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Scheduling Single-Armed Cluster Tools With
Reentrant Wafer Flows

Hwan-Yong Lee and Tae-Eog Lee

Abstract—A cluster tool for semiconductor manufacturing con-
sists of several single-wafer processing chambers and a wafer-han-
dling robot in a closed environment. The use of cluster tools is
extended to reentrant processes such as atomic layer deposition,
where a wafer visits a processing chamber more than once. Such
a reentrant wafer flow complicates scheduling and control of the
cluster tool and often causes deadlocks. We examine the sched-
uling problem for a single-armed cluster tool with various reen-
trant wafer flows. We develop a convenient method of modeling tool
operational behavior with reentrant wafer flows using Petri nets.
By examining the net model, we then develop a necessary and suf-
ficient condition for preventing a deadlock. We also show that the
cycle time for the asymmetric choice Petri net model for a reentrant
wafer flow can be easily computed by using the equivalent event
graph model. From the results, we systematically develop a mixed
integer programming model for determining the optimal tool op-
eration sequence, schedule, and cycle time. We also extend a work-
load measure for cluster tools with reentrant wafer flows. Finally,
we discuss how our results can be used for engineering a cluster
tool. We compare two proposed strategies, sharing and dedicating,
of operating the parallel processing chambers for identical process
steps.

Index Terms—Cluster tools, deadlock, Petri net, reentrant wafer
flow, scheduling.

1. INTRODUCTION

HE semiconductor manufacturing industry has developed
T new wafer fabrication technologies including single-wafer
processing, rapid thermal processing, mini-environment, and
standard mechanical interface (SMIF). Due to the technologies,
several single-wafer processing chambers and a wafer-handling
robot are integrated into a closed mini-environment. Such
an integrated tool, called a cluster tool, may have diverse
architectures, depending on the chamber configuration, radial
or linear, the number of robot arms, single- or dual-armed,
presence of internal buffer modules, and so on. Fig. 1 illustrates
a single-armed radial-type cluster tool with four processing
chambers. Although cluster tools are apparently simple, they
have many scheduling issues. There are works on scheduling
single- or dual-armed cluster tools [1]-[9] and similar hoist
scheduling problems [10], [11].
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Fig. 1. Single-armed cluster tool with four chambers.

Cluster tools have been increasingly used for most fabrica-
tion processes including lithography, etching, deposition, and
even inspection. Atomic layer deposition (ALD) technology
that makes film deposition with mono-atomic layer precision
is increasingly used for deposition processes. As compared
with conventional chemical-vapor deposition (CVD), it can
easily control particle generation and uses a significantly
lower processing temperature (100 °C ~ 400 °C instead of
550 °C ~ 800 °C). ALD easily controls the film thickness by
repeating the deposition cycle as needed, while CVD deter-
mines the thickness by adjusting the deposition time. Therefore,
a wafer for ALD takes a sequence of identical process steps
more than once. Some other processes, even CVD, also some-
times repeat identical process steps. Such identical process
steps are often performed at a single chamber, and hence
the chamber is visited by a wafer as many as the number of
identical process steps that share the chamber. There are sev-
eral reasons. First, as in ALD processes, the repeated process
steps often require exactly identical processing conditions for
each repetition cycle. Therefore, it is desirable to perform the
repeated process steps for a wafer at a single chamber, not by
additional processing chambers. Otherwise, it may be hard to
control the processing conditions. Discrepancy between the
processing conditions of different cycles may be detrimental
for wafer quality and uniformity.

Second, it is costly or even impossible to add a processing
chamber due to space or footprint restrictions. Therefore, it is
more economical to perform identical process steps at a single
chamber. A wafer flow that visits a single processing chamber
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more than once is called reentrant. Such a chamber and the
repeated process steps are also called reentrant. Sharing a
chamber by multiple process steps complicates tool scheduling
significantly and even causes a deadlock. Therefore, tool ven-
dors tend to use simple reentrant wafer flow patterns, although
they need more complicated reentrant wafer flows in order to
fully utilize modern process technologies such as ALD.

While reentrant wafer flows are increasingly used for cluster
tools, there have been only two works on scheduling cluster
tools with reentrant wafer flows [5], [12]. Perkinson et al. [3]
provide only a rough bound on the cycle time for a single-
armed tool with reentrant wafer flows. Zuberek [5] suggests a
free-choice Petri net model for a dual-armed cluster tool with a
reentrant wafer flow when a particular deadlock-free robot task
sequence is assumed. He claims that since the net model is a
free-choice Petri net, which still needs token routing decisions at
some places, the cycle time should be computed by the invariant
analysis, more complicated analysis, than critical circuit anal-
ysis for an event graph model. However, Jeng [18] indicates that
the free-choice net model does not need token routing decisions
due to its special structure and hence is behaviorally equivalent
to an event graph, for which the cycle time is easily computed
as the critical circuit ratio. Zuberek [5] does not address how a
deadlock can be prevented and the optimal robot task sequence
should be determined. For the same tool model, Kim [12] pro-
poses two heuristic scheduling strategies for preventing dead-
locks by modifying the prevalently swap operation sequence,
which causes deadlocks for reentrant wafer flows. However, it
is not clear yet whether or how the performance advantages
of dual arms can be fully utilized for reentrant wafer flows. A
single-armed robot can hold only one wafer at a time. Therefore,
it is more difficult to schedule a single-armed cluster tool with
reentrant wafer flows. Some studies on hoist-based production
systems, which are operationally similar to single-armed cluster
tools, deal with reentrant job flows [10], [11]. However, they
assume limited reentrance models that allow reentrance only at
the first or the last process steps or do not allow multiple reen-
trances and parallel machines for a process step. They focus on
developing optimization algorithms rather than Petri net mod-
eling and deadlock analysis. For cluster tools with various con-
figurations and realistic reentrant wafer flow patterns, system-
atic ways of modeling the tool behavior and finding an optimal
deadlock-free robot task sequence are yet to be examined.

Dual-armed cluster tools tend to be used for reducing the
cycle time for cluster tools with a higher robot task workload.
Dual-armed cluster tools mostly perform robot tasks by per-
forming a sequence of swap operations for the PMs, each of
which unloads a wafer from a chamber onto an empty robot
arm and loads the next wafer on the other arm into the chamber.
Such a swap operation simplifies the robot task scheduling and
is known to optimize the cycle time. However, when there is a
reentrant wafer flow, the robot task scheduling-based swap op-
erations cause a deadlock [12]. Therefore, the robot task sched-
uling becomes complicated and the merit of dual arms may di-
minish. That is, the two arms may not be fully utilized. While
dual-armed robots are increasingly used for shorter tool cycle
time, single-armed robots are still widely used due to lower cost,
improved robot speed, and even simplified scheduling. Even a

dual-armed tool, when one arm is malfunctioning or contami-
nated, performs single-arm operation by using another arm.

Most single-armed cluster tools without reentrant wafer flows
popularly use the backward sequence that first unloads the wafer
from a chamber ¢ and loads the wafer unloaded from chamber
1 — 1 into chamber . It is shown that the backward sequence is
optimal when the workloads of the chambers are reasonably bal-
anced [7]. However, when the wafer visits a chamber more than
once, the processing order between the reentrant wafers should
be determined. Therefore, the choice of the processing order, in
conjunction with the robot task sequence, may cause a circular
wait between a pair of chambers, each holding a wafer, where
the robot tries to unload a wafer from one chamber and load it
into the other chamber. This causes a deadlock from which the
tool cannot proceed. Therefore, we should develop a new way
of determining the robot task sequence.

In this paper, we examine the scheduling problem for a
single-armed radial-type cluster tool with various reentrant
wafer flows. We develop a convenient method of modeling tool
operational behavior with reentrant wafer flows using Petri
nets. By examining the net model, we then develop a necessary
and sufficient condition for preventing a deadlock. We also
show that the cycle time for the asymmetric choice Petri net
model for a reentrant wafer flow can be easily computed by
using the equivalent event graph model. From the results, we
systematically develop a mixed integer programming model for
determining the optimal tool operation sequence, schedule, and
cycle time. We also extend a workload measure for cluster tools
with reentrant wafer flows. Finally, we discuss how our results
can be used for engineering a cluster tool. We compare the two
proposed strategies, sharing and dedicating, of operating the
parallel processing chambers for identical process steps.

II. PETRI NET MODELING FOR REENTRANT WAFER FLOWS

Petri nets are popularly used for modeling and analyzing op-
erational behavior of automated systems. A Petri net is a graph-
ical and mathematical framework for modeling and analyzing
discrete-event systems [13]. Bars, circles, arrows, and dots indi-
cate transitions, places, arcs, and tokens, respectively. They usu-
ally model activities or events, conditions or activities, prece-
dence between transitions and places, and entities or conditions,
respectively. A token at a place means that the corresponding
condition is satisfied or the corresponding activity is in progress.
Time delays for modeling activity times are associated with
transitions and/or places. When a place models an activity, a
token at the place can join enabling the succeeding transitions
after its sojourn time that is the specified time required for the
corresponding activity. A transition is enabled when each input
place has a token and the sojourn time of a token at each timed
input place has elapsed. It is known that a Petri net model with
time delays at transitions is equivalently transformed into one
with time delays at places and vice versa. An enabled transition
fires after its firing delay, if any. After a transition fires, a token
is removed from each input place and a token is added to each
output place. A detailed formal presentation of Petri nets can be
found in [13]. There have been works on Petri net modeling of
cluster tools [4]-[9].
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We briefly explain why a Petri net-based approach is useful
for cluster tool scheduling. A Petri net model clarifies relation-
ships between the events and activities in cluster tool operation.
Precedence relations between the events and synchronization of
the activities are clearly modeled by transitions and places. The
locations of the tokens at the places and their movements ex-
plain the state of the tool and the dynamic state changes, re-
spectively. Therefore, by examining the Petri net model, we can
identify why a deadlock occurs and how long the cycle time is.
A cluster tool is often operated to repeat a predefined work cycle
such that each PM and the robot performs a predefined activity
or task sequence cyclically. Such a cyclic scheduling method
has advantages such as predictable behavior, easier mathemat-
ical analysis, better cycle time optimization, and even constant
wafer delays since a steady schedule with identical timing pat-
terns for each cycle can be computed due to cyclic operation
[8], [14]-[16]. A cluster tool, when the robot task sequence is
determined, repeats such a cyclic work cycle. Therefore, the
tool’s operational behavior is modeled by a special class of
Petri nets, called a decision-free event graph, for which not
only the cycle time but also steady earliest schedule patterns,
most desirable schedule patterns, can be systematically com-
puted [14]-[16]. Furthermore, from the precedence relations be-
tween the events of the event graph model, we can easily derive
a linear programming model that determines the cycle time and
a steady schedule. Therefore, by identifying how the robot task
sequence decision affects the precedence relations in the event
graph model, we can extend the linear program into a mixed in-
teger program that determines the optimal robot task sequence
as well as the cycle time and an optimal steady schedule. Conse-
quently, it is desirable to first develop an event graph model for
a cluster tool with a given robot task sequence and then derive
a mixed integer program model from the linear program asso-
ciated with the event graph model to optimize the robot task
sequence.

We now explain a systematic Petri net modeling method for
a single-armed cluster tool with reentrant wafer flows. To do
this, we develop Petri net submodels for reentrant wafer flows,
the robot work cycle, and the PM work cycle and then combine
them into the whole model and develop the initial marking rule
that assigns the tokens to the places.

A. Modeling Reentrant Wafer Flows

When the last wafer is unloaded from a loadlock, the
next wafer is unloaded from the other loadlock. Due to such
pipelined operation, the tool repeats steady work cycles until
all lots of identical wafers are completed. The process time for
each process step and the robot task times (unloading, loading,
and transporting times) are known. A processing chamber is
also called a processing module (PM). We also assume that
there is no disruptional event such as breakdowns of the PMs
or the robot. The process steps that a wafer undergoes are
sequentially numbered from 1 to n. The operation for returning
a finished wafer into the loadlock and unloading a new wafer
from the loadlock is numbered n 4 1. A wafer flow pattern is
then defined as (m'fl, ko ,m¥), where m; indicates the
number of PMs available for process step 7, and k; is the serial
index for a reentrant PM where process step ¢ is performed. The

reentrant PMs are sequentially indexed from one. k; = j im-
plies that the 7th process step is performed by the jth reentrant
PM. A nonreentrant PM ¢ has index k; = 0 and we omit such
an index 0. For instance, (1!,12,2,1!,12) indicates wafer flow
pattern (PM1 — PM2 — PM3 or PM4 — PM1 — PM2),
where identical process steps 1 and 4 and identical process
steps 2 and 5 are performed by PM1 and PM2, respectively.
The loadlock step n + 1 is omitted in the wafer flow pattern
notation.

The position on the robot arm where a wafer unloaded from a
loadlock locates is adjusted at the aligner near the loadlock for
accurate positioning. Since the aligning time is relatively short,
within a few seconds, it is included in the time for unloading a
wafer from a loadlock. For each process stepi = 1,...,n + 1,
the timed transitions that represent unloading a wafer from a
module (a PM or a loadlock) and loading the wafer into the
module are denoted by U; and L;, respectively. T; represents a
timed place for transporting a wafer from a PM to the PM for the
next process step. Let P; indicate the timed place for processing
a wafer at a PM. Then, the subgraph U; — 1} — L1 — P, —

- Un - Tn - Ln_> Pn - Un+1 - Tn+1 - Ln+1
represents the sequence of operations that a wafer undergoes.
Once the robot loads a wafer into a PM, it may wait at the PM
until it unloads the wafer after the PM completes processing
the wafer or moves to another PM. Such robot waiting is mod-
eled by place W; from transition L; to transition U, for each
PM i. Place M;; represents for the robot move with the arm
empty from a PM for process step  to the PM for process step
7. Evenif arobot’s waiting place W; may look redundant to pro-
cessing place P;, we keep the waiting places in order to model
the robot’s state explicitly.

We note that for modeling convenience, we let both transi-
tions and places be timed. A transition usually indicates an event
or activity. When it indicates an event, it has no firing delay, that
is, it fires as soon as it is enabled. However, when it models an
activity, it has a firing delay, that is, it fires after the firing delay
since it is enabled. A place can represent a condition without
any associated time or models an activity by associating a token
holding time as much as the activity duration with the place. In
the latter case, each token that enters such a timed place can con-
tribute to enabling the output transitions after the token holding
time elapses. In our Petri net models, all transitions are timed
because they indicate robot tasks. All places except A; and W;
are also timed, since they indicate robot tasks or processing ac-
tivities at PMs. Of course, each timed transition can be modeled
by a sequence of an untimed transition, a timed place, and an
untimed transition, which indicates the start of an activity, the
activity, and the completion of the activity, respectively. A timed
place also can be similarly modeled by a sequence of an untimed
place, a timed transition, and an untimed place. However, our
modeling strategy of allowing both transitions and places to be
timed makes the model more compact.

B. Modeling Robot Work Cycle

An unloaded wafer should be loaded into a PM before the
robot becomes free and can perform some other task. The wafer
cannot be returned into the loadlock before it completes all
process steps because the wafer in progress, which is still hot,
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should not affect the other wafers in the loadlock and should
not be cooled down too much before it takes the next process
step. The wafer cannot be stored temporarily at any other
PM without taking processing there. It is because a PM starts
processing as soon as a wafer is loaded into the PM in order to
avoid the unnecessary side effects due to the residual gases and
heat within the PM. Therefore, once a wafer is unloaded from
a PM for process step ¢+ — 1, it should be transported to a PM
for the next process step ¢ and loaded into the PM. Therefore,
the robot tasks of performing these operations, U;, T;, and L;,
should be performed in sequence. The subsequence of the robot
tasks U; — T; — L; cannot be changed. The robot tasks can
be regarded as an aggregated task R; for preparing for process
step 7. Consequently, the robot task sequencing problem is
reduced to a sequencing problem for the aggregated robot tasks
R;s. They are marked by dotted rectangles in Fig. 2.

The robot work cycle is then modeled by a circuit that con-
nects all transitions for robot tasks and the associated places
Ui, L;, T;, M;;, and W;. The connecting rules follow. First,
each place for a transporting task 7; should connect from tran-
sition U; to L;. Second, an empty moving task M;; should link
from transition L; to U;. Therefore, the subgraphs R;, i =
1,...,n + 1 should be connected altogether to form a circuit
called a robot circuit that represents a robot work cycle. The
cyclic order in which the subgraphs are connected defines the
sequence in which the robot tasks are performed. Such a robot
task sequence is represented by function o = (¢(1),...,0(n)),
where o (7) indicates the ith aggregated robot task. For instance,
o =(1,2,...,n) corresponds to a robot circuit, Ry — W; —
Ry -+ - Ry, - W, - Rpy1— M(n+1)1 — R;. We
observe that the robot task sequence o determines the tool op-
eration sequence. The robot circuit should have one token that
indicates availability or the state of the robot. We let the moving
place prior to transition U; have the token at the initial state.
This implies that the robot is moving to the loadlock or ready
for unloading a new wafer from the loadlock.

C. Modeling PM Work Cycles

Since each process step is repetitively performed by the as-
signed single or parallel PMs, it has a circuit called a processing

Fig. 3. Petri net model for 2 = (1,4, 3, 2) of wafer flow pattern (1*, 1, 1*).

circuit, (A; — L; — P; — U;41 — A;). A processing circuit
should have tokens as many as the number of parallel chambers
for the process step. The tokens in a processing circuit should
be appropriately located at the places in the circuit, processing
places P; or PM availability places A;. The identical process
steps may share an identical PM. For instance, process steps
1 and 3 for wafer flow pattern (1%, 1,1%) share PM1. There-
fore, the processing circuits for the process steps at the same
PM share the PM availability place A;. We let the availability
place have only one token. By combining the robot circuit and
the processing circuits, the Petri net model for a given robot
task sequence of a wafer flow pattern is determined. Fig. 2 il-
lustrates the Petri net model for sequence o = (1,2,3,4) of
wafer flow pattern (117 1, 11). Since identical process steps 1
and 3 are processed by PM1, a token at place A; for avail-
ability of the reentrant PM is shared by the two processing cir-
cuits L1 — P1 — U2 — A1 and L3 — P3 — U4 — Al.
Fig. 3 illustrates the Petri net model for a different sequence
o = (1,4, 3,2) for the same wafer flow pattern. In the figure,
place M4 represents a robot move from PM1 to PM3 after
loading at PM1 (transition L;), where place P; indicates the
second processing of a wafer at PM1. For other robot task se-
quences, the Petri net models can be similarly configured.

We note that our modeling method defines a processing
circuit for each process step and makes the processing circuits
of the process steps performed at an identical reentrant PM
share the availability place of the PM. Such a modeling strategy
clarifies the robot work cycle as well as the wafer flow pattern.
ALD processes may have reentrant wafer flow patterns more
complicated than the illustrated examples. A wafer may visit a
PM more than two times. There may be more than one reentrant
PM. Our proposed modeling method can easily model such
general reentrant flow patterns. Figs. 4 and 5 illustrate the
Petri net models for wafer flow patterns (117 1,141, 11) and
(1',1%,1",1?), respectively.

D. Modeling Operating Strategies for Parallel PMs for
Identical Process Steps

We now consider the case where the identical process steps
share more than one PM. The workload of a reentrant PM tends
to increase as the number of reentrances to the PM becomes
larger. Therefore, in order to reduce the workload at a reentrant
PM, we may add PMs for the identical process steps. There can
be different strategies of operating such multiple PMs M =
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Fig. 5. Petri net model for wafer flow pattern (1, 12,1, 1?).

Fig. 6. Petri net model for sharing strategy for wafer flow pattern (2',1,2").

{PMy,,PMy,, ..., PM,} assigned for the identical reentrant
process steps I' = {i1, %2, . .., 4, }. When the number of PMs [
is equal to the number of identical process steps r, there are
two different strategies of using the PMs. First, the dedicating
strategy is to assign each PM of M to each process step of . In
this case, the wafer never visits the same PM again. Therefore,
there is no reentrance and no PM is shared by more than one
process step. It is simple to develop the Petri net model for the
dedicating strategy. It suffices to assign the availability place for
each PM of M to each processing circuit for process steps of I
Those availability places are not shared by the processing cir-
cuits for I'. Second, the sharing strategy is to allow the process
steps of I to share the PMs of M. A possible way of sharing is

A, PM,

to perform all process steps of I' at a PM of M. That is, a wafer
visits a PM of M as many as the number of identical process
steps 7. Therefore, the processing circuits for the process steps
of I share the availability place of the PM. Therefore, the PMs
of M are cyclically used by the wafers for fair use. This opera-
tion method is required when the processing conditions for the
process steps of M should be strictly identical for each wafer.
If we let the process steps of " use the PMs of M cyclically, the
case reduces to the dedicating strategy. Fig. 6 illustrates a Petri
net model for the sharing strategy for flow pattern (217 1, 21),
where a wafer visits only the PM that it visited first. We have
M = {PM1,PM2} and T = {1, 3}. Linear subgraphs from Uy
to L4 and from U; to Lg model the flows of the wafers that visit
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the first reentrant PM PM1 and the second one PM2, respec-
tively. Places A1 and A, represent the availability of the first and
second reentrant PMs (PM1 and PM2), respectively. The token
at place Ay (or As) is shared by the processing circuits for the
identical process steps 1 and 3 of the wafer flow that visits the
reentrant PM, PM1 (or PM2). Place A3 indicates the availability
of PM3 for process step 2, nonreentrant. PM3 is shared by the
two separated wafer flows, not by the identical process steps of
each wafer. Places P, and Fj indicate processing at PM3 for the
two separated wafer flows for process step 2.

When [ # r, there are more complications. When [ < 7, it
is not possible to dedicate all PMs of M to the process steps
of I". Some process steps of I' should share some PMs of M.
When [ > r, each process step can be performed by a dedicated
PM of M, and [ — r surplus PMs are used as parallel PMs for a
process step. This case has no reentrance. The sharing strategy
can be used for the cases of [ < 7 or [ > r. While there can be
many different ways of assigning the PMs to the process steps of
each specific wafer, a fair sharing method is to assign the PMs
of M in a cyclic order each time a wafer requests a PM for a
process step of I'. Regardless of the detailed of assigning the
PMs, we can easily model the tool behavior by putting tokens at
the availability place for the PMs of M as many as [ and letting
all processing circuits for process steps of I" to share the tokens
at the availability place.

E. Assigning Tokens

Even though we explained the marking of the Petri net
models, we further discuss the marking of the tokens within
each processing circuit. The parallel PMs for a process step are
modeled by as many tokens in the corresponding processing
circuit. We do not specify the order in which the parallel PMs
are used. They may be used in a cyclic order or in any other
sequence. When we wish to specify a specific cyclic order of
using the parallel PMs, the net should be appropriately modi-
fied [8]. The number of tokens at place P; for a nonreentrant
process step ¢ represents the number of wafers in progress at
the process step. More tokens at such a processing place lead
to a shorter cycle time at the process step and hence result in a
higher or at least the same wafer throughput rate. Then, we may
put m; tokens at the processing place P; for each nonreentrant
process step ¢. However, this may cause an absurd operation
such that the robot tries to load a wafer into a PM when no PM
is available. The robot may erroneously try to unload a wafer
from an empty PM. We therefore need an appropriate initial
marking rule.

F. Initial Marking Rule

1) The robot circuit should have only one token for avail-
ability of the robot arm. Without loss of generality, we
put the token at the input place M}, to transition U for
unloading a new wafer from the loadlock. Therefore, at
least one PM for the first process step should be available
to load the wafer. Hence, at least one token of the pro-
cessing circuit for the first process step should locate at
the corresponding PM availability place of the processing
circuit A;.

2) The processing circuit for process step ¢ should have m; to-
kens, which are at availability place A; or processing place
P;. When the robot token flows along the robot circuit and
reaches transitions L; or Uj;, their input places A; or F;,
respectively, should have at least one token of the corre-
sponding processing circuit of process step ¢. That is, for
each pair of places (P;, A;), if the associated loading tran-
sition L; appears prior to the associated unloading transi-
tion U1 in the robot circuit, A; should have a token; oth-
erwise, P; should have a token. Otherwise, the robot tries
to load a wafer into an occupied chamber or unload a wafer
from the empty chamber, respectively. As far as the men-
tioned condition is satisfied, we put tokens at processing
place P; as many as possible, but no more than m;, in order
to maximize the throughput rate.

‘We note that the initial marking rule ensures that the Petri net
model does not have any null circuit. It is known that such a
null circuit causes a deadlock in an event graph, a special class
of Petri nets such that each place has only one input and output
transitions. It is known that when a single-armed cluster tool
has no reentrant wafer flows, the Petri net model for a given
robot task sequence is an event graph, and nonexistence of a
null circuit ensures freedom from deadlocks. However, our Petri
net models for the tool model with reentrant wafer flows are
not event graphs due to the shared availability places A; for
reentrant PMs. Deadlock freedom of the Petri net models should
be further examined.

III. DEADLOCK ANALYSIS

We examine the Petri net models for single-armed cluster
tools with reentrant wafer flows and characterize the deadlock-
free condition. For a single-armed cluster tool with no reentrant
wafer flow, the backward sequence o = (1,n,n—1,...,2) per-
forms the robot tasks in the backward order of the process steps
except the first loadlock. That is, after unloading a wafer from
the loadlock and loading it into a PM for the first process step,
the robot unloads a wafer from a PM of the last process step n
into the loadlock, moves to a PM of process step n — 1, unloads
a wafer from the PM, and loads it into a PM of process step n.
The robot then moves to a PM of process step n—2 and transfers
a wafer from the PM to a PM of process step n — 1. Such wafer
transfer from the preceding process step to the next process step
is repeated. For a single-armed cluster tool with no wafer reen-
trance, the backward sequence is known to be efficient and sim-
plify the tool behavior. Therefore, most single-armed cluster
tool vendors use the backward sequence. Lee et al. [7] show
that the backward sequence minimizes the cycle time when the
workloads for the process steps are balanced within some range.
However, the backward sequence causes a deadlock for the case
of reentrant wafer flows. To apply the backward sequence, at
least one PM for each process step should have a wafer be-
fore a wafer is unloaded from the last process step and returned
into a loadlock. Fig. 3 illustrates the backward sequence 02 =
(1,4,3,2) applied for a reentrant wafer flow pattern (1*, 1, 1%).
The robot loads a new wafer from the loadlock into PM1 for
process step 1. Then, in order to transfer a wafer from PM2 for
process step 2 to PM1 for process step 3, the robot should unload
from PM1 a wafer that completed process step 3 and return it
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into the loadlock. However, PM1 already has a wafer for process
step 1. Therefore, this sequence is infeasible. Such an infeasible
situation corresponds to a deadlock in terms of the Petri net be-
havior where no further firing of some transition can be made.
It can be easily verified that any different initial marking for the
case cannot make the backward sequence feasible. It is because
the robot tries to unload a wafer from PMI1 that is expected to
complete a specific process step while the PM is being occu-
pied by a wafer that took a different process step there. A way
of resolving this problem is to let the robot wait at PM1 after
loading a wafer into the PM and unload the wafer when the PM
completes processing the loaded wafer. That is, the robot should
not leave the reentrant PM until the robot unloads the loaded
wafer and makes the PM free. We call such scheduling policy
load-and-wait policy. While for such a simple wafer flow pat-
tern, it is easily seen that the load-and-wait policy does not cause
a deadlock, and the effectiveness of the policy for general wafer
flow patterns should be further examined.

We now develop a deadlock-free condition for general reen-
trant flow patterns. To do this, we examine the robot task se-
quences. A single-armed cluster tool has two types of deadlock
situations. First, the robot tries to load a wafer at a PM that is al-
ready occupied by another wafer. This situation is called type I
deadlock. Second, the robot tries to unload a wafer that com-
pleted a specific process step from a PM; however, the PM has
no such wafer. The PM has no wafer or has only a wafer that
completed a different process step. Therefore, the robot cannot
proceed the tasks. This situation is called type II deadlock. A
type II deadlock occurs at a reentrant PM that is shared by more
than one process step. There are two causes of deadlocks, an
improper marking and an invalid robot task sequence. Improper
markings can be prevented by a proper initial marking rule when
the robot task sequence is appropriately determined. Therefore,
we focus on the robot task sequence. For aggregated robot tasks,
Ry and R,, we let R; < R; denote that R, precedes R,. For
a process step %, the aggregated robot task R; loads a wafer at a
PM for the process step, and the PM is unloaded by R;1, which
also loads the wafer at a PM for the next process step. We now
propose a necessary and sufficient condition for the tool to have
no deadlock.

Theorem 1: Suppose that the Petri net model of a single-
armed cluster tool with a reentrant wafer flow is marked by the
initial marking rule. Then, the model is deadlock free if and only
if for each reentrant PM

R < Rij1 < Rj < Rjqq

for any pair of process steps ¢ and j such that they share the
reentrant PM and 7 < 7.

Proof: Since the initial marking rule prevents two possible
deadlocks, types I or I, at any nonreentrant PM independently
of the robot task sequence, it suffices to consider the sequence
of robot tasks for reentrant process steps.

(<) Suppose that the tool has a deadlock due to improper
sequence of the robot tasks for reentrant process steps. We con-
sider a type I deadlock that a PM is already occupied by a wafer
when the robot tries to load a wafer into the PM. This occurs

only when a robot task R; that loaded a wafer into the PM is
followed by another robot task R; for loading a wafer for the
process step j such that 7 < j into the PM before the robot task
R; ;1 for unloading the wafer at the PM is performed, where
the two process steps ¢ and j share the PM. This implies that
R; < R;4q for some ¢ < j. This contradicts condition (1).
Therefore, there should be no type I deadlock.

We now examine a type II deadlock that a PM does not have
the wafer that a specific robot task wishes to unload. We first
consider the case that the PM has no wafer. This occurs only
when a robot task R;; that unloaded a wafer from a PM is fol-
lowed by another robot task I2;; for unloading a wafer for the
process step j such that 7 < j from the PM before the robot task
R; for loading the wafer into the PM is performed. This implies
that R;1; < R; for some ¢ < j. This contradicts condition
(1). The other type II deadlock is that when a robot task I2;;
tries to unload a wafer that completes a specific next process
step j from a PM, the process step ¢ that has been completed
for a wafer at the PM is not equal to j, thatis, 2 < j ors > j.
Case 7 < j implies that the next robot task of the robot task R;
for loading a wafer into the PM is not 2,41 but I2; . That is,
R < Rjz1 K Riy1or Ry € R K Rjyq forsome i < j.
This violates condition (1). Likewise, the other case 7« > j also
implies that i; < R < R or By < By € By
for some 4 > j. This implies that R; < R;11 < Rjy; or
Rj11 < R; € Rj4q for some ¢ < j. This also violates con-
dition (1). Consequently, there should be no type II deadlock.
Since any deadlock implies violation of condition (1), we con-
clude that if condition (1) holds, the tool model has no deadlock.

(=) Robot tasks R;, R;y1, R;, and R;4, perform loading
(2), unloading (%), loading (), and unloading () tasks, respec-
tively, where the number in a parenthesis indicates the corre-
sponding process step. Suppose that for a reentrant PM, condi-
tion (1) is violated for some two process steps ¢ and j such that
they share the reentrant PM and ¢ < j. In this case, R; 1 < R;,
Rj11 < Rj,or Rj < Riyq. The first two cases trivially lead
to a type II deadlock because they imply that a wafer tries to be
unloaded before it is loaded. The last case also leads to a type
I deadlock since robot task I7; loaded a wafer for the process
step 7 such that ¢ < 7 to a PM before the wafer that is loaded for
process step ¢ is unloaded by robot task R; ;. Therefore, any vi-
olation of condition (1) leads to a deadlock. Consequently, when
there is no deadlock in the model, condition (1) should hold. =

Remark 1: We can prove that our Petri net models are all
asymmetric choice nets. For such an asymmetric choice net,
there is a well-known necessary and sufficient condition for
deadlock freedom based on traps and siphons and special struc-
tural properties of the net [17]. Therefore, we can verify dead-
lock freedom of the Petri net model for a given robot task se-
quence. However, since the deadlock-free condition should be
verified for each possible robot task sequence, it is hard to de-
velop a compact form of deadlock-free condition.

Example 1 [Wafer Flow Pattern (1',1,1")]: Fig. 7 illus-
trates the Petri net models for different sequences for wafer flow
pattern (11 11! ). We observe that the only deadlock-free robot
task sequence is o1 = (1,2, 3, 4) for the wafer flow pattern. The
sequence satisfies the deadlock-free condition (1). Any other se-
quence violates the condition and causes a deadlock. We note
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Fig. 8. Petri net model for deadlock-free sequence for wafer flow pattern (1, 1*, 12, 11, 12).

that the set of places marked with dotted circles in each net
model is a siphon and also a trap, called a siphon-and-trap, of
which presence is a necessary and sufficient condition for exis-
tence of a deadlock in an asymmetric choice net [17].

Example 2 [Wafer Flow Pattern (1,1',1%,1",1%)]: We
present a more general, complicated flow pattern. ALD
processes control the deposition thickness by repeating the
deposition processes. Therefore, the sequence of deposition
processes is repeated several times, even more than five. The
first deposition layer requires three process steps: AloOs
deposition process, TasO5 deposition process, and oxidation
process. Each subsequent deposition layer repeats the last two
process steps. Therefore, it is challenging to schedule a cluster
tool with such complicated reentrant flow patterns. When two
deposition layers are required, there are six aggregated robot
tasks. Therefore, the number of possible robot task sequences
amounts to 120 (= 6!). From condition (1), we can identify the
number of deadlock-free sequences to be ten. Fig. 8 illustrates
the Petri net model for a deadlock-free sequence. As the number
of deposition layers increases, the number of possible robot
task sequences rapidly increases.

IV. TooL CYCLE TIME AND OPTIMAL ROBOT TASK SEQUENCE

We examine the tool cycle time for a given robot task se-
quence and the way of systematically determining the optimal
deadlock-free robot task sequence and schedule. In a Petri net
model for a robot task sequence for a reentrant wafer flow pat-
tern, the availability place for a reentrant PM has as many input
and output transitions as the number of process steps that share
the PM. Such a place requires choice or decision on where
output transition a token in the place should move. When each
place has one and only one input and output transition, the Petri
net is a decision-free event graph, a special class of asymmetric
choice nets. For an event graph, the cycle time is efficiently com-
puted as the critical circuit ratio. However, for an asymmetric
choice net, the cycle time is not easily computed. For an asym-
metric choice net, the cycle time or a bound on the cycle time is
usually computed by complicated invariant analysis or reacha-
bility analysis [13]. However, such methods require nonpolyno-
mial time algorithms of which computational complexity tends
to be intractable, even for small sized nets. The size of our Petri
net model grows fast as the number of process steps and the
number of reentrances increase.
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(1,2.3,4) of wafer flow pattern

We will show that although our Petri net models are asym-
metric choice nets, due to a special structure, the Petri nets are
behaviorally decision free; hence, the cycle time can be effi-
ciently computed from the equivalent event graph. For a given
Petri net P for a single-armed cluster tool with a deadlock-free
sequence for a reentrant wafer flow, we let £(P) represent the
event graph that is identical to the Petri net except that in the
event graph each of the process steps that share a reentrant PM
has its own separated PM availability place instead of sharing
the single availability place for the reentrant PM. Fig. 9 illus-
trates such an event graph model for sequence 0! = (1,2, 3, 4)
of wafer flow pattern (11, 1, 1). We observe that a pair of avail-
ability places A; and Aj in the figure replaces the availability
place A; for a reentrant PM in Fig. 2.

Theorem 2: A Petri net P for a deadlock-free robot task se-
quence of a reentrant wafer flow is behaviorally equivalent to
the event graph £(P).

Proof: Consider a deadlock-free robot task sequence. From
Theorem 1, for each of the process steps that share a reentrant
PM, once the robot loaded a wafer into the PM, it should per-
form the unloading task before any other robot task for other
process steps that share the PM. Therefore, the token at the avail-
ability place for the reentrant PM is used sequentially by the
process steps that share the PM. After a process step returns
the token, the next process step that shares the PM takes the
token. At any time, the token that left at the availability place
of the reentrant PM resides at most one of the processing places
for the process steps that share the PM. There is no conflict be-
tween the process steps for using the token. Therefore, Petri net
‘P is behaviorally decision free. Consequently, the availability
place need not be shared by the processing places for the process
steps. It suffices to make each processing place have its own
availability place, which indicates the state that the process step
is ready to start. Consequently, the firing sequence of the event
graph £('P) is identical to the Petri net P. ]

Theorem 2 suggests that the performance of Petri net P is
identical to the performance of the event graph £(P). Therefore,
the cycle time can be computed as the critical circuit ratio of the
event graph £(P). The cycle time also can be computed from
a linear program for the event graph [13], [15], [16]. Therefore,
by extending the linear program appropriately, we can develop
a mixed integer program for finding a deadlock-free robot task
sequence that minimizes the cycle time. We introduce some no-
tations. Let £ indicate the set of arcs such that (7, j) € E if there
is a place from transition 7} to transition 7 in the event graph
E(P). When there are ¢ places from T; to T)j, we make copies of

, (12,j9) € E.
A (C FE) is the set of arcs that defines the wafer flow pattern
and the PM work cycles. Consider the Petri net that excludes all
places W; and M;; that are necessary for defining a robot task
sequence. Then, if the net has a place from transition T; to T3,
we let (7,7) € A. E — A is the set of arcs that defines a robot
task sequence. The set is determined by the robot task sequence.
d; is the firing delay of transition 75. h;; and 7;; are the holding
time and the number of tokens of the place that corresponds to
arc (i,7) € A, respectively.

A firing schedule is defined by the set of firing epochs of the
transitions {z7|¢ € T,r = 1,2,...}, where T is a set of tran-
sitions and z} is the rth firing epoch of transition 7;. When
2t = 27 + Mforalli € T and r = 1,2,..., the firing
schedule is called steady. It is known that in an event graph,
the minimum cycle time among the steady firing schedules is
the same as the minimum cycle time among all firing schedules
[15], [19]. Therefore, it suffices to consider only steady sched-
ules. Since a steady schedule repeats an identical timing pattern
for each firing cycle, we need to examine only a specific cycle.
It is easily seen that in a steady schedule, for any place from
transition 7; to T}, ] = a;f_k +kXforany k =0,1,2,.... We
let (x1, %2, ..., 7 7)) be the schedule of a specific firing cycle r
of a steady firing schedule. Consequently, the schedule should
satisfy

the arcs as many as g, that is, (i%, j1), (i%, 5%), .. .,

T;— T > dj + hqj — quj)\ V(ZJ) € A.

We note that the set of arcs or places for a robot task sequence
E — A is not determined yet. We let w(4) and [(¢) indicate the
indexes for transitions U; and L;, respectively. These should not
be confused with u; and [;, which are the unloading and loading
times for a PM for process step <. We let ¢; and v be the trans-
porting time for a PM for process step ¢ and the move task time
from a PM to other PM, respectively. The move times between
each pair of PMs or the loadlocks are assumed to be identical.
Let D be the set of disjunctive pairs of orderings between each
pair of robot tasks I;s. A selection of order between a pair of
disjunctive arcs (7, 7) and (4, %) defines a place between R; and
R;. We introduce an indicator function 7;; such that 7;; = 1
if 1 + 1 = j; otherwise, 7;; = 0. Then, all possible robot task
sequences can be represented by the disjunctive constraints

Tu(j) = Ti() 2 Ui + VUi
or

Tu() — i) 2w +vngi V((4,5),(4,4) € D.

7;; represents whether the robot moves or waits for per-
forming IR; after completing I?;. The disjunctive constraints
can be transformed into conjunctive ones using 0—1 variables
(51']'

Tu(j) = Tiay = uj + vnij — (1= 6i5) A1)
and
Ty = T1(5) = ui +ong — ;A1) Y ((4,5),(4,1) € D
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TABLE I
DEADLOCK-FREE CONDITION

[ Precedence relationship [ & 411 [ 01,5 | 955401 | 41,3 | Sum]
R <Rij1 <R <<Rj1 1 1 1 0 3
Ri1 << R]' << Rj+1 < R; 0

Rj <<Rjp1 <R <Rip1 1
Rj+1 <R <Rip1 < Rj 1

—

—

1 1 3
0 1 3
1 1 3

(=]

where 6;; = 1if ;) — 2y = u; + v and 6;; = 0 if
Ty — Tig) = Wi + VN .

Let m,; be the number of parallel PMs for process step <. The
number of tokens in the processing circuit for process step i
should be no more than m;. Therefore, we have constraints on
tokens

Ti(i) u(i+l) T Tu(it1)i@) < mi Vi=1,...,n.

When a robot task sequence is chosen, an arc is selected from
each pair of disjunctive arcs. Although the selected set of arcs
S includes redundant arcs, they define the circuit for the cor-
responding robot work cycle. The arc set £ — A that defines
a robot task sequence in the Petri net model is then considered
as the one that is made from .S by removing all redundant arcs.
We note that each of the robot waiting places W; and the move
places M;; in a Petri net model corresponds to each arc in the
set ¥ — A. Once E — A is determined, each place that corre-
sponds to an arc of ¥ — A is generated in the resulting Petri net
model. It can be seen that the places corresponding to the re-
dundant arcs do not change the behavior of the Petri net model.
Since there is only one robot arm, there is only one token in the
robot work circuit, which indicates the availability of the robot
arm. The initial marking rule assigns the token at the input place
of R; in the robot work circuit. All other places for the arcs of
E — A that define the robot work cycle should not have any
token. Also, the PM for the first process step should be avail-
able, that is, the corresponding place should not have any token.
Therefore, we have the following:

Tu@a) =1 Vi#1
Tu(iyi(y =0 Vi # 1,1
Ti(1),u(2) = 0-

Let R be the set of indexes for the aggregated robot tasks for
loading a wafer at reetranct PMs. We wish to add the deadlock-
free condition (1) into the constraints. To do this, we have the
following result.

Corollary 1: The deadlock-free condition (1) holds if and
only if

Siig1 +0ig1,j+0j 41+ 041 =3 V(,5) e R. (1)

Proof: Once the robot task sequence is determined, the
robot repeats a cyclic sequence of robot tasks. Therefore, the

precedence relationship R; < R;41 € R; < Rj4; of con-
dition (1) also holds cyclically. In other words, the four prece-
dence relationships in Table I are all equivalent. Depending on
how a cycle is taken, one of them holds. In each case, the in-
stances of the four robot tasks are considered to belong to the
same cycle. Each case of the precedence relationship in the table
is equivalently represented by appropriate value assignment to
the corresponding sequencing decision variables 0; 41, 0i+1,5,
0j.j+1, and 841 ;. Table I shows such value assignment. It is
seen that when for each case of the precedence relations, the
sum is 3. Therefore, if condition (1) holds, 0; ;11 + 6i+1,; +
0ji+1 + 0j41,: = 3.

Now, we suppose that §; ;41 + 0i41,5 + 0541 + 0j41,0 # 3.
When the sum is 4, 51‘,1’-1—1 = 5i+17j = 5j7]'+1 = 6]'4_171' =
1. This implies a circular order between the instances of the
robot tasks in the same cycle. This is an infeasible sequence
and hence condition (1) does not hold. When 6; ;41 + 6;41,; +
0j.i+1 + 041, < 3, more than one of the sequencing decision
variables are zero. This indicates that at least a pair of robot
tasks in each case of the four precedence relationships should be
reversed. This violates condition (1). Consequently, condition
(1) is equivalent to condition (1). [ ]

By collecting the constraints, we now have an optimization
model as follows:

min A
subject to
zj—x; > dj+hig — A V(i,j) €A
ZTu(s) — Ti(i) > uj +vn;; — (1 - 5%‘]’))‘

and

Ty(y — Ty = Ui +oni — 0N YV ((4,5),(4,1) € D

0iit1 + 0it1,j + 05541+ 04145 =3 V(i,j) € R
TG u(idl) T Tu(id1),i() < M Vi=1,..., n
Tu(i),l(1) = 1 Vi# 1

Tu@a) =0 Vi#A L

Ti(1),u(2) = 0,
A>0, z; >0, (51']':001‘1, AeR, z; € R,

where A, z;, 7;;, and ¢;; are decision variables. Symbol IR indi-
cates the set of real numbers.

The first and second constraints have nonlinear terms 7;; A
and 6;; A. They can be linearized by dividing all terms by A and
redefining the decision variables as the divided terms. By letting
w=1/Xand y; = x; /), the above model can be linearized into
a mixed integer program (M1 P) as follows:

MIP :

subject to
yj — i > (dj +hij)p—7i; V(i j) €A
Yu() = Yiiy > (uj +vmig)p — (1= &;5)

max f
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and

Yu(iy — YiG) = (wi +vmji)p — 65 V((i,5),(j,1)) €D
Oiig1 + 0iv1,; + 05541+ 05415 =3 V(i,j) € R

Ti(i),u(it1) T Tu(i+1),i(s) < My Vi=1,...,n
Tu@yi) =1 Vi#l

Tu(i),l1(j) = 0 Vji#1,i

Ti(1),u(2) = 0,

p>0,y >0, 6;;=00rl, peR, y; € R

where 1, y;, T;;, and 0;; are decision variables.

The MIP model finds an optimal deadlock-free robot task
sequence for a given wafer flow pattern. It also determines a
steady optimal schedule, that is, the timings of the tasks. Ad-
ditional linear constraints can be incorporated. For instance, a
time window constraint on the allowable wafer delays within the
processing chambers can be added in order to prevent quality
problems due to residual gases and heat. Such a time window
constraint follows:

Ty = Tu(it1) > —(PiHUip1 +00) + Ty i) A Vi=1,...,n

2
where p; is the process time for process step ¢ and b; is the
maximum allowable wafer delay within the processing chamber
after completing process step <.

V. APPLICATION TO CLUSTER TOOL ENGINEERING

We now present how our results are used for cluster tool engi-
neering, which determines the number of PMs for each process
step, the optimal robot task sequence, and the schedule with
the minimum cycle time. To do this, we introduce the notion
of workload for each process step since the workload measure
often plays an important role in flow-type manufacturing sys-
tems such as assembly lines or flexible flow lines. A conven-
tional workload measure for a process step is the sum of the
process times of the operations performed for the process step.
This determines the bottleneck and the cycle time in conven-
tional assembly lines and gives a lower bound for the cycle
time in most flow-type manufacturing lines. In a cluster tool,
the wafers go through series-parallel process steps, but the wafer
transfer between the process steps is limited by the robot. Lee
et al. [7] extended the workload measure for process step ¢ in a
single-armed cluster tool as

_pit2ui i+ )+

K2

3)
m;
It is because two aggregated robot tasks, ; and R;,1, and one
empty move as well as the processing operation at a PM are
required for a wafer to take a process step ¢ in a backward se-
quence (1,7 + 1,n,n — 1,...,2). For any other sequence, the
two robot tasks are required for completing the processing of a
wafer at a PM. It is known that balancing the workloads of the
process steps gives many desirable properties for cluster tool op-
eration and scheduling [7], [8]. Minimizing the maximum work-
load of the process steps also minimizes the tool cycle time.

Fig. 10. Event graph model for o = (1,4,5,2,6,3).

The popular backward sequence for a single-armed cluster tool
with no reentrance is optimal when the workloads between the
process steps are reasonably balanced. The wafer delays within
a PM’s chamber after processing at the PM are also minimized
by balancing the workload. We therefore extend the workload
measure for cluster tools with reentrant wafer flows. Let A(4)
denote the set of all process steps that share a reentrant PM
that performs process step ¢. For a nonreentrant process step 4,
A(3) = {i}. For a cluster tool with reentrant wafer flows, the
workload for a PM that performs process step ¢ is defined to be

w; = > jency i +2(u; +t; +15) + ’U). @

m;

The sum of the process times for the process steps that share
a set of PMs is divided by the number of the shared PMs. There-
fore, this workload definition is general and applicable even
when multiple PMs are assigned to multiple identical processes
regardless of the PM operating strategy, which was explained in
Section II. For the case that has no reentrant wafer flow, this def-
inition is equivalent to the original workload definition in (3).

For a cluster tool with reentrant wafer flows, the workloads
can be balanced by allocating the process steps to each PM, that
is, by controlling the number of reentrances for each reentrant
PM, accommodating the number of parallel PMs, or modifying
the process times within the technically allowable range. These
are all important engineering decisions.

Each robot work cycle performs aggregated robot tasks and
empty moves at least n + 1 times. Thus, the workload of the
robot itself is Z?:ll (u; + t; + I; + v). The cycle time of a
PM for each process step ¢ tends to be mostly determined by
its workload w; = (ZjeA(i)(pj + 2(11,]' + t]' + l]) + v))/mj;
although, the exact cycle time of a PM depends on the circuits in
the Petri net model that are completely determined by the robot
task sequence. By considering the robot as another resource, the
combined maximum workload measure is

W = max { max
1=1,....,n my
n+1
Z(uz +t; +1; +’U)} . B
=1

The maximum workload measure W can be computed regard-
less of the robot task sequencing decision, which requires run-
ning a combinatorial algorithm using the tool data such as the
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Fig. 12. Event graph model for sharing strategy.

process times, the robot task times, the number of parallel PMs,
and so on. The maximum workload measure evaluates the robot
workload as well as the workloads of the PMs. When the robot
workload is not the bottleneck, as in most practical cases, W
measures the balance of the workloads of the PMs. W is also a
lower bound of the tool cycle time since the tool cycle time be-
comes larger than the workload due to interference among the
work cycles of the PMs and the robot. Such a sequence-inde-
pendent workload measure is useful for roughly evaluating the
tool design alternatives on the number of PMs for each process
step and the process times. Without deliberately determining the
optimal robot task sequence, we can quickly compare the ap-
proximate cycle times of the alternatives and obtain an insight
on how to improve the decisions.

Example 3: We consider the single-armed cluster tool model
in Example 2 in Section III. The tool has three PMs for five
process steps. The wafer flow pattern (1, 117 12, 11, 12) indicates
Loadlock — PM1 — PM2 — PM3 — PM2— PM3 —
Loadlock. The processing times of PM1, PM2, and PM3 are
270, 200, and 250 s, respectively. Process steps 2 and 3 have the
same processing times as process steps 4 and 5, respectively.
The times for unloading, loading, transporting, and move tasks
(u;, l;, t;, and m;) are all 3 s. By solving the MIP model, we
have the optimal robot task sequence as o* = (1,4,5,2,6,3),
thatis, R1 — R4 — R5 — R2 — R6 — R3 — Rl and
the optimal cycle time 739 s. The resulting event-graph model
and the schedule are shown in Figs. 10 and 11, respectively. The
circuit that is represented by bold arcs is the critical circuit with
the maximum circuit ratio, which is the same as the minimum

cycle time. Fig. 11 shows the schedule for a single cycle, one
half for the schedule for a wafer and the other part for another
wafer. The boxes with the identical shading indicate the process
times of the same wafer. The schedule is repeated for each cycle.

The maximum workload W is 542 s. Interference between
the work cycles increases the cycle time as much as 197 s (=
739 s — 542 s). The robot work cycle limits the PM work cycles.
The workloads of PM1, PM2, and PM3 are 291, 442, and 542 s,
respectively. The robot workload is just 72 s. PM3 for process
steps 3 and 5 is the bottleneck and the workloads are signifi-
cantly imbalanced. We therefore add an additional PM, PM4,
for the two identical process steps. Due to the additional PM,
the workload for PM3 reduces to 271 s. The maximum work-
load W is now 442 s. There are two alternative strategies for
operating the two PMs, PM3 and PM4, sharing and dedicating,
as proposed in Section II. First, the sharing strategy makes PM3
and PM4 share process steps 3 and 5. A wafer visits the PM
that it visited first. That is, the sharing strategy keeps the reen-
trance in view of wafers and increases the number of parallel
PMs for reentrant process steps 3 and 5. Therefore, the wafer
flow pattern becomes (1, 11,2218, 22). Second, the dedicating
strategy makes PM3 and PM4 take charge of process steps 3
and 5, respectively. The wafer flow pattern is (1,1",1,1%,1).
In this case, no PM has reentrance. The dedicating strategy is
thus considered to relax the complication or constraints due to
the reentrance wafer flow and sharing a PM by multiple process
steps. Since reentrance tends to make the performance signifi-
cantly worse, we expect that the dedicating strategy will give a
much shorter cycle time. Fig. 12 shows the event graph model
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Fig. 13. Event graph model for dedicating strategy.

TABLE II
COMPARISON OF SHARING AND DEDICATING STRATEGIES

[ Process times  [Wafer flow pattern[Strategy[Cycle time[Max. W/L]

1,11,12,11,1%) 739 542
(1,15,22,11,2%9) 1 (S) 490 442
(270,200,250,200,250)|(1, 1%, 1, 1%, 1) (D) 689 442
@, 25,1225, 19 (S 542 542
,1,15,1,19H (D) 739 542
1,15,12,11,13 639 442
@, 15,22,1529 | (S 442 442
(200,200,200,200,200)|(1,1%,1,1%, 1) (D) 639 442
1,225,122, 15 | (S) 442 442
1Q,1,15,1,15H (D) 639 442
1,15,12,11,13) 639 521
@, 15,22,15,29 1 (S 521 521
(500,200,200,200,200)((1, 17,1, 1%, 1) D) 639 521
@, 2517251 (S 521 521
IQ,1,15,1,19H (D) 639 521

for the sharing strategy with optimal robot task sequence o* =
(1,12,9,4,5,10,11,2,7,6,3,8). For the sharing strategy, the
cycle time is 490 s, which is now close to the maximum work-
load 442 s. For the dedicating strategy, the optimal robot task
sequence is 0* = (1,4,6,5,2, 3). The event graph is shown in
Fig. 13. For the case, the cycle time is 689 s. This is smaller
than the original cycle time but much larger than the cycle time
for the sharing model. This does not coincide with our common
sense that the dedicating strategy, relaxing complication of reen-
trance for process steps 3 and 5, has a much longer cycle time
than the sharing strategy that keeps the reentrance constraint.
In order to further understand the bizarre phenomenon for
the two strategies, we examine more cases for the tool model
in Table II. In Table II, process time indicates the process time
of each process step. For instance, process time case (270, 200,
250, 200, 250) means that the process times of process steps 1,
2,3, 4, and 5 are 270, 200, 250, 200, and 250 s, respectively.
The wafer flow patterns in the second and third rows for each
process time case are for the case of adding PM4 to process steps
3 and 5, respectively. The wafer flow patterns for the fourth and
fifth rows indicate the case for adding PM4 to process steps 2
and 4 that have shared PM2, instead of process steps 3 and 5.
(S) and (D) after each wafer flow pattern indicate the sharing
and dedicating strategies, respectively. We observe that for dif-
ferent process time cases, the sharing strategy is always better
than the dedicating strategy. A possible reason is that although
the sharing strategy keeps the reentrance constraint, it requires

that the two PMs be shared by the two process steps. It seems
that this resource sharing, as usual resource pooling methods,

PM2
200's
PM3 } - j
800s 400's
PM2
PM t - PM3 : PM4
600 s

Fig. 14. State change by sharing strategy.

PM2 PM2
@ 200s
O PM4 ‘ PM3 PM4

600 s )‘ ' 400 s
PM2
ROIOh

Fig. 15. State change by dedicating strategy.

PM3

improves the performance. The state changes for the sharing
and dedicating strategies are illustrated in Figs. 14 and 15, re-
spectively. Without loss of generality, we consider a simpler
model with omitting PM1 for simplicity. In the model, PM2
performs the first process step. Then, the wafer flow patterns
for the sharing and dedicating strategies are (11, 22,1, 22) and
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(117 1,14, 1), respectively. We assume that the process times of
all PMs are all 200 s. An arrow in figures indicates a trace of
the wafer movement. The sharing strategy keeps PM2 busy, as
shown in Fig. 14. The dedicating strategy causes idle time at
PM2, as shown in Fig. 15. That is, the sharing strategy better
utilizes the additional PM, PM2. The sharing strategy has cycle
time 400 s, much shorter than the cycle time 600 s of the ded-
icating strategy. Consequently, when we add a PM for a reen-
trant PM, the sharing strategy is much more efficient. However,
this may not always be true. Suppose that we add two PMs, one
for each reentrant PM. The dedicating strategy then eliminates
the reentrances completely and makes the wafer flow pattern be
(1, 1, 1, 1, 1). Then, the well-known backward sequence can
be used [7] and the dedicating strategy was found to be better.
When there is only one reentrant PM, the dedicating strategy is
found to be better.

VI. CONCLUSION

We proposed a systematic Petri net modeling method for
single-armed cluster tools with various reentrant wafer flow
patterns. The key modeling strategy is to model the process
steps separately and let the work cycles of the reentrant process
steps share the availability token for a reentrant PM. We devel-
oped a simple necessary and sufficient condition for preventing
a deadlock. We showed that the Petri net models, although they
are asymmetric choice nets, reduce to equivalent event graphs
for which the cycle time is easily computed as the critical
circuit ratio. From the results, we developed an MIP model
for determining the optimal robot task sequence, the minimum
cycle time, and the optimal schedule. We introduced two
different strategies, sharing and dedicating, for using multiple
PMs for identical process steps. We also extended a workload
measure for cluster tools with reentrant wafer flows. Finally,
we discussed how the results are used for engineering a cluster
tool. We found that depending on the PM operating strategy,
the cycle time can be significantly different.

Our proposed method of modeling a cluster tool as an event
graph and deriving a mixed integer programming model from
the event graph can be used for other cluster tools. The key
is to derive the decision-free event graph model by examining
the tool behavior and to identify how the sequencing decision
affects the arcs or precedence relations between the events or
transitions of the event graph model. We have seen that such
a methodology is effective even for complicated cluster tool
models due to reentrant wafer flows.

Although the MIP model determines the steady schedule as
well as the optimal robot task sequence, the earliest starting
schedules, steady or not, that start every operation as soon as
the preceding ones complete but have the same cycle time as the
steady schedule can be computed through the steady-state anal-
ysis based on the minimax algebra [15]. Such a schedule can
be easily implemented by event-based control rather than de-
liberate timing control. Further topics for reentrant cluster tools
include examining properties of the wafer residency times and
scheduling under the wafer residency time constraints and fur-
ther implication of workload balancing on sequencing and wafer

delays. We need to examine further the deadlocks and robot
task sequencing of dual-armed cluster tools with reentrant wafer
flows for which conventional swap operation cannot be used.
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