU as our reference. Let Zt indicate whether the tagged SU transmits a packet
at slot t or not. That is, Zt = 1 if the tagged SU transmits a packet at slot t, or
Zt = 0 otherwise. From its definition Zt depends on the channel sensing result of
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the tagged SU. Let Ct denote the channel selected by the tagged SU at slot t and

Q
(i)
t (i = 1, · · · , N) denote the number of packets at the middle of slot t in the

queue of the i-th PU. Then the selected channel by the tagged SU is idle at slot t

if Q
(Ct)
t = 0 and busy otherwise.

The success of the transmission of the tagged SU depends on the channel selec-
tions of all untagged SUs as well as on the state of the selected channel (idle or
busy) by the tagged SU, so we need to introduce the channel access process by all
untagged SUs at slot t, which is denoted by Wt. Wt is defined by 1 if at least one of
untagged SUs transmits its packet through the channel selected by the tagged SU
at slot t, and by 0 otherwise.

Let Nt be the number of untagged SUs who select the same channel that the
tagged SU does. Then {Nt, t ≥ 1} are i.i.d. with binomial distribution having

parameters M − 1 and 1/N . When Q
(Ct)
t = 0, i.e., the selected channel is idle, each

untagged SU transmits its packet with probability 1− pf . It then follows that

Pr{Wt = 0 |Q(Ct)
t = 0} =

M−1∑
k=0

Pr{Wt = 0 |Q(Ct)
t = 0, Nt = k}Pr{Nt = k |Q(Ct)

t = 0}

=

M−1∑
k=0

(pf )k
(
M − 1

k

)(
1

N

)k(
N − 1

N

)M−1−k

=

(
1− 1− pf

N

)M−1

.

Define s by the probability that the tagged SU successfully transmits its packet at
slot t when the selected channel is idle. We then have

s = Pr{Zt = 1, Wt = 0 |Q(Ct)
t = 0}

= Pr{Zt = 1 |Q(Ct)
t = 0}Pr{Wt = 0 |Q(Ct)

t = 0}

= (1− pf )

(
1− 1− pf

N

)M−1

. (8)

The second equality holds because SUs independently perform the channel sensing
at each slot.

Based on the above observation, we then obtain

Ts = lim
t→∞

E[c(t)]

t

= lim
t→∞

1

t

t∑
i=1

Pr{Zi = 1, Wi = 0, Q
(Ci)
i = 0}

= lim
t→∞

1

t

t∑
i=1

Pr{Zi = 1, Wi = 0 |Q(Ci)
i = 0}Pr{Q(Ci)

i = 0}

= s · lim
t→∞

1

t

t∑
i=1

Pr{Q(Ci)
i = 0}. (9)
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Since the PU network is homogeneous, Pr{Q(j)
i = 0} has the same value for all

j = 1, · · · , N . Thus,

lim
t→∞

1

t

t∑
i=1

Pr{Q(Ci)
i = 0} = lim

t→∞

1

t

t∑
i=1

Pr{Qi = 0}

= lim
t→∞

1

t

t∑
i=1

(Pr{(Qi, Ai) = (0, 0)}+ Pr{(Qi, Ai) = (0, 1)})

= π(0,0) + π(0,1) = πidle.

The third equality holds because {(Qt, At), t ≥ 1} is ergodic under the stability
condition. Combining (6), (8), the throughput Ts of the tagged SU is given by

Ts = s · πidle

= (1− pf )

(
1− 1− pf

N

)M−1(
1− λ

(
1− pm

N

)−M)
. (10)

6. Cross-layer Design and Optimization.

6.1. Cross-layer Optimization for Secondary Users. From (10) we see that
the imperfect channel sensing affects the throughput performance of an SU. Hence,
in order to maximize the throughput performance of an SU, it is important to decide
a suitable threshold τ in the channel sensing method implemented at the PHY layer,
which is a cross-layer optimization of our cognitive radio network. The following
proposition guarantees that our cross-layer design optimization is feasible, that is,
there exists a threshold τ in (1) and (2) (equivalently, the existence of false alarm
and misdetection probabilities) that maximizes the throughput of an SU.

Proposition 1. There exists a false alarm probability p∗f that maximizes the through-

put Ts of an SU and satisfies the stability condition (7). Furthermore, when N ≤M ,
p∗f is in

[
1− N

M , 1
]
.

Proof. Note that pm = f(pf ) is a continuous function of pf . From (10), we know
that Ts is also a continuous function of pf with a compact domain [0, 1] (i.e., pf ∈
[0, 1]). Hence, there should exist the false alarm probability p∗f that maximizes the

value of Ts. Clearly p∗m = f(p∗f ) satisfies (7), because Ts < 0 if (7) is violated.

Assuming N ≤M , we now show that p∗f is in
[
1 − N

M , 1
)
. From (6), we know

that πidle is a decreasing function in pm. Since pm = f(pf ) is decreasing in pf ,
πidle = πidle(pf ) is an increasing function in pf .

From (8), we observe that s = s(pf ) increases when pf ∈
(
0, 1− N

M

)
and decreases

when pf ∈
(
1− N

M , 1
)
. We then know that both πidle(pf ) and s(pf ) are increasing

on
[
0, 1 − N

M

]
. Consequently, Ts = Ts(pf ) = s(pf )πidle(pf ) satisfies that Ts(pf ) ≤

Ts
(
1 − N

M

)
for all pf ∈

[
0, 1 − N

M

)
. Therefore, the maximum value is achieved at

pf ∈
[
1− N

M , 1
]
.

The result in Proposition 1 is very interesting. Without the cross-layer modeling,
a smaller false alarm probability provides a better throughput performance of an
SU [9]. In particular, the IEEE 802.22 standard recommends that both the false
alarm and the misdetection probabilities be less than 0.1. However, when N ≤M ,
i.e., the network is crowded, Proposition 1 says that it is not suitable to maintain a
small false alarm probability in channel sensing of SUs. Instead, it is recommended
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that the false alarm probability pf be at least as large as 1 − N
M to maximize

the throughput of an SU. Note that the use of small misdetection and false alarm
probabilities come from the PHY layer viewpoint to minimize channel sensing errors.
Therefore, the requirement in sensing errors should be designed from the cross-layer
point of view. In addition, we see from Proposition 1 that the values of p∗f and p∗m
depend the number N of channels as well as the number M of SUs.

6.2. Cross-layer Optimization for both Primary and Secondary Users. In
CR networks, SUs are allowed to access the channels only when the performance
of PUs should not be affected by SUs. However, any channel sensing method is
imperfect, and hence in the design of channel sensing it is desirable to consider a
requirement on the performance of PUs which should not be violated. In addition,
we need to maximize the throughput performance of SUs at the same time.

Since we consider the delay performance as the performance metric of PUs in this
paper, we consider an optimization problem for the design of the generic channel
sensing method to maximize the throughput performance of an SU subject to the
constraint on the delay performance of a PU, denoted by Dreq, as follows.

max
pf

Ts(pf ),

subject to Dp ≤ Dreq.

We solve the optimization problem numerically to find the optimal value of pf ,
denoted by p∗f,D. We call the channel sensing method with p∗f,D the optimal channel
sensing method from now on. One interesting issue when we consider the delay
requirement Dreq in the cross-layer optimization problem is regarding whether there
is a difference between p∗f and p∗f,D. We will discuss this issue through numerical
and simulation studies in the next subsection.

6.3. Numerical Results. In this subsection we provide numerical results based
on our cross-layer analysis. We also provide simulation results in order to vali-
date our analytic results. The simulation results are obtained by averaging over 5
independent runs using Matlab, and each run is performed for 106 slots.

In our simulation, we consider the energy detection method as the channel sensing
method, which is widely used in practice because of its low computational and
implementation complexities [26]. Since we ignore the channel fading, the channel
between a PU and an SU is assumed to be the additive white Gaussian noise channel.
Thus, sensing error probabilities of the energy detection method are given by

pf = Γ(m, τ),

pm = 1− Γ

(
m,

τ

1 + γ

)
,

where m denotes the number of signal samples during a channel sensing and γ
denotes the average received SNR [24]. Here, Γ(·, ·) denotes the regularized incom-
plete gamma function defined by Γ(m, τ) = 1

Γ(m)

∫∞
τ
xm−1e−xdx and Γ(·) denotes

the gamma function. In our simulation, we use m = 15 and γ = 0 dB. The com-
plementary receiver operating characteristic (ROC) curve (pf vs. pm) under these
parameters is given in Fig. 3. As seen in the figure, it is possible to make both
pf and pm less than 0.1, which is a requirement recommended in the IEEE 802.22
standard [29]. So our parameter values in this subsection makes sense.

To change the false alarm (or misdetection) probability, we change the threshold
value τ in the channel sensing method. Accordingly, the misdetection and false
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Figure 3. The complementary ROC curve.

Table 1. The misdetection/false alarm probabilities that maxi-
mize the throughput of an SU.

N = 23,M = 10 N = 31,M = 10 N = 10,M = 23 N = 10,M = 31
p∗f 0.0256 0.0168 0.5699 0.6795

p∗m 0.2031 0.2445 0.0057 0.0029

alarm probabilities are simultaneously changed. To show direct relations between
the performance metrics and channel sensing errors, we use the false alarm probabil-
ity pf instead of τ in the x-axis of figures. Considering the condition in Proposition
1, we consider two different network scenarios; 1) a sparse network (N > M) and
2) a crowded network (N ≤ M). For the sparse network, we use N = 23, M = 10
and N = 31, M = 10. For the crowded network, we use N = 10, M = 23 and
N = 10, M = 31. In addition, the transition probabilities of the packet arrival
process are given by a = 0.2 and b = 0.6. Thus, the average packet arrival rate is
equal to 0.25.

In Fig. 4, we plots the throughput Ts of an SU as we change pf from 0 to 1.
From the figure we see that the analytic and simulation results of the throughput
performance are well matched, which validates that our analysis is correct. Recall
that p∗f and p∗m denote the false alarm and misdetection probabilities that maximize
the throughput performance of an SU, respectively. The values of p∗f and p∗m are
given in Table 1 for our examples. We see that p∗f for the sparse network is relatively
small and p∗f for the crowded network is relatively large. Accordingly, p∗m for the
sparse network is relatively large and p∗m for the crowded network is relatively
small. It is interesting that the values of p∗f and p∗m in all scenarios do not satisfy
the requirement of the false alarm and misdetection probabilities recommended by
the IEEE 802.22 standard (which is that both probabilities should be less than 0.1
[29]).
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When the network is crowded, i.e., M ≥ N , from Proposition 1, we know the
value p∗f occurs in [1− N

M , 1]. So the lower bound 1− N
M of p∗f cannot be small in the

crowded network as seen in Fig. 4. To explain the reason in detail, noting that the
throughput of Ts of an SU is given by Ts = s · πidle, we plot s and πidle separately
in Fig. 5. As seen in the figure, πidle is increasing in pf but almost invariant for
pf ≥ 0.3. So the success probability s becomes dominant for pf ≥ 0.3, and the
value p∗f occurs in [0.3, 1] for the crowded network. This observation implies that,
when the network is crowded, the collision avoidance among SUs is more important
than the interference alleviation for PUs, because the dominant factor is not πidle
but s. In fact, the false alarm probability pf plays the role of limiting the access
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of idle channels by SUs, which can alleviate packet collisions between SUs. So the
result that p∗f is relatively large is quite natural for the crowded network.

Next, we consider the sparse network, i.e. M < N . From Fig. 5 we see in this
case that the change of πidle is almost invariant when pf ≥ 0.1, but s significantly
decreases as pf increases. This implies that the value p∗f has to be less than 0.1
as given in Table 1. In conclusion, our cross-layer analysis shows that the false
alarm probability should be small (and hence the misdetection probability should
be large) for the sparse network, and that the false alarm probability should not be
small for the crowded network.

We now investigate the performance of the optimal channel sensing policy with
p∗f,D through numerical examples. To validate our analysis, simulation results are
also provided. For numerical and simulation studies, we use the same parameter
values as given above unless otherwise mentioned. We consider a delay requirement
Dreq = 1.01, and we also consider Dreq = ∞ (no requirement on the delay and
hence p∗f,D = p∗f ) for comparison purpose.

We know from our observation that the throughput performance of an SU in
the sparse network is maximized for relatively large values of pm. A large value of
pm results in a long delay of a PU. So, the consideration of the delay requirement
Dreq in our optimization problem is expected to be important for the sparse net-
work. On the other hand, the throughput performance of an SU in the crowded
network is maximized with relatively small values of pm. This implies that the delay
requirement Dreq is expected to be less important for the crowded network.

In Fig. 6, the throughput Ts of an SU and the delay Dp of a PU are plotted as
we change the number M of SUs from 1 to 40 with a fixed value of N = 10. From
Fig. 6(a), as mentioned above, when the network is sparse, the delay requirement
is important in the optimization problem because the difference in Ts between two
cases Dreq = 1.01 and Dreq = ∞ is significant. On the other hand, as the number
M of SUs gets large, i.e., as the network gets crowded, the delay requirement does
not affect the optimal performance because the difference in Ts between two cases
Dreq = 1.01 and Dreq = ∞ becomes negligible. Note that the delay requirements
are all satisfied for all networks as seen in Fig. 6(b).

For comparison purpose we also plot the throughput Ts of an SU in Fig. 6(a)
when we use a fixed value of pm = 0.1. This channel sensing is denoted by non-
optimal method in the figure. The reason for the choice of pm = 0.1 is because it is
recommended in the IEEE 802.22 standard [29]. As seen from the figure that the
use of the non-optimal method is not suitable for the crowded network because it
significantly degrades the throughput performance of SUs. For the sparse networks,
the non-optimal method seems to provide better throughput performance of SUs
than the optimal method with Dreq = 1.01. However, as seen in Fig. 6(b), the
non-optimal method violates the delay requirement of PUs.

Based on our observation, we conclude that the cross-layer design is important
especially for crowded networks where SUs have to use a relatively large value of
pf in order to optimize the throughput performance of SU.

7. Further Discussions.

7.1. The Impact of Interference in Modeling and Analysis. The ARQ pro-
tocol at PU’s MAC layer affects the throughput performance of an SU. That is,
when the transmission of a PU is interfered by SUs due to imperfect channel sens-
ing, the ARQ protocol retransmits the interfered packet of the PU, which increases
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Figure 6. The number of SUs vs. the performances of users.

the number of busy slots of the channel and accordingly affects the throughput
performance of SUs. To see what happens when we do not consider the interference
from SUs due to imperfect channel sensing in the mathematical modeling, we con-
sider a reference model where we do not consider the interference from SUs (and
hence retransmission by the ARQ protocol) in the channel occupancy model of PUs.
Using the same argument as given in Section 5.2, the throughput of the tagged SU
in the reference model is given by

(1− pf )

(
1− 1− pf

N

)M−1

(1− λ) . (11)
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Note that the throughput of the tagged SU in the reference model is also of the
form given by (9) except the probability that a channel is idle at a slot of being
1 − λ. From (11) we see the throughput of an SU in the reference model achieves
its maximum value at p̃f := (1− M

N )+.
We now assume that each SU uses a channel sensing method with the maximum

false alarm probability p̃f and its corresponding misdetection probability p̃m :=

f(p̃f ). Let {S̃t, t ≥ 1} be the resulting service capacity process, and Q̃t be the
resulting queueing process of the tagged PU in the reference model. It then follows
from the same argument as given in (4) that

Q̃1 = 0, Q̃t = (Q̃t−1 − S̃t−1)+ +At, for t ≥ 2,

P r{S̃t = 1 | Q̃ > 0} =

(
1− p̃m

N

)M
.

For comparison purpose, we consider the queueing process {Qt, t ≥ 1} given in
(3) and the service capacity process {St, t ≥ 1} with the maximum false alarm prob-
ability p∗f in Proposition 1 and its corresponding misdetection probability p∗m :=

f(p∗f ). We have the following proposition which shows the impact of the consider-
ation of interference in the mathematical modeling.

Proposition 2. For the two queueing processes {Q̃t, t ≥ 1} and {Qt, t ≥ 1}, it
satisfies that, for all x ≥ 0 and t ≥ 1,

Pr{Q̃t > x} ≥ Pr{Qt > x}.

Moreover, Pr{Q̃ > x} ≥ Pr{Q > x} where Q̃ = limt→∞ Q̃t and Q = limt→∞Qt.

Proof. See APPENDIX.

Let D̃p denote the average packet delay of the tagged PU obtained from Q̃t and
D∗p denote the average packet delay of the tagged PU obtained from Qt. Little’s

formula and Proposition 2 show that D̃p ≥ D∗p. Moreover, since the throughput
Ts of an SU is a function of the false alarm probability (i.e., Ts = Ts(pf )) and
T ∗s := Ts(p

∗
f ) is the maximum throughput of an SU over all possible values of pf by

Proposition 1, obviously we have T̃s := Ts(p̃f ) ≤ T ∗s . Hence, we conclude that the
interference from an SU due to imperfect channel sensing should be considered in
the channel occupancy model of a PU. Otherwise, the optimization analysis results
in a misleading conclusion. In the following we validate Proposition 2 through
numerical and simulation studies.

Fig. 7 plots the throughput Ts of an SU and the delay Dp of a PU as we change
the number of SUs from 1 to 40. We consider two scenarios where an SU uses p∗f
in channel sensing in the first scenario and an SU uses p̃f in channel sensing in
the second scenario. In the figure, we denote the scenarios by with p∗f and with
p̃f . For sparse networks, as we expected from Proposition 2, both Ts and Dp are
significantly degraded. On the other hand, for crowded networks, the degradation
in both Ts and Dp is negligible. Note that p∗f and p̃f are relatively large in the
crowded networks and accordingly p∗m and p̃m become almost 0. Consequently, the
interference between a PU and an SU becomes negligible in the crowded network.
From the observation we conclude that the interference from SUs due to imperfect
channel sensing should be considered in the channel occupancy process of a PU,
especially for sparse networks. From the figures, we also see our analytic results are
well matched with simulation results, which validates our analysis.
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Figure 7. The number of SUs vs. the performances of users.

7.2. The Impact of Packet Arrival Process. We see from (10) that the through-
put Ts of an SU does not depend on the individual values of the state transition
probabilities a and b of the packet arrival process, but depend on the packet arrival
rate λ. We thus see that the throughput performance of an SU does not depend on
the correlation of packet arrivals of PUs because the correlation of packet arrivals
of PUs depends on the values of a and b.

We next investigate the impact of the individual values of a and b on the delay
performance of a PU through numerical examples. Even though the throughput of
an SU does not depend on the individual values of a and b as mentioned before,
the delay Dp of a PU depends on each value. To this end, we fix the packet arrival
rate λ = 0.25. We change the value of a from 0.05 to 0.3 and accordingly the value
of b is changed form 0.15 to 0.9. In addition, all SUs use p∗f in channel sensing
to maximize the throughput performance. Fig. 8 shows the delay of a PU for the
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sparse and crowded networks used in Section 6.3. In the figure, we see that Dp

decreases as a increases in both networks and the change of Dp is more significant
in the sparse networks than in the crowded networks. This result is explained as
follows. Note that the packet arrival process becomes more bursty as the value of a
goes to 0. Hence the delay performance of a PU is worse for a small value of a in the
figure. Note that the misdetection probability p∗m in the sparse network is relatively
larger than that in the crowded network. Therefore, the delay performance of a PU
degrades more significantly in the sparse network.

8. Conclusions. In this paper, we considered a cognitive radio network with mul-
tiple channels and multiple secondary users. PUs in the network use the ARQ
protocol. By considering the characteristics of the ARQ protocol and the direct
interference between PUs and SUs, we developed a cross-layer performance model
to analyze the delay performance of PUs and the throughput performance of SUs.
Using the performance model, we formulated an optimization problem for the design
of an optimal channel sensing method that maximizes the throughput performance
of SUs while guaranteeing a given delay performance requirement of PUs. From
our analysis we showed that the optimal threshold in the channel sensing method
depends on the network parameters such as the number of channels and the number
of SUs. In addition, we concluded that the use of small false alarm and misdetection
probabilities used in many previous works is not suitable and the optimal channel
sensing method should be designed from the cross-layer viewpoint.
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Appendix
Proof of Proposition 2. Before starting the proof, we introduce two lemmas that
will be used.

Lemma 8.1. Let X and Y be random variables such that Pr{X > x} ≥ Pr{Y > x}
for all x ≥ 0. Then there exist random variables X# and Y # having the same
distribution with X and Y , respectively, such that X# ≥ Y # with probability 1 [22].

For the proof of Proposition 2, we consider a queueing process {Q<m>t , t ≥ 1}
with a new service capacity process {S<m>t , t ≥ 1}, defined by

Q<m>1 = 0, Q<m>t = (Q<m>t−1 − S<m>t−1 )+ +At, for t ≥ 2,

Here, when Q<m>t > 0, S<m>t = St and when Q<m>t = 0

P{S<m>t = 1 |Q<m>t = 0} =
(

1− pm
N

)M
,

P{S<m>t = 0 |Q<m>t = 0} = 1− P{S<m>t = 1 |Q<m>t = 0}.
In the case, it is obvious that

P{S<m>t = 1} =
(

1− pm
N

)M
,

P{S<m>t = 0} = 1− P{S<m>t = 1},

and that Q<m>t and S<m>t are independent. We then prove the following lemma.

Lemma 8.2. For the two queueing processes {Qt, t ≥ 1} in (3) and {Q<m>t , t ≥ 1}
defined above, we have Qt = Q<m>t for all t ≥ 1.

Proof. First, Q1 = Q<m>1 = 0. We use the induction argument in the proof. So we
assume that Qs = Q<m>s for all 1 ≤ s ≤ t. It then follows that

Qt+1 = (Qt − St)+ +At+1

= [Qt − St +At+1]I{Qt>0} +At+1I{Qt=0}

= [Q<m>t − S<m>t +At+1]I{Q<m>
t >0} +At+1I{Q<m>

t =0}

= (Q<m>t − S<m>t )+ +At+1

= Q<m>t+1 ,

which completes the proof.

Similarly, we can construct Q̃<m>t and S̃<m>t from Q̃t and S̃t where Q̃<m>t and

S̃<m>t are independent and Q̃<m>t = Q̃t for all t ≥ 1. We now prove Proposition 2.

Proof of Proposition 2. In the proof, we use the queueing process {Q<m>t } instead
of {Qt} because Qt = Q<m>t for all t ≥ 1 by Lemma 8.2 and hence both Qt and
Q<m>t have the same distribution function. The benefit of using Q<m>t in the proof
is that we can use the property that P{S<m>t = 1} decreases in pm.

By abuse of notation, we denote S̃<m>t by the service capacity of the network
when the misdetection probability is equal to p̃m = f(p̃f ). Similarly, we denote
S<m>t by the service capacity of the network when the misdetection probability is

equal to p∗m = f(p∗f ). Then we have two queueing processes {Q̃<m>t } and {Q<m>t }
given by

Q̃<m>t+1 = (Q̃<m>t − S̃<m>t )+ +At+1,

Q<m>t+1 = (Q<m>t − S<m>t )+ +At+1.
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We now assume that the statement is true until a given t, i.e., for all x ≥ 0

Pr{Q̃<m>t > x} ≥ Pr{Q<m>t > x}. (12)

Recall that p∗f ≥ p̃f when N ≤M by Proposition 1 and p∗f > p̃f = 0 when
N > M . Hence, p∗f ≥ p̃f for all pairs of N and M , and it implies that p∗m =

f(p∗f ) ≤ f(p̃f ) =: p̃m. Since p∗m ≤ p̃m, we have Pr{S<m>t = 1} ≥ Pr{S̃<m>t = 1}.
By Lemma 8.1, there exist random variables S#

t and S̃#
t having the same distri-

butions with S<m>t and S̃<m>t , respectively, such that S#
t ≥ S̃#

t with probability

1. Furthermore, from (12) and Lemma 8.1 there exist random variables Q#
t and

Q̃#
t having the same distribution with Q<m>t and Q̃<m>t , respectively, such that

Q#
t ≤ Q̃#

t with probability 1. In addition, it is known that two pairs (S#
t , S̃

#
t )

and (Q#
t , Q̃

#
t ) can be generated to be independent. Since S̃<m>t and Q̃<m>t are

independent and S<m>t and Q<m>t are independent, for given x ≥ 0,

Pr{Q̃<m>t+1 > x} = Pr{(Q̃<m>t − S̃<m>t )+ +At+1 > x}

= Pr{(Q̃#
t − S̃

#
t )+ +At+1 > x}

≥ Pr{(Q#
t − S

#
t )+ +At+1 > x}

= Pr{(Q<m>t − S<m>t )+ +At+1 > x}
= Pr{Q<m>t+1 > x}.

Since Q̃<m>1 = Q<m>1 = 0, we have Pr{Q̃<m>t > x} ≥ Pr{Q<m>t > x} for all
t ≥ 1 and x ≥ 0 by induction. Equivalently, from Lemma 8.2 we have shown that

Pr{Q̃t > x} ≥ Pr{Qt > x} for all t.

Moreover, under the stability condition of the queueing processes {Q̃t, t ≥ 1}
and {Qt, t ≥ 1}, we know that

Pr{Q̃ > x} = lim
t→∞

Pr{Q̃t > x},

P r{Q > x} = lim
t→∞

Pr{Qt > x}.

Therefore we have Pr{Q̃ > x} ≥ Pr{Q > x}.
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