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Abstract

We consider the block Rayleigh fading multiple-input multiple-output (MIMO) wiretap channel

with no prior channel state information (CSI) available at any of the terminals. The channel gains

remain constant within a coherence interval of T symbols, and then change to another independent

realization in the next coherence interval. The transmitter, the legitimate receiver and the eavesdropper

have nt, nr and ne antennas, respectively. We determine the exact secure degrees of freedom (s.d.o.f.)

of this system when T ≥ 2min(nt, nr). We show that, in this case, the s.d.o.f. is exactly equal to

(min(nt, nr) − ne)
+(T −min(nt, nr))/T . The first term in this expression can be interpreted as the

eavesdropper with ne antennas taking away ne antennas from both the transmitter and the legitimate

receiver. The second term can be interpreted as a fraction of the s.d.o.f. being lost due to the lack of

CSI at the legitimate receiver. In particular, the fraction loss, min(nt, nr)/T , can be interpreted as the

fraction of channel uses dedicated to training the legitimate receiver for it to learn its own CSI. We

prove that this s.d.o.f. can be achieved by employing a constant norm channel input, which can be

viewed as a generalization of discrete signalling to multiple dimensions.

I. INTRODUCTION

We consider the wiretap channel where a legitimate transmitter wishes to have information-

theoretically secure communication with a legitimate receiver in the presence of an eavesdrop-

per. The wiretap channel was introduced by Shannon [1] for the case of noiseless channels,

T.-Y. Liu and Y.-W. Peter Hong (emails: tyliu@erdos.ee.nthu.edu.tw and ywhong@ee.nthu.edu.tw) are

with the Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013. P. Mukherjee

and S. Ulukus (emails: pritamm@umd.edu and ulukus@umd.edu) are with the Department of Electrical and Computer

Engineering, University of Maryland, College Park, MD 20742. S.-C. Lin (E-mail:sclin@mail.ntust.edu.tw.) is

with the Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei,

Taiwan 10607. This work was supported in part by the National Science Council, Taiwan, under grants NSC 100-2628-E-007-

025-MY3, and US National Science Foundation Grants CNS 09-64632, CCF 09-64645, CCF 10-18185 and CNS 11-47811, and

was presented in part at IEEE ICC, Sydney, Australia, June 2014.

January 4, 2015 DRAFT



2

where it was shown that secure keys and one-time-pad encryption were necessary for secure

communications. The noisy wiretap channel was introduced by Wyner, who determined the

capacity-equivocation region for the degraded case [2]. Csiszár and Körner generalized his result

to arbitrary, not necessarily degraded, wiretap channels [3]. Leung-Yan-Cheong and Hellman

determined the capacity-equivocation region of the Gaussian wiretap channel and showed that

Gaussian signalling is optimal [4]. The secure degrees of freedom (s.d.o.f.) of the scalar Gaussian

wiretap channel is zero.

The multiple-input multiple-output (MIMO) wiretap channel where the legitimate entities and

the eavesdropper have multiple antennas was considered for the 2-2-1 case in [5] and the general

case in [6]–[8]. These references determined the exact secrecy capacity of the MIMO wiretap

channel for the case of full channel state information (CSI) at all terminals, and showed that

no channel prefixing is necessary and Gaussian signalling is optimal. It can be deduced from

these works that the s.d.o.f. of the MIMO wiretap channel with full CSI is min((nt−ne)
+, nr),

where nt, nr and ne are the number of antennas at the transmitter, the legitimate receiver, and

the eavesdropper, respectively, and (x)+ = max(x, 0).

The fading wiretap channel with a single antenna at all terminals, where all parties have perfect

CSI of all links, was considered in [9]–[12]. Modeling the fading wiretap under full CSI as a bank

of independent parallel channels, these references showed that independent Gaussian signalling

in all parallel channels, together with water-filling of the total power over these channels, is

optimal. Reference [13] considered the single antenna wiretap channel where the transmitter has

the legitimate receiver’s CSI but no eavesdropper CSI under the assumption of infinite coherence

times for channel fading, and showed that Gaussian signalling is optimal in this case. Reference

[14] considered the same model under a fast fading condition (single symbol coherence time),

and showed that M-QAM signalling or Gaussian signalling with added Gaussian artificial noise

may outperform plain Gaussian signalling. In the single antenna fading channel, under all CSI

conditions, the s.d.o.f. is zero, since it is zero under perfect CSI.

Using multiple antennas at the legitimate users however, non-zero s.d.o.f. may be achieved

even under partial CSI conditions. Reference [15] showed that in a MIMO wiretap channel with

perfect CSI at the receivers, but only a statistical CSI at the transmitter, under a fast fading

Rayleigh channel, the s.d.o.f. of the system is (min(nt, nr)− ne)
+. Note that this may be less
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than the s.d.o.f. achievable under perfect CSI, which is min((nt − ne)
+, nr). A comparison of

these two s.d.o.f. may be interpreted as the eavesdropper taking away ne antennas only from

the transmitter in the case of perfect CSI [5]–[8], but ne antennas from both the transmitter and

the legitimate receiver in the case of partial CSI [15]. More strongly, reference [16] considered

the case of an arbitrarily varying eavesdropper in a MIMO wiretap channel and showed that

the same s.d.o.f. of (min(nt, nr) − ne)
+ can be achieved in this case. In [16], the CSI of the

legitimate receiver is assumed known at the transmitter, however, nothing is known about the

eavesdropper CSI, not even its probability distribution. This is an exceptionally strong modeling

of the eavesdropper, where secrecy must be guaranteed for every realization of the eavesdropper

channel; in a way, the eavesdropper may be thought to be controlling its channel adversarially.

All of the above work considered that some (either perfect or partial) CSI is available at some

of the terminals. In practice, typically, the way CSI becomes available at the terminals is via

the receivers measuring it and feeding it back to the transmitters. It is reasonable to assume

that no CSI is known at the outset before the start of the communication. One must then take

into consideration the cost of acquiring the CSI. In addition, the assumption of perfect CSI is

an idealization; in reality, the terminals may only have an estimate of the channel in a delayed

manner as discussed in [17]–[19]. Further, in most cases, eavesdropper CSI will not be available

at the transmitter, because she will not feed her measurement back, and even if she does, she

will not be truthful. Thus, it is more practical to assume that no CSI is available at any terminal

a priori. Recently, reference [20] studied the case where no CSI is available at any terminal

and the coherence time of the Rayleigh fading channel is one symbol duration. Reference [20]

determined the exact secrecy capacity in this case and showed that discrete signalling is optimal.

As in all other single antenna cases, the s.d.o.f. in [20] is zero. It can be shown that, even when

multiple antennas are added, s.d.o.f. in the case of fast fading in [20] is still zero.

In this paper, we consider the MIMO wiretap channel under block Rayleigh fading, where the

channel gains of both the legitimate receiver and the eavesdropper remain fixed for a coherence

interval of T symbols, and then change to another independent realization in the next coherence

interval. This models a Rayleigh fading wireless communication channel with a coherence time

of T symbol durations. We consider the case where neither the transmitter nor the receivers

have any CSI. This can be considered as an extension of [20] to the case of multiple antennas
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and larger (than one) coherence times. A similar channel model without any secrecy constraints

was considered in [21], [22], where in [21] the structure of the optimal input distribution was

found, and in [22] the degrees of freedom (d.o.f.) was determined to be m(1 − m/T ) where

m = min(nt, nr, ⌊T/2⌋). Our work can also be considered as a wiretap version of [21], [22].

We show that when the coherence time T satisfies T ≥ 2min(nt, nr), the s.d.o.f. of this system

is exactly (min(nt, nr) − ne)
+(T − min(nt, nr))/T . Compared to the MIMO wiretap channel

results in [15], [16], where the legitimate receiver knows its channel gain, the s.d.o.f. in our case

is exactly the same as those in [15], [16] except for a factor of (T−min(nt, nr))/T . Intuitively, at

high signal-to-noise ratio (SNR), the legitimate receiver needs min(nt, nr) channel uses out of T

channel uses to learn its channel. Therefore, the factor (T −min(nt, nr))/T intuitively accounts

for the number of channel uses lost for estimating the channel at the legitimate receiver. As in

the cases of [15], [16], due to no CSI at the transmitter, the eavesdropper takes away ne antennas

from both the transmitter and the receiver, i.e., ne is subtracted from min(nt, nr), as opposed to

being subtracted only from nt as in the case of full CSI at the transmitter [5]–[8]. In comparison

to the case without any secrecy constraints in [21], [22], here we have a subtraction of ne from

the first term in the d.o.f. due to the presence of the eavesdropper.

Finally, it is interesting to note that one cannot achieve a positive s.d.o.f with either a long

coherence time in a single antenna system [13] or with multiple antennas in a very short (T = 1)

coherence time channel [20]; however, with some moderate coherence (T ≥ 2min(nt, nr)) and

use of multiple antennas, it is possible to achieve positive s.d.o.f., as we show in this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wiretap channel that consists of a transmitter with nt antennas, a legitimate receiver

with nr antennas, and an eavesdropper with ne antennas. The channel between the transmitter and

the legitimate receiver is denoted by matrix H ∈ Cnr×nt and the channel between the transmitter

and the eavesdropper is denoted by matrix G ∈ Cne×nt . The channels are Rayleigh fading,

i.e., entries of the channel matrices are independent and identically distributed (i.i.d.) complex

Gaussian random variables with zero-mean and unit-variance denoted by CN (0, 1). The channels

are block fading, i.e., the channel coefficients remain constant throughout a coherence interval

T and change independently across different intervals according to the same distribution.
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Let X ∈ Cnt×T denote the signal transmitted by the transmitter during a coherence interval.

The transmitted signal is subject to an average power constraint as,

1

T
E
[

tr(XX†)
]

≤ P, (1)

where tr(·) denotes the trace function. The received signals at the legitimate receiver and the

eavesdropper are

Y = HX+Nr, (2)

Z = GX+Ne, (3)

respectively, where Nr ∈ Cnr×T and Ne ∈ Cne×T are their respective additive Gaussian noise

terms. The entries of Nr and Ne are i.i.d. with distributions CN (0, σ2
r) and CN (0, σ2

e), respec-

tively. The CSI, i.e., the realizations of H and G, are not known to any of the terminals.

A (2nR, n) code consists of an encoder fn at the transmitter that maps each secret message,

say W ∈ W , {1, . . . , 2nR} into a length-n codeword and a decoder gn at the legitimate receiver

that maps its received signal into a message estimate Ŵ ∈ W . Each codeword is transmitted

over multiple coherence intervals [21] and n is chosen as a multiple of T .

A secrecy rate R is said to be achievable if there exists an encoder fn and a decoder gn such

that the probability of error at the legitimate receiver P
[

W 6= Ŵ
]

goes to zero and the average

equivocation at the eavesdropper measured by 1
n
H(W |Zn) approaches 1

n
H(W ), as the codeword

length n → ∞, where Zn denotes the signal received at the eavesdropper over n channel uses.

The secrecy capacity Cs is the supremum of all such achievable secrecy rates. From [3], the

secrecy capacity of the MIMO wiretap channel with no CSI at any terminal is

Cs =
1

T
max
V,X

I(V ;Y)− I(V ;Z), (4)

where V is an auxiliary random variable that satisfies the Markov chain V → X → Y,Z.

Determining the optimal joint distribution of (V,X) and the resulting exact secrecy capacity

expression is challenging, instead, in this paper, we focus on determining the s.d.o.f. which is

defined as,

Ds = lim
P→∞

Cs

logP
. (5)

The s.d.o.f. characterizes how the secrecy capacity scales with log(P ) for large P , i.e., it is the

pre-log factor of the secrecy capacity at high SNR.
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III. SUMMARY OF THE MAIN RESULTS

In this section, we first summarize our main results; the proofs will be provided in the following

sections. The results are encapsulated in the following lemmas and theorem.

Lemma 1 For the MIMO wiretap channel in (2)-(3), with no CSI at any terminal,

Ds = 0, if nr ≤ ne. (6)

This implies a negative result that when the eavesdropper has more antennas than the legitimate

user, i.e., nr ≤ ne, the s.d.o.f. Ds is always zero. No matter how long the coherence time T is

and how many transmitter antennas the system has, the secrecy capacity does not scale with the

SNR. However, we show in the following lemmas that a positive s.d.o.f. can be achieved, for

nr > ne and T ≥ 2min(nt, nr).

Lemma 2 When nr > ne, nr ≤ nt, and T ≥ 2nr, the s.d.o.f. is given by

Ds = (nr − ne)

(

T − nr

T

)

. (7)

Lemma 3 When nr > ne, nr > nt, and T ≥ 2nt, the s.d.o.f. is given by

Ds = (nt − ne)
+

(

T − nt

T

)

. (8)

Lemma 2 considers the case where the transmitter has more antennas than the receiver, whereas

Lemma 3 considers the opposite case. Note that, in the latter case, a positivity operator (·)+

is required since nt may be less than ne. We combine the above three lemmas to obtain the

following main result of our paper.

Theorem 1 For the MIMO wiretap channel in (2)-(3), with no CSI at any terminal, when

T ≥ 2min(nt, nr), the s.d.o.f. is given by

Ds = (min(nt, nr)− ne)
+

(

T −min(nt, nr)

T

)

. (9)

Note that when no secrecy constraint is considered, i.e., ne = 0, the s.d.o.f. in Theorem 1

reduces to the d.o.f. of the noncoherent MIMO Rayleigh block fading channel [22]. Our s.d.o.f. is

affected by two factors: the first factor (min(nt, nr)−ne)
+ is the s.d.o.f of the case where perfect

CSI is available at the receivers [15] (i.e., where there is no cost due to lack of channel knowledge
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(b)

Fig. 1. Illustrations of the s.d.o.f. derived in Theorem 1 and Lemma 4. (a) The s.d.o.f. versus the number of transmit antennas

nt for nr > ne and 2nr > T + ne. (b) The s.d.o.f. versus coherence time T for min(nt, nr) > ne.

at the receiver), and the second factor (1−min(nt, nr)/T ) reflects the loss in efficiency due to

the lack of knowledge of the CSI at the legitimate receiver. One can view the ratio min(nt, nr)/T

as the cost of channel estimation at the legitimate receiver from the point of view of a training

based scheme. Note that, even though Lemmas 2 and 3 (and, thus, Theorem 1) hold only for

the case where T ≥ 2min(nt, nt), the signalling scheme adopted in their achievability proofs

can also be used to derive an achievable s.d.o.f. for the case where T < 2min(nt, nr), as given

in the following lemma.

Lemma 4 For arbitrary coherence time T , the s.d.o.f. satisfies

Ds ≥ (K − ne)
+

(

T −K

T

)

(10)

where K = min(nt, nr, (T + ne)/2).

Lemma 4 shows that, for given coherence time T and the number of eavesdropper’s antennas

ne, the achievable s.d.o.f. for the case where T < 2min(nt, nr) increases with the number of

legitimate antennas nt until it reaches nr or (T + ne)/2. Even though more antennas at the

transmitter and the legitimate receiver provides more dimensions for communication, it also

implies that more resource is needed to cope with the lack of CSI at the receiver, which is

reflected in the term (T −K)/T . More details can be found in Section VII.
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The above main results can be visualized in Fig. 1. Here, we show the s.d.o.f. of the case with

no CSI anywhere (i.e., Theorem 1 and Lemma 4) and compare with that of the case with perfect

CSIR but no CSIT (or statistical CSIT) [15]. In Fig. 1(a), the number of receive antennas at the

legitimate receiver and the eavesdropper (i.e., nr and ne, respectively) and the coherence time T

are fixed and are chosen such that nr > ne and 2nr > T +ne. By varying the number of transmit

antennas nt, Theorem 1 shows that the s.d.o.f. with no CSI anywhere is zero when nt ≤ ne, but

increases with the number of transmit antennas when ne < nt ≤ T/2. The increase is nonlinear

as opposed to the case with perfect CSIR. However, as nt increases beyond T/2, Theorem 1 no

longer applies and the achievable s.d.o.f. in Lemma 4 is plotted instead (in dotted line). We can

see that the achievable s.d.o.f. continues to increase with nt when T/2 < nt < (T + ne)/2 and

saturates when nt ≥ (T + ne)/2. In Fig. 1(b), we show the s.d.o.f. versus coherence time T for

the case where min(nt, nr) > ne. For T ≥ 2min(nt, nr), the s.d.o.f. is given by Theorem 1 and

is shown to approach that of the case with perfect CSIR as T increases. This is due to the fact

that, when coherence time is sufficiently large, the impact due to lack of CSI can be neglected.

Similarly, when T < 2min(nt, nr), the achievable s.d.o.f. in Lemma 4 is plotted instead.

IV. PROOF OF LEMMA 1

To prove Lemma 1, we will in fact prove the following stronger result for this case:

Cs ≤

[

ne log

(

1 +
P

σ2
r

)

− ne log

(

1 +
P

σ2
e

)]+

. (11)

In order to derive the upper bound (11) on the secrecy capacity, we first note that for a fixed

ne, the secrecy capacity of the MIMO wiretap channel with nr = ne is always greater than or

equal to that of the case with nr < ne. Hence, it suffices to upper bound the secrecy capacity

of the system with nr = ne, which we will call the enhanced wiretap channel.

For the enhanced wiretap channel, if σ2
r ≥ σ2

e , it is clear that the legitimate receiver is

stochastically degraded with respect to the eavesdropper. Hence, the secrecy capacity in this

case is zero. However, if σ2
r < σ2

e , using the two conditions nr = ne and σ2
r < σ2

e , we can

construct a physically degraded wiretap channel whose marginal distributions are identical to
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those of (2)-(3). The received signals of the equivalent degraded wiretap channel are

Y = HX+Nr, (12)

Z′ = HX+Nr +N′
e = Y +N′

e, (13)

where the entries of N′
e ∈ Cne×T are i.i.d. Gaussian with zero-mean and variance σ2

e − σ2
r ,

and N′
e is independent of X, H, and Nr. Since the secrecy capacity depends only on the

conditional marginal probabilities p(Y|X) and p(Z|X), and H and G are statistically the same,

the physically degraded channel in (12)-(13) has the same secrecy capacity as the original

stochastically degraded channel in (2)-(3). Due to the degradedness of the equivalent model

in (12)-(13), we know, from [2], [3], that V = X is optimal (i.e., no channel prefixing is

needed) and, thus, the secrecy capacity of the equivalent degraded wiretap channel is

Cs =
1

T
max

pX∈SpX

I(X;Y)− I(X;Z′), (14)

where SpX denotes the set of all input distributions which satisfy the power constraint in (1).

To derive an upper bound we first rewrite (14) as

T · Cs = max
pX∈SpX

h(Y)− h(Z′)− h(Y|X) + h(Z′|X). (15)

Now we note that if nr = ne and σ2
r < σ2

e , we have the following inequality for the wiretap

channel in (12)-(13),

h(Y|X)− h(Z′|X) ≥ h(Y|X,H)− h(Z′|X,H) (16)

This is a vector generalization of [20, eqn. (12)], and can be proved by observing that (16) holds

if and only if

I(Y;H|X) ≥ I(Z′;H|X), (17)

which is true since,

I(Y;H|X = X̃) = nr log

∣

∣

∣

∣

∣

IT +
X̃†X̃

σ2
r

∣

∣

∣

∣

∣

≥ ne log

∣

∣

∣

∣

∣

IT +
X̃†X̃

σ2
e

∣

∣

∣

∣

∣

= I(Z′;H|X = X̃) (18)

where X̃ denotes a realization of the random matrix X. In deriving (18), we used the fact that

nr = ne, σ
2
r < σ2

e and that given X, Y and H are jointly Gaussian and so are Z and H. If Yi
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denotes the ith row of Y, then Yi is a Gaussian vector independent of Yj , for all i 6= j, and

the covariance matrix of Yi is X̃†X̃+ σ2
rIT , for all i.

Using (16) and (13) in (15), we obtain

T · Cs ≤ max
pX∈Sp

X

h(Y)− h(Y +N′
e)− h(Y|X,H) + h(Z′|X,H) (19)

= max
pX∈SpX

h(Y)− h(Y +N′
e) + neT log

(

σ2
e

σ2
r

)

(20)

≤ max
pX∈SpX

h(Y)− neT log
(

e
1

neT
h(Y) + e

1
neT

h(N′

e)
)

+ neT log

(

σ2
e

σ2
r

)

(21)

≤ h(YG)− neT log
(

e
1

neT
h(YG) + e

1
neT

h(N′

e)
)

+ neT log

(

σ2
e

σ2
r

)

(22)

= Tne log

(

1 +
P

σ2
r

)

− Tne log

(

1 +
P

σ2
e

)

(23)

where (21) follows from the entropy power inequality [23], and (22) follows from the fact that

the right hand side of (21) is monotonically increasing in h(Y), and that for a fixed total power

constraint E[tr(YY†)] ≤ (P +σ2
r )neT , a Gaussian matrix YG ∈ Cne×T with entries that are i.i.d.

Gaussian with zero-mean and variance P + σ2
r maximizes the differential entropy. This gives us

the desired result in (11), completing the proof of Lemma 1.

V. PROOF OF LEMMA 2

The proof of Lemma 2 is a bit more involved than that of Lemma 1. For clarity, we outline

the steps of the proof here and leave the details to Appendix A. We first prove the converse and

then provide a scheme that achieves the s.d.o.f. upper bound.

A. Converse Proof of Lemma 2

To find an upper bound for the s.d.o.f. Ds, we only need to consider the case where σ2
r < σ2

e ,

since, with all other channel parameters remaining the same, the wiretap channel in (2)-(3)

with σ2
r < σ2

e yields a larger secrecy capacity than that with σ2
r ≥ σ2

e . Under the assumption

σ2
r < σ2

e , we can once again construct a degraded equivalent channel (as we did in (12)-(13)

for nr = ne), without changing Cs by selecting ne row vectors from nr rows of the legitimate

channel matrix H to form a statistically marginally identical eavesdropper channel. For any
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fixed partition p1 ∪ p2 = {1, . . . , nr} where |p1| = ne and p2 = {1, . . . , nr} \ p1, we construct a

degraded equivalent channel for (2)-(3) as follows

Y = HX+Nr, (24)

Zp1 = Hp1X+Nr,p1 +N′
e = Yp1 +N′

e, (25)

where Hp1,Nr,p1 and Yp1 denote the collection of row vectors with indices belonging to p1

from H,Nr and Y, respectively, and Zp1 denotes the equivalent eavesdropper’s received signal

constructed from Yp1 . For any partition (p1, p2), as in the proof of Lemma 1, the secrecy capacity

of the degraded wiretap channel in (24)-(25) is

Cs =
1

T
max

pX∈SpX

I(X;Y)− I(X;Zp1). (26)

From above, the optimization problem in (4) is transformed to a simpler problem which needs

to be optimized only with respect to X as in (26). However, it is still hard to find the optimal

input distribution pX. Instead, we characterize the optimal input structure with respect to (26)

for the equivalent degraded channel given in (24)-(25). This helps us restrict possible input

distributions and simplifies the problem. Interestingly, we show in the sequel that, due to the

degradedness of the equivalent wiretap channel in (24)-(25) and the concavity of the secrecy

rate in the input distribution for degraded channels [20], the optimal input structure in (26) is

the same as the optimal input structure in the channel without secrecy constraints in [21].

Recall that a random matrix M ∈ CN×T where T ≥ N is isotropically distributed (i.d.) if

p(M) = p(MU), for all deterministic T ×T unitary matrices U. The optimal input structure for

the equivalent degraded wiretap channel in (24)-(25) is characterized in the following lemma.

Lemma 5 When nr > ne and σ2
r < σ2

e , for the equivalent channel in (24)-(25), the optimal

input distribution that maximizes Cs in (26) has the structure

X = ΛΘ, (27)

if T ≥ nt, where Λ is an nt × T diagonal random matrix with real and non-negative diagonal

elements, and Θ is a T × T i.d. unitary matrix which is independent of Λ.

We provide a proof for Lemma 5 in Appendix A.
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Although we cannot completely characterize the optimal X, the result in Lemma 5 suffices

to derive a useful upper bound for Ds. We can rewrite the secrecy capacity given in (26) and

upper bound it as

T · Cs = max
pX∈S∗

pX

I(X;Y)− I(X;Zp1) (28)

= max
pX∈S∗

pX

h(Yp1) + h(Yp2 |Yp1)− h(Y|X)− h(Yp1 +N′
e) + h(Zp1 |X) (29)

≤ max
pX∈S∗

pX

h(Yp2|Yp1)− h(Y|X) + h(Zp1 |X), (30)

where S∗
pX

in (28) denotes the set of all input distributions having the optimal structure described

in Lemma 5 and satisfying the power constraint in (1), matrix Yp2 in (29) is the collection of

row vectors of Y with indices belonging to p2 = {1, . . . , nr}\p1, and the inequality (30) follows

from h(Yp1) ≤ h(Yp1 +N′
e).

Now continuing from (30), we derive the desired upper bound in three steps.

Step 1: We derive an upper bound for h(Yp2 |Yp1) in terms of h(Y) so that we can focus

only on h(Y) later. This upper bound can be derived by using the following lemma.

Lemma 6 Given an m × T random matrix M with differential entropy h(M), for all n ∈

{1, . . . , m}, there must exist a partition (p1, p2) where p1 ∪ p2 = {1, . . . , m}, |p1| = n, and

|p2| = m− n such that

h(Mp2 |Mp1) ≤
m− n

m
h(M), (31)

where Mp1 and Mp2 denote the collection of row vectors of M with indices belonging to p1

and p2, respectively.

We provide a proof for Lemma 6 in Appendix B.

Now, from Lemma 6 and (30), we have

T · Cs ≤ max
pX∈S∗

pX

nr − ne

nr
h(Y)− h(Y|X) + h(Zp1 |X), (32)

which follows from the fact that, for any partition (p1, p2), (30) is a valid upper bound. A similar

inequality for (31) has been derived in [17] under the entropy symmetric condition which is not

required in Lemma 6. However, it is necessary to note that the result in [17] is also applicable

here since our problem coincidentally satisfies the entropy symmetric condition as well.
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Step 2: We derive an upper bound for h(Y) in (32), as given in the following lemma.

Lemma 7 With the distribution of the channel input X satisfying the optimal structure in

Lemma 5, the corresponding differential entropy of the legitimate receiver signal Y in (12)

can be upper bounded as

max
pX∈S∗

pX

h(Y) ≤ n2
r logP + (T − nr)E

[

log detYY†
]

+ o(logP ), (33)

where limP→∞ o(logP )/ logP = 0.

We provide a proof for Lemma 7 in Appendix C.

Note that given the input signal X, each row vector of Y and Zp1 are i.i.d. Gaussian vectors,

under the optimal input structure imposed by Lemma 5, the conditional differential entropy

h(Y|X) and h(Zp1 |X) in (32) can be explicitly computed as

h(Y|X) = nr

nt
∑

i=1

E
[

log πe(||Xi||
2 + σ2

r )
]

+ nr(T − nt) log πeσ
2
r , (34)

h(Zp1 |X) = ne

nt
∑

i=1

E
[

log πe(||Xi||
2 + σ2

e)
]

+ ne(T − nt) log πeσ
2
e , (35)

where Xi is the ith row of the given input signal X.

Now, by Lemma 7 and (32)-(35), we can further upper bound the secrecy capacity in (32) as

T · Cs ≤ max
pX∈S∗

pX

nr − ne

nr

(T − nr)E
[

log detYY†
]

− (nr − ne)
nt
∑

i=1

E
[

log(||Xi||
2 + σ2

r )
]

+ ne

nt
∑

i=1

E

[

log

(

||Xi||
2 + σ2

e

||Xi||2 + σ2
r

)]

+ (nr − ne)nr logP + o(logP ). (36)

Furthermore, by using the fact that log(1 + x) ≤ x, it follows that

E

[

log

(

||Xi||2 + σ2
e

||Xi||2 + σ2
r

)]

≤ E

[

σ2
e − σ2

r

||Xi||2 + σ2
r

]

≤
σ2
e − σ2

r

σ2
r

, (37)

where the right hand side of (37) is a constant independent of P . Therefore, by (36) and (37),

we can upper bound the secrecy capacity T · Cs as

T · Cs ≤ max
pX∈S∗

pX

(nr − ne)

(

(T − 2nr)

nr

E
[

log detYY†
]

+E
[

log detYY†
]

−
nt
∑

i=1

E
[

log(||Xi||
2+σ2

r)
]

)

+(nr−ne)nr logP+o(logP ). (38)
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By the assumptions T ≥ 2nr and nr > ne, we obtain a further upper bound for (38) by developing

upper bounds separately for E
[

log detYY†
]

and E
[

log detYY†
]

−
∑nt

i=1 E [log(||Xi||2 + σ2
r)],

respectively. This is the task of step 3.

Step 3: We derive upper bounds for the two terms E
[

log detYY†
]

and E
[

log detYY†
]

−
∑nt

i=1 E [log(||Xi||2 + σ2
r )] in (38) separately using the following two lemmas.

Lemma 8 With the distribution of the channel input X satisfying the optimal structure in

Lemma 5, and with nt ≥ nr, the legitimate received signal Y in (12) satisfies

max
pX∈S∗

pX

E
[

log detYY†
]

≤ nr logP + o(logP ), (39)

where limP→∞ o(logP )/ logP = 0.

Lemma 9 With the distribution of the channel input X satisfying the optimal structure in

Lemma 5, and with nt ≥ nr, the legitimate received signal Y in (12) satisfies

max
pX∈S∗

pX

E
[

log detYY†
]

−
nt
∑

i=1

E
[

log(||Xi||
2 + σ2

r)
]

≤ k, (40)

where k is a constant which is independent of P .

We provide proofs for Lemmas 8 and 9 in Appendices D and E, respectively. It should be

mentioned that here we focus on the setting where nt ≥ nr, and the random channel matrix H

is not full column rank. Thus, the results of [22] cannot be directly applied to prove Lemmas 8

and 9. More discussion on this can be found at the end of Appendix E. In addition, in [22], where

the conventional MIMO channel with no eavesdroppers was examined, a key step in proving

the converse of the d.o.f. was the upper-bounding of the mutual information I(X;Y). However,

when proving the s.d.o.f. of wiretap channels, one instead needs to derive upper bounds for the

difference in mutual information I(X;Y) − I(X;Z). The results in [22] do not apply in this

case and, thus, new upper-bounding techniques are developed here.

Finally, using Lemmas 8 and 9 in (38), we obtain the desired upper bound on the s.d.o.f. as

Ds ≤ (nr − ne)

(

T − nr

T

)

, (41)

which completes the converse part of Lemma 2.
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B. Achievability Proof of Lemma 2

Here, we show that a constant norm channel input [21], [22] transmitted on nr antennas can

achieve the s.d.o.f. upper bound given in (41). Specifically, let the channel input Xc be constant

norm over nr transmitter antennas and zero over the rest of the nt − nr antennas, i.e.,

Xc =





√

PT
nr

Inr
0

0 0



Θ, (42)

where Θ is an T ×T i.d. unitary matrix and Inr
denotes the identity matrix with nr dimension.

We can lower bound the achievable secrecy rate Rs as follows:

T ·Rs = I(Xc;Y)− I(Xc;Z) (43)

= h(Y)− h(Z)− h(Y|Xc) + h(Z|Xc) (44)

= h(Y)− h(Z)− nr

nr
∑

i=1

log

(

PT

nr
+ σ2

r

)

− nr(T − nt) log πeσ
2
r

+ ne

nr
∑

i=1

log

(

PT

nr
+ σ2

e

)

+ ne(T − nt) log πeσ
2
e (45)

≥ h(Y)− h(Z)− (nr − ne)nr logP + o(logP ), (46)

where (45) follows by applying (42) into (34) and (35), respectively.

Since E[tr(ZZ†)] ≤ (P + σ2
e)neT , the differential entropy h(Z) of Z can be upper bounded

by the differential entropy of an i.i.d. Gaussian matrix as

h(Z) ≤ neT log
(

πe(P + σ2
e)
)

= neT logP + o(logP ), (47)

and, the differential entropy h(Y) can be lower bounded as

h(Y)≥h(HXc) (48)

= h(CHXc
) + log |G(nr, T )|+ (T − nr)E

[

log detHXcX
†
cH

†
]

(49)

= h

(

√

PT

nr

Ha

)

+ log |G(nr, T )|+ (T − nr)E

[

log det
PT

nr

HaH
†
a

]

(50)

= n2
r log πe

PT

nr
+ log |G(nr, T )|+ (T − nr) log

(

PT

nr

)nr

+(T − nr)E
[

log detHaH
†
a

]

(51)

= nrT logP + o(logP ), (52)
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where Ha denotes the collection of the first nr columns of matrix H and |G(nr, T )| is the

volume of the Grassmann Manifold G(nr, T ) (c.f. Appendix C), which is a finite constant. Note

that (49) is obtained by applying Lemma 15 in Appendix C. A similar derivation, for the case

where nt = nr, can be found in the proof of Lemma 15 in [22]. Therefore, from (46)-(47), and

(52), we have the following lower bound on the secrecy rate

T ·Rs ≥ (nr − ne)(T − nr) logP + o(logP ), (53)

which implies that

Ds ≥ (nr − ne)

(

T − nr

T

)

. (54)

Together with the upper bound in (41), we conclude that, the exact s.d.o.f. for the case nt ≥

nr > ne and T ≥ 2nr, is

Ds = (nr − ne)

(

T − nr

T

)

, (55)

which completes the proof of Lemma 2.

As a final remark, we note that when nt ≥ nr and T ≥ 2nr, we can use only nr transmitter

antennas to achieve the optimal s.d.o.f in (55). Having more than nr transmit antennas gives us

no improvements, at least, as far as the s.d.o.f. is concerned.

VI. PROOF OF LEMMA 3

The proof is based on the key observation that, when nt < nr, the receiver can use only nt

of its antennas without losing any s.d.o.f. That is, for a fixed nt, the s.d.o.f. in the case where

nt < nr is, in fact, equal to the s.d.o.f. in the case with nr = nt. This fact is shown in the

following lemma.

Lemma 10 For the MIMO legitimate channel (2), if nt < nr, for any input signal X satisfying

the power constraint in (1), we have

I(X;Y)− I(X;Ynt
) ≤ o(logP ), (56)

where Ynt
denotes the collection of arbitrary nt row vectors of the received signal matrix Y.

We provide a proof for Lemma 10 in Appendix F.
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To derive an upper bound for the s.d.o.f., we first focus on the case σ2
r < σ2

e . When nr > ne

and σ2
r < σ2

e , we can construct the same equivalent degraded channel in (24)-(25), in which case,

the secrecy capacity can be written as in (26). The only difference here is that now the number

of transmitter antennas is less than the number of legitimate receiver antennas, i.e., nt < nr. If

we denote Cnt<nr
s as the secrecy capacity of the wiretap channel in (2)-(3) with σ2

r < σ2
e and

nt < nr, and X∗ as the corresponding optimal input, we have

T · Cnt<nr

s = I(X∗;Y)− I(X∗;Z) (57)

≤ I(X∗;Ynt
)− I(X∗;Z) + o(logP ) (58)

≤ max
pX∈SpX

[I(X;Ynt
)− I(X;Z)] + o(logP ) (59)

= T · Cnt=nr

s + o(logP ), (60)

where (58) follows from Lemma 10, and Cnt=nr
s in (60) is the secrecy capacity of the wiretap

channel in (2)-(3) with smaller nr as nt = nr. It is worthwhile to note that, in [22], a result

similar to (56) but with more restrictions was given as

max
pX∈Sp

X

I(X;Y)− max
pX∈Sp

X

I(X;Ynt
) ≤ o(logP ). (61)

The inequality in (61) is useful to prove the results in [22] for conventional MIMO channels,

but is not sufficient for the proofs in MIMO wiretap channels. This is because, in (61), an upper

bound was obtained when the input distribution is the one that maximizes I(X;Y). However,

to obtain the inequality in (59), the input distribution must be one that maximizes the difference

I(X;Ynt
)− I(X;Z) instead. Thus, the more general result in Lemma 10 is required.

We already know the s.d.o.f. when nr = nt and T ≥ 2nr. For nr = nt > ne, the s.d.o.f. Ds

is given by (55) from Lemma 2, and for nr = nt ≤ ne, Ds = 0 from Lemma 1. Thus, when

nt < nr and T ≥ 2nt, we get the required upper bound as

Ds ≤ (nt − ne)
+

(

T − nt

T

)

. (62)

Furthermore, in the case where σ2
r ≥ σ2

e , one can upper bound the secrecy capacity by increasing

σ2
e in the eavesdropper’s channel. Thus, the upper bound (62) is still valid.

The achievability of the above upper bound follows by using a constant norm channel input

over nt transmitter antennas as described in Section V-B. However, at the legitimate receiver,
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only nt receiver antennas are needed and we can ignore the remaining (nr − nt) row vectors

of the received signal matrix Y while decoding at high SNR. These matching converse and

achievability results complete the proof of Lemma 3.

VII. SECURE DEGREES OF FREEDOM FOR SHORT COHERENCE TIME SYSTEMS

In this section, we provide some insights for the s.d.o.f. of short coherence time systems

(i.e., systems with T < 2min{nt, nr}). Recall that, when nr ≤ ne, we know from Lemma 1

that the s.d.o.f. is zero regardless of the coherence time T . However, when nr > ne, our

results in Theorem 1 hold only for the case with sufficiently large coherence time, i.e., for

T ≥ 2min(nt, nr). To study the s.d.o.f of short coherence time systems, we first consider a

special case where T = 1 (i.e., fast fading channels). We show, in the following lemma, that the

s.d.o.f. of the MIMO fast fading wiretap channel is zero regardless of how many antennas the

terminals have. This is a generalization of [20] to the case of multiple antennas.

Lemma 11 For the MIMO wiretap channel in (2)-(3), with no CSI at any terminal and T = 1,

we have Ds = 0.

Proof: Here, we focus only on the case where nr > ne since the s.d.o.f. is zero when nr ≤ ne

(c.f., Lemma 1). Specifically, let us first consider the case where nr > ne and σ2
r ≤ σ2

e . In this

case, the MIMO wiretap channel can be converted to an equivalent degraded wiretap channel as

in (24)-(25), similar to what was done in Section V, and its secrecy capacity can be written as

in (26). Following the result in [21], we note in the following lemma that, when nt ≥ T , which

is always the case when T = 1, the secrecy capacity of the equivalent degraded wiretap channel

can be achieved by using only nt = T transmit antennas.

Lemma 12 Suppose that nt > T and that the nt × T input signal X with distribution pX gen-

erates mutual informations I(X;Y) and I(X;Zp1) on the main and the eavesdropper channels,

respectively, described in (24)-(25). Then, there exists an T × T input signal X′, i.e., an input

signal that utilizes only T transmit antennas, that generates the same mutual informations, i.e.,

I(X;Y) = I(X′;Y) and I(X;Y) = I(X′;Zp1).

This lemma is a straightforward extension of [21, Theorem 1] and, thus, its proof is omitted

here. The main idea is that both conditional probability density functions p(Y|X) and p(Zp1 |X)
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depend on X only through X†X. Hence, for any nt×T input matrix X, we can obtain the same

mutual informations by using a T × T input matrix X′ such that X′†X′ = X†X.

It follows from Lemma 12 that, when T = 1, the secrecy capacity is the same as the secrecy

capacity with a single transmit antenna only, i.e., nt = 1. Moreover, by Lemma 10, we know

that having more receive antennas than transmit antennas, i.e., having nr > nt, does not improve

the s.d.o.f. Thus, when nr > ne, σ
2
r < σ2

e and T = 1, the s.d.o.f. of the MIMO wiretap channel

is the same as the secrecy capacity of the SISO case, i.e., nt = nr = 1, which is zero, as shown

in [20]. Finally, since the secrecy capacity for the case with σ2
r ≤ σ2

e is greater than that with

σ2
r > σ2

e , we conclude that the s.d.o.f. of the fast fading wiretap channel, i.e., the case with

T = 1, is zero regardless of the number of antennas at the terminals. �

For the general case, the exact s.d.o.f. is unknown. However, as stated in Lemma 4, we can

show that, by using constant norm input, the achievable s.d.o.f. can be given by

(K − ne)
+

(

T −K

T

)

, (63)

where K , min(nt, nr, (T + ne)/2). To show this, we first note from Lemma 12 that, when

T < nt, the secrecy capacity can be achieved by using only T out of the nt transmit antennas.

That is, no further improvement in secrecy capacity can be obtained by using all nt antennas.

Therefore, in the following, we focus only on the case where nt ≤ T .

Suppose that the constant norm input is applied over m ≤ min(nt, nr) transmitter antennas

(c.f. in Section V-B) and let the channel input signal be written as

X =





√

PT
m
Im 0

0 0



Θ. (64)

Moreover, let us also assume that only m antennas are used at the legitimate receiver to receive

the signal. Then, by following the same arguments as in Section V-B, we can show that the

s.d.o.f. achieved by using (64) is given by

(m− ne)
+

(

T −m

T

)

. (65)

Note that (65) is a quadratic function that increases with m when ne < m < (T + ne)/2 and

reaches its maximum value at the point m = (T + ne)/2. Thus, together with the condition

m ≤ min(nt, nr), the number of transmit and receive antennas that should be used to transmit
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the constant norm input signal is m = K and the resulting achievable s.d.o.f. is given by (63).

However, whether or not (63) is the maximum achievable s.d.o.f. is still an open problem.

VIII. CONCLUSION

We considered the Rayleigh block fading wiretap channel with no a priori CSI at any of the

terminals. We constructed a degraded equivalent channel, and determined its secrecy capacity. We

determined the exact s.d.o.f. of this channel model, when T ≥ 2min(nt, nr), to be (min(nt, nr)−

ne)
+(T −min(nt, nr))/T . When min(nt, nr) ≤ ne, the s.d.o.f. is zero no matter how long the

coherence time T is; an example of this is the scalar wiretap channel where nt = nr = ne = 1.

When T = 1, the s.d.o.f. is zero no matter how many antennas the transmitter and the legitimate

receiver may have. We showed in this paper that when we have some moderate channel coherence

together with multiple antennas at the legitimate entities, we can have non-zero s.d.o.f. The

needed condition for this is that the legitimate entities have more antennas than the eavesdropper.

APPENDIX A

PROOF OF LEMMA 5

We first introduce the following two lemmas which will be useful for the proof of Lemma 5.

These lemmas are straightforward extensions of Lemmas 1 and 3 of [21].

Lemma 13 Suppose that the input signal X with distribution pX generates mutual informations

I(X;Y) and I(X;Zp1) on the main and the eavesdropper channels described in (24)-(25). For

any m × m deterministic unitary matrix V and T × T deterministic unitary matrix U, the

input signal V†XU generates the same mutual informations, i.e., I(X;Y) = I(V†XU;Y) and

I(X;Zp1) = I(V†XU;Zp1).

Lemma 14 Suppose that the input signal X with singular value decomposition X = Ψ†ΛΦ

generates the mutual informations I(X;Y) and I(X;Zp1) on the main and the eavesdropper

channels described in (24)-(25). Then, the input signal X′ = ΛΦ also generates the same mutual

informations, i.e., I(X;Y) = I(X′;Y) and I(X;Zp1) = I(X′;Zp1).

Note that, the above lemmas hold separately for I(X;Y) and I(X;Zp1) irrespective of the

degradedness relation, and relies only on the fact that their respective channels, i.e., pY|X and
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pZp1
|X, are Gaussian. Using the above two lemmas, we will show that, for any input X with

distribution pX, there exists input signal X∗, satisfying the structure in (27) in Lemma 5, that

achieves a higher secrecy rate for the degraded MIMO wiretap channel given in (24)-(25), i.e.,

1

T
(I(X;Y)− I(X;Zp1)) ≤

1

T
(I(X∗;Y)− I(X∗;Zp1)) . (66)

To do this, we define the secrecy rate function for (24)-(25) as Rs(pX) =
1
T
(I(X;Y)−I(X;Zp1))

where pX denotes the probability distribution of X. Note that Rs is a concave function of the

input probability distribution [24] since the eavesdropper’s channel (25) is degraded with respect

to the main channel (24). Then, for any input signal X = Ψ†ΛΦ, we can let X′ = ΛΦ and

X∗ = ΛΦΘ′ with Θ′ being a T ×T i.d. unitary matrix which is independent of X (independent

of (Ψ,Λ,Φ)), and upper bound the secrecy rate with the input X as follows

Rs(pX) = Rs(pX′) (67)

= Rs(pX∗|Θ′=Θ̃′) (68)

=

∫

Rs(pX∗|Θ̃′) dF (Θ̃′) (69)

≤ Rs

(
∫

pX∗|Θ̃′ dF (Θ̃′)

)

(70)

= Rs(pX∗), (71)

where (67) follows from Lemma 14 and the equality in (68) follows from Lemma 13 with V

being the identity matrix and U being the given realization Θ̃′, and (70) follows from Jensen’s

inequality since Rs is concave.

Now let Θ = ΦΘ′ such that X∗ = ΛΦΘ′ = ΛΘ. The rest of the proof is to show that Θ is

also an i.d. unitary matrix and independent of Λ. First, we have

pΘ(Θ̃) =

∫

pΘ|Φ(Θ̃|Φ̃) dF (Φ̃) (72)

=

∫

pΘ′|Φ(Φ̃
−1Θ̃|Φ̃) dF (Φ̃) (73)

=

∫

pΘ′(Φ̃−1Θ̃) dF (Φ̃) (74)

=

∫

pΘ′(Θ̃) dF (Φ̃) (75)

= pΘ′(Θ̃), (76)
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where (74) comes from the fact that Θ′ is independent of (Ψ,Λ,Φ) and (75) comes from the

fact that Θ′ is i.d. unitary [21]. Therefore, we show that Θ has the same distribution as Θ′, and

then Θ is also i.d. unitary. For the independence between Θ and Λ, we have

pΘ|Λ(Θ̃|Λ̃) =

∫

pΘ|Λ,Φ(Θ̃|Λ̃, Φ̃)pΦ|Λ(Φ̃|Λ̃)dΦ̃ (77)

=

∫

pΘ′|Λ,Φ(Φ̃
−1Θ̃|Λ̃, Φ̃)pΦ|Λ(Φ̃|Λ̃)dΦ̃ (78)

=

∫

pΘ′(Φ̃−1Θ̃)pΦ|Λ(Φ̃|Λ̃)dΦ̃ (79)

=

∫

pΘ′(Θ̃)pΦ|Λ(Φ̃|Λ̃)dΦ̃ (80)

= pΘ′(Θ̃) (81)

= pΘ(Θ̃), (82)

where (79) and (80) follow, respectively, from the derivations for (74) and (75), and (82) comes

from the fact that Θ and Θ′ have the same distribution. By (76) and (82), we conclude that Θ

is an i.d. unitary matrix and is independent of Λ, completing the proof of Lemma 5.

APPENDIX B

PROOF OF LEMMA 6

To show (31), we first define a function Π : S → S with S = {1, . . . , m} as follows to order

the row vectors of M

Π(1) = arg max
i∈S

h(Mi), (83)

Π(2) = arg max
i∈S\{Π(1)}

h(Mi|MΠ(1)), (84)

Π(3) = arg max
i∈S\{Π(1),Π(2)}

h(Mi|MΠ(1),MΠ(2)), (85)

... (86)

Π(m− 1) = arg max
i∈S\{

⋃m−2
j=1

Π(j)}
h

(

Mi

∣

∣

∣

m−2
⋃

j=1

MΠ(j)

)

, (87)

Π(m) = arg max
i∈S\{

⋃m−1
j=1

Π(j)}
h

(

Mi

∣

∣

∣

m−1
⋃

j=1

MΠ(j)

)

, (88)
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where Mi denotes the ith row vector of M. Note that if we order the row vectors by this function

Π, we have

h

(

MΠ(k)

∣

∣

∣

k−1
⋃

j=1

MΠ(j)

)

≥ h

(

MΠ(k+1)

∣

∣

∣

k−1
⋃

j=1

MΠ(j)

)

(89)

≥ h

(

MΠ(k+1)

∣

∣

∣

k
⋃

j=1

MΠ(j)

)

, ∀k ∈ {1, . . . , m− 1}, (90)

where (89) comes from the definition of Π, and (90) is due to the fact that conditioning on

one more MΠ(k) will reduce the differential entropy. The inequality in (90) implies that the

conditional differential entropy h
(

MΠ(k)

∣

∣

∣

⋃k−1
j=1 MΠ(j)

)

is non-increasing with respect to the

index k.

Now, for any given number n < m, we can select p1 = {
⋃n

j=1Π(j)} and p2 = {
⋃m

j=n+1Π(j)}

which form a partition of S = {1, . . . , m}. We have

h(Mp2 |Mp1) =

m
∑

k=n+1

h

(

MΠ(k)

∣

∣

∣

k−1
⋃

j=1

MΠ(j)

)

(91)

≤ (m− n)h

(

MΠ(n+1)

∣

∣

∣

n
⋃

j=1

MΠ(j)

)

(92)

≤ (m− n)
1

n

n
∑

k=1

h

(

MΠ(k)

∣

∣

∣

k−1
⋃

j=1

MΠ(j)

)

(93)

=
(m− n)

n
h(Mp1), (94)

where (91) comes from the chain rule of differential entropy; and both (92) and (93) follow from

(90). More specifically, (92) follows from the fact that the largest term inside the summation of

(91) is the conditional differential entropy with index k = n+ 1 and (93) follows from the fact

that the conditional differential entropy with index k = n + 1 is smaller than each term inside

the summation of (93). Finally, by adding (m − n)h(Mp2 |Mp1)/n to both sides of (94), we

obtain

m

n
h(Mp2 |Mp1) ≤

m− n

n
(h(Mp1) + h(Mp2 |Mp1)), (95)

which results in (31), completing the proof of Lemma 6.
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APPENDIX C

PROOF OF LEMMA 7

Before showing the proof of Lemma 7, we first introduce some background from [22]. A

n× T matrix M where T ≥ n, can be represented by a change of coordinate system as

M → (ΩM,CM), (96)

where the subspace ΩM is generated by its own row vectors Mis, ∀i ∈ {1, . . . , n}, and the

n× n matrix CM represents each row vector Mi with respect to an orthonormal basis of ΩM.

The mapping in (96) changes the coordinate system of matrix M from Cn×T to G(T, n)×Cn×n

where G(T, n) is a Grassmann manifold with n(T − n) d.o.f. Now we can state a result given

in [22] as follows.

Lemma 15 For a random matrix M ∈ Cn×T , T ≥ n, which is i.d., the differential entropy of

M can be written as

h(M) = h(CM) + log |G(T, n)|+ (T − n)E
[

log detMM†
]

, (97)

where the n× n matrix CM and the Grassmann manifold G(T, n) are defined following (96).

To prove Lemma 7, note that due to Lemma 5, the received signal Y is i.d. Then, from

Lemma 15, we have

h(Y) = h(CY) + log |G(T, nr)|+ (T − nr)E
[

log detYY†
]

≤ n2
r log πe

(

(P + σ2
r)T

nr

)

+ |G(T, nr)|+ (T − nr)E
[

log detYY†
]

, (98)

where the inequality comes from upper bounding h(CY) by assuming that each element of CY

is i.i.d. Gaussian with variance (P+σ2
r)T/nr. Now, note that the volume of Grassmann manifold

G(T, nr) is a finite constant which is independent of P as

|G(T, n)| =

∏T
i=T−n+1

2π2

(i−1)!
∏n

i=1
2π2

(i−1)!

. (99)

Combining (98) and (99) completes the proof of Lemma 7.
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APPENDIX D

PROOF OF LEMMA 8

First, we introduce a few useful lemmas from [25].

Lemma 16 If Ma ∈ Cm×m and Mb ∈ Cm×m are both Hermitian matrices, then

m
∑

i=1

(λi(Mb)− λi(Ma))
2 ≤ ||Mb −Ma||

2
2, (100)

where λi(A) denotes the ith largest eigenvalue of matrix A and || · ||2 is the Frobenius norm.

Lemma 17 Let Ma and Mb be both m × m Hermitian matrices. Assume that Mb − Ma is

positive semi-definite. We have

λi(Mb) ≥ λi(Ma), ∀i ∈ {1, . . . , m}. (101)

Lemma 18 For any matrix Ma ∈ Cm×n and Mb ∈ Cn×m where m ≥ n,

λi(MaMb) = λi(MbMa), ∀i ∈ {1, . . . , n}. (102)

From Lemmas 16 and 17, we can infer the following result.

Corollary 1 Let Ma and Mb be both m × m Hermitian matrices and assume Mb − Ma is

positive semi-definite. Then,

λi(Mb)− λi(Ma) ≤ ||Mb −Ma||2, ∀i ∈ {1, . . . , m}. (103)

To derive the upper bound on E
[

log detYY†
]

given in Lemma 8, we first recall that, given

X = X̃, where X̃ denotes a realization of X, the row vectors of Y are i.i.d. Gaussian vectors

with covariance matrix X̃†X̃ + σ2
rIT . Let Qnr ,T ∈ Cnr×T be a random matrix whose elements

are i.i.d. complex Gaussian variables with zero-mean and unit-variance. Then, we have

(Y|X = X̃)
d
∼ Qnr ,T (X̃

†X̃+ σ2
rIT )

1/2, (104)

where A
d
∼ B denotes A has the same distribution as B. Therefore, we have

(YY†|X = X̃)
d
∼ Qnr ,T (X̃

†X̃+ σ2
rIT )Q

†
nr,T

. (105)
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From Lemma 5, we know that the optimal input can be written as X = ΛΘ where Λ ∈ Cnt×T

is a diagonal random matrix and Θ ∈ CT×T is an i.d. unitary matrix. Hence, by taking X̃ = Λ̃Θ̃,

we can rewrite (105) as follows

(YY†|X = X̃)
d
∼ Qnr ,T

(

Θ̃†Λ̃†Λ̃Θ̃ + σ2
rIT

)

Q
†
nr ,T

(106)

d
∼ Qnr ,TΘ̃

†
(

diag(||X̃1||
2, ..., ||X̃nt

||2, 0, ..., 0) + σ2
rIT

)

Θ̃Q
†
nr ,T

(107)

d
∼ Qa(Λ̃

2
x + σ2

rInt
)Q†

a + σ2
rQbQ

†
b, (108)

where Λ̃x , diag(||X̃1||, ||X̃2||, ..., ||X̃nt
||). In the above, (108) comes from the fact that the

i.i.d. Gaussian random matrix Qnr ,T is i.d. with [Qa|Qb] = Qnr,T , where Qa ∈ Cnr×nt contains

the first nt columns of Qnr,T and Qb ∈ Cnr×(T−nt) contains the remaining (T − nt) columns of

Qnr ,T . To simplify the notation, let

B = Qa(Λ̃
2
x + σ2

rInt
)Q†

a + σ2
rQbQ

†
b, (109)

A = Qa(Λ̃
2
x + σ2

rInt
)Q†

a, (110)

and we have

E
[

log detYY†
]

=EXE

[

log detYY†|X = X̃
]

(111)

=EXE

[

log

nr
∏

i=1

λi(B)

]

(112)

≤EX

nr
∑

i=1

EQa,Qb

[

log(λi(A) + σ2
r ||QbQ

†
b||2)

]

, (113)

where (113) comes from applying Corollary 1 to (112). Then, by using Jensen’s inequality on

Qb, and the definition of A in (110), we get the following for the right hand side of (113),

EX

nr
∑

i=1

EQa,Qb

[

log(λi(A) + σ2
r ||QbQ

†
b||2)

]

≤ EX

nr
∑

i=1

EQa

[

log(λi(Qa(Λ
2
x + σ2

rInt
)Q†

a) + σ2
rk1)

]

(114)

= EXEQa

[

log det
(

Qa(Λ
2
x + σ2

rInt
)Q†

a + σ2
rk1Inr

)]

(115)

= EQa
EX

[

log det
(

Qa(Λ
2
x + σ2

rInt
)Q†

a + σ2
rk1Inr

)]

(116)

≤ EQa

[

log det
(

Qa(EX[Λ
2
x] + σ2

rInt
)Q†

a + σ2
rk1Inr

)]

, (117)
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where Λx = diag(||X1||, ||X2||, ..., ||Xnt
||), and k1 = E[||QbQ

†
b||2] in (114) is a finite constant

independent of P , the exchange of expectation over X and Qa in (116) follows from the fact

that X and Qa are independent, and (117) comes from applying Jensen’s inequality on X.

Note that the right-hand-side (RHS) of (117) is a concave function of EX [Λ2
x] and, since the

distribution of Qa is invariant to the permutation of its rows, it can be shown that the RHS

of (117) is also a symmetric function with respect to the diagonal entries of EX [Λ2
x], where a

symmetric function is defined as a function that is invariant to permutations of its input variables.

These properties imply, from [26], that (117) is a Schur-concave function with respect to the

diagonal entries of EX [Λ2
x]. Recall the definition of Schur-concave functions as follows.

Definition 1 A function f : Rn → R is said to be a Schur-concave function if, for any x and

y such that x ≺ y (i.e., x is majorized by y) [26], we have f(x) ≥ f(y).

Note that det(·) is matrix nondecreasing on the set of positive semi-definite matrices [27,

Section 3.6.1] (i.e., det(Ma) ≥ det(Mb), for all Ma,Mb, and Ma −Mb that are positive semi-

definite). This implies that, under the power constraint tr(EX[Λ
2
x]) ≤ PT , the RHS of (117)

can be upper-bounded by taking EX[Λ
2
x] that satisfies tr(EX[Λ

2
x]) = PT . Moreover, since the

diagonal entries of (PT/nt)Int
form a vector that is majorized by all vectors summing up to

PT , it follows by the property of Schur-concave functions that the RHS of (117) can be further

upper bounded by choosing EX[Λ
2
x] = (PT/nt)Int

, Hence, we have

E
[

log detYY†
]

≤EQa

[

log det

(

Qa

(

PT

nt
Int

+ σ2
rInt

)

Q†
a + σ2

rk1Inr

)]

(118)

=EQa

[

log det

((

PT

nt
+ σ2

r

)

QaQ
†
a + σ2

rk1Inr

)]

(119)

=EQa

[

log det

((

PT

nt
+ σ2

r

)

Inr
+ σ2

rk1(QaQ
†
a)

−1

)]

+ k2 (120)

≤EQa

[

log det

((

PT

nt

+ σ2
r

)

Inr
+ σ2

rk1||(QaQ
†
a)

−1||2Inr

)]

+ k2 (121)

≤ log det

((

PT

nt
+ σ2

r

)

Inr
+ σ2

rk3Inr

)

+ k2 (122)

=nr log

(

PT

nt

+ σ2
r (k3 + 1)

)

+ k2, (123)

where k2 = E
[

log detQaQ
†
a

]

in (120), and (121) follows from Corollary 1 as in the steps for

deriving (113) from (112), because σ2
rk1(QaQ

†
a)

−1 is also Hermitian and positive semi-definite;
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k3 = E
[

k1||(QaQ
†
a)

−1||2
]

in (122) and (122) comes from Jensen’s inequality. Note that both k2

and k3 are finite constants independent of P . From (123), it follows that

max
px∈S∗

Px

E
[

log detYY†
]

≤ nr logP + o(logP ), (124)

which concludes the proof of Lemma 8.

Note that, in [22] where the conventional MIMO channel was examined, it was sufficient to

consider only the case where nt = nr since, in the absence of eavesdroppers, increasing the

number of transmit antennas does not improve the capacity in the high SNR regime. In this

case, one can more easily rewrite (117) as

EQa

[

log det
(

(EX[Λ
2
x] + σ2

rInt
)+σ2

rk1(Q
†
aQa)

−1
)]

+ EQa

[

log detQ†
aQa

]

+ log
(

σ2
rk1
)nr−nt

,

due to the invertibility of Q†
aQa. The remaining derivations are similar to that below (120).

In wiretap channels, the problem does not reduce to the case where nt = nr and, thus, a new

upper-bounding technique was needed to cope with the singularity of Q†
aQa when nt > nr.

APPENDIX E

PROOF OF LEMMA 9

To prove this lemma, we start from (116) in the proof of Lemma 8 which is

E
[

log detYY†
]

≤ EQa
EX

[

log det
(

Qa(Λ
2
x + σ2

rInt
)Q†

a + σ2
rk1Inr

)]

. (125)

We rewrite the right hand side of the above inequality by replacing the determinant by the

product of eigenvalues as

EQa

nr
∑

i=1

EX

[

log λi

(

Qa(Λ
2
x + σ2

rInt
)Q†

a

)

+ σ2
rk1
]

. (126)

Let Dx , Λ2
x + σ2

rInt
. Note that Dx is a real diagonal matrix. From Lemma 18, we know that

λi(QaDxQ
†
a) = λi(D

1/2
x Q†

aQaD
1/2
x ), ∀i ∈ {1, . . . , nr}. (127)

Let Qnt,nt
=
[

QT
a |Q

T
c

]T
, where Qc ∈ C(nt−nr)×nt such that Qnt,nt

is a matrix with entries that

are i.i.d. Gaussian with zero-mean and unit-variance. Then, we have

D1/2
x Q†

nt,nt
Qnt,nt

D1/2
x = D1/2

x Q†
aQaD

1/2
x +D1/2

x Q†
cQcD

1/2
x . (128)
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Then, by applying the above, we can further upper bound (125) and (126) as

E
[

log detYY†
]

≤EQa

nr
∑

i=1

EX

[

log
(

λi

(

Qa(Λ
2
x + σ2

rInt
)Q†

a

)

+ σ2
rk1
)]

(129)

=EQa

nr
∑

i=1

EX

[

log
(

λi

(

D1/2
x Q†

aQaD
1/2
x

)

+ σ2
rk1
)]

(130)

≤EQnt,nt

nr
∑

i=1

EX

[

log
(

λi

(

D1/2
x Q†

nt,nt
Qnt,nt

D1/2
x

)

+ σ2
rk1
)]

, (131)

where (131) comes from (128) and Lemma 17, since D
1/2
x Q†

cQcD
1/2
x is Hermitian and positive

semi-definite.

Note that (131) only sums over the largest nr eigenvalues of D
1/2
x Q†

nt,nt
Qnt,nt

D
1/2
x . To further

upper bound the right hand side of (131), one can add more terms corresponding to the rest of

the (nt − nr) eigenvalues of D
1/2
x Q†

nt,nt
Qnt,nt

D
1/2
x as

EQnt,nt

nt
∑

i=1

EX

[

log
(

λi

(

D1/2
x Q†

nt,nt
Qnt,nt

D1/2
x

)

+ 1 + σ2
rk1
)]

. (132)

Note that we have added an additional 1 inside the logarithm of each term in the above summation

to ensure that

log
(

λi

(

D1/2
x Q†

nt,nt
Qnt,nt

D1/2
x

)

+ 1 + σ2
rk1
)

> 0, ∀i ∈ {nt − nr + 1, . . . , nt}, (133)

because k1σ
2
r > 0 and each eigenvalue is non-negative. Moreover, by rewriting (132), we have

E
[

log detYY†
]

≤EQnt,nt

nt
∑

i=1

EX

[

log
(

λi

(

DxQ
†
nt,nt

Qnt,nt

)

+ 1 + σ2
rk1
)]

(134)

=EQnt,nt
EX

[

log det
(

DxQ
†
nt,nt

Qnt,nt
+ (1 + σ2

rk1)Int

)]

(135)

=EQnt,nt
EX

[

log det
(

Dx + (1 + σ2
rk1)(Q

†
nt,nt

Qnt,nt
)−1
)]

+ k4 (136)

≤EX

[

log det
(

Dx + (1 + σ2
rk1)EQnt,nt

[

||(Q†
nt,nt

Qnt,nt
)−1||2

]

Int

)]

+ k4

(137)

≤EX

[

log det
(

Λ2
x + k5Int

)]

+ k4 (138)

=
nt
∑

i=1

E
[

log
(

||Xi||
2 + k5

)]

+ k4, (139)

where k4 = E
[

log detQ†
nt,nt

Qnt,nt

]

and k5 = σ2
r + (1 + σ2

rk1)E
[

||(Q†
nt,nt

Qnt,nt
)−1||2

]

, and the

derivation of (137) from (136) follows similarly to that of (113) from (112). Finally, from the
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upper bound of E
[

log detYY†
]

in (139), we have

E
[

log detYY†
]

−
nt
∑

i=1

E
[

log(||Xi||
2 + σ2

r)
]

≤
nt
∑

i=1

E
[

log
(

||Xi||
2 + k5

)]

+ k4 −
nt
∑

i=1

E
[

log(||Xi||
2 + σ2

r)
]

(140)

=
nt
∑

i=1

E

[

log

(

||Xi||2 + k5
||Xi||2 + σ2

r

)]

+ k4 (141)

≤
nt
∑

i=1

E

[(

k5 − σ2
r

||Xi||2 + σ2
r

)]

+ k4 (142)

≤nt

(

k5 − σ2
r

σ2
r

)

+ k4, (143)

where (142) comes from k5 > σ2
r by definition and log(1+x) < x when x ≥ 0. Since k4 in (136)

and k5 in (138) are finite constants independent of P , this completes the proof of Lemma 9.

Note here that, similar to Lemma 8, one cannot directly apply the results in [22] to prove

Lemma 9. This is because the results in [22] rely on the invertibility of Q†
aQa, as mentioned

below (124). However, this property may not hold here and, thus, new techniques were needed

to upper bound E
[

log detYY†
]

as presented above.

APPENDIX F

PROOF OF LEMMA 10

Let Ynt
, Hnt

, and Nr,nt
be matrices formed by taking nt rows arbitrarily from Y, H, and

Nr, respectively, and let Ynr−nt
, Hnr−nt

, and Nr,nr−nt
be the remaining (nr − nt) rows of Y,

H, and Nr, respectively. Thus, we have

Ynt
= Hnt

X+Nr,nt
, (144)

Ynr−nt
= Hnr−nt

X+Nr,nr−nt
. (145)

First, note that, if nt < nr, we can represent the channel matrix Hnr−nt
in terms of linear

combinations of row vectors of Hnt
. Thus, we have

Ynr−nt
= C(H)Ynt

+Nr,nr−nt
− C(H)Nr,nt

, (146)
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where C(H) is the linear combination matrix such that C(H)Hnt
= Hnr−nt

. From (146), the

following Markov relation holds

X → (Ynt
, C(H),Nr,nr−nt

− C(H)Nr,nt
) → (Ynt

,Ynr−nt
) → Y. (147)

Hence, from the data processing inequality, we have

I(X;Y)− I(X;Ynt
) ≤ I(X;Ynt

, C(H),Nr,nr−nt
− C(H)Nr,nt

)− I(X;Ynt
) (148)

= I(X;C(H),Nr,nr−nt
− C(H)Nr,nt

|Ynt
) (149)

= h(C(H),Nr,nr−nt
− C(H)Nr,nt

|Ynt
)

− h(C(H),Nr,nr−nt
− C(H)Nr,nt

|Ynt
,X). (150)

The first term in (150) can be upper bounded by

h(C(H),Nr,nr−nt
− C(H)Nr,nt

|Ynt
) ≤ h(C(H),Nr,nr−nt

− C(H)Nr,nt
) = o(logP ), (151)

and the second term in (150) is lower bounded by

h(C(H),Nr,nr−nt
− C(H)Nr,nt

|Ynt
,X)

≥ h(C(H),Nr,nr−nt
− C(H)Nr,nt

|Ynt
,X,Hnt

) (152)

= h(C(H),Nr,nr−nt
− C(H)Nr,nt

|Hnt
,X,Nr,nt

) (153)

= h(C(H),Nr,nr−nt
− C(H)Nr,nt

|Hnt
,Nr,nt

) (154)

= h(C(H)|Hnt
,Nr,nt

) + h(Nr,nr−nt
− C(H)Nr,nt

|Hnt
,Nr,nt

, C(H)) (155)

= h(C(H)|Hnt
,Nr,nt

) + h(Nr,nr−nt
) = o(logP ). (156)

The result in (56) of Lemma 10 then follows from (150), (151), and (156).
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