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Abstract

In this paper, several issues of looper control in rolling
mills are discussed and a fuzzy logic control is proposed
to address the enumerated issues. The proposed system in-
corporated fast tuning algorithms for both off-line and on-
line learning of membership functions and singleton val-
ues. Also, it is relatively simple to design and implement.
The effectiveness of the proposed system is verified by the
simulations results. It is shown that the proposed system
is more robust to parameter uncertainties and noises, when
compared with conventional PID control.

1 Introduction

The loop control method is one of the common control
techniques for producing flexible cross-sections at interme-
diate and finishing sub-mills. The loop control techniques
rely on the initial formation of a bar loop by using mechan-
ical deflectors and proper motor speed adjustments (Fig.
1). In fact, each stand roll speed has to be synchronized
to the speed of the bar exiting the previous stand. Other-
wise, push or pull conditions would occur and loop might
be formed. The height of the formed loop could serve as
a tension indicator. Maintaining a constant desired loop
height will be done by adjusting the motor speed ratios and
will indicate no tension/compression status. The height of
the loop (H) is measured and compared to reference height
(H0, indicating zero tension condition) to obtain a correc-
tion command for motor speed control unit. An example is
the implementation of the looper control in a 17 stand bar
mill in the Chapparrel Steel mill in Milwaukee by ASEA
[3]. A characteristic control problem is the introduction of
the disturbances of different nature. These disturbances are
caused by the increasing use of low temperature heating of
slabs, high-carbon steels, and high-speed rolling. Due to
increasing demand for high precision in thickness, width,
and crown of the strips, it is very important to develop a
high-performance and robust looper control.

In this paper, the potential of fuzzy controllers will be ex-
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Figure 1: The rolling mill with looper control.

amined and the issues on the application of fuzzy con-
trollers for looper control will be discussed. We were mo-
tivated to explore the application of fuzzy looper control
for the following reasons: (1) fuzzy controllers prove to
be robust to unmodeled dynamics and noises; (2) a typical
fuzzy control design does not require a formal model of the
plant or an initial training set; and (3) sufficient knowledge
would be available in the form of linguistic if-then rules by
interviewing a mill operator.

Despite the enumerated advantages, a few problems might
arise when implementing a fuzzy logic controller (FLC).
The translation of good linguistic rules depends on the
knowledge of the control expert. In many cases, redun-
dant or insufficient rules might be specified. Also, trans-
lation into fuzzy set theory is not formalized yet and ar-
bitrary choices concerning the shape or membership func-
tions or T-operators might be made. These uncertainties in
the design of a FLC usually results in a heuristic tuning to
overcome the initial design errors [2]. Therefore, it is very
important to have learning procedures which can tune the
system automatically. The automated FLC tuning was first
proposed by Procyk and Mamdani [5]. Most of the work
in automated FLC tuning has focused on neural nets [1].
However, these approaches lack sufficient generalization
and expressing capability of the acquired knowledge. Fur-
thermore, our experiments indicated long training effort.

In this paper, we will implement a self-tuning method
based on descent technique for tuning membership func-
tions of FLC. Both off-line and on-line tuning will be con-
sidered. This will contribute towards a rapidly tunable FLC
framework for rolling mills. To the best knowledge of the
authors, this is the first on-line tunable FLC framework for



the looper control in rolling mills. Different design issues
will be discussed and practical conclusions will be derived.

2 Looper System Model

The plant is a rolling mill with a looper for tension control
(Fig. 1). The tension is caused by the difference between
the exit speed v1 in stand one and the entry speed v2 in
stand two. The speed difference results in the storage of
the strip length, which can be obtained from the integral of
speed difference:

L(t) =

Z
t

[v1(t)� v2(t)]dt (1)

and the looper height is related to the storage length by

H(t) =
1

�+ �
p
L(t)

: (2)

Here � and � depend on the looper parameters and are de-
termined experimentally. For the simulation purposes, we
adopted� = 0.0001955567 and � = 0.028845145 forL(t)
in mm. The Jacobian of the plant is then given by

J�v1 =
@H(t)

@(�v1)
=

b(v2(t)� v1(t))

2
p
L(t)(�

p
L(t) + �)2 _v1(t)

(3)

3 Design of Fuzzy Controller

The control structure of the looper system is shown in Fig.
2. In this section, we will not consider any tuning aspect
and the focus will be on FLC. The process control can be
described as follows:

x(k) = [x1(k); x2(k)]
T = [e(k)=Kin1;�e(k)=Kin2]

T ;

(4)

e(k) = y(k)� yr(k); �e(k) = e(k)� e(k � 1); (5)

y(k) = H(k); yr(k) = Hr(k); (6)

u(k) = �v1(k) = U [x1(k); x2(k)]: (7)

Here state vector x includes error e(k) and error change
�e(k) as the the inputs to the controller, and the controller
output u(k) is generated using U [x1(k); x2(k)], nonlinear
mapping implemented using fuzzy logic. The input scal-
ing factors are Kin1 and Kin2 respectively. Also, y(k) and
yr(k) are system output and reference command respec-
tively. In the following we describe how U [x1(k); x2(k)]
is implemented.

The realization of the functionU [x1(k); x2(k)] is based on
a fuzzy logic method and consists of three stages: fuzzi-
fication, decision making fuzzy logic, and defuzzification.
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Figure 2: The structure of the lopper control system.
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Figure 3: Membership functions for the state variables: (a)
x1 = e, (b) x2 = �e. The domains for both variables have
been normalized to [-1, 1].

The process of fuzzification transforms the inputs x1(k)
and x2(k) into the setting of linguistic variables which
maybe viewed as labels of a fuzzy set. In this work, the
following linguistic variables were used for e, and �e re-
spectively:

Lx1 = fNB, NS, PS, PBg; Lx2 = fN, Z, Pg: (8)

Here the meaning of each variable should be clear from its
mnemonic: NB (Negative Big), NS (Negative Small), N
(Negative), Z (Zero), P (Positive), PS (Positive Small), and
PB (Positive Big). The membership functions of the inputs
to the controller (Fig. 3) were all assumed to be triangu-
lar. The fuzzy partitioning of the Fig. 3 has been based
on normalization and choosing scaling factors by inspect-
ing the operation range. The scaling factor is based on the
expert knowledge and can be rapidly adjusted by means of
a few trials. For each input x1 and x2, we assign numbers
�Ai1

(x1) and �Ai2
(x2) using membership functions Ai1

and Ai2 associated with Lx1 and Lx2 respectively. These
numbers will be used for fuzzy decision making which is
described next.

Associated with the fuzzy logic decision process is a set
of fuzzy rules R = fR1; R2; R3; � � � ; R12g. The rules are
given in Fig. 4, where the values in brackets indicate Mam-
dani rules. A singleton rule will have a form of:

Rule i: If x1 is li1 and x2 is li2, then u = wi.
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Figure 4: Fuzzy rule-base.

Here li1 2 Lx1 , and li2 2 Lx2 are set of linguistic terms at-
tached to x1, and x2 respectively. Also, wi is a real number
associated with the singleton controller which is a special
case of Takagi-Sugeno controller [7] with all coefficients
of higher order equal to zero. Fuzzy rules were devel-
oped heuristically to facilitate the shaping of the looper’s
response and to simplify tuning of the controller. If a dif-
ferent response is desired for a particular range of input
variables, then only a few fuzzy rules would need to be al-
tered. The ability to modify the controlled response locally,
while not significantly altering the global response, is an at-
tractive feature of fuzzy control, in particular from learning
point of view. The isosceles triangles, used for the mem-
bership functions, could be characterized by their center
and width. For instance, membership function A ij could
be expressed by its center aij and the width bij . Therefore,
the grade of membership for Aij , denoted by �Aij

, could
be obtained from

�Aij
(xj) = 1�

2 j xj � aij j

bij
; j = 1; 2: (9)

Given a pair of e(k) and �e(k), each relevant rule first
assigns �Ai1

(x1(k)) and �Ai2
(x2(k)). Then a value is as-

signed using the production t-norm defined as follow:

�i(x1(k); x2(k)) = �Ai1
(x1(k)) � �Ai2

(x2(k)) (10)

for the ith rule. This process is repeated for all the relevant
rules.

Basically, defuzzification is a mapping from a space of
fuzzy control action defined over a universe of discourse
into a space of non-fuzzy control actions. Several methods
of defuzzification can be considered. The defuzzification
process considered here takes a form of Takagi-Sugeno
output value computation method, given by:

u(k) = U [x1(k); x2(k)] = Kout

Pn

i=1
�i(x1(k); x2(k))wiPn

i=1
�i(x1(k); x2(k))

;

(11)
where Kout is a scaling factor, and wi is a real number as-
sociated with the consequent part of the rule (or the center

of relevant membership function of the output in Mamdani
rule-base).

4 Tuning Algorithm

Tuning FLC is a very difficult task as it has more parame-
ters to be tuned than its non-fuzzy counterparts. It is pos-
sible to tune rules, operators, and/or membership functions
(MFs). In this work, we will focus on MF tuning for better
performance. We initially focused on conventional multi-
layer perceptron using backpropagation algorithm [6] for
tuning MFs. However, the results were not encouraging
with respect to convergence and speed of tuning. There-
fore, we focused on descent methods [4]. The tuning al-
gorithm presented here is relatively simple and fast for on-
line tuning. The objective function to be minimized is de-
fined as:

E(k) =
1

2

X
k

[y(k)� yr]
2 (12)

with y(k) as the system output in the kth instance. It can
be easily shown that the learning rules can be expressed as:

aij(k + 1) = aij(k)� ka
@E(k)

@aij(k)
(13)

bij(k + 1) = bij(k)� kb
@E(k)

@bij(k)
(14)

wi(k + 1) = wi(k)� kw
@E(k)

@wi(k)
(15)

where ka, kb, and kw are learning coefficients. The gradi-
ents in equations (13), (14), and (15) can be derived using
equations (9) to (11).

@E(k)

@aij(k)
=

�i(x1(k); x2(k))Pn

i=1
�i(x1(k); x2(k))

�	1; (16)

@E(k)

@bij(k)
=

�i(x1(k); x2(k))Pn

i=1
�i(x1(k); x2(k))

�	2; (17)

@E(k)

@wi(k)
=

�i(x1(k); x2(k))Pn

i=1 �i(x1(k); x2(k))

X
k

Jke(k); (18)

	1 =
X
k

Jke(k)(wi(k)� y(k))sgn(xj(k)� aij(k))

�

2

bij(k)�Aij
(xj(k))

; (19)

	2 =
X
k

Jke(k)(wi(k)� y(k))
1� �Aij

(xj(k))

bij(k)�Aij
(xj(k))

: (20)



Here Jk = (@H
@u

)k is the Jacobian. The summation
P

k

is for off-line learning which uses the summation of mea-
surements at the discrete instances after the end of control
cycle. No summation

P
k

is required in the above equa-
tions for on-line learning. In our simulations, we will use
discrete linearized Jacobian instead of (3), defined as

Jk =
y(k)� y(k � 1)

u(k)� u(k � 1)
(21)

or its sgn defined by:

sgn(Jk) =

�
1 if Jk > 0
0 otherwise.

(22)

The training procedure works as follows:

step 1. Initiate the inference rules and membership func-
tions.

step 2. Calculate y, x1, and x2 using (2) and (4)-(6).

step 3. Calculate Jacobian using (3), or (21), or (22).

step 4. Update the membership functions and singleton
values using (12) to (18).

step 5. Calculate the control output using (7). Go to Step
2.

5 Simulation Results

Simulations were run to verify the effectiveness of the pro-
posed method. The simulation parameters were chosen to
be: v1(0) = 7000 mm/s, v2 = 7000 mm/s, Hr = 200 mm,
�H(0) = 50 mm, and �T = 0.05 s. The learning coeffi-
cients were determined after experiments: ka = kb = 0:1,
kw = 0:01 for off-line tuning, and ka = kb = 0:002,
kw = 0:005 for on-line tuning. The scaling factors were
chosen to be: Kin1 = 60, Kin2 = 10, and Kout = 50. It
was observed that input-output scaling has a drastic effect
on the control performance. We will leave the presenta-
tion of these results to another publication for the sake of
brevity. The initial values of [a, b] for the membership
functions of e were: NB: [-1.00, 1.20]; NS: [-0.40, 1.00];
PS: [0.40, 1.00]; PB: [1.00, 1.20]; and those for �e were:
N: [-0.95, 2.00]; Z: [0.00, 2.00]; P: [0.95, 2.00]. Both
Mamdani and singleton type rules were examined and in-
dicated similar performances. For brevity singleton rules
are demonstrated in these simulations. Also the initial val-
ues of output singletons (w1 - w12) were: [1.00, 0.70, 0.55,
0.3.0, 0.55, 0.30, -0.10, -0.35, -0.10, -0.35, -0.70, -1.00].

The results are shown in Figs. 5 to 10. The dotted and solid
line represent the responses of fuzzy logic control without

tuning (FLC) and with tuning (TFLC) respectively. Several
cases were studied under different conditions as follows.
(C1) Off-line learning, Jacobian model.
(C2) On-line learning, Jacobian model.
(C3) On-line learning, linearized Jacobian model.
(C4) On-line learning, Jacobian sign model.

Off-line vs on-line learning. For the off-line learning,
the parameters of the membership functions are tuned after
each control cycle, while in on-line learning, the parame-
ters are tuned after each time step. The results are shown
in Figs. 5-6 which indicate lower errors when the control
is tuned. Also, it is shown that off-line learning provides
lower undershoots than on-line learning. As it might be
expected, most of the changes affect the neighborhood of
the Zero membership functions. For instance, in (C1) the
tuned values of [a, b] were: NS: [-0.44, 0.98], PS: [0.05,
0.94] for e; and and N: [-0.93, 2.00], Z: [-0.93, 2.00] for
�e. For the same case, noticeable changes in output sin-
gletons was only for w6 which changed to 0.33. Similarly,
in (C2) the tuned values of [a, b] were: NS: [-0.40, 0.99],
PS: [0.39, 1.00] for e. However, the changes in singleton
values were more dominant than (C1). That is: w2 - w4

changed to 0.69, 0.51, and 0.27, and w 7, w8 were tuned to:
-0.19, and -0.36 respectively.
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Figure 5: Comparison of step responses with FLC (dotted)
and TFLC (solid) under (C1).

Effect of plant Jacobian. The plant Jacobian affects the
tuning algorithm. Due to the difficulty of providing true Ja-
cobian, approximations of Jacobian are used. A linearized
model of the plant Jacobian (21) could provide an easy-
to-calculate approximation. Also, in order to improve the
stability of the system, we examined the sign of linearized
Jacobian (22) for parameter tuning. The results are shown
in Figs. 6 to 8. It was concluded that the sign of linearized
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Figure 6: Comparison of step responses with FLC (dotted)
and TFLC (solid) under (C2).

Jacobian could also provide good performance.
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Figure 7: Comparison of step responses with FLC (dotted)
and TFLC (solid) under (C3).

Disturbance rejection. To study the effectiveness of the
proposed system in disturbance rejection, a step distur-
bance in setting of exit speed of strip in stand one (v1) was
introduced at t = 3 sec. As it is shown in Fig. 9, tuned
controller was capable of canceling the drop caused by the
disturbance. A comparison with commonly used PID con-
trol was also made. The PID gains have been tuned to give
optimum response: KP = KD = 5, KI = 1. When the
plant parameters � and � were changed by 20% and 45%
respectively, PID control became unstable (Fig. 10). How-
ever, Fuzzy control demonstrated a steady performance.
Self-tuning was achieved using a Singleton-based control
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Figure 8: Comparison of step responses with FLC (dotted)
and TFLC (solid) under (C4).

with on-line tuning. Finally, inspection of Fig. 10 shows
that self-tuning Fuzzy control, in comparison with PID and
Fuzzy controls, provides lower steady-state error and sta-
ble behavior.
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Figure 9: The effect of step disturbance on the responses
of FLC (dotted) and TFLC (solid) under (C3).

6 Conclusions

In this paper, a fuzzy logic controller was proposed for
looper control of rolling mills. The proposed system in-
corporated a learning algorithm for fine-tuning member-
ship functions and singleton outputs. The effectiveness of
the proposed system was verified by the simulation results.
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Figure 10: Comparison of the performances of PID, FLC,
and TFLC under (C3) with disturbed plant parameters.

It was shown that the proposed system is more robust to
parameter uncertainties and noises, when compared with
classical PID control law. The incorporated tuning algo-
rithm had the advantage of high-speed learning capability,
yet it was effective for improving the control performance.
Several practical issues were discussed and conclusions
were made regarding different design options. Among
them were: off-line vs. on-line tuning, and different Ja-
cobian approximations.
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