
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013 1425

Active Queue Management: A Survey
Richelle Adams, Member, IEEE

Abstract—Since its formal introduction to IP networks in 1993
as a viable complementary approach for congestion control, there
has been a steady stream of research output with respect to Active
Queue Management (AQM). This survey attempts to travel the
trajectory of AQM research from 1993 with the first algorithm,
Random Early Detection (RED), to current work in 2011. In this
survey we discuss the general attributes of AQM schemes, and
the design approaches taken such as heuristic, control-theoretic
and deterministic optimization. Of interest is the role of AQM
in QoS provisioning particularly in the DiffServ context, as well
as the role of AQM in the wireless domain. For each section,
example algorithms from the research literature are presented.

Index Terms—Active Queue Management, AQM, quality-of-
service, QoS, congestion control, differentiated services, DiffServ,
wireless networks

I. INTRODUCTION

THE TRADITIONAL role of Active Queue Management
(AQM) in IP networks was to complement the work

of end-system protocols such as the Transmission Control
Protocol (TCP) in congestion control so as to increase network
utilization, and limit packet loss and delay. During the earlier
days of IP networks, the network traffic consisted mainly of
bulk data transfers. The volume of web traffic was gradually
increasing. The first formal and full proposal of an AQM
scheme was Random Early Detection (RED), introduced by[1]
in 1993. What followed was a plethora of AQM schemes pro-
posed in the research literature, many of which sort to improve
upon the RED algorithm itself in one aspect or another. There
were, however, AQM schemes that were completely new.
Additionally, there was also work that consisted primarily of a
rigorous analysis of RED and which consequently highlighted
its drawbacks.

The design of RED and many of its variants, though
intuitive, has been, for the most part, heuristic. As a result,
parameter-tuning has been one of their main limitations. Some
researchers discovered that by applying more formal and
rigorous techniques as found in control theory (whether it be
classical control, modern control, optimal control or nonlinear
control), this limitation may be alleviated if not eliminated.
Other researchers have also invented AQM schemes based
upon optimization techniques in the context of congestion
control.

With the increasingly rapid march to convergence, i.e.,
data, voice, video and mobility, supported by a common IP
platform that is shared by a growing heterogeneous set of
communication technologies, the primary focus has shifted
from congestion control (though still very important) to the
more holistic theme of quality-of-service (QoS) provisioning.

Manuscript received 31 January 2012; revised 20 May 2012 and 19 August
2012.

R. Adams is with the Department of Electrical and Computer Engineering,
The University of the West Indies, St. Augustine Campus, Trinidad and
Tobago (e-mail: Richelle.Adams@sta.uwi.edu).

Digital Object Identifier 10.1109/SURV.2012.082212.00018

The main thrust of the latter is to have the network simul-
taneously and efficiently service the diverse requirements of
the different types of traffic flows. In this new (and broader)
context, the role of AQM is to serve as a mechanism for
service differentiation. In the DiffServ architecture, in par-
ticular, it works in conjunction with other QoS mechanisms
such as traffic conditioning and packet scheduling so that their
combined effect would be to, in an average sense, distinguish
one network service from another in terms of overall end-to-
end delay, delay variation or jitter, packet loss and bandwidth
according to mutually agreed upon service level agreements
(SLAs).

Based on the current specifications for DiffServ, the main
candidate AQM scheme is based on RED (specifically RIO-C
(RED In/Out and Couple)) having a different set of parameter
values for each drop precedence. However, it may be beneficial
to capitalize on the vast AQM research that already exists,
exploring those feasible alternative schemes and approaches
that can be used in the DiffServ context so as to improve
network performance and QoS.

The purpose of this literature survey is to revisit AQM
research over the past 19 years (1993 - 2011) and outline the
different considerations in and approaches to AQM design,
taking into account their disadvantages and limitations. We
would also look at some of the different schemes proposed
for the DiffServ context and wireless context.

In the next section of this survey we recall four previous
surveys conducted on Internet congestion control and AQM.
There we also outline the value this survey attempts to bring
to the research community. We propose an AQM taxonomy
in Section III. In Section IV we provide a brief overview of
AQM and its motivation for use. In Section V we discuss
the RED algorithm and the various analyses conducted with
regard to its performance. There we also provide a summary of
RED variants and other heuristic schemes. We explore control-
theoretic approaches to AQM design in Section VI together
with optimization approaches in Section VII. We then examine
in Section VIII the role of AQM in multi-service networks
(particularly those that employ DiffServ) and look at AQM
schemes that have been already devised for that context. With
the increasing popularity of wireless and particularly mobile
networks, we also look at the role AQM can play in these
networks in Section IX. We discuss some challenges and gaps
in AQM research in Section X and therein we make some
recommendations. We conclude in Section XI.

For ease of reference, Table I provides a list of terms that
will be commonly used in this survey. Their meanings will
also be repeated within the main body of the text.

II. OTHER SURVEYS

Yang and Reddy[2], in 1995 proposed a comprehensive
framework or taxonomy that encompassed major aspects of

1553-877X/13/$31.00 c© 2013 IEEE

1426 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE I
AQM NOMENCLATURE USED IN THIS SURVEY (UNLESS OTHERWISE

STATED)

congestion control in packet-switched networks. They used
criteria from control systems and classified congestion control
algorithms that existed up to that time. Though there was
no explicit mention of the term “Active Queue Management”
in that article, one can place AQM under the categorization:
closed loop control with global, responsive, explicity feedback,
based on their explanations about the different categories.
For added perspective, the taxonomy of Yang and Reddy is
reproduced in Figure 1 with the position of AQM inserted.

In their 1999 survey[3], Labrador and Banerjee primarily
and comprehensively discussed packet dropping policies for
asynchronous transfer mode (ATM) networks. They also dis-
cussed three AQM schemes for IP networks, namely RED,
RED In/Out (RIO) and Flow RED (FRED) that had been
proposed in the research literature at that time. They compared
RED and RIO in terms of fairness.

Router-based AQM schemes which treated with the unfair-
ness issue between responsive TCP flows and unresponsive,
aggressive UDP flows were discussed in the 2004 survey
by Chatranon, Labrador and Banerjee[4]. They compared, in
sufficient detail, FRED, Balanced RED (BRED), Stabilized
RED (SRED), Stochastic Fair Blue (SFB), BLACK, CARE
and CHOKe in terms of how these AQM schemes dealt with
unresponsive flows. In this survey, an entire section was ded-
icated to the explanation of TCP flow and congestion control
mechanisms and TCP models. The authors also provided a
classification system for router-based AQM according to the
fairness criterion.

“Advances in Internet Congestion Control” by Ryu, Rump
and Qiao[5] was another survey, published in 2003, that treated
with AQM. The article discussed both aspects of congestion
control, i.e., congestion recovery and congestion avoidance.
They explained the TCP mechanism and provided further
references to that end. However, the real emphasis in this sur-
vey was active queue management. They presented the RED
operation; briefly discussed Adaptive RED (ARED), Dynamic
RED (DRED), SRED, BLUE, and AVQ; and summarized
control-theoretic analysis and design. They then elaborated on
three main problems with AQM proposals: parameter tuning,
insensitivity to input traffic load variation, mismatch between
macroscopic and microscopic queue length behaviour and their
implications. They also presented some open issues then and
which are still open today, such as interoperability and robust-
ness, stability, convergence and implementation complexity,
fairness, assumptions of network dynamics, UDP traffic and
link characteristics.

What value does this survey bring? It is intended to expand
on what was expounded before and provide an update on
the position of router-based AQM work for IP networks up
to 2011. Therefore, to provide the reader a more complete
perspective on AQM research, especially with regard to the
motivation behind the various proposals, we reiterate the
RED algorithm, and its control theoretic analysis. We attempt
to map the shortcomings of RED with AQM schemes that
were consequently developed. We summarize additional AQM
schemes proposed in the research literature. We discuss more
advanced control techniques that have since been applied
to AQM, e.g., Fuzzy control. We also propose a detailed
classification system specific to router-based AQM schemes.
Additionally, we discuss AQM schemes used and developed
in QoS architectures such as DiffServ and also schemes devel-
oped for the wireless context. We also present a performance
evaluation framework for the comparison of AQM schemes,
both present and future.

III. PROPOSED AQM TAXONOMY

There are a number of ways by which different AQM
schemes can be classified and compared. They can be com-
pared in terms of their mechanisms of operation. These include
the type of congestion indicator used, the manner in which
their parameters are tuned, the methods by which they perform
flow differentiation if any, their control function, and the
nature of their feedback signal to the source algorithms.
They can also be classified according to their context of
use, whether it be in best-effort networks or networks with
differentiated services, wired networks or wireless networks.
Another schema for comparison could be by the performance
of the AQM according to specified criteria (e.g., fairness,
packet loss, throughput, delay, delay variation).

A. Classification by mechanisms

Figure 2 shows a classification according to AQM “Mech-
anisms”. AQM proposals, so far have been queue-based,
rate-based, load-based, packet-loss-based or a combination of
these, and of which the average (usually exponential weighted
moving average (EWMA)) or instantaneous samples were

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1427

Fig. 1. AQM as part of the congestion control taxonomy

used as the congestion indicator. Some proposals updated
the EWMA on each packet arrival while others performed
the update at constant, predetermined intervals. This will be
discussed in greater detail in Section IV.

Early AQM schemes such as RED had their parameters stat-
ically configured. Based on the disadvantages associated with
this, many subsequent proposals attempted dynamic parameter
configuration based on time-varying network conditions such
as changing network load (i.e., number of flows). Additionally,
it was realised that non-responsive flows and an increasing
volume of short-lived flows posed a risk to TCP flows.
Therefore, some AQM schemes had built-in some form of
flow differentiation that was simply binary. However, as the
years progressed, especially in the context of QoS realization,
multi-class flow differentiation was recommended.

The control function is another differentiator among AQM
approaches. It could have been derived heuristically, via
control theory, or by optimization. As the years progressed,
more sophisticated control algorithms have been put forward
as plausible AQM schemes. These have been rooted in linear
control, nonlinear control, optimal control, robust control, to
name a few. And, as will be discussed later, others have
sought to tackle the delay compensation issue via these means.
What has been found though, is that many of the control-
theoretic schemes have been exclusively TCP-centric with
the TCP model being only that of the TCP’s congestion
avoidance phase. It may be necessary to revisit the “Plant”
model for the control question so as to include, for example,
responsive applications that use UDP as their transport layer.
Optimization approaches have also been explored but mostly
on the deterministic optimization front. So far, there has been
found no proposals based on stochastic optimization.

The final AQM mechanism that may distinguish one AQM
scheme from another may be the feedback signal used. Some

have been designed exclusively for ECN marking while others
can use either the implicit packet dropping or the explicit ECN
marking depending on the network capability. Whether ECN
or packet drops are used, however, the decision to mark or
drop a packet could be random or deterministic. For the latter,
typically a virtual queue approach is adopted. In Table II,
examples of AQM schemes according to the classification just
discussed are presented.

B. Classification by context of use

It may be argued that a proposed AQM scheme should
be robust regardless of the context of use. So, for example,
an AQM scheme created in the context of wired networks,
should work equally well in the wireless domain. However,
different contexts may have peculiar requirements and that
may even be at odds with those of other contexts. With
this in mind, we present in Figure 3 another means of
classification among AQM schemes, i.e., according to context.
The baseline differentiator would be whether or not they
originated from the “best-effort” network philosophy versus
the differentiated-services network paradigm that attempt to
provide QoS guarantees. Within each of these two broad
contexts, the AQM scheme may have been intended primarily
for wired networks, while another AQM for wireless networks
- which have their own idiosyncrasies. Within the wireless
domain, the network under investigation could be adhoc or
infrastructure-type. In the latter case, the AQM scheme may
be placed at the junction of the air-interface and core, or
exclusively in the core. Additionally, some AQM schemes
may be built for the uplink, downlink or both. However, the
predominant focus of study has been found to be the downlink
case. When examining AQM schemes in the wireless context,
especially at the air-interface, one must be especially cognizant
of the air-interface standards or wireless technologies used,

1428 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 2. AQM classification by mechanisms

since these determine the way radio resources are shared
among traffic flows. In all cases, wired and wireless, the type
of traffic used in the performance evaluation can also be used
to refine the classification among AQM schemes.

C. Classification by performance criteria

Performance criteria for the comparison of AQM schmes,
according to Figure 3, can be divided up into three main
categories: steady-state behaviour, transient behaviour and
complexity. The sub-fields for the latter two classes, though
often used in the research literature, tend to be too nebulous
in definition for the purpose of rigorous and independent
comparison. A performance evaluation framework will be
proposed in Section IX.

IV. AQM IN GENERAL

A. Congestion

According to [6], congestion occurs when the total demand
for a resource, e.g. link bandwidth, exceeds the capacity of
the resource. Put another way, congestion occurs when the
arrival rate at a link interface exceeds the departure rate
out of the link interface[7]. Results of congestion include:
high latency in data transfers; wasted resources due to packet
losses; and in extreme cases even congestion collapse, for
which there is essentially no data transfer through the network:
the throughput drops to zero and the response time tends to
infinity[8]. The aim would then to be to control congestion or
more ideally avoid congestion.

According to [8], congestion control seeks to rapidly bring
the network out of an already congested state, whereas conges-
tion avoidance attempts to keep the network at an optimal state
(low delay, high utilization) and out of congestion in the first
place. Even though there is congestion avoidance in a network,
congestion control is still necessary for network recovery in
the event congestion avoidance fails. On the other hand, a
network with congestion control need not have congestion
avoidance, however, optimality may never be realized.

B. Endpoint congestion control

Initial work in the area of congestion control concentrated
on those algorithms and protocols employed at end-systems,
e.g., the Transmission Control Protocol (TCP), a transport
layer protocol. In general, congestion control algorithms could
exist at the application layer or transport layer, but more so at
the latter.

There are limitations to endpoint congestion control[8], [9],
[10]. For the most part, endpoint congestion seeks to cure
the network after congestion has already occurred[8]. In other
words, it is reactive[11]. Also, there is a time lag between
the packet drop event at the router and the source detecting
this loss, during which the source will still continue to send
at the high transmission rate that the network cannot support,
leading to a high number of packet drops[12], [13]. There
is the additional issue of bursty traffic. In fact, FTP, Web
traffic and video traffic are bursty and selfsimilar in networks
of all scales (e.g. Ethernet, WAN)[14]. So to absorb this
burstiness and maintain high link utilizations, large buffers at

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1429

TABLE II
EXAMPLE AQM SCHEMES CLASSIFIED BY MECHANISMS

the routers would have to be used. But large buffers incur
high queuing delays especially during congestion. Smaller
buffers will reduce the queuing delays but the number of
losses will rise and for the case of drop-tail queues link
utilization will decrease dramatically. Essentially, one cannot
simultaneously have high link utilization and low queueing
delays[9]. Therefore a reasonable tradeoff is required between
these two performance measures, i.e., high link utilization
and low queueing delay[15]. This tradeoff should really be
regarded as a matter of policy[9]. The limitations of endpoint
congestion control are magnified by the growing number of
multimedia and peer-to-peer applications, and these demand
quality-of-service (QoS) guarantees in terms of delay, delay
variation, loss volume and bandwidth availability. Current end-
point congestion control cannot fully provide such guarantees
on its own. See also[16], [17]. In fact, it has been found
that TCP has been even detrimental to the performance of
these applications due to its Additive-Increase-Multiplicative-
Decrease (AIMD) operation. Therefore, although attempts to
improve endpoint congestion control algorithms themselves
continued, means by which more efficient assistance from
the network to counter congestion needed to be explored[10].
This is where algorithms such as Active Queue Management
(AQM) and packet (or queue) scheduling come to the rescue.
(For a very comprehensive survey on TCP congestion control,
see [18].)

The conventional wisdom at the time, was to keep the core
network flexible and simple[19], therefore all the complicated
tasks such as congestion control should be implemented in the
end-points only. However, according to [19], more advanced
and powerful hardware technology now exists and this makes
it possible for the network (e.g. routers) to perform more
complex tasks.

C. Network algorithms

At this point, it is important to distinguish be-
tween “scheduling algorithms” and “queue management
algorithms”[10], [20], [21], [22]. Scheduling algorithms (e.g.,
Fair Queueing) guarantee fairness or priority weightings in
terms of bandwidth allocations among flows. The buffer at
the output of each router is partitioned into separate queues,
and each of these queues is assigned to a particular flow or
aggregate of flows[23]. Therefore each flow or aggregate of
flows is isolated from the other and cannot degrade the per-
formance of the other. The scheduling algorithm then decides
the order in which packets from each flow (or aggregate) are
transmitted on the link. However, these scheduling algorithms
require the maintenance of per-flow state or per-aggregate
state. On the other hand, queue management is the process
by which a router decides when to drop packets and which
packets to drop at its output port when it has become or

1430 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 3. AQM classification by context and performance

is becoming congested[24]. Queue management algorithms
are comparatively more simple to implement since, for the
most part, they can be implemented with a single First-
In-First-Out (FIFO) queue for all flows and, for the most
part, maintain no per-flow state. They attempt to approximate
fairness, by appropriately dropping packets so as to limit
network congestion and maintain suitable queue lengths[10],
[20]. However, on their own, queue management techniques
cannot effectively differentiate network flows as their schedul-
ing counterparts[16].

1) Droptail queues: Traditional FIFO droptail queues were
the only queue types used in the Internet[11]. They are simple
and easily implemented in routers[11], however they exacer-
bate the limitations of endpoint congestion control schemes
such as TCP.

Droptail queues cause ’lock-out’[14], [11], by which a small
number of flows can obtain a disproportionate share of the
link bandwidth, blocking other competing flows. Additionally,
when a droptail queue becomes full, it simply drops all
incoming packets thereafter. Thus, it will signal congestion
to the sources only when congestion is already in full course
(i.e., high packet drops and high queueing delays). The packet
drops can also be bursty leading to network instability[25].
There is also the problem of global synchronization of TCP
flows. Because the droptail queue drops all incoming packets
when the queue becomes full, there is high correlation among
these packet drops. It is possible that a large number of flows
(to which these dropped packets belong) will be affected,
and the TCP mechanisms managing these flows will all

simultaneously reduce their congestion windows and hence
their sending rates[26]. Therefore, there is huge oscillation
between queue overflow and underflow and this contributes
to queue-delay variance (also known as jitter). Also a single
flow may experience multiple consecutive packet drops and
will consequently repeatedly reduce its sending rate. Long
queueing delays can be incurred at droptail queues as they fill
up, especially for large sizes. This, together with jitter, makes
it unacceptable for real-time applications which are delay
sensitive. Additionally, jitter interferes with the TCP self-
clocking mechanism as the spacing between acknowledgement
packets (ACKs) will vary more, causing TCP to become even
more bursty[27].

Droptail queues, due to their packet-dropping policy can
penalize competing flows with longer round-trip-times more
than those with shorter round-trip-times[28]. The growth of
TCP window size (and hence sending rate) is inversely pro-
portional to the round-trip-time[29]. Therefore, a flow with a
small round-trip-time will have its throughput increase more
quickly and will take up much more slots in the queue than
a flow with a longer round-trip-time. However, when the
queue actually becomes full, all flows will experience packet
drops regardless of how much of the queue they presently
occupy. In all, flows with larger round-trip-times will suffer
more by droptail policy. Droptail queues also penalize bursty
connections[28].

2) Active Queue Management (AQM): Active Queue Man-
agement (AQM) complements the endpoint congestion control
with the aim to prevent congestion[8].

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1431

AQM, unlike the droptail queue, is a proactive congestion
control scheme by which the network sends information to the
sources when it detects incipient congestion. The information
can be sent explicitly in the form of Explicit Congestion
Notification (ECN) marks or implicitly by packet drops[14].
As the congestion level increases the AQM scheme intensifies
its feedback to the TCP endpoints, i.e., by marking or dropping
more packets. The sources, in response to the congestion
notifications, reduce their transmission rates so as to prevent
queue overflow and limit the losses that can result[30], [11].
Therefore, it is imperative that the AQM quickly detect
congestion and provide rapid and effective feedback to the
sources[11]. Because the AQM algorithm acts within a router,
(the place where the congestion is actually taking place,) it
will obtain more accurate congestion information faster than
the traffic sources[11]. Additionally, even though the source
may not be responsive (e.g. constant-bit-rate video, UDP) to
the congestion notifications by the AQM, the AQM can still
provide some degree of congestion control at the router[11].
However, because AQM was designed to work with purely
responsive flows[31], [32], the effect of non-responsive flows
on AQM performance should be understood[33].

Another plausible benefit of AQM is that by its random
dropping (or marking) of packets before buffer-overflow oc-
curs, it can possibly overcome the global synchronization
problem experienced when droptail queues are instead used.
It is also believed that random dropping improves fairness
among flows[26]. AQM has been recommended by the Internet
Engineering Task Force (IETF)[14], [26], [34], [35], [36]. See
RFC2309.

In order to detect link congestion, AQM may utilize any
combination of the following: queue length, input rate, and
events of buffer overflow and emptiness[15]. Therefore an
AQM can allow temporary buffering of excess load so that
good link utilization be maintained but then it can trigger
congestion notifications when this condition persists (e.g.,
queue length is too high for too long a period) so as to
maintain low queueing delay[28], [37]. It should be noted
that the actual buffer capacity should be sufficient to absorb
data bursts, but overall, a small queue length should be
maintained[11].

An AQM scheme, besides providing high link utilization
and low queueing delay that is consistent, should provide
fairness among flows, by sending congestion notifications
fairly to the various sources[28]. Because of its proactiveness
an AQM has been an integral QoS mechanism. For example,
in DiffServ, a scheduler divides the bandwidth among classes,
but within a class, an AQM is used to prioritize its flows in
terms of drop precedence.

So besides the major objective of providing congestion
control (and more specifically congestion avoidance)[38], [32],
[39], two more specific goals of an AQM emerge: (1) to
provide predictable queueing delay and (2) to maximize link
utilization[40]. These two goals are conflicting[8], [41], [34].
However, AQM can realize a solid compromise between the
two[15]. By keeping the queue length around a target that is
small, one can realize low and predictable queueing latency,
and can make the network performance independent of traffic
load (i.e., the number of connections)[40], [30]. Also, by

stabilizing the queue length around a low value (with enough
extra buffer space to absorb transient bursts) one can realize
high link utilization since unnecessary packet drops will not
occur[40], [35], [42], [41], [43].

D. AQM components

In general, queue management schemes comprise three
components: (1) the congestion indicator, (2) the congestion
control function and (3) the feedback mechanism[30], [41],
[32], [44]. See Figure 4. The congestion indicator is used by
the queue management to decide when there is congestion
whereas the congestion control function decides what must be
done when congestion is detected. The feedback mechanism
is the congestion signal used to alert the source to alter its
transmission rates. As an example, the congestion indicator
for droptail queues is the instantaneous queue length, the
congestion control function is to drop all incoming packets
with probability of one (1) when the queue becomes full,
and the congestion signal is dropped packets. For Active
Queue Management these three components are significantly
improved over droptail so as to not be reactive to congestion
but rather proactive. Here, we examine more deeply the
implications of the choice of congestion indicator, control
function and feedback signal in AQM.

1) Congestion indicator: The aim of rate-based AQM is to
keep the packet arrival rate at the queue at a target value, say,
at some percentage of the link capacity. It indirectly controls
queue length[14]. On the other hand, a queue-based AQM
focuses on the (instantaneous or average) length of the queue
[40] and its control aim is to keep the queue length at a
target value[45], [46], [34]. (It does not directly control the
arrival rate at the queue.) There are AQM schemes which use
a combination of both arrival rate and queue length to measure
congestion at the queue. There are relative merits and demerits
among the measures.

The early AQM algorithms were based solely on the length
of queues[15], but as AQM research progressed, there were
questions as to the efficacy of using only queue length as con-
gestion indicators, if at all. This issue is examined extensively
in [34].

According to [34], a queue-based AQM algorithm will
inflict a large dropping probability on flows when the queue
length is large, even though the net-inflow rate at that time
might be quite low (i.e., the arrival rate is far less than the
drain rate and the queue is draining rapidly). This will result
in unnecessary packet losses which in turn can cause low link
utilization. Conversely, when the queue is small, the queue-
based AQM algorithm will drop a much smaller fraction of
packets than it should, if the net-inflow rate itself, is quite high,
thus making the AQM inept at detecting incipient congestion.
If, however, the net-inflow rate were simultaneously taken
into account with the queue length, the AQM response to
congestion would be faster and the link utilization will not
be lowered[34].

Although for queue-based AQM schemes the queue length
is controlled to a target value, it is still non-zero and therefore
can still incur a non-zero queueing delay and even some
variations in that queueing delay. Additionally, even though

1432 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 4. Congestion control in the Internet

a target queue length is set for queue-based AQM, how close
that target is to reality, is highly load dependent[14].

Based on the aforementioned disadvantages, one may be
tempted to use rate information only, however, as cautioned
in [34], this can lead to instability. So queue length is still
an important measure (although insufficient on its own). It
provides a more stable indication of congestion and can
provide a direct QoS guarantee of maximum queue latency. It
is suggested in [14] that although rate is a better congestion
indicator than queue length, the combination of both queue
length and rate information can provide a tradeoff between
stability and responsiveness for the AQM. Also rate-based
AQM is more favoured because it is easier to extend to traffic
classes[47]. It was suggested by [34] that queueing delay
be used instead of queue length since it provides a more
meaningful measure to applications than queue length and of
itself is independent of the link capacity. However, what must
be done is to convert the target queue-delay into a target queue
length. It was suggested in [48] that an even more enriched
congestion indicator should be used. It should include the
round-trip time, link capacity and number of sources for delay
compensation between the time the congestion is measured
and the time the source receives the congestion signal. See
also[49], [50].

2) Congestion control function: The congestion control
function is really a marking/dropping probability function
which maps the current level of congestion (as given by
the congestion indicator) to the probability of marking or
dropping the incoming packets[51]. Closely associated with
the congestion control function is the packet marking/dropping

algorithm[26]. Given the probability of packet drop calculated
by the congestion control function, this algorithm actually
determines which packets are actually marked or dropped.
This stage is often ignored (as stated in [26]), but what has
been realised is that for a given marking/dropping probability,
different algorithms can yield different queue variances, loss
and delay.

The type of control function also varies in terms of the
number of parameters employed. However, although more
parameters can mean a more fine-tuned control, it can be
an impossible challenge to know exactly how to adjust them.
Also, one should note that different control function types may
be best suited for different traffic environments. (See[51] for
more details.)

3) Feedback mechanism: As mentioned earlier, packets can
be dropped (so that, TCP, for example, will infer congestion
through triple-duplicate acknowledgements or retransmission
timeouts) or packets can be ECN-marked (in which case, the
TCP endpoints should be ECN enabled). Although ECN can
prevent “low-latency efficiency collapse”, it was found that
a system using packet dropping instead of ECN marking is
more stable[52]. This is because it takes longer for the source
to detect packet drops (after triple-duplicate ACK or timeout)
than ECN marks.

E. AQM design - heuristic versus theoretic

So far we have looked at the different options that have
been used or suggested for the different AQM modules,
i.e., congestion indication, congestion control function and

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1433

congestion signal. We now look briefly at how the control
function was acually designed, i.e., whether heuristically or
analytically.

1) Heuristic design: Quite a number of AQM schemes have
been built on heuristics and have performed respectably well
especially when compared to droptail queues, yet many of
their parameters must be manually tuned according to differing
network conditions[31]. The effects of these parameters are
not fully understood and in some cases can quickly drive the
system into instability (and hence low utilization) or can cause
quite sluggish behaviour (i.e., the system slowly converges to a
new operating level when the traffic evironment changes)[43].

2) Theoretic design: The aim of the control theoretic
approach, however, is to provide a more stable and faster
responding system[7].

Heuristic design depends heavily on intuition[43]. However,
not always is intuition reliable. Since there is no cohesive for-
mulation to support the tuning of the parameters[48], discrete-
event simulation is crucial to the validation of heuristic
designs[53]. By modeling one can gain much deeper insight
into the system’s behaviour (for a wider range of possible
scenarios), and more specifically into the interaction of the
endpoint congestion control algorithm with AQM[25], [48].

a) TCP modeling: For the primary purpose of congestion
control, the AQM should work with responsive source algo-
rithms, such as TCP. Therefore, the AQM cannot be designed
in isolation. The AQM design must incorporate the closed-
loop characteristic of the source algorithm[32].

Therefore, the typical theoretical approach thus far in AQM
design is to first develop a fluid model for TCP and then
use control theory to design the AQM. Fluid models have
been derived for the dynamics of long-lived flows using
TCP (e.g., FTP connections), modified for the inclusion of
unresponsive UDP flows, and also for short-lived flows such as
Web traffic[33]. So far the fluid models used for AQM design
attempt to capture the TCP AIMD process (i.e., the congestion
avoidance phase) while ignoring for example, slow-start, and
retransmission timeouts with exponential back-off (which are
important to characterising TCP behaviour with short-lived
flows (see[54])). According to [17], the congestion avoidance
phase causes a quasi-periodic oscillation in window-size for
which the duration between loss indications is random and
has a statistical mean[49]. From this we can already infer that
there are limitations to TCP modeling.

For simplicity and mathematical tractability, the develop-
ment of the fluid model first begins by linearizing the non-
linear TCP system around an operating point and assuming
that the system is time-invariant. In other words, the TCP
system is converted into a linear-time-invariant (LTI) system.
(See [55] for the derivation in detail.) For the first case,
i.e., the linearization, problems would arise if the operating
point shifted dramatically during actual system operation. For
the second case, i.e., assuming stationarity, statistical errors
can occur, since TCP is really non-stationary due to the
network conditions changing frequently. It is imperative to
determine how faithfully the TCP fluid model represent the
reality after all these assumptions, and to clearly understand
when will these assumptions hold. Discrete-event simulation is
still necessary (definitely not as much as for heuristic designs)

since it will implicitly take into account the non-linearities,
and by it one can see how major a role these non-linearities
play and if they can or cannot be ignored. In other words,
the simulation validates the model[38], [55]. However the
simulation process is more structured and guided than for
the heuristic case. For the AQM design itself, classical and
modern control theory has been used (see[56], [43], [42],
[49], [11], [55], [46], [48]), as well as robust control methods,
and optimal control and optimization techniques. The control-
theoretic approach to AQM design will be discussed further
in Section VI.

b) Optimization approach: The optimization approach
developed by Kelly et al.[57], [58] and extended further by
Low et al.[59], formulates the congestion control problem as
that of the maximization of an aggregate source utility via an
approximate gradient algorithm[44] subject to network capac-
ity constraints, hence the optimal controller (i.e., the AQM
scheme) from this approach would either optimize source
rates or optimize the congestion measure[56]. According to
[17], it is a global optimization process with the computation
carried out by sources and links in the network (i.e. distributed
computation). From the perspective of optimizing source rates,
actual AQM realizations have been proposed by Kunniyur et
al.[60], [61] using virtual buffers. The main disadvantage of
the optimization approach is that the focus is on steady-state
equilibria, rather than on the transient performance of the
AQM[56]. The optimization approach to AQM design will
be discussed further in Section VII.

Control-theoretic and optimization approaches thus far
do not deal explicitly with fairness and, let alone, QoS
guarantees[62].

Table III summarizes the main advantages, disadvantages
and underlying assumptions of the main types of control
functions used in AQM schemes. Table IV, on the other hand,
provides a list of the AQM schemes mentioned in this survey,
sorted according to the AQM control function, as well as
according to the differentiated services and wireless contexts
which will be discussed in Section VIII and Section IX
respectively.

F. AQM performance

Besides achieving its main goals of congestion avoid-
ance, predictable queueing delay (that is low), and high link
utilization, an AQM scheme should promote high network
stability, robustness, responsiveness and scalability. In terms
of robustness, it is necessary that the AQM algorithm perform
consistently well under extreme and unfavourable network
conditions, i.e., it should not be sensitive to variations in
network parameters[13]. Robustness can be enhanced when
parameters in the AQM scheme can be dynamically tuned
according to changing traffic load[32]. According to [32],
robustness can increase when the AQM takes into account
the long-range dependence property of the traffic since this
can provide sufficient information to predict traffic intensity.
According to [33], responsiveness is the speed of convergence
to an equilibrium. With regards to stability, the performance
of AQM algorithm should not vary dramatically due to a
sudden change in network conditions. One test of stability is

1434 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE III
COMPARISONS OF DIFFERENT APPROACHES TO AQM DESIGN

the extent to which the queue length varies when, for example,
the number of connections flowing through the queue suddenly
increases. It is imperative to avoid oscillations between queue
overflows and underflows since this surely leads to overall link
under-utilization and variation in queueuing delay. Scalability
is essential, since one would want the AQM to continue to
operate soundly even when the speed and the number of
routers and links have dramatically increased in a network.

1) The ideal AQM: Therefore, an ideal AQM scheme would
achieve stability, robustness, responsiveness, high throughput,
low latency and fairness all at the same time. It would also be
scalable and very simple to implement. To this end such an
AQM scheme will ensure that the following be accomplished:

• It will not unnecessarily penalize bursty flows and will
prevent to a great extent global synchronization[63].
This in turn will translate into lower packet losses and
therefore higher throughputs.

• It should be able to deal with bursts so that packets are
not dropped unnecessarily.

• It should minimize jitter which is due to large oscillations
in queue length. Also, these oscillations are such that the
queue becomes empty quite often. This leads to low link
utilization[42].

• It should be able to work in large delay networks[14].
• It should not introduce additional bias to flows with

smaller round-trip times, since TCP already does this.
• It should be able to work in an environment with mutliple

bottlenecks and should take into account the flows that
are already being controlled by other nodes[64]. It is
suggested by [64] that the AQM controllers within the
network should be cooperative by taking into considera-
tion the congestion status of other nodes in the network.

According to [12] this ideal AQM algorithm will deliver
congestion notifications at a rate so as to keep the aggregate
TCP sending rates into the queue just below the output rate
of the queue. It is suggested by [63] that the congestion
indicator and control function should be adaptive to changes
in the amount and nature of the traffic. The authors of[24]
concede that a practical AQM will not perform optimally in
all scenarios. An AQM scheme, for example, may accomplish
stability at the expense of responsiveness; low-latency at the
expense of ideal throughput; and fairness at the expense of
simplicity.

2) Factors that impact AQM performance: Here are some
factors that will possibly impact AQM performance, as out-
lined by [63]:

• Buffer size and link capacity. These factors tend to be
time-invariant factors which are pre-determined.

• Traffic load and round-trip time: The traffic load (which
is the number of flows) and the RTT change dynamically
with time. The AQM must be robust enough to deal with
such behaviour. In fact, according to [63] an increase in
the round-trip time degrades system stability.

• It was discovered by [26] that the rate-variability within

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1435

TABLE IV
AQM SCHEMES MENTIONED IN THIS SURVEY

and the phase relation among flows impact AQM per-
formance. If window progression of an individual TCP
flow is a smooth process so will be its arrival rate into the
queue. If all the flows entering a queue are uniformly out-
of-phase then AQM performance will not be significantly
impacted, however if they are completely in-synch with
each other then the burstiness will be more intense and
the AQM performance may deteriorate.

• It was shown by [46] that there is a connection between
routing and congestion. Using a term called the routing
matrix gain to mathematically represent topologies, it was
found that the network robustness was inversely propor-
tional to this routing matrix gain. If it were possible to
know a priori the topology of the network in which the
AQM would exist, then the AQM could be tuned to deal
with this potential instability. But, in reality, this could
not be done, therefore there was the question of whether
or not some range of routing matrix gains exists which

can instead be used[46]. Routing affects congestion (and
hence AQM performance) because it determines the path
of queues through which packets must flow. If there are
a number of congested queues along the path, the round-
trip time (and hence the TCP sender’s ability to respond
to congestion) is affected due to varying queue lengths
along the path[46].

• The presence of short-lived flows and unresponsive flows
among the responsive TCP long-lived flows, and even a
mix of TCP variants[29], [14], [13].

• Reverse-path asymmetry. With congestion on the reverse
path, ACK packets can be lost or bunched together (ACK
compression). This in turn increases the burstiness of
TCP[9].

Quite a number of performance metrics have been used
and presented in the literature for evaluation and comparison
of AQM schemes. It is implied by [36] that the lack of

1436 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

consistency in evaluating AQM may have been the reason that
there had been very little deployment in real networks. To this
end a benchmarking framework for AQM was proposed by
[36]. But it must be understood that even though a standard set
of performance criteria were established, the task of comparing
AQM algorithms will still be a daunting one, especially for
the heuristic schemes. Nevertheless, whatever performance
comparison is attempted, it is customary practice to use the
simple droptail queue as the baseline[52]. More about the
performance evaluation of AQM schemes will be addressed
in Section X.

G. AQM fairness, unresponsive flows and QoS guarantees

To deal with the issue of fairness and unresponsive flows,
there have been some AQM algorithms that for their own
operation do use some degree of per-flow information as
do their scheduling counterpart. Although it is preferrable
not to use any state information whatsoever, AQM schemes
that use no per-flow information, though least complex, give
the worst performance in terms of fairness[65]. So according
to [65], there are three types of AQM with respect to fair
bandwidth allocation: (1) AQM with no per-flow information,
(2) AQM with per-flow information and (3) AQM with per-
flow scheduling. The latter, of course will achieve the greatest
level of fairness but will be the most complex. The second
option is a compromise.

1) Fairness: One of the earlier objectives of AQM was
to provide fairness in the context of bursty traffic versus
non-bursty traffic. Droptail queues unnecessarily penalized
bursty traffic flows, therefore the very first AQM at the outset
attempted to remove this bias by introducing queue averaging
into the congestion indicator. There have been subsequent
debates as to the efficacy of this approach.

a) UDP flows: It was found that as new applications
were being deployed on the Internet they were opting not
to use TCP congestion control. These applications which
included realtime multimedia, streaming media and Voice-
over-IP (VoIP)[16], [20], [66] generated large amounts of
traffic. They tended to have very stringent delay and jitter
requirements1 which TCP could not provide[47] due to its
retransmission mechanism and its windowing operation that
contributed to traffic burstiness[22]. Hence, some used as
their transport layer, UDP, which does not have any conges-
tion control mechanism2. These applications might, for the
most part, be unresponsive to any congestion indication (e.g.,
dropped packets) from the AQM, therefore they would not
reduce their rates when there is congestion. On the other
hand, competing TCP flows, upon detecting congestion, would
reduce their rates. This meant that unresponsive flows would
obtain a greater share of the available bandwidth[68] and
TCP flows would be penalized[69]. This was exacerbated by
first-come-first-serve (FCFS) scheduling, in which the output
bandwidth consumed by a flow is directly proportional to the
space it occupies in the buffer[28], therefore the unresponsive

1According to [67], the delay budget for interactive audio application is
typically 100-150ms out of which 50ms is allocated for network delay

2In order to be responsive to congestion, the application layer may have
to have a built-in congestion control mechanism[33]. But this tended to be
rate-based rather than window-based[22].

flows with their uninhibited high sending rates would fill up
the buffer much more quickly than a responsive TCP flow.
Therefore, it would be good if an AQM (that is coupled to
FCFS scheduling) be able to accurately identify or isolate
nonresponsive flows, protect responsive TCP flows and suf-
ficiently limit these unresponsive flows[12], [69], [29], [70].
This situation had to be addressed soon since the volume of
unresponsive traffic was increasing at a fast rate[27], [7], [66],
[69], [62], [14], [22].

b) “TCP-friendly” flows: In order to encourage new
applications to adopt congestion control a number of source
algorithms, compatible with TCP, yet more conducive to the
demands of multimedia and other streaming and real-time traf-
fic, were developed. Termed ’TCP-friendly’, examples of these
protocols included Generalized AIMD (GAIMD), Binomial
and TCP Friendly Rate Control (TFRC)[71]. However, even
though in the long-term a flow using these protocols should
produce, on average, the same throughput as a flow using TCP,
there were times when these protocols were more aggressive
or more gentle than TCP due to the manner in which they
reacted to congestion indications. Therefore, the control action
of the AQM would still have maintained some fairness among
these different flows within the same network[65]. The authors
of[66] claimed to be the first to have provided a comprehensive
evaluation of AQM performance in the presence of TCP-
friendly flows.

c) Difference in round-trip time (RTT): As was dis-
cussed earlier, even when flows use the very same endpoint
congestion control implementation, there can be unfairness
due to differences in their round-trip times[72], [69]. For
example, TCP flows with shorter round-trip times usually
obtain more bandwidth than those with longer round-trip
times. This is because they get their acknowledgments faster
and can therefore ramp up their congestion window faster[72].

d) Web traffic: Traditionally, AQM research focused
primarily on long-lived TCP flows (e.g., FTP), however,
according to [73] the protection of short-lived flows such as
Web transfers was becoming more and more important due to
increasing web-traffic volumes and increasing sophistication
of web-page content. A typical web-page will initiate a
separate connection for each embedded object, and each of
these connections can be considered to be a short-lived flow
which spend most of its time in slow-start. In slow-start, the
transmission rates are sub-optimal due to small window sizes.
Also, due to these small window sizes the susceptibility to
retransmission timeouts is higher when there are losses. This
is because there may not be enough packets in a window to
successfully do a triple-duplicate-acknowledgment loss indi-
cation (which is faster).

e) TCP burstiness: With respect to TCP specifically,
there is the issue of burstiness. Besides the fact that the
acknowledgments (ACKs) are cumulative, one significant
cause of such burstiness is ACK compression due to path
assymmetry. Remember that ACKs are not subject to flow
and congestion control and this in turn can cause the flows on
the forward path to be very bursty.

f) The role of AQM with respect to fairness: An AQM
that does not maintain any state information will have dif-
ficulty maintaining fairness since there is no way for it to

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1437

differentiate between responsive and unresponsive flows, con-
forming or greedy flows[16]. However, as suggested by [65],
an AQM with per-flow information using a single FIFO queue
still cannot guarantee fair bandwidth allocation. Even though
the AQM may drop packets from individual flows within the
buffer to keep the buffer occupancy among the flows equal, the
actual buffer output rate (i.e., bandwidth) for each flow may be
unequal. Nevertheless, it seems as though one cannot design an
AQM that provides superior fairness which at the same time is
simple[20], [70]. In fact, several researchers had recommended
that scheduling be combined with AQM in order to provide
fairness[29], [68], [23], [70]. For Fair-Queueing coupled with
per-flow buffer management it was found that the complexity
was O(logN) and the space requirement was O(N) where N
is the number of connections[29]. However, it was observed by
[29] that the effect of AQM on fairness (with respect to TCP
flows) was much stronger than scheduling. This was due to the
fact that even though TCP flows might be allocated bandwidth
fairly (through scheduling), some dropping mechanism was
still required to enforce fair bandwidth usage. It was found
by [68] that there was a partial conflict in goals between
queue-based AQM and Fair-Queueing, since the former tried
to shorten queues, whereas the latter required longer queues
for efficiency, and as a result, rate-based AQM was more
amenable to fairness and even QoS guarantees.

So according to [65], there are three types of AQM with
respect to fair bandwidth allocation: (1) AQM with no per-flow
information, (2) AQM with per-flow information and (3) AQM
with per-flow scheduling. The latter, of course will achieve the
greatest level of fairness but will be the most complex. The
second option is a compromise.

2) QoS: The traditional Internet does not make any QoS
committments to users but serves them as best it can given
the current conditions, in other words, it provides ’best-effort
service’. But as the heterogeneity of applications increases
in the Internet so does the demand for QoS guarantees[45],
[70]. FTP and email, for example, cannot tolerate errors,
but they do not have stringent delay constraints. They may
require reasonable to high throughputs. Whereas VoIP, video
and other real-time and streaming applications have very tight
delay and jitter requirements, yet they tend to be more error
resilient[72]. If the Internet must simultaneously support these
different applications in an acceptable way, it must be re-
engineered to meet their different QoS demands. To this
end, the issue of fairness and flow-differentiation is taken to
another level. Some researchers have been incorporating AQM
into architectures that would provide actual QoS guarantees
to Internet users. For example, the Differentiated Services
(DiffServ) architecture has AQM as a vital player in QoS
provisioning/enforcement.

a) DiffServ: At the network edge, flows are tagged
according to Service Level Agreements (SLAs) which de-
fine expected performance in terms of delay, jitter, loss and
throughput. The core (or DS Domain), the tag on the packet
(and without regard to what flow it belongs), will forward it
accordingly. So instead of the more complex per-flow QoS,
there is aggregate QoS. Each tag type is mapped unto a
specific Per-Hop Behaviour (PHB) implemented by the router.
The Assured Forwarding (AF) is a standardized PHB which

consists of four classes and three dropping probabilities within
each class3. If the actual sending rate of the user is below the
minimum assured rate, packets are marked green; whereas if
above the minimum assured rate, either yellow or red[62].
A scheduler allocates bandwidth among the classes, whereas
AQM enforces priorities within the class, so that during times
of long-term congestion, green packets get the lowest drop
rates, and red the highest. According to [39] there is intra-
class fairness which depends on the AQM and inter-class
fairness with depends on the scheduler. It should be noted
that QoS based on aggregates only provides statistical QoS
assurance[39]. See also RFC 3246, RFC 3260 of the Internet
Engineering Task Force (IETF).

b) The role of AQM with respect to QoS: When using an
AQM for QoS in networks, one should consider the following:

• It has been recommended that complex AQM algorithms
(i.e., those with a large parameter set) should not be used
for differentiated forwarding since for each class of flows
an independent set of parameters must be tuned[51], [75],
[68], [74].

• There have been good proposals which attempted a
compromise between AQM complexity and service dif-
ferentiation. In order to minimize the use of state infor-
mation, an AQM may just need to identify flows that are
misbehaving. One technique for doing just that is the use
of ’bloom filters’. Sometimes it may be necessary just
to determine the number of active flows. The adaptive
bitmap algorithm is one proposal to this end[23]. It pro-
vides high accuracy but has low memory requirements.

AQM for DiffServ is dealt with in greater detail in Sec-
tion VIII.

V. RANDOM EARLY DETECTION (RED)

RED[1] was the first developed AQM scheme to be de-
ployed in TCP/IP networks[16], [30] for the replacement of
droptail queues[24], [11]. Its conceptual predecessor, Early
Random Drop (ERD), dropped packets with a fixed probability
when the queue length exceeded a single threshold[38]. This
technique had a number of drawbacks among which was its
inability to deal with bursty traffic and misbehaving flows.

RED is a queue-based AQM with no per-flow state[28],
[27] and designed heuristically. The initial objectives of RED
were to detect incipient congestion[12], to achieve fairness
among flows with differing levels of burstiness[45], [42], to
control queue lengths to low values[45], [76] so as to minimize
queueing delay[11], to prevent correlation of packet drops and
global synchronization[53], [55], [76], to minimize packet loss
and provide high link utilizations[11].

RED has been the most studied AQM in AQM research thus
far[39], [40], [35] and has been the basis for the development
of new AQM schemes. This is not only by virtue of the fact
that it was the first of its kind in the Internet community
but that there were quite a number of problems associated
with RED. One of the main problems was the difficulty and
uncertainty in tuning its parameters[55], [56], [40], [35], [38],
[63], [7], [39], [77], [15] for proper performance. This, by

3The Type-of-Service (TOS) field in the IP header is used to indicate the
PHB classes and drop precedences[74]

1438 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

far, negatively affected the widespread deployment of RED.
On the other hand, even if RED were tuned properly, the
parameters of RED (as will be discussed next) would be highly
sensitive to network conditions. Thus, one set of parameter
values may work well for a certain load level and traffic mix
and may be unfit for a next. This is not desirable, since traffic
conditions change rapidly in the Internet[49], [8], [31], [74].

Simulation experiments were the main vehicle used for
the parameter tuning of RED. It is inevitable that the set
of scenarios for testing would be small. However, in [78]
multivariate analysis was performed to statistically analyze a
large number of simulation experiments at a time so as to
provide a better idea as to the behaviour of these various
parameters.

A. The anatomy of RED

The description of RED that follows will be in terms of
the main components of any queue management scheme:
the congestion indicator, the control function, and the packet
dropping/marking algorithm. The drawbacks of RED will also
be discussed in terms of these main components. The feedback
signal for RED can either be ECN marks or packet drops.

1) Congestion indicator: RED uses the exponential-
weighted-moving-average (EWMA) of the instantaneous
queue length to determine the congestion level at the queue.
This average, updated upon every packet arrival at the queue,
is calculated as:

q̄(ti+1) = (1 − wq)q̄(ti) + wqq(ti+1) (1)

where ti is the arrival time of the i-th packet. If there
is congestion at the link, then it is usually assumed, for
simplicity, that the arrival time between the packets, denoted
by Δ, is constant such that Δ = 1

C where C is the capacity
of the link[35]. Therefore the update equation is modified to:

q̄(t) = (1− wq)q̄(t−Δ) + wqq(t) (2)

and in terms of discrete time the format can be:

q̄((i+ 1)Δ) = (1− wq)q̄(iΔ) + wqq(iΔ) (3)

Note that, in reality, the actual sampling-interval for the
algorithm can exceed or be below the link speed[56].

This EWMA, which is an estimate of the actual aver-
age queue length[53], really acts as a low-pass-filter which
smoothes out the burstiness of the instantaneous queue
length[35], [8] so as to provide a more stable measure. The
degree of smoothing is determined by the weight wq . However,
many studies have ensued attempting to quantify the actual
role that wq plays when it comes to RED’s stability and
responsiveness. It was found that the small recommended
value of wq = 1

512 caused large oscillations in queue lengths,
and bias against bursty traffic flows[11].

Upon closer examination of this queue averaging algorithm,
it was shown by [49] that the (i+1)-th average update could
be expressed in terms of the previous samples as follows:

q̄((i+ 1)Δ) = wq

i∑
j=0

(1− wq)
jq((i− j)Δ) (4)

By the assumption of fixed time intervals of Δ, the contri-
bution to the (i+1)-th average update of that sample made m
time-slots previous to it is (1−wq)

m, so that if there is a value
a below which the sample is considered negligible, then the
number of signicant samples m is given by m = ln(a)

ln(1−wq)
so

that the time interval of significance, I , is given by mΔ and
therefore the appropriate value for wq is wq = 1− a(

Δ
I)[49].

See also[79], [9].
Because of the EWMA queue length, RED is unable to

detect incipient congestion due to short-term traffic load
changes[11]. See also[80]. It is also possible that EWMA
queue length could be much greater than the minimum queue
length threshold, while the instantaneous queue length is
much less, inducing RED to drop packets unnecessarily[37]. It
responds to more long-term traffic changes. It was found that
wq < 10−4 is too small for the EWMA to track sufficiently
closely the instantaneous queue size[79]. Thus for the case
of Web traffic, the average queue size would be more or less
constant, whereas the instantaneous queue size varies errati-
cally. In terms of fairness, it was also found that the fairness
index remains constant with respect to queue weight during
high-load scenarios, whereas it peaks at wq = 0.01 for low
and medium loads[79]. The fall-off in fairness index is more
dramatic for wq < 0.01 than for wq > 0.01. Additionally, it
may seem that larger values of wq (and hence less averaging)
will hinder RED’s ability to evenly space packet drops so as
to prevent burstiness and global synchronization, but this was
found to not be the case[79].

It was also said that the sampling frequency for the queue
averaging algorithm (i.e., upon every packet arrival) might be
unnecessarily high[49], since an update of once per round-
trip-time would still lead to accurate results. in [53], the
authors even went further by recommending that the sampling
frequency be fixed since they observed that a varying sampling
interval (e.g., dependent on the packet arrival rate) leads to os-
cillations and is therefore harmful to RED’s performance. See
also[9]. From a practical perspective, having a router compute
the queue average on every packet arrival will become more
infeasible as the linkspeeds increase to terabit values[35]. But
it does not only matter how often the sampling is done. What
is actually sampled is important. RED does the sampling on
every arriving packet without consideration for the dequeue
events. It was noticed by [28] that by not taking into account
the dequeue events when there were no arrivals, there would
be very sharp discrepancies between the true average queue
length and that calculated by RED.

Besides the parameter-tuning issue, another major problem
with RED is its direct coupling of queue length as a perfor-
mance measure with queue length as a congestion indicator.
This has made RED’s performance (throughput and delay)
deteriorate with increasing traffic load[56], [40], [35], [78],
[81], [76], [64], [34], [11], [44], [7], [77], [9], [14], [13].
Therefore, as claimed by [56], [41], flows doubly suffer during
congestion, in that they incur higher loss and higher delay
at the same time. This coupling is explained in [44]. As the
number of flows increase (and so the congestion at the queue),
the marking probability should increase, but in the case of
RED this means that the queue length should be made to

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1439

increase as well, and this would cause the mean queue length
to also increase. What is desired is that the queue length
remain at a fixed value regardless of the number of flows
(i.e. a more predictable queueing delay). In other words, the
performance measure (in this case queue length) should be
decoupled from the congestion indicator. It was recommended
by [41] that RED should take into account the number of
flows sharing the queue. They said that if N TCP flows were
sharing the bottleneck link (with no unresponsive flows), then
upon packet drop, the arrival rate at the RED queue will
drop by a factor of 1 − 0.5

N . If N is large then the overall
reduction will be minimal. Therefore RED will not effectively
control congestion with increasing N [41]. According to [30],
the average queue length in RED is proportional to N (2

3) until
the maximum queue length threshold is reached.

RED needs even larger buffers for high bandwidth-delay
products in order to be stable[35]. EWMA (as discussed
before) only aggravates the problem and particularly so when
the traffic is bursty[12]. Sufficient buffer room is needed to
absorb arriving packets between the time the RED sends
the congestion notification and the time the sender actually
responds by reducing its rate[10], [12]. If not, RED will
deteriorate to droptail, as the queue capacity is continuously
exceeded. This is why solely depending on queue length
as a congestion indicator is not recommended. The queue
length is already non-zero and increasing before substantial
congestion notifications are given, therefore the likelihood of
buffer-overflow is greatly increased. It has been recommended
that RED queues should be configured with capacities twice
the bandwidth-delay product[12]. Large buffer space, how-
ever, means larger end-to-end delay and jitter. The upside
to this, however, is that longer round-trip-times (due to the
extra buffering) make TCP sources less aggressive[12]. But
increasing round-trip-times (even under static load) can cause
instability[52].

In short, factors that affect RED’s ability to control the
system because of its choice of congestion indicator include:
the network load (i.e., the number of connections), the link
capacity, and the round-trip-time of connections[42], [82].

2) Control function: Besides the EWMA weight, wq , RED
has three more parameters: the minimum threshold, minth,
the maximum threshold, maxth and the maximum non-
congestion probability of dropping/marking, Pmax, at the
maximum threshold. If the average queue length is below
minth RED drops no packets. However, if the average queue
length increases above minth but is below maxth RED drops
incoming packets with a probability proportional to the aver-
age queue length, i.e., a linear function[34], [52], [80]. When
the average queue length exceeds maxth all arriving packets
are dropped, no exceptions. Figure 5 illustrates the RED
control function which is the probability of dropping/marking
a packet as a function of average queue length. It is expressed
mathematically as:

p(q̄) =

⎧⎨
⎩

0 0 ≤ q̄ ≤ minth
q̄−minth

maxth −minth
Pmax minth ≤ q̄ ≤ maxth

1 q̄ ≥ maxth

(5)

By having the two parameters, minth and maxth, RED
essentially has a range of reference input values instead of

single target value for queue length[49], [14]. This complicates
its ability to control queue length especially as a performance
measure. The difference between minth and maxth will
determine the size of the oscillation around an equilibrium
point[24].

Based on the control-theoretic analysis of RED, the slope
of RED’s control function will influence the stability and
responsiveness of the TCP/RED system. A large slope leads
to faster convergence but greater instability, whereas a small
slope may lead greater stability but slower convergence[49],
[35].

There is a huge discontinuity or jump from Pmax to one
(1), when the queue length exceeds the maxth-boundary[53],
[35], and this causes oscillations in the queue length. It was
suggested that stability would increase if this discontinuity
should be replaced by a more gentle slope (as in Gentle-RED
(GRED)).

This discontinuity problem is also compounded by RED’s
queue length being tied to traffic load. It was shown that under
consistently high load (during which time the queue length is
greater than maxth much of the time), the equilibrium/long-
term drop probability p0 which is proportional to N2 (where
N is the number of TCP connections) would be larger than
Pmax, so that RED acts just like droptail ON/OFF but switch-
ing between a drop probability of one (1) and Pmax instead
of between one (1) and zero (0)[35]. Therefore, the authors
of[35] assert that RED would perform even worse than droptail
under these circumstances.

The coupling of queue length as a congestion indicator
as well as a performance measure together with its con-
sequent dependence on traffic load can also be discussed
here with regards to the control-function. It was observed in
[30] that there was a value of N which would cause RED
to exceed maxth, therefore by reducing maxth, the traffic
load that RED could support with satisfactory performance
was also reduced. However, a low maxth relative to the
actual capacity of the queue will lead to low-queueing delays
and enough room to absorb bursts[12]. But if the EWMA
queue length continuously exceeds maxth, RED essentially
acts as droptail[20]. See also[24]. Additionally, if minth is
too close to maxth, RED will basically be droptail and will
lead to global synchronization[10]. It is therefore important to
incorporate load information into these thresholds[83]. Also if
N is large and Pmax too small, the congestion feedback from
RED will be insufficient to stymie incoming traffic, while in
the mean time the round-trip-time is increasing due to filling
queues (which may exceed maxth very often), adding to the
problem[30], [8]. Presented in [30] was an actual mathematical
relationship between average queue length, the number of
flows, maxth and Pmax given by:

q̄ = 0.91N
2
3

(
maxth
Pmax

) 1
3

(6)

So, one possible way to maintain the average queue length
over varying traffic load would be to adapt Pmax. Therefore
for increasing N , an increasing Pmax is needed.

According to [28], the proportional packet dropping in RED
did not guarantee that all flows through a RED queue would
get a fair share of the bandwidth. RED attempts to drop

1440 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 5. RED control function

with the same probability all incoming packets (regardless
of the number of flows) when the queue is of a certain
length. It is therefore assumed that higher bandwidth flows
will have a higher proportion of their packets dropped. In fact,
the percentage of packets dropped from a given connection
in RED is equal to the proportion of bandwidth that that
connection would have received using droptail queuing[28].
This is on the long-term. However, on the short-term, all
flows, regardless of their arrival rate would see the same drop
probability (even flows which use less than their fair share of
bandwidth), which would lead to different degrees of flow-rate
reductions so that lower-bandwidth flows will suffer most. To
exacerbate this situation, unresponsive flows will drive up the
drop rates for all flows[28], [70].

3) Packet marking algorithm: Given a marking/dropping
probability, RED can actually mark packets according to the
Random Marking (RM) scheme, the Uniform Random Mark-
ing (URM) scheme or the Wait Uniform Random Marking
(WURM) scheme[26]. There is also the Slow Random Mark-
ing (SRM)[26]. Now, if p is the given marking probability,
the actual probability that a packet will be marked, denoted
by pa, is given by:

1) For RM:

pa = p (7)

But, according to [26], the number of unmarked packets
between two marked packets is geometrical distributed,
i.e., memoryless, therefore one cannot generate a reg-
ularly spaced sequence of marked packets using RM.
It was already mentioned that a more regular spacing
of congestion indications invokes a more gentle TCP
reaction. URM seeks to improve on RM and is the
algorithm proposed in [1].

2) For URM:

pa =
p

1− np
(8)

where n is the number of unmarked packets since the
last packet. The number of unmarked packets between
two marked packets is uniformly distributed in [1, 1

p],
but, according to [26], the queue variance due to URM
can be higher than that of RM. WURM is a more mild
approach.

3) For WURM:

pa =

⎧⎨
⎩

0 np < 1
p

2−np 1 ≤ np < 2

1 otherwise
(9)

WURM, however, is a discontinuous function in n and
there can be large jumps for certain values of p, which
results in the desired marking probability not being
realised[26]. For the SRM function, however, there are
no discontinuities.

4) For SRM:

pa =

⎧⎨
⎩

p np < 1
p

2−np 1 ≤ np < 2

1 otherwise
(10)

Rapid variations in traffic load can prevent these mark-
ing algorithms from uniformly spacing out these congestion
indications[12].

Table V outlines some of the shortcomings of RED together
with AQM schemes that were subsequently proposed to ad-
dress the particular shortcoming.

B. Analysis of RED
1) Control theoretic analysis: There has been a substantial

number of papers on the analysis of RED using control theory.
The main thrust was to decipher its structural problems[49] so
as to analytically determine suitable values, or rather, propose
more concrete design guidelines for the RED parameters4

4RED parameters that are typically used in the industry are wq = 1
512

,
Pmax = 1.0, minth = 0.03B, maxth = 3minth ≈ 0.1B, where B is the
packet rate

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1441

TABLE V
SUMMARY OF SOME OF RED’S SHORTCOMINGS AND RESULTANT AQM SCHEMES THAT ATTEMPT TO OVERCOME SUCH SHORTCOMINGS

for improved stability and responsiveness[55], [48], [24].
They seem to agree that RED is a delay-independent P-type
controller (i.e., Proportional controller) which because of this,
has a number of control limitations[48], [14], [13] and is not
sufficient to stabilize the system. These modeling efforts have
also given clearer understanding of RED’s behaviour with
changing network conditions such as round-trip-times, flow-
count (or load), and link capacities[77].

The following transfer-function model for the RED con-
troller was presented by [55]:

Cred(s) =
Lred
s

Kp
+ 1

(11)

where Lred = Pmax

maxth −minth
and Kp =

log
e
(1−wq)

Δ . For a
desired stability margin, values of Lred and Kp are found,
from which the RED parameters, wq , minth, maxth and Pmax

are determined. So, in effect, RED is a proportional gain in
conjunction with a low-pass filter[46]. We see here that RED
can never achieve zero steady-state error[53], [64]. Also, for
reasonable stability, the TCP/RED closed-loop system is very

sluggish. In fact, the responsiveness of the low-pass filter
portion of RED depends on the magnitude of Kp[53]. The
higher the value of Kp the more quickly will RED respond
to changes to the point where RED will be tracking the
instantaneous queue length very closely[53]. It is suggested
that RED should be modified to lead-compensation which will
result in the classical proportional-integral (PI) controller[55].
It compensates explicitly for feedback delay using a knowl-
edge of round-trip-time, link capacity and the number of active
flows[48].

Looking more closely at the variable K in the transfer-
function model of RED, one can deduce that to increase K
(and hence its responsivenes and instability), one can decrease
wq or Δ. But Δ is not only dependent on input packet
rate or link speed (as was briefly shown earlier), but also
on the average packet size which cannot be controlled by
network operators. It is therefore desirable that Δ is made
independent of all these factors. Delving further, it can be seen
that a changing Δ will change the “forgetting” rate among the
queue samples[53], [79], even if wq were held constant, thus

1442 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

causing the queue averaging algorithm to track very closely
at times the instantaneous queue length, while at other times
lag significantly behind.

2) Assumptions for analysis: For the RED analysis a num-
ber of assumptions were typically made, for example in [76]:

• All the flows are TCP and are in TCP congestion avoid-
ance phase and change their windows synchronously.

• There are no retransmission timeouts, so that all losses
are detected only by triple-duplicate ACKs.

• The average queue length for RED is always between
minth and maxth, i.e. the linear portion of the control
function.

Besides these the following assumptions were also made[49]:
• The number of flows, n remain constant over a long time

frame.
• All the flows have the same round-trip time and the same

average packet size.
• The receiver advertised window is large enough so as to

not inhibit flow rates.
There will be a more in-depth discussion with regard to

control-theoretic AQM design in Section VI.
3) Analysis that includes non-responsive and short-lived

flows: It was shown that the TCP/RED system can attain
equilibrium if there is a unique solution of the following
system of equations: (1) q̄ = G(p) - the queue law and
(2) p = H(q̄) - the drop module (or feedback control
function)[49]. The system will operate at this equilibrium point
on average.

The work of [49] was extended by [25] by developing a
queue-law that supports ECN and non-ECN traffic so as to
determine the impact of ECN traffic on AQM. The TCP fluid-
model was modified by [33] so as to investigate the effects of
nonresponsive flows on long-lived flows. They also developed
a model for short-lived flows (using a shot-noise process).

4) Nonlinear analysis: A more accurate representation
would be to consider that RED is a low-pass-filter followed
by a nonlinear gain map[81] (as per the control function).
A straight, non-linear analysis of the TCP/RED system was
attempted by [82] and in addition to measuring the nominal
values of the average queue length, throughput and packet
loss rate of the system, they measured the maximal Lyapunov
exponent and Hurst parameter for the average queue length.
This was to determine how much the performance of the
system depended on its nonlinear dynamical behaviour as its
parameters varied. The Hurst parameter is typically used to
measure the long-range dependence (LRD) of a time-series.
The autocorrelation of an LRD time-series dies more slowly
with lag time than an ordinary time-series. The Lyapunov
exponent is used to indicate whether a system exhibits deter-
ministic chaos, i.e., a system whose behavior is unpredictable
after long time-scales. They found that the maximal Lyapunov
exponent increased as the value of the EWMA weight wq

increased, although the Hurst parameters had no significant
change. They performed tests for one-way FTP traffic as well
as for two-way FTP traffic, and found that the latter yielded
greater instability in queue lengths as well as higher maximal
Lyapunov exponents. The case of two-way Web flows was
also investigated. They did not report results for other RED
parameters such as minth, maxth and Pmax.

5) Analysis that include multiple bottlenecks and heteroge-
neous delays: The issue of multiple-bottlenecks was pursued
through theoretical analysis by [64]. They then verified RED
stability using Nyquist plots. This problem was also tackled
by [46] , using the TCP fluid model proposed in [53] and
extending the network model to that of multiple bottleneck
links and heterogenous delays, and by this approach, the term:
“gain of routing”, emerged. It should be noted that the TCP
fluid model of[53] was extended by [84] to include UDP
traffic.

C. RED variants and new AQM schemes

Although RED is a significant improvement over simple
droptail, there were still problems of low throughput, high
delay and jitter, instability and parameter configuration[80].
It is stated that even though RED may reduce average delay,
the jitter actually increases and the number of consecutive
packet drops gets higher with RED than with droptail[62].
Additionally, as stated by [62] RED is not a clear winner over
droptail with respect to Web traffic.

Therefore, after RED (which has essentially become the
de facto standard for AQM[15]), there have been two main
directions in AQM design[43]: (1) to improve on some aspect
of RED (heuristically or by control-theory)[55], [56], [43],
[42], [7] or (2) to build an entirely new algorithm (heuristically
or by control-theory). According to [36], up to that time of
writing, there were over fifty AQM schemes since the original
RED proposed in the literature. However, the problem with
any subsequent design that is heuristic, whether it be RED-
based or completely novel, would be the difficulty to under-
stand the effects of its parameters on performance (stability
etc.) and consequently, the challenge to tune its parameters,
just like RED. Eventually some measure of theoretical analysis
would have to be performed[43], [48], [34], [7].

Several RED variants have made marginal changes to some
component(s) of RED while others substantial changes[9].
Their aim was to improve on the weaknesses of RED
with respect to fairness, throughput, delay, drop rates[7],
stability. However, one of the key weaknesses addressed
by quite a number of them was to specify automatically
tuned parameters[15], [7], [14] so that the AQM could be
adaptable to changing network conditions, thus making them
more robust. Many, though, still use queue length as the sole
congestion indicator[15]. Table XIV to Table XXVII in the
Appendix provide summaries of a number of RED variants
and heuristic AQM schemes.

D. RED deployment

According to [7], of all the new AQM schemes proposed
(RED variants included), the only two that had been im-
plemented in actual routers (at the time) had been Gentle-
RED and Parabola-RED. This was because many of these
AQMs have high computational complexity and can require
significant changes to the router’s software architecture.

Upon examining recent datasheets of routers produced by
some of the major equipment manufacturers, it was found that
WRED (Weighted RED) (used in the DiffServ context for
QoS provisioning (to be discussed later)) is the predominant

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1443

AQM scheme implemented. Examples of routers with WRED
include:

• Alcatel-Lucent OmniAccess 5510 and 5740 unified ser-
vices gateway (Release 3.0)

• Brocade MLX Series - Multiservice IP/MPLS Routers
• Cisco ASR 9000 System Aggregation Services Routers
• HP MSR50 Series
• Juniper Networks M7i and M10i Multiservice Edge

Routers

VI. CONTROL THEORETIC APPROACHES

In this section we introduce the control-theoretic approach
to AQM design. We also discuss a few algorithms that have
emerged from the realm of control theory. In Section V we had
briefly stated some results from the control-theoretic analysis
of RED.

A. The feedback control system

Using control theory terminology, the network can be seen
as a “feedback control system” in which the endpoints and
routers (in aggregate) constitute the “plant” which has to
be controlled. The AQM acts as the controller or “compen-
sator”and signals to the plant the “control signal” which, in
this case, is the drop-probability, so as to control the source
rates. The reference input to the system could be, for example,
the target queue length to which the control system aims to
keep the actual queue length (the “controlled variable”). The
difference between the reference value and the actual value
of the controlled variable is called the “error signal”. It is
the error signal (congestion indicator) that drives the AQM
compensator to control the plant[42], [55], [49], [11], [43].
Figure 6 illustrates these concepts.

In control theory the main performance measures for the
AQM would be transient response, stability and steady-state
error. Control theory is a very mature field of study which
over the years has produced so many well established tools
(e.g root locus, Bode plots, etc.) to not only analyse control
systems but to design such systems within tolerable margins of
these performance measures. Many papers generated so far on
theoretic AQM design have utilized several of these tools. The
transient response measures how quickly the system output
reaches target (input signal). The stability measures the extent
of oscillation (in magnitude and growth) of the output around
the target, and the steady-state error measures to what degree
(in the long-term) the output has reached the target. Terms
such as phase-margins and gain-margins provide a measure
of how easy it is to send the system into instability, i.e. its
robustness. As mentioned before, a system should be robust
to variations in system parameters (e.g. the number of flows)
as well as model errors[55], [14], [13]. The wider the stability
margins the better, but typically wider margins mean slower
responses. If the transient response is sluggish, then it will
be difficult maintain the controlled variable around the target
when the network conditions change frequently[43]. However
for faster response, one will have to tolerate larger degrees
of oscillations (e.g. in queue lengths) and for networks this
means more delay jitter.

B. Classical control theory
In classical control theory, the transfer function approach

(i.e., analysis in the frequency domain) is used, whereby the
product of the Laplace Transform of the compensator and
the plant (represented by the TCP fluid model mentioned
before) is called the open-loop transfer function, and the ratio
of the Laplace Transform of the system output (e.g. actual
queue length) to the system input (i.e. reference queue length)
is the closed-loop transfer function. By control theory, it is
the poles of the closed-loop transfer function that determine
the stability and the transient response of the system[76].
The Laplace Transform of the compensator itself is really
the transfer function from the congestion indicator (or error
between the target and the actual queue length or arrival
rate) to the dropping probability. The Laplace Transform of
TCP endpoints is the transfer function from the dropping
probability and the window size (or sending rate). The Laplace
Transform of the queue is the transfer function from the arrival
rate to the queue length. There is typically a delay of one round
trip time, R0 between the compensator and the plant, and its
Laplace Transform is e−sR0 .

Early work on AQM design using classical control theory,
considered only a single congested link and synchronised
sources (i.e. all flows had the same round-trip-time). In addi-
tion, it was assumed that all the sources, the number of which
did not change with time, had the same window progression
and that the window sizes were the same at all times, thus
all the sources could be treated as one huge source scaled
by N , the number of sources. Even though these assumptions
may seem far-fetched, the resulting stability analysis did yield
some plausible explanations to the various system behaviours
observed in previous heuristic designs. For example, it was
shown in [79] that using queue averaging reduces the re-
sponsiveness of the controller and reduces system robustness.
It was shown by [55] that the high frequency plant gain
was inversely proportional to TCP load (i.e. the number of
connections N), so that for very low loads, the stability margin
decreased (more oscillatory action) and the responsiveness
increased. Also the delay between the AQM compensator and
the TCP plant, puts a hard-limit to the speed of response for
a stable system to R0

2 [55].
There has been further work, using classical control the-

ory, for networks with arbitrary topologies and heterogenous
delays[46]. The approach in [46] in dealing with arbitrary
topologies was to use a single value called the gain of the
routing matrix that represented the topology. It was found that
as the gain of the routing matrix decreases, the stability margin
of the system also decreases. So far, no work has been found
that deals with the number of TCP sources varying with time.

Modern control theory uses a more rich characterization
of the system called the state-space model. As an example,
this state-feedback control approach is used in [48] to analyse
AQM in TCP networks.

We now discuss a few AQM schemes that have been
designed according to control theory.

C. Proportional-Integral (PI)
The authors of [55] provided a transfer-function model

for RED together with design rules for tuning the RED

1444 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

p(kT) = a (q(kT)− qref)− b (q((k − 1)T)− qref) + p((k − 1)T) (12)

Fig. 6. AQM design using classical control theory

parameters. They also performed analyses which led them
to suggest lead compensation into RED so as to improve its
response in terms of stabilizing the feedback control system.
The AQM that resulted was the Proportional-Integral (PI)
algortihm, outlined in [56], and the digital form of which was
as in Eq. (12) above, where p(kT) is the dropping probability
at sample time kT , a and b are PI coefficients based on
the Bilinear Transform (a.k.a. Tustin’s method), and qref is
the reference queue length. Now, T = 1

fs
where fs is the

sampling frequency which should be be 10 to 20 times ωg

2π

where ωg = 2N−

(R+
0)

2
C

where N− is the minimum number of

TCP sessions, i.e., the load factor, C is the link capacity and
R+

0 is the maximum round-trip time chosen.
The authors of [85] claimed that the PI controller designed

in [56] might have a large phase margin which led to sluggish
behaviour. Their approach instead was to design the PI con-
troller according to phase margin specifications. As a follow-
up, a self-tuning PI TCP flow controller was designed in [86]
to deal with varying traffic load in networks. In [87] a self-
tuning PI controller was designed according to gain margin
specifications.

D. Proportional-Derivative (PD)

In [40], a Proportional-Derivative (PD) controller was added
to the original RED AQM. Hence the name PD-RED. The
PD controller adapted the RED parameter Pmax which the
authors believed would more systematically improve queue
length stabilization attempted by Adaptive RED (ARED). The
error signal during sampling interval i is given by

e(i) = q̄(i)− qref (13)

where q̄(i) is the average queue length during sampling
interval i and qref is the target queue length. The PD controller
algorithm follows:

Pmax(i) = Pmax(i− 1)+Kp
e(i)

B
+Kd

(e(i)− e(i− 1))

B
(14)

where Kp, Kd and B are the proportional gain, derivative gain
and buffer limit, respectively. Simulations were run comparing
ARED with PD-RED.

Based on state-space model, a PD-type state-feedback AQM
in terms of queue-length was derived by [48] to completely
replace RED. The model also compensated for large delay.
A more thorough treatment on this approach can be found in
[88]. Another PD-Controller AQM scheme was proposed by
[89] similar to that of [40]. However, instead of adapting the
RED Pmax parameter and working in conjunction with RED,
it itself calculates the dropping probability according to the
following algorithm

p(i) = p(i− 1) +Kp
e(i)

B
+Kd

(e(i)− e(i− 1))

B
(15)

where e(i) is as defined before, and Kp, Kd and B are the
proportional gain, derivative gain and buffer limit, respectively.
In order to maintain high-link utilization, no packet is dropped
if the instantaneous queue length, q(i) < L where L is the
No-drop threshold.

E. Proportional-Integral-Derivative (PID)

To provide a faster response than that which PI controller
can afford, the Proportional-Integral-Derivative (PID) con-
troller was proposed by [43] as another viable AQM. The
dropping probability is adjusted according to (16) on the
following page, where Ti =

Kp

Ki
, Td = Kd

Kp
, T is the sampling

time, and Kp, Kd, Ki are the proportional gain, derivative gain
and integral gain respectively. In [43], guidelines based on gain
margin and phase margin are provided to tune the parameters
Kp, Kd, and Ki. Another attempt to design a PID-controller
for AQM can be found in [90].

F. Robust control

To rigorously address the issue of large delays in networks,
the DC-AQM algorithm based on internal mode compensation

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1445

p(i) = Kp

{(
1 +

T

Ti
+

Td

T

)
e(i)−

(
1 +

2Td

T

)
e(i− 1) +

Td

T
e(i− 2)

}
(16)

(IMC) principle in control theory was proposed by [42].
From the IMC controller derived, the corresponding feedback
controller was solved, the structure of which is that of the
classical PID controller. This time, the parameters Kp, Kd,
and Ki are tuned according to the following:

Kp =
2T + L

2.6KL
(17)

Ki =
1

1.3KL
(18)

Kd =
T

2.6K
(19)

where T =
√
T 2
1 + T 2

2 and L = T1 + T2 +R0 −
√
T 2
1 + T 2

2 ,
K = (R0C)3

4N2 , T1 = R and T2 =
R2

0C
2N where R0 is round-

trip time, C is link capacity and N the number of active
sessions. (See Table I for nomenclature.) To also contend
with large delay, a Gain Adaptive Smith Predictor with PI
controller (GAS-PI) was devised to improve robustness in
[91]. The authors claim that the GAS-PI algorithm for AQM
outperforms other AQM schemes (i.e., RED and PI) even
with dynamically changing traffic loads. In [92], IMC was
combined with a Smith estimate controller for AQM to also
tackle the large delay issue in networks. See also [93] for
an AQM called Robust Smith Predictor based on both the
Smith predictor and IMC. In [94] a robust H∞ optimal AQM
controller was designed to deal with the delay. For a μ-optimal
controller design for AQM, see [95].

In [38] a predictive PID controller is proposed. They used
the generalized predictive control (GPC) method to determine
suitable values for Kp, Kd, and Ki so as to make the
system more robust to changes in model parameters such as
load, round-trip time etc. In [96] an adaptive GPC (AGPC)
was devised for AQM. A PI-PD controller was proposed in
[63] which the authors claimed would provide robust and
predictive control. The design of this controller consists of
two parts: the proportional-integral (PI) for stability and the
proportional-derivative (PD) for responsiveness. An alternative
PI-PD controller was developed by [97]. In this case, the
PD controller is used in the inner feedback loop to directly
determine the packet dropping/marking probability.

G. Fuzzy Logic

In [98], an AQM scheme based on a variable-length virtual-
output-queue fuzzy-congestion-control mechanism was pro-
posed. According to [98], fuzzy logic control provide better
control of the nonlinear, time-varying systems since it can
dynamically adapt its parameters which for other control types
would have to be held constant in spite of time-varying traffic
load, roundtrip times, etc. One can remember that one had to
first linearize the non-linear time-varying TCP/IP plant before
applying classical control techniques. Fuzzy control obviates
this need. According to [99], fuzzy-logic control does not need
a precise model. An overview of the use of fuzzy logic in
telecommunications networks was presented in [100].

Fuzzy Control RED (FCRED) was proposed in [101]. It
consists of a fuzzy controller adjusting the Pmax parameter
of the RED algorithm. This paper also gave a brief summary
of fuzzy control theory. The fuzzy controller comprise three
parts: the fuzzification unit followed by the fuzzy-inference
engine with fuzzy-rule base and then a defuzzification unit.
The fuzzification module maps the input values to be con-
trolled to a fuzzy set (i.e., membership functions5). The
fuzzy-rule base provides the connection between the input
signals and the appropriate output variable. It is constructed
based on a combination of trial and error (with the aid of
a domain-expert’s knowledge and experience) and theoretical
methods (to fine-tune the parameters)[102]. It consists of a
set of IF-THEN rules. The defuzzification unit maps this
fuzzy output variable (which has an associated membership
function) to a crisp controller output. According to [103],
defuzzification methods include: center of area (CoA), center
of maximum (CoM) and mean of maximum (MoM) that the
plant understands. See Figure 7 for the general structure of a
fuzzy-logic controller.

A fuzzy controller based on RED was also developed in
[102], the input variables of which were the average queue
length and the packet loss rate, and the output the packet
dropping probability. Another RED-based fuzzy controller was
developed in [104] which dynamically tuned the maximum
drop probability parameter (Pmax) of RED. The inputs to this
controller are Pmax and the error signal, e = q̄−maxth +minth

2 .
The output of the controller is ΔPmax , i.e., the change in the
maximum drop probability parameter, determined after every
0.5 seconds. AFRED[99], an adaptive Fuzzy-based AQM
which also has Gentle RED at its core, also adapts the fuzzy
rule and parameters in membership functions so as to improve
stability. Therefore, it not only consists of the fuzzy-control
module but also an “adaptive adjust module”. AFRED uses as
its input variable the instantaneous queue length. Its output is
packet drop probability. It measures the real packet drop ratio
so as to determine when the fuzzy rules should be changed.
Based on the Random Early Marking (REM) algorithm, a
Fuzzy Logic Controller called FUZREM was designed in
[105]. And just like AFRED, there is AFREM (Adaptive fuzzy
REM) which adapts the fuzzy rules for fuzzy REM[106].
There is also fuzzy GREEN[103]. DEEP BLUE[107] consists
of combining the BLUE AQM algorithm with the fuzzy
extention of Q-learning, a reinforcement learning technique,
that provides online model-free optimization. Then there is the
Fuzzy Logic Congestion Detection (FLCD) algorithm which
has embedded within it, fuzzy CHOKe[108].

In [109], a fuzzy-based proportional-integral-derivative
(PID) controller AQM was presented. It consisted of a fuzzy
PID controller working in conjunction with a conventional PID
controller via switching mechanism. The fuzzy PID controller

5For computational simplicity triangular and trapezoidal membership func-
tions

1446 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 7. Fuzzy-logic controller structure

consists of two intputs (conventional error and the rate of
change of error between queue length and the target queue
length), and a single rule base composed of 49 rules. A
fuzzy controller which not only had an input variable queue
length error but also the error between link input rate and
link capacity, was presented in [110]. Its output variable was
the dropping probability. Returning to [111], a fuzzy-logic
controller was designed to adjust the maximum queue limit of
virtual output queues so as to induce packet drops in the real
queue. In [112] was proposed a self-adaptive fuzzy controller
that calculated the learning rate for a neural-network-based
PID controller that was previously presented in [113]. For
further work on fuzzy control for active queue management
see [114], [115], [116], [117], [118], [119]. In [120], a wavelet
neural network controller for AQM was presented.

H. Summary
Tables VI to IX provide a summary of the design and

performance considerations of a number of control-theoretic
AQM schemes sorted according to their theoretical basis and
then according to the year they were proposed (so as to
provide some form of chronology). It can be seen that as the
years progress, the main direction has been to more and more
sophisticated robust-control techniques, with some classical
techniques interspersed. For the most part, the linearized TCP
model by Hollot et al.[55] continues to be at the core of such
algorithms. In these tables one can also find AQM schemes
proposed by [121], [122] and [123].

Tables X to XII also provide a summary of fuzzy-based
active queue management schemes proposed over the years.
There was found no definite trend so to speak. The number
and type of inputs were quite variable. The same could
be said about the output variables, the rule-base and the
defuzzification methods chosen. There was found no study to
show which defuzzification method or inference engine may
be most suitable for the AQM context. From the tables one can
also see that some fuzzy-logic controllers were AQM schemes
in themselves while others worked along with existing AQM
schemes such as RED by fine-tuning the latter’s parameters.

VII. DETERMINISTIC OPTIMIZATION APPROACHES

Besides heuristic and control-theoretic approaches to AQM
design, there is the deterministic optimization approach in
which the AQM scheme, in conjunction with the source
algorithm, explicitly attempts to drive the network to a globally
optimal operating point[59]. Early contributors to line of AQM
research have been Kelly and Low, among others.

A. The optimization problem

The optimization problem, which is a nonlinear program-
ming problem that assumes perfect fluid flows[124], is usually
formulated as follows[59], [125], [126], [57], [58]:

Consider an arbitrary network consisting of a
set L of links: L = {1, ...l, ...L} each with fi-
nite capacities cl, l ∈ L and a set S of sources:
S = {1, ...s, ...S} each with a transmission rate of
xs(t) at time t in packets per second. Let x(t) =
[x1(t), ..., xS(t)]

T be the vector of all source rates.
Now each source uses a set Ls ⊆ L of the links.
The set of sources that use link l is denoted by
Sl = {s ∈ S|l ∈ Ls}. Each link has a scalar conges-
tion measure called the “price” per unit bandwidth,
denoted by pl(t). (Let p = [p1(t), ..., pL(t)]

T be the
vector of all link prices.) The L× S routing matrix
R can more conveniently depict these source-link
interdependencies where

Rls =

{
1 if l ∈ Ls or s ∈ Sl

0 otherwise (20)

Hence, the aggregate source rate at link l is yl(t) =∑
s Rlsxs(t) = Rx(t) and the end-to-end conges-

tion measure for source s is qs(t) =
∑

l Rlspl(t) =
RT p(t).

When source s transmits at a rate xs(t) it attains a utility
Us(xs). It is assumed that this utility function is increasing,
strictly concave and twice continuously differentiable with
respect to xs(t) and that the utilities of the sources are
additive, i.e.,

∑
s Us(xs).

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1447

TABLE VI
SUMMARY OF CONTROL-THEORETIC AQM ALGORITHMS

The primal problem then becomes

maximize
∑
s

Us(xs) (21)

subject to
∑
s

Rlsxs(t) ≤ cl l = 1, ..., L (22)

The solution to this optimization problem would be a vector
of source rates, x, that will maximize the objective function
(
∑

s Us(xs)), i.e., the sum of all the utilities in the network,
subject to the constraint that the aggregate source rate at
each link does not exceed the link capacity. Because of the
assumptions made for the properties of the utility functions,
a unique optimal solution does exist for this primal problem.
There are, however, two issues. Firstly, the utility functions
may not be known by the network and they may differ among
the sources[57]. Secondly, solving the primal problem directly,
according to [59] will require coordination among potentially
all the sources (a complex and impractical situation). This
is because the source rates are coupled by the constraint,
although they are separable in the objective function.

The more appropriate line of attack would be a decentral-
ized, distributed solution, for which each source observes its
own rate and end-to-end congestion measure with no other
knowledge about other sources and links in the network,
and for which each link observes its own aggregate rate and
independently sets its own price, without explicit knowledge
of other links and sources in the network[125].

It should be noted that from the formulation it is only the
rates that are directly modeled and not queue lengths[57],
therefore any AQM algorithms derived directly from the
framework outlined will be primarily rate-based.

According to [59], the conceptual difference between Low’s
approach and Kelly’s approach is that in the case of Kelly, the
source decides how much it is willing to pay over each unit of
time, and the network allocates its rate accordingly, whereas
in Low’s case, the source tells the network the rate it wants,
and the network charges a price accordingly.

Out of this work on deterministic optimization for active
queue management, the Random Early Marking (REM), the
Adaptive Virtual Queue (AVQ) and the Stabilized Virtual
Buffer (SVB) algorithms were born.

B. Adaptive Virtual Queue (AVQ)

Adaptive Virtual Queue (AVQ) is a rate-based AQM based
([14], [13], [32], [127], [34], [52], [45]) that attempts to
maintain input (arrival) rate at a desired utilization. According
to [48], AVQ like RED is a delay-independent control since
it does not compensate for delay in the congestion feedback.

As mentioned before, AVQ is based on the penalty function
approach to optimization as proposed by Kelly et al.[128]. The
form of the penalty function is derived from loss probability
for a M/M/1/B which is pl(cl, yl) = (1−ρ)ρB

1−ρB+1 where B is
the buffer limit, and ρ = yl

cl
is the link utilization. The arrival

1448 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE VII
SUMMARY OF CONTROL-THEORETIC AQM ALGORITHMS CONT’D

rate, yl, link capacity, cl, and the buffer limit, B, are then
scaled by a factor K in this loss probability expression and
the limit as K → ∞ is taken, so that pl(cl, yl) = (yl−cl)

+

yl
,

where [z]+ = max(0, z).
Therefore AVQ employs a virtual queue, the link capacity

of which is less than that of the real queue[37]. And packets
are marked when the arrival rate to the queue is greater than
the virtual capacity[128]. In order to theoretically compute
an appropriate virtual capacity so that the penalty function
above is satisfied, the queue must know the number of flows
passing through it as well as the utility function of each of
the flows. The number of flows is time-varying, so that this
computation must occur when network load changes. To make
this computation practically independent of the number of
users, the link capacity of the virtual queue is adjusted based
on the differential equation:

˙̃C(t) = α(γC − y(t)) (23)

where C̃ is the link capacity of the virtual queue, C is the
link capacity of the real queue, y(t) is the input rate to the
system, and α and γ are AVQ control parameters. Namely,
γ is the desired utilization and α is the damping factor or
smoothing parameter[45] or step-size[128]. From Eq. (23), it
can be seen that AVQ attempts to match the input rate to the
virtual capacity so as to achieve the desired utilization[13].

It is said that a key AVQ design issue is the choice of the
damping factor α since it determines the speed of adaptation
of the virtual link capacity[127]. However, according to[45]
both α and γ determine the stability of the system, and γ
determines how robust the system will be in the presence of
short flows.

The size of the virtual queue is the same as that of the real
queue which is fixed. Because the service rate of the virtual
queue is smaller than that of the real queue (i.e., by a factor
of αγ), and both queues experience the same arrival rate, then
the virtual queue will build up faster than the real queue, and
will tend to overflow more quickly. Anytime the virtual queue
overflows, those packets that are dropped from the virtual
queue are also marked/dropped from the real queue[11]. This
is deterministic marking as opposed to probabilistic marking
used in RED[15], i.e., there is no explicit calculation of a
marking probability[45], however the effect is similar. It can
be seen from Eq. (23) that the marking will be very aggressive
when the link utilization is exceeded and it will become much
less intense when the link utilization is below the target[45].
According to [13], the effective dropping probability of AVQ
is

p(t) =

[
1− C̃(t)

y(t)

]+

(24)

where [z]+ = max(0, z).

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1449

TABLE VIII
SUMMARY OF CONTROL-THEORETIC AQM ALGORITHMS CONT’D

By setting γ to one (1) and solving Eq. (23) with initial
conditions C̃(0) = C and q(0) = 0 where q(t) is the
instantaneous queue length, it was shown by [13] that:

C̃(t) = C − αq(t) (25)

which indicates that AVQ adjusts the virtual capacity accord-
ing to the queue-length. As queue length increases, the virtual
capacity decreases.

The AVQ algorithm can also be considered as a token
bucket[45], [14], [9], [11]. Tokens are generated at a rate
of αγC. αs tokens are removed from the bucket upon each
packet arrival where s is the packet size.

The designers of AVQ performed stability analysis of
AVQ[45] in the presence of feedback delays using the TCP
fluid model and linearizing the system dynamics. Based on
this analysis they recommended design rules for the control
parameters γ and α in terms of the number of flows, and
maximum delay. They did assume that all the users had
the same round-trip-time. Also, slowstart and retransmission
timeouts were not included in the analysis. They did mention
that in the absence of feedback delays, AVQ is fair in that it
maximizes the sum of all the sources’ utilities in the network.
Even when the utility function was changed to the ’potential
delay model’ so as to reflect the different round-trip-times of

the users, it was found that AVQ converged to the optimal
point where the sum of these utilities was maximized.

AVQ is solely a rate-based AQM so that it does not
explicitly control the queue length to a target value[14], [52],
therefore queue-length effects (i.e., delay and jitter) may vary
widely especially when there are high levels of congestion[14].
Through simulation experiments,it was found by [11] that
AVQ experienced lower packet loss rates and higher link
utilization that RED and PI controller in a traffic environment
consisting mainly of long-lived flows. Disadvantages: AVQ
was not designed to deal with unresponsive flows (e.g. UDP);
AVQ, like RED, is computationally intensive as the virtual
buffer update and control function are executed on every
packet arrival[14], [11].

C. Stabilized Virtual Buffer (SVB)

Developed by [52], Stabilized Virtual Buffer (SVB) uses
both packet arrival rate and queue-length as part of its con-
gestion indicator and attempts to keep the the packet arrival
rate and the queue-length around their individual target values.

SVB is similar to AVQ in that it uses a virtual queue in
order to determine packet marking/dropping, but it differs in
the following ways:

1450 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE IX
SUMMARY OF CONTROL-THEORETIC AQM ALGORITHMS CONT’D

• The virtual capacity is kept fixed at the real capacity C
(whereas in AVQ is dynamically adjusted with respect to
the incoming packet rate), and the virtual buffer limit is
adaptable to the incoming packet rate (whereas in AVQ
the virtual buffer limit is fixed and equal to the real buffer
limit B).

• The packets in the real queue are not deterministically
marked/dropped when the virtual queue overflows as in
AVQ. Instead, the packets are marked with a probability
based on the current virtual buffer limit and the virtual
capacity.

The virtual buffer limit is updated as

bv(t) = γ(C − y(t)) (26)

where bv(t) is the virtual buffer limit, C is the virtual capacity
(= real capacity), y(t) is the packet arrival rate and γ is the
SVB parameter.

It is claimed by [52] that SVB is robust to and responds
quickly to changes in network load. The queue-length remains
stable for different traffic conditions

D. Random Early Marking (REM)

The full algorithm was presented for REM by [44].
REM differs significantly from RED by its congestion

measure and by its probability dropping/marking function.
The aim of REM is to decouple the congestion measure from
the performance measure[37], [34], [11], [17], [44], [14], so
as to achieve its target queue length (for low delay) and its
target rate (for high utilization) independent of congestion
levels in the network (i.e., the changing number of flows)[52],
[85] while at the same time reach a global optimal operating
point[34].

The REM congestion measure, also known as a price, is the
weighted sum of the rate mismatch (i.e., deviation of the actual
aggregate input rate from the target) and the queue mismatch
(deviation of the actual queue length from the target queue
length). To be more precise:

μl(t+ 1) = [μl(t) + γ(al(ql(t)− qref) + (xl(t)− cl))]
+

(27)

where [z]+ = max(0, z). μl is the price of link l, ql, the
actual queue length, qref , the target queue length, cl, the link
speed and xl, the actual input rate. Therefore, if the weighted
sum of the mismatch is positive (when there is congestion),
the price increases, and if negative (meaning that congestion
is decreasing) the price decreases[17], [41]. At equilibrium
(when the price stabilizes), the weighted sum should be zero
(i.e.,ql(t) = qref and xl(t) = cl)[44]. It should be noted
that with REM all the queues/links independently set their
price[44] and there is no need for coordination among them
to bring about this optimum[59].

Now, because it is easier to sample queue length than input
rate, the rate mismatch can be determined by the rate of growth
in queue length, i.e., ql(t + 1) − ql(t), so that the price is
modified as in (28) and (29) on the following page [44], [15].
In terms of the probability dropping/marking function, REM
employs an exponential form so that the source sees the sum
of the prices of the individual links along the path its flow
takes, since along the path can be a number of congested
links. This will be the true measure of congestion along the
path. In particular, the probability of marking a packet at link
l is

pl(t) = 1− φ−μl(t) (30)

where φ is a constant and φ > 1.

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1451

TABLE X
SUMMARY OF FUZZY-BASED AQM ALGORITHMS

μl(t+ 1) = [μl(t) + γ(al(ql(t)− qref) + (ql(t+ 1)− ql(t)))]
+ (28)

⇒ μl(t+ 1) = [μl(t) + γ(ql(t+ 1)− (1− al)ql(t)− alqref)]
+ (29)

Therefore, the end-to-end marking probability will be, ac-
cording to [44],

1−
L∏

i=1

(1− pl(t)) = 1− φ−
∑

l
μl(t) (31)

so that as the individual prices increase so will the end-to-end
marking probability. For low drop probabilities, the end-to-end
marking probability can be approximated to (lnφ)

∑
l pl(t).

It was shown by [14], [13] that REM is essentially the
same as a Proportional Integral (PI) Controller (designed from
classical control theory). (Their equivalency was mentioned
by [44] as well.) The congestion measure for REM can be
rewritten as (32) on the following page, and since for low
probabilities pl(t) ≈ (lnφ)μ(t) then

pl(t) = KP e(t) +KI

∫ t

0

e(τ)dτ (33)

where KP = (1 − al)γ lnφ and KI = alγ lnφ.

Now, although REM was designed to be optimal during
steady-state, it is not so during the transient[44], [27]. Addi-
tionally, based on stability analysis and experiments, it was
found that if the network parameters (e.g., number of flows
and round-trip-times) were known before hand then stability
could be guaranteed for satisfactory responsiveness. But in
reality, these network parameters change so often that designs
are more cautious with regard to stability at the expense of
responsiveness[15].

VIII. AQM FOR DIFFSERV

For traditional best-effort networks, the AQM designers
were attempting to integrate with congestion control (the
original objective), the goals of fairness, and to a growing
extent QoS differentiation into active queue management
itself. However, within the DiffServ framework, one aspect of
service differentiation, i.e., (aggregate) flow isolation, has, for
the most part, been achieved by queue scheduling algorithms

1452 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XI
SUMMARY OF FUZZY-BASED AQM ALGORITHMS CONT’D

μl(t) =

[
(1− al)γ(q(t)− qref) + alγ

∫ t

0

(q(τ) − qref)dτ

]+
(32)

(e.g., Weighted Fair Queueing (WFQ)). Another aspect, i.e.,
traffic conformance, has been managed by traffic conditioners
at the edge. This in turn has allowed the AQM to concentrate
more closely on the mechanism of dropping/marking packets
appropriately. Therefore less complex AQM algorithms can
be employed within the DiffServ network core. In this section
we first describe the DiffServ architecture, then we consider
research work that examined the effect of AQM on traffic types
such as voice and video. Then we look at the performance of
AQM schemes (new and old) within the DiffServ context.

A. The DiffServ architecture

Figure 8 provides a general overview of the DiffServ
architecture. All customer traffic (voice, video, data), via
their respective service level agreements (SLAs), are mapped
to either of six possible traffic classes (also known as per-

hop behaviors (PHBs): Expedited Forwarding (EF) (given
the highest priority and is typically for low-latency, low-
loss traffic), Assured Forwarding (AF1, AF2, AF3, AF4),
and Best-Effort(BE). To differentiate each aggregate flow, a
differentiated services code point (DSCP) is assigned.

Associated with each class is a meter specification and a
conformance specification. The meter specification outlines
the committed information rate (and in some cases the peak
information rate) as well as the maximum burst size associated
for the traffic flow. The conformance specification outlines
what must be done if a packet belonging to a flow conforms
or violates the meter specification. In some cases, the packet is
dropped at once, or the packet’s drop precedence is increased.
For the latter case, if the network has extra capacity the non-
conformant packet may be allowed through. However, if there
is congestion, the non-conformant packet with the higher drop

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1453

TABLE XII
SUMMARY OF FUZZY-BASED AQM ALGORITHMS CONT’D

precedence will be dropped or marked more readily. It is the
traffic conditioner at the edge node which determines which
packets are conformant and which are not.

Each class of traffic is granted a provisioned proportion of
the network bandwidth, and this allocation is realised by queue
scheduling. Therefore, there is a single queue associated with
each class of traffic at the output of the router. These individual
per-class queues may become congested. It is within these
individual queues that AQM algorithms are executed so as to
mark or drop the packet according to its drop precedence.

B. The effect of active queue management on different traffic
types

Voice over IP (VoIP) is addressed in [129]. Here the authors
investigate voice quality in networks that employ active queue
management, and more specifically, the RED and ARED
algorithms. Voice quality is affected to a great extent by
delay, jitter, and, bursty loss. Depending on the degree of
compression, the voice traffic can be more or less tolerant
to the latter. VoIP traffic uses UDP as its transport. In their
analysis, the authors looked at a mixture of short-lived traffic
(i.e., Web) and long-lived traffic (i.e., FTP). They modeled
the G.711 codec as a constant bit rate source consisting
of UDP packets that are 92 bytes long, 12 bytes of which
constituted the RTP header. There was no Voice Activity
Detection (VAD), but there was some pseudo adaptive jitter
buffer. They used the E-model with MOS to provide a measure
of voice quality. The authors concluded that the use of AQM
did indeed improve voice quality. Based on previous work
performed by the authors of [130], they claimed in [130] that
the RED algorithm can work efficaciously with VoIP flows.

Scalable H.264 Coding (SVC) consists of multiple layers
(basic, enhancement) and frames (I, P and B), each of which
has a different level of precedence depending on its importance
to the overall quality of the video. For networks that carry this
type of traffic, the authors of [131] proposed PID-PD, i.e., a
PID controller with Priority Dropping based on an m × n

priority matrix, where m is the number of SVC layers and n
is the number of priority ranks within each layer. The dropping
probability of a packet is calculated according to the PID
control. If it is determined that the packet is to be dropped, the
priority queues are searched out to determine if there are any
lower priority packets. If there is, that one would be dropped
instead.

For modeling efforts on scalable video streaming with
active queue management, see [132]. Also in [132] there
is a proposed video streaming framework called Partitioned
Enhancement Layer Streaming (PELS). In this framework, a
router requires two queues - the PELS queue for multimedia
traffic and the Internet queue for non-multimedia traffic - with
weighted round-robin (WRR) scheduling executed between
them.

Video transmission in autonomic networks is discussed in
[133]. Here the authors propose a new AQM scheme called
Autonomic AQM (AAQM) howbeit in the context of Mobile
Ad Hoc Networks (MANETs). Again, the concern is that
different video frame types have different levels of impact
on the video quality and should be prioritized appropriately.
For AAQM, service context information (such as frame type,
frame number and frame size and priority index,) is embedded
in the IP header. This information is extracted by nodes in
the network to determine what treatment should be meted out
to the packets constituting the frame(s). RED is at the core
of AAQM, but based on the service context information, the
maximum probability parameter, Pmax is adjusted.

In [134], there is a survey on active discarding packet
mechanism for video transmission. Like AAQM, these go be-
yond the many conventional AQM schemes discussed, in that
more intelligence is added into the packet dropping/marking
mechanism to decipher not only frame types but relationships
among the frames. This type of information is included in
pseudoheaders. The premise is that if certain high priority
frames (e.g., I frames) are dropped or become lost, then it
makes no sense to transport the associated P and B frames. It

1454 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 8. The DiffServ architecture

was found that this approach alleviated congestion. It should
be noted that the DiffServ framework was not explicitly
mentioned in the discussion of these active discarding packet
mechanisms.

AQM schemes were designed to address fairness issues
between responsive TCP flows and unresponsive UDP flows in
a common IP network. The traditional approach was to protect
the TCP flows and punish (even severely) the UDP ones which
would in turn incur large loss rates. In [135], a strategy is
proposed to provide greater support to higher priority real-
time multimedia flows that rely on UDP. The aim is not only
to control congestion but, to a satisfactory extent, preserve the
quality of the multimedia flows which are becoming a greater
factor in contemporary networks.

C. The performance of AQM schemes implemented within the
DiffServ framework

In Table XVII of the Appendix, a number of AQM crafted
for differentiated services are outlined. We continue the dis-
cussion here by identifying a few more AQM proposals
specifically for the DiffServ framework.

In [136], a Fuzzy Explicit Marking (FEM) algorithm is
discussed. See Section VI for more on AQM schemes based
on fuzzy logic and control. Written by the same authors
of [136],[137] outlines FEM In/Out which consists of two
identical FEM controllers; one for each class of service (i.e.
assured and best-effort), and each having a different target
queue length. In [138], Modified BLUE with IN and OUT
is proposed. It seeks to address queue length stability. Its
performance is compared to that of RIO. In [139], there is
Fuzzy Active Queue Management (FuzAQM). It works in con-
junction with RED and DiffServ. FuzAQM uses fuzzy logic
to monitor network conditions and adapts the two thresholds
of RED (minth and maxth) (which normally remains static)
according to the traffic type of the arriving packet so as to more
ably deal with network dynamics. This paper considers two

traffic types distinguished by different DiffServ Codepoints
(DSCPs). The FuzAQM approach is different from the RIO
mechanism in that the latter has different sets of thresholds
that are statically pre-configured for each traffic class.

Instead of having AQM in all routers throughout the net-
work, the authors of [140] have suggested Edge-based AQM,
i.e., AQM deployed only at the network edge and drop-
tail in the core. This was to minimize congestion control
complexity. It would be interesting to see how this coincides
with the DiffServ framework in which traffic classification and
conditioning also occur at the edge.

Hybrid RED (HRED) is modified in [141] for realization
of the drop precedence levels in Assured Forwarding (AF)
Per Hop Behaviours (PHB) in DiffServ. The authors of [141]
outline three properties that an AQM scheme should have
in the DiffServ context: sheltering (i.e., loss rates of lower
drop precedence levels should not be impacted greatly by
higher drop precedence levels), load tolerance (i.e., high drop
precedence traffic should not be starved and the hierarchy
among the levels should be preserved), and assured drop
probability for each level. In [142], RIO and WFQ are used
as the basic QoS control mechanism in the DiffServ network
together with a mechanism proposed by the authors to control
the threshold values of RIO based on flow count. The control
mechanism considers both input and output queues. However,
it also determines the contract speed of each flow so as
to decide how to adjust the threshold values. This seems
redundant given that traffic conditioning already penalizes
traffic that is not conforming.

In [143], an empirical study was conducted as to the inter-
play between existing AQM schemes such as RIO, PI, AVQ,
REM and LRED and DiffServ mechanisms such as traffic-
conditioning. How the steady-state and transient behaviours
of these AQM schemes affect the performance of AF services
(in terms of average goodput of each aggregate, and average
link throughput) was investigated.

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1455

In [144], Adaptive Rate Management (ARM) was used at
the edge to adjust the token-bucket parameters of the traffic
conditioning mechanism according to network conditions. For
the core, a two-level PID controller designed using Linear
Quadratic Regulators (LQR) was proposed. Here we see
the use of control-theoretic approaches within the DiffServ
framework. The ARM concept was introduced in [145] and
expanded upon in [146] for the AF PHB in DiffServ. The
authors suggested that throughput performance of flows is not
solely affected by the traffic conditioning at the network’s
edge but also, in a more complex way, by TCP’s congestion-
control mechanism operating at the source nodes, hence the
need for the ARM so as to provide the minimum throughputs
to the traffic classes. They model not only the TCP flows
entering the core, but also the color-marking process at the
edge and then determine the equilibria for the system. Using
the open-loop DiffServ network model thus derived, they
designed an ARM controller to regulate token-bucket rate.
This ARM was a Proportional-Integral (PI) controller with
low-pass filtering. The AQM adopted for the core in [145]
was the two-level PI controller, although the authors have
suggested that other AQM algorithms can be used there as
well, such as RED, and AVQ. It should be noted that their
main focus was on TCP flows dominating the network’s traffic
profile. What if this were not the case? In fact, challenges
in this regard were alluded to in [147], which investigated
video multicast (particularly receiver-driven layered multicast
(RLM)) in DiffServ networks that employed extended versions
of RED/RIO AQM. This issue of non-TCP flow impact on
network performance was addressed in [148], which derived
an analytical model for a priority system with RED in the
presence of self-similar traffic. Though not specifically for the
DiffServ context, the work of [149] may be considered related
since in it a rate-adaptive video streaming system with AQM is
modeled as a feedback control system using control-theoretic
approaches. In [150] a self-tuning adaptive controller (STAC)
was proposed for the DiffServ architecture. The controller,
based on a finite set of past values of queue length and
packet marking probability that were plugged into a difference
equation, continuously estimated control parameters so as to
determine the packet marking probability for the TCP/AQM
DiffServ plant.

Other work with regard to AQM in DiffServ networks
include [151], [152], [153], [154], [155], [156], [157].

IX. AQM IN WIRELESS SYSTEMS

Traditional AQM research has primarily targeted wired
networks. As mentioned before, the main thrust initially
was congestion control with system stability and robustness
amidst changing network conditions. Issues of fairness were
also tackled especially in the wake of increasing volumes
of unresponsive or not-as responsive multimedia flows that
use UDP. The research trajectory for AQM moved toward its
role in more formal QoS architectures such as DiffServ. Of
late, AQM research has turned more squarely to the realm of
wireless networks. In addition to discussing factors specific to
wireless that can affect or be affected by AQM performance,
in this section we attempt to organise examples of AQM work
by wireless technologies, i.e., Wireless LANs, Mobile Ad Hoc

Networks (MANETs), WiMAX (IEEE 802.16), GPRS, UMTS
and LTE mobile networks, Wireless Personal Area Networks
(WPANs), Wireless Sensor Networks (WSNs).

A. AQM considerations specific to Wireless

When considering AQM-in-Wireless research, one may
have to look at strategies for the downlink versus the uplink,
and whether the wireless network is infrastructure-type or
infrastructureless. For the infrastructure-type network there is
a base-station that acts as the intermediary between the wired
world and the wireless access network, and will become a
potential bottleneck due to the speed mismatch between the
two regimes. There can be a large drop in available band-
width from the wired network to the wireless network since
interference, collisions, multipath-fading, propagation distance
and shadowing effects, reduce the available bandwidth in the
wireless medium. For the latter case (i.e., infrastructureless)
the mobile nodes themselves act as routers which can become
congested.

To help TCP contend with “rate diversity” in the wireless
channel, the authors of [158] propose Channel-Aware AQM
(CA-AQM). Rate diversity comes about when different users,
who compete for the same wireless channel, independently
adjust their rates based on their own perception of channel
conditions. Based on some experiments they ran, the au-
thors found that one connection can negatively impact the
performance of all other TCP transmission in such a multi-
rate wireless environment. To develop CA-AQM they used a
utility-based optimization framework that takes into account
wireless networks’ characteristics. When the queue length is
below a pre-set threshold, the price is updated according to
the cumulative ratio of queue length to bit rate of all the flows.
However, when the queue length exceeds this threshold, the
price adjustment also takes into account estimated channel
capacity as seen by each flow. This estimate is based on
measurements from other packet transmissions sensed over the
wireless. Measurements include the length of the contention
period and the size of the packets.

Rate-based exponential AQM (REAQM) was proposed in
[159] as an AQM scheme to improve TCP performance over
wireless links. It uses input rate mismatch as the primary con-
gestion metric and queue length as the secondary. It also uses
ECN marking as opposed to packet drops so as to minimize
the ambiguity between packet losses due to congestion and
packet losses due to channel errors. REAQM is similar to
REM. However, the price update formula is more complex, so
as to enable a more suitable tradeoff between systems stability
and utilization.

In [160] was presented an algorithm called Adaptive QoS
and Wireless Bandwidth (adaptive-QWB). To address the
time-varying available wireless link bandwidth, the algorithm
attempts to find the best target queue length which minimizes
the variation in end-to-end delay and ensures that the end-to-
end delay remains below a maximum. The target queue length
calculated is then used to determine an appropriate packet drop
probability using a PID algorithm.

In [161] another short-coming of RED with regards to
mobile networks was highlighted. Because of the exponential

1456 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 9. Location of AQM in infrastructure-type wireless access networks

weighted averaging of the instantaneous queue length, RED
cannot respond quickly to sudden changes in network load that
result from handovers. To address this, Dual RED is proposed.
Dual RED consists of the original RED algorithm and an
“add-on” RED (aRED) which comes into play only during a
handover so as to differentiate forwarded traffic from ordinary
traffic. The structure of Dual RED is similar to RIO.

In terms of analytical work, the stability of TCP/AQM
wireless networks with feedback delays was investigated by
[162] with the aid of Delay Markov Jump Linear System
(DMJLS). To deal with capacity variations in wireless links
due to fading, an H∞ robust controller design for bottleneck
node (i.e., the interface between wired and wireless network)
in the downlink direction was performed by [163].

B. WLAN

In [164], [165], the CLAMP algorithm for AQM is pre-
sented. It adjusts TCP receiver’s advertised window limit for
flow control. The topology under consideration consists of an
access point (AP) which maintains per-user queues. However,
any given user may have multiple TCP connections competing
for its assigned queue at the AP. For it to work, CLAMP must
be implemented at both the AP and the mobile client. At the
AP, an average queue length that is based on the length of
each user’s queue at the AP, is determined and incorporated
into a measure of congestion. This information is sent to the
mobile clients via the IP header in packets. The client, upon
receiving the measure of congestion adjusts the advertised
window according to an equation derived by the authors that
is based on TCP flow dynamics.

The fusion point between an IEEE 802.11 wireless LAN
network and a wired network is examined in [166]. It is at
this point, where there is a great likelihood of congestion, that
AQM is applied, particularly RED and one devised by the
authors called EF-AQM. They highlight two challenges for
TCP with IEEE 802.11 wireless LANs: the single collision

domain in which a high number of nodes contending for
channel resources can exist at any given point in time, and
the fact that nodes can dynamically change their MAC-layer
data rates to 1, 2, 5.5 or 11 Mbps. The EF-AQM is based
on feedback control theory, but details as to the tuning of its
parameters are not provided.

The authors of [167] examined the performance of RED
at the wired-wireless (IEEE 802.11) interface, i.e., the access
point. They argued that RED negatively impacts WLAN per-
formance in terms of packet-loss rate and goodput, although
it could be improved with ECN. They then proposed Proxy-
RED, but in a network infrastructure which consists of light-
weight access points and a gateway which performs most of
the networking functionality such as QoS, mobility, security,
etc. For Proxy-RED, the RED algorithm is implemented at the
gateway, but the gateway must monitor the queues of the APs
it manages by periodically sampling their instantaneous queue
length to estimate the average queue length value to use at the
gateway. Proxy-RED therefore reduces the AQM overhead at
the APs.

The authors of [168] sought to improve fairness among
uplink and downlink flows in an infrastructure WLAN using
the Distributed Coordination Function (DCF) mode. To do
this, they used a PI controller to dynamically change the
minimum congestion window in conjunction with A2RED
developed in another publication.

C. 2G/3G mobile networks

The authors of [169] investigated the use of AQM in the
downlink Radio Link Control (RLC) buffers of the Radio
Network Controller (RNC)in 3G radio access networks. They
compared the performance of RED and a new AQM scheme
they proposed called Slope Based Discard (SBD) with the
case of simply having Droptail. This work only considered
TCP flows and not multimedia-over-UDP flows. AQM is
recommended for the RLC since it stores data from the upper

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1457

layers until fully acknowledged across the wireless link which
in turn can incur large frame losses. As a result the RLC
buffers can become highly congested impacting on TCP flows.
The SBD algorithm computes a critical rate based on buffer
occupancy and the reaction time which is the sum of the time
the congestion signal gets to the TCP source and the time
rate reduction is actually detected at the buffer employing the
AQM. The actual incoming rate is compared to the critical
rate and consequent drop decisions are made.

In [170], AQM is applied to the Radio Network Controller
(RNC) in WCDMA networks that employ High Speed Down-
link Packet Access (HSDPA), since it acts as the interface
between the core network (CN) and the Radio Access Net-
work (RAN), and so can be a bottleneck due to the rate
mismatch between the two systems. It is the RNC which
performs admission control and resource management. The
authors’ focus here was again on TCP flows. AQM schemes
considered in their analysis included RED, ARED, Packet
Discard Prevention Counter (PDPC) and Time-to-Live-based
RED (TTLRED) - an AQM scheme they proposed in that
paper. In TTLRED, time-stamps are applied to IP packets
entering the PDCP buffer. These packet life times are used
as the congestion indicator instead of queue length as in stan-
dard RED. Two versions of TTLRED are presented, one for
incoming packets, the other for buffered packets. For incoming
packets, the shape of the packet drop probability characteristic
follows that of Gentle RED. For the latter, packets are checked
every T seconds and if the current time is greater than the
timestamp value, the packet is dropped/marked.

The same authors of [170] investigated the use of AQM
in 2G-EGPRS (Enhanced GPRS) in [171]. For this study,
they consider as a greater potential for bottleneck the 2G
Serving GPRS Support Node (SGSN) rather than Base Station
Subsystem (BSS), and so apply AQM on the downlink there.
The AQM schemes under test were RED and TTLRED
mentioned before.

GPRS links are also addressed in [172]. However, the AQM
analysis performed was in the context of vertical handoffs
between the GSM/GPRS system and the IEEE 802.11 WLAN,
i.e., within a heterogeneous environment. The authors of
[172] provide guidelines for parameter values for RED in
the GPRS link queues. For example, the upper bound of the
queue weight, wq , they believe depends on the number of
packets in a burst (L) when the RED queue is in its initial
state (i.e., average and instantaneous queue lengths are zero).
They also propose a new AQM called Burst-Sensitive RED
(BSRED) to counteract the effect of packet bursts in these
links. BSRED adds a new parameter to the standard RED
called the Burst Threshold (Bt). If the number of consecutive
packets enqueued without a packet being dequeued exceeds
this threshold, a packet dropping event must occur regardless
of the queue length.

According to [173] channel impairments that distinguish
wireless links from wired links include lower capacity, higher
bit-error rates, longer delays and channel variability due
to multipath propagation, shadowing, power limitations, and
handoffs. Therefore techniques devised for wired systems
cannot be immediately or directly applied to wireless sytems.
There should be careful investigation as to the performance of

such methods in the wireless domain. This is true for AQM. In
[173] a CDMA2000 1xRTT network with commercial-grade
equipment such as the Radio Base Station (RBS), Base Station
Controller (BSC) and Packet Data Serving Node (PDSN) was
the testbed for their analysis. A wireless channel emulator and
noise generater were used to emulate the wireless link. The
authors proposed and implemented a new AQM scheme called
Remote-AQM (R-AQM) for such a network. The algorithm
is located in the client node (i.e., the mobile handset (MH))
and regulates the queue length at the BS and hence the TCP
traffic by using the advertised window. To perform its AQM
function, the MH needs an estimate of the round-trip delay.
This client-side approach they claim is feasible since each MH
has a dedicated buffer in the BS.

Fuzzy logic is used in [119] to design a queue-based
congestion mechanism called Adaptive Retransmission and
Active Drop (ARAD) for the 3G downlink. Inputs to the fuzzy
system include RLC queue length, packet arrival rate and the
queue length change rate. The outputs relate to the number
of retransmissions and the decision as to whether to drop or
accept a packet.

D. WiMAX

In the study of [174], the backhaul link in the WIMAX
network was treated as the main potential bottleneck instead of
the air-interface as is usually the case. The authors examined
the interaction between DiffServ mechanisms (which included
the RED AQM), connection admission control and WiMAX.
They mapped the WiMAX scheduling and data delivery ser-
vices to three DiffServ classes: Expedited Forwarding (EF), a
single Assured Forwarding (AF) class, and Best Effort (BE).
Actual traffic types used in the simulation included VoIP, web
browsing, video streaming and file downloads. Beside the role
that AQM plays in the context of DiffServ itself, AQM can act
a part in congestion control at the WiMAX Base Station (BS)
downlink queues per connection. So, in this regard, the authors
looked at the combined effect of having Time-to-Live(TTL)-
based RED (TTLRED) operating at the BS and RED at the
last router, and compared that to having no AQM at all; only
having TTLRED at the BS, and only having RED in the core.

A new AQM algorithm named Wireless Delay-Based Queue
(WDBQ) was proposed for IEEE 802.16 (WiMAX) networks
in [175]. Because the cause of packet loss could be attributed
to not only congestion but to channel impairments in wireless
systems, congestion detection based on packet loss could be
misleading. The authors proposed queueing delay instead.
With the WDBQ algorithm, if the packet queueing delay
exceeded a threshold (which was based on the packet round-
trip times and the number of flows) the packet would be
marked so that the TCP sending station would adjust its
sending rate accordingly. The threshold was updated every
T seconds to reflect changes in the network.

AQM was applied in the WiMAX Base Station down-
link queues by [176] and the end-to-end performance of
VoIP connections, video streaming connections, web-browsing
connections and file download connections between mobile
subscriber stations and an Internet server was examined. The
AQM schemes under examination were RED, Packet Discard

1458 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Prevention Counter (PDPC) and TTLRED. Their conclusion
was that AQM did improve performance in terms of queueing
delays, which led to better user experience.

In [177], the performance of RED, REM, BLUE and drop-
tail as possible queue management schemes for congestion
control in WiMAX for the transport of a single video stream
over multiple connections using MULTFRC over UDP, was
compared. The variable-bit rate (VBR) video was mapped to
the Real-time Polling Service (rtPS) service class buffer in
the WiMAX bases station (BS). The video quality was judged
in terms of Peak Signal-to-Noise Ratio (PSNR) and it was
discovered that, for the most part, up to three connections
could maintain acceptable PSNR and, that BLUE provided
the best results of the three given this context.

E. MANETs

MANETS are infrastructureless wireless networks, with
mobile nodes communicating peer-to-peer. The topology
changes are quite frequent and much resources must be de-
voted to route change and its consequent issues. So besides the
typical channel impairments of wireless networks, MANETs
have to contend with more stringent constraints in memory,
processing power and battery-life. Therefore, an appropriate
AQM scheme in such a case would be one that is lightweight,
and efficient. PAQMAN was proposed by [178], [179] to be
such a scheme. Its congestion indicator is average queue length
and at its core it uses the Recursive Least Squares (RLS) al-
gorithm to predict average queue length in the next prediction
interval. The difference between the predicted queue length
and the target queue length is what determines the packet
drop probability which remains constant over the prediction
interval, at the end of which the prediction algorithm is re-
executed. The performance of PAQMAN has been compared
to that of Droptail. Though it might have been also useful
to also compare its performance with that of RED or other
well-known AQM algorithms.

In a MANET a mobile node may simultaneously connect
with other mobile nodes and other networks (i.e., acting as a
gateway). The authors of [180] model such a node as a finite-
capacity, multi-server queuing system hosting multiple classes
of Poisson traffic, eaching having its own priority.

Ad hoc Hazard RED (AHRED) has been proposed by[181]
as another AQM algorithm suited to MANET. It has been
compared to RED, REM and SRED. The packet dropping
probability characteristic follows a Weibull model of hazard
rate function, with queue length as the congestion indicator,
i.e., p = βqβ−1. But β itself changes with queue length so as
to accelerate the AQM’s response to increasing congestion.

F. WPAN

In [182], the performance of MPEG-4 transmission over an
IEEE 802.15.3 WPAN that utilize AQM schemes such as RED
and WRED is analyzed and compared with Droptail. Two of
the performance metrics were: mean propagation time (MPT)
and job failure rate (JFR). In terms of MPT, WRED was found
to be the winner for larger number of devices in the piconet.
In terms of JFR, the performance of RED and WRED was
found to be the same.

G. 4G mobile networks

In [183], AQM is one of three mechanisms used to improve
TCP performance during an in intra-LTE handover, i.e., when
a mobile unit moves from one eNodeB to another eNodeB.
During a handover the target eNodeB can suffer increased
congestion. There are packets destined for this additional
mobile unit that can now be found in the territory of the
target eNodeB . These packets come directly from the serving
gateway. Also, there are packets for this same mobile unit
that are sent by the previous eNodeB. These packets were held
there until the handover process was completed. In [183] three
mechanisms are presented to address this challenge. Two of
the mechanisms addressed the increase in roundtrip time that
would result and which could negatively impact TCP’s perfor-
mance. The third mechanism, AQM, addressed the problem
tunneling presents for ECN marking. The tunneling between
the eNodeB and the serving gateway made the network ECN-
unaware. Therefore some ECN translation between the tunnel
and actual user IP headers had to be done, if any AQM
algorithm were to be implemented in the core.

H. WSN

To alleviate congestion in resource-strapped WSN, the
authors of [184] explored the possibility of adopting AQM
into this regime. Simulations were run for three algorithms:
RED, REM and PI. The issue they raised was that it was
at the sink node that congestion occured in that many-to-one
schema. They used AQM on the neighbour nodes of the sink,
so as to prevent congestion at the sink node. They found that
with RED the queues saturated frequently, causing greater
variation in throughput. REM provided better queue-length
stability around a smaller queue length than RED. They also
found that PI was superior to both RED and REM in that it
not only maintained shorter queue lengths but provided higher
throughput.

Table XIII summarizes the wireless issues addressed by the
various AQM schemes devised for that context.

X. DISCUSSION

Upon examination of the AQM research literature, we dis-
cuss here in this section a number of challenges and research
gaps in AQM research.

A. Research gaps

Very much has been accomplished in terms of control-
theoretic approaches to AQM design and analysis for the
express purpose of congestion control in wired networks. We
have seen the use of more and more sophisticated robust
control techniques. The main thrust of control theory is to
ensure good stability and responsiveness of the system even
in the presence of disturbances and large delays. However, a
number of issues come to light. These are now discussed but
not in any order of priority.

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1459

TABLE XIII
WIRELESS ISSUES ADDRESSED BY AQM APPROACHES

1) The need for revised “plant” models: The TCP-centric
model around which many control-theoretic AQM schemes
have been built may not be sufficient due to the growing
volume of non-responsive and not-as-responsive UDP-based
traffic. A revised “plant” model that successfully incorpo-
rates not only TCP-based traffic (both long-lived and short-
lived flows) but also UDP-based traffic with application-
layer congestion control, TCP-friendly traffic (e.g., TFRC and
GAIMD), as well as UDP-based non-responsive traffic.

The main emphasis of this survey has been router-based
AQM schemes, much of which have been devised after
and around the TCP endpoint congestion control. However,
to overcome the limitations of TCP, some researchers have
revisited the entire congestion control problem by performing
a joint-design that comprise both the end system and routers as
one. To this end there is eXplicit Control Protocol (XCP)[185]
- a window-based congestion control protocol for best effort
traffic. XCP was extended in [186]to work in the wireless
domain wherein is variable capacity. This modified XCP
was called XCP-b. Another protocol that follows this new
paradigm is the Rate Control Protocl (RCP) and its extended
version RCP with Acceleration Control (RCP-AC)[187].

2) Integration of control theory into AQM of the DiffServ
and the wireless domain: Nevertheless, it would be good
to explore how the control-theoretic and optimization-based
AQM schemes can be systematically integrated within the
DiffServ domain so that the latter can accrue benefits of
assured stability even in a multiservice scenario. At this
point, the research is predominantly separate with only a few
examples of control-theoretic schemes being used in DiffServ
with limited stability analysis to support their usage. This can
also be said for the role of control-theoretic schemes in the
wireless domain.

3) Stochastic optimization: Stochastic optimization is yet
to make significant inroads into AQM. One stochastic opti-

mization technique that may be suitable for AQM realization
could be Infinitesimal Perturbation Analysis (IPA). With IPA,
derivative estimators of a suitable cost function can be gleaned
directly from the live traffic (hence they are called “online”
estimators) and simultaneously fed into a gradient-descent
algorithm to perform the optimization. Typically the queue
dynamics are modelled as stochastic fluid queues for high
volume traffic. One major benefit of this approach is that
there is no need to know beforehand the underlying traffic
distribution.

4) Complexity: Typically, the more sophisticated an algo-
rithm, the greater the complexity in terms of processing power
required and memory usage. Additionally, adaptive forms of
AQM would have to measure variable network parameters
such round-trip times, flow counts. For these techniques to be
feasible (especially in terms of actual deployment), effective
methods with much lower complexity would have to be
sought.

5) AQM performance in the amalgamation of DiffServ
and heterogeneous wireless networks: Though DiffServ and
wireless issues were treated separately in this survey, there
is the need to investigate the role of AQM when these
two domains converge, i.e., DiffServ and wireless, so as
to efficiently support mobile multimedia. One may want to
determine whether or not it would be cost-effective for AQM
to reside either at the air-interface or within the core or at both
locations. Empirical studies may have to be conducted so as
to determine what AQM characteristics would be crucial to
such a scenario and which would be secondary.

B. Performance evaluation framework

One of the challenges with regard to AQM research is
the lack of a common yet flexible performance evaluation
framework by which new AQM schemes can be fairly com-
pared with past ones. As an example, consider the control

1460 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

theoretic schemes in Tables VI to IX. One can see that from
one AQM proposal to another, the network parameters, test
procedures and performance criteria can differ, depending on
what the author wishes to showcase. Additionally, the choice
of simulator and the AQM schemes used for comparison
may vary, together with the choice of topology (e.g., single
or multiple bottleneck) and the traffic types used in the
simulations. To illustrate: if one author proposed AQM X and
compares its transient behaviour to RED, while another author
proposed AQM Y and compared its steady-state behaviour to
REM, it will be difficult to make a valid comparison between
AQM X and AQM Y in terms of, say fairness, unless one
implemented the two schemes oneself. However, the feasibility
of this latter option depends heavily on how much of and
how clearly the authors of the AQM schemes presented their
algorithms in the research literature. What is proposed later in
this section is a performance evaluation framework in terms
of its components and their associated considerations. This
performance evaluation framework is shown in Figure 10.

1) Previous work: The authors of [36] also stated the need
for standardised performance evaluation of AQM schemes.
They even suggested that AQM deployment has not progressed
mainly due to a lack of detailed, objective and consistent
evaluation.

They had proposed an integrated framework for benchmark-
ing AQM, and in such they chose five metrics - utilisation,
delay, jitter, drop rate and fairness - to capture and compare
end-user experience. They also identified the choice of topol-
ogy and traffic mix as critical to the framework. Additionally,
they emphasized statistical techniques to calculate the length
of the initial transient in simulations, the length of the entire
simulation run and the number of independent replications ac-
cording to pre-specified confidence intervals so as to overcome
issues of biasedness of results.

We reiterate some of the main aspects suggested by the au-
thors in [36], and we also recommend a number of additional
features for consideration for such a framework. For example,
we recommend the use of additional standardised criteria for
stability, responsiveness and robustness - performance criteria
not mentioned by [36]. Also, unlike [36], the framework we
suggest does not revolve around a single simulator (in their
case, ns-2). In fact, the authors of [36] implemented a high-
level interface around ns-2 for the specification of experiments
and for the production of reports.

2) Performance criteria: As mentioned earlier in this sur-
vey (see Figure 3), different authors use different performance
metrics to demonstrate the effectiveness of their proposed
AQM scheme. These include fairness, delay jitter, packet loss,
application throughput and goodput, link utilization, queue
stability, responsiveness, robustness and complexity. It may be
useful for AQM research to develop standardized definitions
for all these metrics together with standardized application
dependent thresholds where appropriate. A common measure-
ment methodology and set of statistics for reporting may also
be necessary.

The IETF has already specified IP Performance Metrics
(IPPM) Framework by which performance measures such as
delay, end-to-end delay variation, round-trip-time, packet loss,
and throughput are well defined. Although there are defacto

measures for fairness, there is still room for variation. In
classical control there are performance measures that attempt
to capture responsiveness, stability and robustness such as
maximum overshoot and rise time. These have not been con-
sistently used in AQM research, particularly when illustrating
how well the proposed AQM scheme responds to changing
network conditions. A more thorough formulation of these
measures for the purpose of AQM research may be required.
And again, this formulation would require standardized defi-
nitions, measurement methodology, statistics for reporting and
application dependent thresholds.

3) Performance scenarios: Figure 10 also outlines some
of those network parameters that impact AQM performance.
Hence, the choice of scenarios for performance evaluation
should seek to address these issues comprehensively. To
therefore make a comparison across AQM schemes concerning
their response to any (changes) of these network parameters,
the scenario should be the same across AQM schemes. As a
result, an agreed upon format for such scenarios should be
articulated.

As part of the scenarios, there is the choice of traffic types
(e.g. FTP, HTTP, voice (UDP), video (UDP)). The models
used for such should be outlined or explicitly declared (e.g.
constant bit-rate at 64 kbps) for reproducibility. Additionally,
the composition of the traffic mixes should also be clearly
stated.

An additional component of the performance scenario is
the topology choice (e.g. single bottleneck, or multiple bottle-
neck). For the most part, the topology is completely specified.
What may differ from one AQM study to another may be the
number of flows, packet sizes, the link speeds, link delays and
the buffer sizes.

Though the dumbell topology is the most common choice
when reporting AQM performance in wired networks, the
topology choice tends to be more variable in the wireless
context. This is an area worthy of further exploration.

4) Common format for algorithm depiction: It has been
found that not many authors completely specify the AQM
algorithm that they propose. So that, outside of a common,
agreed upon framework of testing and measurement, it may
be a challenge for another author to faithfully and fairly
reproduce their results. It may be necessary to encourage AQM
researchers to follow an agreed upon format for outlining their
algorithms.

5) Additional considerations: It may be useful to have a
common, online and open repositiary of AQM performance
results to which authors can upload such for their algorithm.
This enables an ongoing comparison. This may also provide
a more definite means to judge the progression (in terms
of performance) of the entire AQM research arena. By this
equipment manufacturers may even be more encouraged to
deploy AQM schemes they deem suitable.

It is inevitable that there may be some AQM parameters
that would have to be tuned manually. It may be valuable for
authors of AQM schemes to conduct and report multidimen-
sional sensitivity analyses with respect to such parameters.

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1461

Fig. 10. AQM performance evaluation framework

XI. CONCLUSION

In this survey we journeyed through AQM research from
its formal beginnings in 1993 to 2011. We looked at the RED
algorithm and the analyses that ensued. We saw the transition
to control theoretic approaches starting with the Proportional
Integral controller. This particular branch of AQM research has
mushroomed as the various techniques developed in the realm
of control theory and practice are also finding application
in the context of network congestion control. Optimization
approaches to AQM were also discussed. With the grow-
ing importance of Quality-of-Service (QoS) provisioning in
multimedia networks, and the widening popularity of the
DiffServ framework for carrying out such, AQM has found
its niche as a mechanism for service differentiation. To this
end, we have looked at some AQM approaches proposed in
the research literature. We have also looked at the benefits
wireless networks can accrue with the assistance of AQM for
congestion control, and saw examples of AQM techniques to
realize these benefits.

Sure enough, many more AQM schemes would be proposed
in the future. However, what might be required would be
a comprehensive framework within which AQM schemes
could be rigorously and fairly compared. We discussed such
a framework and suggested that it should include a system
of performance criteria, performance measurements, and test
procedures. This framework development could be followed
by a full analysis campaign which would include many of the
existing AQM schemes.

APPENDIX A
RED VARIANTS AND HEURISTIC AQM SCHEMES

Tables XIV to XXVII summarize and categorize a number
of AQM schemes according to improvement in stability or
responsiveness, auto-tuning, improved fairness, and differen-
tiated services.

REFERENCES

[1] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[2] C. Yang and A. Reddy, “A taxonomy for congestion control algorithms
in packet switching networks,” Network, IEEE, vol. 9, no. 4, pp. 34–45,
1995.

[3] M. Labrador and S. Banerjee, “Packet dropping policies for ATM and
IP networks,” Communications Surveys & Tutorials, IEEE, vol. 2, no. 3,
pp. 2–14, 1999.

[4] G. Chatranon, M. A. Labrador, and S. Banerjee, “A survey of TCP-
friendly router-based AQM schemes,” Computer Communications,
vol. 27, no. 15, pp. 1424–1440, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366404001689

[5] S. Ryu, C. Rump, and C. Qiao, “Advances in Internet congestion
control,” Communications Surveys & Tutorials, IEEE, vol. 5, no. 1,
pp. 28–39, 2003.

[6] R. Jain, “Congestion control in computer networks: issues and trends,”
Network, IEEE, vol. 4, no. 3, pp. 24–30, 1990.

[7] L. Hu and A. Kshemkalyani, “HRED: a simple and efficient active
queue management algorithm,” in Proceedings of the 13th International
Conference on Computer Communications and Networks, Chicago, IL,
USA, 2004, pp. 387–93.

[8] M. Arpaci and J. Copeland, “An adaptive queue management method
for congestion avoidance in TCP/IP networks,” in Proceedings of the
IEEE Global Telecommunications Conference (Globecom ’00), vol. 1,
San Francisco, CA, USA, 2000, pp. 309–15.

[9] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An algorithm
for increasing the robustness of RED,” 2001. [Online]. Available:
citeseer.ist.psu.edu/floyd01adaptive.html

1462 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XIV
SUMMARY OF HEURISTIC AQM SCHEMES THAT IMPROVE STABILITY OR RESPONSIVENESS

AQM Congestion
Indicator

Control Function Special Characteristics

Gentle RED
(GRED) [25],
[78], [24]

Average
(EWMA)
queue length

p(q̄) =

⎧⎪⎨
⎪⎩

0 0 ≤ q̄ ≤ minth
q̄−minth

maxth −minth
Pmax minth ≤ q̄ ≤ maxth

1−Pmax
maxth

q̄ + 2maxth−1 maxth ≤ q̄ ≤ 2maxth
1 q̄ ≥ 2maxth

Has the same congestion indicator
and marking algorithm as RED.
Discontinuity removed by a finite
linear slope

Parabola RED [7]
and Hyperbola
RED

Average
(EWMA)
queue length

p(q̄) =

{
0 0 ≤ q̄ ≤ minth(

q̄−minth
maxth −minth

)2
minth ≤ q̄ ≤ maxth

1 q̄ ≥ maxth

Stabilized RED
(SRED) [188]

Instantaneous
queue length

pzap = psred(q)min

(
1,

1

(256P (n))2

)(
1 +

H(n)

P (n)

)
where

psred(q) =

{
pmax

1
3
B ≤ q < B

1
4
pmax

1
6
B ≤ q < 1

3
B

0 0 ≤ q < 1
6
B

where B is the buffer size, q is the current queue length and pmax is an
SRED parameter to limit the maximum drop probability,
and

P (n) = (1− α)P (n− 1) + αH(n)

where α is another SRED control parameter and P (n) is the estimate of
the probability that the zombie list has a “hit”. H(n) is a binary variable
where H(n) = 1 if there is a “hit” or H(n) = 0 if there is a “no hit”.
Now, 0 < α < 1 and α ≈ p

M

Maintains a “zombie” list of flow
identifiers from which it randomly
chooses to compare with an incom-
ing packet . If there is a match
(or “hit”) on which the dropping
probability is calculated

Dynamic RED
(DRED) [13]

Average
(EWMA)
queue length

At t = nΔT , the error signal is calculated as

e(n) = q(n)− qref

where q(n) is the instantaneous queue length and qref is the target queue
length. The EWMA estimate of the error signal is then computed as:

ê(n) = (1 − β)ê(n− 1) + βe(n)

where β is a DRED control parameter that smooths out the error signal.
The drop probability is then calculated as:

pd(n) = min

(
max

(
pd(n− 1) + α

ê(n)

B
, 0

)
, θ

)
where B is the buffer limit, α, another DRED control parameter for
feedback gain, and θ, the maximum packet drop probability.
DRED will not drop the packet if the queue length q(n) < L where L is
the no-drop threshold

Attempts to maintain the EWMA
queue length around a given target
so as to be load dependent

[10] J. Koo, B. Song, K. Chung, H. Lee, and H. Kahng, “MRED: a
new approach to random early detection,” in Proceedings of the 15th
International Conference on Information Networking, Beppu City,
Oita, Japan, 2001, pp. 347–52.

[11] S. Ryu, C. Rump, and C. Qiao, “Advances in active queue management
(AQM) based TCP congestion control,” Telecommunication Systems -
Modeling, Analysis, Design and Management, vol. 25, no. 3-4, pp.
317–51, 2004.

[12] W. Feng, K. Shin, D. Kandlur, and D. Saha, “The BLUE active queue
management algorithms,” IEEE/ACM Transactions on Networking,
vol. 10, no. 4, pp. 513–28, 2002.

[13] E. Park, H. Lim, K. Park, and C. Choi, “Analysis and design of the
virtual rate control algorithm for stabilizing queues in TCP networks,”
Computer Networks, vol. 44, no. 1, pp. 17–41, 2004.

[14] C. Long, X. Guan, B. Zhao, and J. Yang, “The Yellow active queue
management algorithm,” Computer Networks, vol. 47, no. 4, pp. 525–
50, 2005.

[15] C. Wang, B. Li, Y. Hou, K. Sohraby, and Y. Lin, “LRED: a robust active
queue management scheme based on packet loss ratio,” in Proceedings
of the Twenty-third Conference of the IEEE Communications Society
(IEEE INFOCOM 2004), Hong Kong, China, 2004, pp. 1–12.

[16] H. Xu, T. Wu, X. Zhou, and Y. Zhu, “IP network control and AQM,”
in Proceedings of the 2004 International Conference on Machine
Learning and Cybernetics, vol. 1, Shanghai, China, 2004, pp. 500–
4.

[17] T. Wu, H. Xu, and S. Tian, “End-to-end congestion control and
active queue management,” in Proceedings of the 2003 International
Conference on Machine Learning and Cybernetics, vol. 2, Xi’an,
China, 2003, pp. 946–50.

[18] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host
congestion control for TCP,” Communications Surveys & Tutorials,
IEEE, vol. 12, no. 3, pp. 304–342, 2010.

[19] C. Ku, S. Chen, J. Ho, and R. Chang, “Improving end-to-end per-
formance by active queue management,” in Proceedings of the 19th
International Conference on Advanced Information Networking and
Applications, vol. 2, Taipei, Taiwan, 2005, pp. 337–40.

[20] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe - a stateless active
queue management scheme for approximating fair bandwidth allo-
cation,” in Proceedings of the Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies on Computer
Communications (IEEE INFOCOM 2000), vol. 2, Tel Aviv, Israel,
2000, pp. 942–51.

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1463

TABLE XV
SUMMARY OF HEURISTIC AQM SCHEMES THAT IMPROVED STABILITY OR RESPONSIVENESS (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

Double
Slope RED
(DSRED) [80]

Average
(EWMA)
queue length

p(q̄) =

⎧⎨
⎩

0 0 ≤ q̄ ≤ Kl

α(q̄ −Kl) Kl ≤ q̄ ≤ Km

1− γ + β(q̄ −Km) Km ≤ q̄ ≤ Kh

1 q̄ ≥ Kh

where α =
2(1−γ)
Kh−Kl

, β = 2γ
Kh−Kl

and q̄ = (1−wq)q̄+wqq. γ is a DSRED
parameter called the mode-selector. Kl and Kh are equivalent (conceptually)
to RED’s minth and maxth respectively. Km is set to Kl+Kh

2
.

Instead of having a single
slope value between the two
thresholds minth and maxth
in RED, DSRED has two.

Load/Delay Con-
trollers [34]

EWMA
load and
queueing
delay

p(q̄, r̄) = αmin

(
1,

(
q̄

q̄target

)n)
+ (1 − α)min

(
1,

(
r̄

r̄target

)n)
where r, the instantaneous load factor, is the ratio of the arrival rate to the
drain rate of the queue and

q̄(kΔ) = (1 −wq)q̄((k − 1)Δ) +wqq(kΔ)

r̄(kΔ) = (1− wr)r̄((k − 1)Δ) +wrr(kΔ)

A generic class of AQM al-
gorithms which aims to pro-
vide better response to load
changes. The EWMA queue
length and load are calculated
at fixed time intervals, Δ, in-
stead of upon every packet ar-
rival.

Loss Ratio
based RED
(LRED) [15]

instantaneous
queue length
and EWMA
packet loss
ratio

To actually measure the packet loss ratio, LRED first measures the number of
packet drops and the number of packet arrivals in the previous M measurement
intervals. The packet loss ratio for the k-th interval is calculated as:

l(k) =

∑M−1

i=0
Nd(k − i− 1)∑M−1

i=0
Na(k − i− 1)

where Nd(j) is the number of packet drops in the j-th interval, and Na(j) is
the number of packet arrivals in the j-th interval.
The EWMA packet loss ratio is then calculated as

l̂(k) = wl l̂(k − 1) + (1 −wl)l(k)

where wl is the EWMA weight which is set to a small value to more closely
track the current packet loss ratio.
The actual packet drop probability is calculated as

p(q, l̂) = l̂(k) + β
√

l̂(k)(q − q0)

where β is another LRED parameter (β > 0).

According to [15], packet loss
ratio is an important indicator
of heavy congestion and its
inclusion can make an AQM
more robust and adaptive.

Modified RED
(MRED) [10]

Average
(EWMA)
queue
length,
packet loss
and link
utilization

If the average queue size is between minth and maxth, the packet is dropped
with probability p. This probability does not follow the linear function in RED,
but is rather a step function, the decrements and increments of which (i.e. the
actual step sizes) change with traffic. If there is an increase in q̄, and the time
lapse since the last update is greater than “uptime”, the current drop probability
p is incremented by d1 (i.e. p ← p + d1). When minth < q̄ < maxth, and
there is a decrease in q̄, and the time lapse since the last update is greater than
“uptime”, the current drop probability p is decremented by d2 (i.e. p← p−d2).
Initially, d1 is set to a large value and then reduced after repeated increases in
the drop probability so that p converges to the maximum drop probability. On
the other hand d2 is increased with decreasing q̄. d1 is set to be larger than
d2.

RED structure at core

[21] Y. Jiang, M. Hamdi, and J. Liu, “Self adjustable CHOKe: an active
queue management algorithm for congestion control and fair band-
width allocation,” in Proceedings of the Eighth IEEE Symposium on
Computers and Communications (ISCC 2003), vol. 2, Kemer-Antalya,
Turkey, 2003, pp. 1018–25.

[22] J. Chung and M. Claypool, “Dynamic-CBT - Better performing active
queue management for multimedia networking,” in Proceedings of the
10th ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), Chapel Hill, NC,
USA, 2000.

[23] W. Sun and K. Shin, “TCP performance under aggregate fair queueing,”
in Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM ’04), vol. 3, Dallas, TX, USA, 2004, pp. 1308–13.

[24] C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida, and M. May,
“Comparison of tail drop and active queue management performance
for bulk-data and Web-like Internet traffic,” in Proceedings of the Sixth

IEEE Symposium on Computers and Communications, Hammamet,
Tunisia, 2001, pp. 122–9.

[25] J. Chung and M. Claypool, “Analysis of active queue management,” in
Proceedings of the Second IEEE International Symposium on Network
Computing and Applications (NCA 2003), Cambridge, MA, USA,
2003, pp. 359–66.

[26] N. Li, G. de Veciana, S. Park, M. Borrego, and S. Li, “Minimizing
queue variance using randomized deterministic marking,” in Proceed-
ings of the IEEE Global Telecommunications Conference (GLOBE-
COM’01), vol. 4, San Antonio, TX, USA, 2001, pp. 2368–72.

[27] M. Agarwal, R. Gupta, and V. Kargaonkar, “Link utilization based
AQM and its performance,” in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’04), vol. 2, Dallas,
TX, USA, 2004, pp. 713–18.

[28] D. Lin and R. Morris, “Dynamics of random early detection,” Com-
puter Communication Review, vol. 27, no. 4, pp. 127–37, 1997.

1464 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XVI
SUMMARY OF HEURISTIC AQM SCHEMES THAT IMPROVED STABILITY OR RESPONSIVENESS (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

Modified RED
(MRED) [37]

Average
(EWMA)
queue length
and instanta-
neous queue
length

Upon each packet arrival, this MRED algorithm updates the EWMA queue
length average, q̄. MRED is essentially RED except for when q̄ > maxth
and the instantaneous queue length q > maxth also. Then, the packet is
dropped/marked with probability 1. This prevents packet dropping when the
q̄ > maxth and the instantaneous q < maxth.

RED structure at core. Devel-
oped independently from the
aforementioned MRED algo-
rithm.

BLUE [12] occurrence
of buffer
overflow
and buffer
underflow

BLUE uses a single value for packet drop probability, p, which is periodically
adjusted if necessary after a fixed time interval called the freeze-time. p is
increased by a small fixed increment, δ1, when there is a packet loss due
to buffer overflow and decreased by a small fixed value, δ2 when the queue
becomes empty (i.e. additive increase additive decrease). Therefore all during
the period that the queue is non-empty (but not full) the drop probability is
constant.

Performance degradations due
to multiple packet losses and
periods of emptiness is un-
avoidable with BLUE [11]

Yellow [14] link utiliza-
tion

The QCF is denoted by the function f(q) where q is the queue length, and
qref is the reference queue length.

f(q) =

{
max

(
QDLF,

γαqref
(α−1)q+qref

)
q > qref

γβqref
(β−1)q+qref

0 ≤ q ≤ qref

where QDLF is the queue drain limit factor, γ is the link utilization, α and
β are two parameters that provide the tradeoff between responsiveness and
stability of the Yellow algorithm.
The load factor (which is the congestion measure for Yellow), is z =
link input rate

c̃
where c̃ is the virtual available capcity computed as c̃ = f(q)c

where c is the link capacity and f(q) is as given above. z can be considered
a mismatch between the virtual capacity and the input rate.
The dropping probability function is then given as the recursive form:

p =

{
p+ zΔ

c
z ≥ 1 + δ

p− Δ
zc

z < 1
p otherwise

Now, [1, 1+δ] is the range of desired link utilization. If the input rate exceeds
the virtual capacity by δ, the dropping probability increases and if the input
rate is less than the virtual capacity, the dropping probability decreases.

To improve the transient per-
formance when there are sud-
den changes in network load, a
secondary queue control func-
tion (QCF) is used. This is
unlike other AQM schemes
which use both load and queue
length as peer congestion mea-
sures.

DREAM [26] — modifies only the marking algorithm, i.e. the function that decides which packet
is actually going to be dropped/marked given a dropping/marking probability,
pb.
Instead of Random Marking (RM), Uniform Random Marking (URM), Wait
Uniform Random Marking (WURM) and Slow Random Marking (SRM), it
uses the following function

pa(n) =

{
0 if n× pb < 1
1 otherwise

[29] B. Suter, T. Lakshman, D. Stiliadis, and A. Choudhury, “Design consid-
erations for supporting TCP with per-flow queueing,” in Proceedings
of the Seventeenth Annual Joint Conference of the IEEE Computer
and Communications Societies on Computer Communications (IEEE
INFOCOM ’98), vol. 1, San Francisco, CA, USA, 1998, pp. 299–306.

[30] C. Zhu, O. Yang, J. Aweya, M. Ouellette, and D. Montuno, “A
comparison of active queue management algorithms using the OPNET
modeler,” IEEE Communications Magazine, vol. 40, no. 6, pp. 158–67,
2002.

[31] R. Pletka, M. Waldvogel, and S. Mannal, “PURPLE: predictive active
queue management utilizing congestion information,” in Proceedings
of the 28th Annual IEEE International Conference on Local Computer
Networks (LCN 2003) held in conjunction with the Workshop on High-
Speed Local Networks (HSLN) and the Workshop on Wireless Local
Networks (WLN 2003), Bonn/Konigswinter, Germany, 2003, pp. 21–30.

[32] S. Oruganti and M. Devetsikiotis, “Analyzing robust active queue
management schemes: a comparative study of predictors and con-
trollers,” in Proceedings of the 2003 IEEE International Conference
on Communications, vol. 3, Anchorage, AK, USA, 2003, pp. 1531–6.

[33] C. Hollot, Y. Liu, V. Misra, and D. Towsley, “Unresponsive flows
and AQM performance,” in Proceedings of the Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Societies
(IEEE INFOCOM 2003), vol. 1, San Francisco, CA, USA, 2003, pp.
85–95.

[34] M. Kwon and S. Fahmy, “Comparison of load-based and queue-based
active queue management algorithms,” in Proceedings of the SPIE -
The International Society for Optical Engineering, vol. 4866, Boston,
MA, USA, 2002, pp. 35–46.

[35] W. Wu, Y. Ren, and X. Shan, “Stability analysis on active queue man-
agement algorithms in routers,” in Proceedings of the Ninth Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS 2001), Cincinnati, OH,
USA, 2001, pp. 125–32.

[36] A. Bitorika, M. Robin, and M. Huggard, “An evaluation framework
for active queue management schemes,” in Proceedings of the 11th
IEEE/ACM International Symposium on Modeling Analysis and Sim-
ulation of Computer Telecommunications Systems (MASCOTS 2003),
Orlando, FL, USA, 2003, pp. 200–6.

[37] G. Feng, A. Agarwal, A. Jayaraman, and C. Siew, “Modified RED
gateways under bursty traffic,” IEEE Communications Letters, vol. 8,
no. 5, pp. 323–5, 2004.

[38] R. Zhu, H. Teng, and J. Fu, “A predictive PID controller for AQM
router supporting TCP with ECN,” in Proceedings of the 2004 Joint
Conference of the 10th Asia-Pacific Conference on Communications
and the 5th International Symposium on Multi-Dimensional Mobile
Communications Proceeding (APCC/MDMC ’04), vol. 1, Beijing,
China, 2004, pp. 356–60.

[39] R. Cartas, J. Orozco, J. Incera, and D. Ros, “A fairness study of the

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1465

TABLE XVII
SUMMARY OF HEURISTIC AQM SCHEMES WITH AUTO-TUNING

AQM Congestion
Indicator

Control Function Special Characteristics

Adaptive RED
(ARED) [9],
[189]

Average
(EWMA)
queue length

1) Pmax is adjusted so as to keep the average queue length at the half-
way point between minth and maxth, not just anywhere between
minth and maxth.

2) Instead of using Multiplicative Increase Multiplicative Decrease
(MIMD) for adjustment of Pmax, Additive Increase Multiplicative
Decrease (AIMD) is used.

3) Pmax is adjusted slowly in small steps (in the order of round-trip
times)

4) Pmax is not allowed to exceed 0.5 or to fall below 0.01.
5) maxth is set to 3×minth
6) wq to 1− e−

1
C where C is the link capacity in packets/second.

7) minth = max

[
5,

delay×C
2

]
assuming a default round-trip time

of 100 ms.
8) Recommended values for the increase constant, α, and the decrease

factor, β are α < 0.25 and β > 0.83

According to [9], ARED can
achieve a target queue length set
at around minth +maxth

2
provid-

ing predictable average queueing
delay and preventing overshoot of
maxth with the associated higher
packet loss.
A nonlinear analysis was per-
formed on RED and ARED by
[82], so as to determine how their
performance is affected by their
nonlinear dynamical behaviour. It
was found that ARED performed
much better than RED on most
occasions, having smaller maxi-
mal Lyapunov exponents and lower
Hurst parameters. It was also found
by [19] that ARED converged more
quickly than RED.

RARED [19] Average
(EWMA)
queue length
and average
(EWMA)
input rate

RARED uses the EWMA queue length at the current and two previous
packet arrivals to estimate the input rate. The EWMA rate r̄(ti) can be
computed as

r̄(ti) =
q̄(ti)− q̄(ti−1)

ti − ti−1

where ti is the arrival time of the i-th packet and q̄(ti) is the EWMA
queue length computed at ti. However, the computation was simplified
by [19] considering the climb in input rate so that if

[q̄(ti)− q̄(ti−1)]− [q̄(ti−1)− q̄(ti−2)] > δ

(where δ is a parameter to be configured), then Pmax is changed to a
higher value P r

max, otherwise it remains the same as in the original RED
scheme.

The basic structure of RED is pre-
served.
The choice of δ determines how
aggressive the algorithm will be to
increasing traffic loads. A large δ
will make it too sluggish, whereas
a small value may make it too
aggressive. A δ = 1 was sug-
gested by [19] as the largest value
they found to not degrade per-
formance. They also suggested a
P r
max = 0.8. Anything greater

does not cause much improvement.

RED-
Worcester [190]

Average
queue length

RED Worcester extends ARED directly so as to make it more sensitive
to the average QoS demands of the incoming traffic. ARED maintains the
queue-length at a fixed target so as to keep the queueing delay more or less
constant for all the flows passing through. However, different applications
require different delay bounds, for example real-time traffic is highly
delay sensitive. RED Worcester adapts this target queue length to more
closely reflect the average nature of the traffic, so that if the traffic is
predominantly delay-sensitive the queue-length target will be lowered, and
if it is predominantly throughput-sensitive the queue-length target will be
increased. Sources use delay hints to indicate a bound on queueing delay
for the flow. RED Worcester does not guarantee that this delay bound will
be met, it just uses it to get an average sense of the aggregate tradeoff
between throughput and delay. The queue target is set as the EWMA of
the delay hints of the incoming packets.

RED-Worcester is not a differen-
tial service and therefore does not
require any components associated
with such (e.g. policing, charg-
ing, etc.). However, it is claimed
by [190] that RED Worcester im-
proves the QoS of delay-sensitive
flows as their proportion in the
traffic mix increases.

adaptive RIO active queue management algorithm,” in Proceedings
of the Fifth Mexican International Conference in Computer Science,
Colima, Mexico, 2004, pp. 57–63.

[40] J. Sun, K.-T. Ko, G. Chen, S. Chan, and M. Zukerman, “PD-RED:
to improve the performance of RED,” IEEE Communications Letters,
vol. 7, no. 8, pp. 406–8, 2003.

[41] L. Le, J. Aikat, K. Jeffay, and F. Smith, “The effects of active queue
management on Web performance,” Computer Communication Review,
vol. 33, no. 4, pp. 265–76, 2003.

[42] F. Ren, C. Lin, and B. Wei, “Design a robust controller for active
queue management in large delay networks,” in Proceedings of the
Ninth International Symposium on Computers And Communications
(ISCC 2004), vol. 2, Alexandria, Egypt, 2004, pp. 748–54.

[43] F. Yanfie, R. Fengyuan, and L. Chuang, “Design a PID controller
for active queue management,” in Proceedings of the Eighth IEEE
Symposium on Computers and Communications (ISCC 2003), vol. 2,
Kemer-Antalya, Turkey, 2003, pp. 985–90.

[44] S. Athuraliya, S. Low, V. Li, and Q. Yin, “REM: active queue
management,” IEEE Network, vol. 15, no. 3, pp. 48–53, 2001.

[45] S. Kunniyur and R. Srikant, “An adaptive virtual queue (AVQ) al-
gorithm for active queue management,” IEEE/ACM Transactions on
Networking, vol. 12, no. 2, pp. 286–99, 2004.

[46] H. Han, C. Hollot, Y. Chait, and V. Misra, “TCP networks stabilized

by buffer-based AQMs,” in Proceedings of the Twenty-third Conference
of the IEEE Communications Society (IEEE INFOCOM 2004), vol. 2,
Hong Kong, China, 2004, pp. 964–74.

[47] J. Chung and M. Claypool, “Rate-based active queue management with
priority classes for better video transmission,” in Proceedings of the
Seventh International Symposium on Computers and Communications
(ISCC 2002), Taormina-Giardini Naxos, Italy, 2002, pp. 99–105.

[48] K. Kim, A. Tang, and S. Low, “Design of AQM in supporting TCP
based on the well-known AIMD model,” in Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM ’03), vol. 6, San
Francisco, CA, USA, 2003, pp. 3226–30.

[49] V. Firoiu and M. Borden, “A study of active queue management for
congestion control,” in Proceedings of the Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies
(IEEE INFOCOM 2000), vol. 3, Tel Aviv, Israel, 2000, pp. 1435–44.

[50] B. Wydrowski and M. Zukennan, “On the transition to a low latency
TCP/IP Internet,” in Proceedings of the 2002 IEEE International
Conference on Communications (ICC 2002), vol. 4, New York, NY,
USA, 2002, pp. 2631–5.

[51] X. Wang and M. Azizoglu, “On the dropping probability function
in active queue management schemes,” in Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM’01), vol. 4, San
Antonio, TX, USA, 2001, pp. 2511–16.

1466 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XVIII
SUMMARY OF HEURISTIC AQM SCHEMES WITH AUTO-TUNING (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

Random Early
Adaptive
Detection [8]

Average
(EWMA)
queue length
and EWMA
queue slope

Besides calculating the EWMA of the queue length as in RED, READ also
calculates its EWMA slope so as to track the sign changes in the average
queue length and so track its local maximum and minimum points.

q̄t+1 = (1 −wq)q̄t +wqqt

s̄lt+1 = (1− wsl)s̄lt + wsl(q̄t+1 − q̄t)

where wq = 0.002 and wl ≈ 0.001
At each sign change in the slope sl, the value of the local maxmimum
(max) and the local minimum (min) are recorded. (Note: these are not
minth nor maxth.) From this the level around which the queue length
oscillates is estimated. This queue level (level) is updated on every change
in the local minimum as level = max+min

2
. The dropping probability is

then increased or decreased according to the value of level:

p =

{
p+ INC level > buffer × 0.52
p−DEC level < buffer × 0.48
p otherwise

We see here that there are no maximum or minimum thresholds and the
attempt is to keep the queue length halfway through the queue. The authors
chose the parameters INC = 0.02 and DEC = 0.002. They set INC >
DEC so that the algorithm more aggressively acts when there is the onset
of congestion.

READ, according to [8], achieves
higher power levels than RED
(where power is defined as
throughputα

response time) and it adapts
automatically to traffic loads.

PSAND [77] average
queue length

Like ARED it adjusts Pmax based on the average queue length. However,
unlike ARED, the multiplicative factor that it uses is not fixed but
dynamically adjusts to changing queue size and the deviation from the
target queue size. This multiplicative factor is calculated as:

r =

(
K̂cur

K̂prev

)(
K̂cur

K̂T

)

where K̂cur is the weighted average queue size in the current interval,
K̂prev is the weighted average queue size in the previous interval and
K̂T is the target weighted average queue size. These are calculated at a
regular interval not on every packet arrival.
It was found that the multiplicative factor r was not aggressive enough,
so instead they, the authors of [77] modified the multiplicative factor to

β = coef × rγ

where r is the same as before and γ and coef are two new parameters that
must also be tuned. They used values of coef = 1.75 and γ = 1.5 based
on extensive simulations. Pmax is therefore adjusted

Pmax = Pmax × β

It was also recommended by [77] that the RED parameters minth and
maxth should be set as follows:

min
th

=

{
2K̂T − B K̂T > B

2

0 K̂T ≤ B
2

max
th

=

{
B K̂T > B

2

2K̂T K̂T ≤ B
2

The aim of PSAND is to improve
the queueing delay and delay jit-
ter performance of ARED without
jeopardizing its loss rate perfor-
mance. RED is still the core of
PSAND

[52] X. Deng, S. Yi, G. Kesidis, and C. Das, “Stabilized virtual buffer (SVB)
- an active queue management scheme for Internet quality-of-service,”
in Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM ’02), vol. 2, 2002, pp. 1628–32.

[53] V. Misra, G. W., and D. Towsley, “Fluid-based analysis of a network
of AQM routers supporting TCP flows with an application to RED,”
Computer Communication Review, vol. 30, no. 4, pp. 151–60, 2000.

[54] N. Cardwell, S. Savage, and T. Anderson, “Modeling the performance
of short TCP connections,” Computer Science Department, Washington
University, Tech. Rep.

[55] C. Hollot, V. Misra, D. Towsley, and W. Gong, “A control theoretic
analysis of RED,” in Proceedings of the Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (IEEE
INFOCOM 2001)., vol. 3, Anchorage, AK, USA, 2001, pp. 1510–19.

[56] , “On designing improved controllers for AQM routers supporting
TCP flows,” in Proceedings of the Twentieth Annual Joint Conference
of the IEEE Computer and Communications Society (IEEE INFOCOM
2001)., vol. 3, Anchorage, AK, USA, 2001, pp. 1726–34.

[57] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, no. 3, pp. 237–52, 1998.

[58] F. Kelly, “Mathematical modelling of the Internet,” in Mathematics
Unlimited – 2001 and Beyond, B. Engquist and W. Schmid, Eds.
Berlin: Springer-Verlag, 2001, pp. 685–702. [Online]. Available:
citeseer.ist.psu.edu/kelly99mathematical.html

[59] S. Low and D. Lapsley, “Optimization flow control — I:
basic algorithm and convergence,” IEEE/ACM Transactions on
Networking, vol. 7, no. 6, pp. 861–874, 1999. [Online]. Available:

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1467

TABLE XIX
SUMMARY OF HEURISTIC AQM SCHEMES FOR IMPROVED FAIRNESS

AQM Congestion
Indicator

Control Function Special Characteristics

Fair RED
(FRED) [28]

average
queue length

FRED maintains state for each active flow6 based on how much of
the buffer they currently occupy [27], [34], [28], [70]. The memory
requirements for this state information is proportional to the buffer size
and is independent of the total number of flows [28] in that the maximum
number of flows that can be supported at any one time is equal to the size
of the buffer (in packets).
A flow will not experience loss in a FRED queue if its buffer occupancy
(denoted by qleni)is less than minq and the average queue length is less
than maxth. If the buffer occupancy of a flow is greater than maxq or
the average queue length is greater than maxth, then its packets will
be dropped with a probability of 1. Otherwise the flow will be subject to
RED’s dropping policy. minq is dynamically adjusted to the global variable
avgcq when the number of active flows is small. avgcq is the average
per-connection queue length (i.e. the average queue length divided by the
number of active connections). FRED keeps a count of how many times
a flow has exceeded maxq in the variable called strike. Flows with high
strike values are not allowed to have more than avgcq packets at a time
in the queue. It should be noted that the average queue length calculated
in FRED is slightly different to that in RED. In RED it is calculated only
on packet arrivals, however, FRED calculates it on both packet arrival and
departures.

FRED attempts to punish “mis-
behaving” flows so as to pro-
tect “well-behaved” flows. See also
[31], [70], [22]. According to R-1
FRED is for the most part fairer
than RED. However, according to
[70], [69], in many cases FRED
is unfair. Also the algorithm needs
large buffer space to sufficiently
decipher non-responsiveness [12].
FRED is memoryless in that a flow
is immediately reclassified as re-
sponsive once all its packets clear
the buffer [12].

Balanced RED
(BRED) [69]

For each flow i that is currently in the buffer, BRED keeps two state
variables:

1) qleni — the number of packets of flow i in the buffer.
2) gapi — the number of packets accepted from flow i since a packet

from flow i was dropped.
BRED has five parameters: l1, p1, l2, p2 and Wm. Wm is the maximum
number of packets that any flow can have in the buffer. Therefore packets
are dropped with probability 1 when qleni exceeds Wm. Packets are
dropped with a probability p2 once the number of packets belonging to a
flow exceeds l2 but is less than Wm and gapi > l2. Packets are dropped
with an even smaller probability p1 if the number of packets belonging to
the flow exceeds l1 but is less than l2 and gapi > l1. In all other cases,
the packet is accepted into the buffer. The main motivation for gapi is
to prevent multiple consecutive drops to which the performance of TCP
Reno flows are highly vulnerable. BRED also maintains another variable,
Nactive which is a measure of the number of flows currently in the buffer.
The actual values of the parameters are set as follows:

l2 =
B

2�N̂�

p2 =

√
�N̂�√

�N̂�+ 10

p1 =
p2

10

where N̂ is EWMA of the number of flows currently in the buffer. It is
given by:

N̂ = (1− wn)N̂ + wnNactive

where 0 < wn < 1. The authors of BRED have chosen wn = 0.02.

BRED attempts to protect adaptive
flows from non-adaptive flows us-
ing minimal flow state information.
The performance of BRED is more
sensitive to p2 than to p1. Also,
of the three thresholds, BRED is
most sensitive to Wm. In [65]
BRED was augmented by a vir-
tual buffer (henceforth referred to
as BRED/VBO) to provide fairer
bandwidth allocation. The virtual
buffer occupancy represents that of
a queue which has a round-robin
service discipline so that the aver-
age buffer utilization of each flow
is equal. Instead of dropping pack-
ets based on the real queue occu-
pancy (as in BRED), BRED/VBO
drops packets based on the virtual
buffer occupancy.

citeseer.ist.psu.edu/article/low99optimization.html
[60] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual

queue (AVQ) algorithm for active queue management,” Computer
Communication Review, vol. 31, no. 4, pp. 123–34, 2001.

[61] , “An adaptive virtual queue (AVQ) algorithm for active queue
management,” IEEE/ACM Transactions on Networking, vol. 12, no. 2,
pp. 286–99, 2004.

[62] E. Bowen, C. Jeffries, L. Kencl, A. Kind, and R. Pletka, “Bandwidth
allocation for non-responsive flows with active queue management,”
in Proceedings of the 2002 International Zurich Seminar on Broad-
band Communications Access - Transmission - Networking, Zurich,
Switzerland, 2002, pp. 13–1.

[63] S. Ryu and C. Cho, “PI-PD-controller for robust and adaptive queue
management for supporting TCP congestion control,” in Proceedings
of the 37th Annual Simulation Symposium, Arlington, VA, USA, 2004,
pp. 132–9.

[64] D. Bauso, L. Giarre, and G. Neglia, “About the stability of active

queue management mechanisms,” in Proceedings of the 2004 American
Control Conference, vol. 4, Boston, MA, USA, 2004, pp. 2954–9.

[65] M. Nabeshima, “Improving the performance of active buffer manage-
ment with per-flow information,” IEEE Communications Letters, vol. 6,
no. 7, pp. 306–8, 2002.

[66] G. Chatranon, M. Labrador, and S. Banerjee, “Fairness of AQM
schemes for TCP-friendly traffic,” in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’04), vol. 2, Dallas,
TX, USA, 2004, pp. 725–31.

[67] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara, “ABE: providing
a low-delay service within best effort,” IEEE Network, vol. 15, no. 3,
pp. 60–9, 2001.

[68] R. Pletka, A. Kind, M. Waldvogel, and S. Mannal, “Closed-loop
congestion control for mixed responsive and non-responsive traffic,”
in Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM ’03), vol. 7, San Francisco, CA, USA, 2003, pp. 4180–
5.

1468 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XX
SUMMARY OF HEURISTIC AQM SCHEMES FOR IMPROVED FAIRNESS (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

Short-lived Flow
Friendly RED
(SHRED) [73]

For each arriving packet, the router will then compute the EWMA congestion
window (cwnd) as:

cwndavg ← (1−wc)cwndavg + wccwndsample

where cwndsample is the cwnd extracted from the arriving packet.
The RED parameters minth and Pmax are then modified using the congestion
window information, but the slope of the RED characteristic is maintained .
The modifications are as follows:

minth−mod = minth + (maxth −minth)

(
1−

cwndsample
cwndavg

)

Pmax−mod = Pmax

(
maxth−minth-mod
maxth−minth

)

p(q̄) =

{
0 0 ≤ q̄ ≤ minth−mod

q̄−minth−mod

maxth −minth−mod
Pmax−mod minth−mod ≤ q̄ ≤ maxth

1 q̄ ≥ maxth

Therefore a packet with a congestion window greater than the average will have
a modified minth lower than the original minth and will therefore experience
a higher drop probability. A packet with a congestion window less than the
average will experience a lower drop probability.

SHRED attempts to improve
fairness for short-lived TCP
flows such as HTTP traffic.
With SHRED, flows with
smaller congestion windows
(the typical situation for short-
lived flows) experience lower
dropping probabilities than
those with larger windows.
For SHRED to work, however,
the router must know what the
current congestion window
is for a flow. This can be
facilitated by placing this
information in the IP header
and have the router extract it.

CHOKe [20] Average
(EWMA)
queue length

CHOKe both identifies and penalizes unresponsive flows. CHOKe does not
store any information regarding active flows whether it be their flow ID or
their number. It derives all its information from the queue occupancy itself.
Just like RED it calculates the average queue length by EWMA. It also has the
two thresholds minth and maxth. No packet from any flow is dropped if the
average queue length is less than minth. Every packet is dropped if the average
queue length is greater than maxth. However, if minth < q̄ < maxth, the
flow ID of an arriving packet is compared to that of a randomly chosen packet
from the queue. If the flow ID matches, both the arriving packet and the packet
that was chosen for comparison are dropped. If not, the arriving packet is
dropped with a probability according to the RED control function. Note this
double dropping comparison is done even when the average queue length is
greater than maxth.
CHOKe fairness enforcement is based on the premise that unresponsive flows
will have a high buffer occupancy and a high incoming rate, so that the
likelihood of choosing a packet at random from the queue that belongs to
an unresponsive flow is higher.
CHOKe can be generalized to instead choose (and drop) m packets from the
queue instead of 1. Having m > 1 increases CHOKe performance when
the number of unresponsive flows increases, since the chances of catching
an unresponsive flow becomes larger. However, to choose a suitable value
for m especially in light of varying traffic characteristics, may require some
state information. To work around this and to maintain CHOKe as completely
stateless, the authors of CHOKe decided to divide the region between minth
and maxth into k separate intervals, and to associate with each of these
intervals (starting from minth to maxth an increasing value of m). In other
words, m increases monotonically with average queue size.

The CHOKe (CHOose and
Keep for responsive flows,
CHOose and Kill for un-
responsive flows) algorithm
(proposed by [20]) is a
simple extension of REDthat
seeks to achieve max-min fair-
ness without any state in-
formation whatsoever [70],
[21], [20]. Another version of
CHOKe called ECHOKe in
which the RED mechanism
is replaced by another AQM
scheme called Random Early
Marking (REM) was proposed
by [16]. Yet another version
called Self Adjustable CHOKe
(or SAC) was proposed by
[21].

[69] F. Anjum and L. Tassiulas, “Fair bandwidth sharing among adaptive
and non-adaptive flows in the Internet,” in Proceedings of the Eigh-
teenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies on Computer Communications (IEEE INFOCOM
’99), vol. 3, New York, NY, USA, 1999, pp. 1412–20.

[70] A. Kamra, S. Kapila, V. Khurana, V. Yadav, H. Saran, S. Juneja, and
R. Shorey, “SFED: A rate control based active queue management
discipline,” IBM India Research Laboratory, Tech. Rep. 00A018, 2000.

[71] M. Handley, J. Padhye, and S. Floyd, “TCP friendly rate control
(TFRC): Protocol specification,” IETF RFC 3448, 2003. [Online].
Available: citeseer.ist.psu.edu/article/handley01tcp.html

[72] G. Chatranon, M. Labrador, and S. Banerjee, “BLACK: detection
and preferential dropping of high bandwidth unresponsive flows,” in
Proceedings of the 2003 IEEE International Conference on Commu-
nications, vol. 1, Anchorage, AK, USA, 2003, pp. 664–8.

[73] M. Claypool, R. Kinicki, and M. Hartling, “Active queue management
for Web traffic,” in Proceedings of the 2004 IEEE International
Performance, Computing, and Communications Conference, Phoenix,

AZ, USA, 2004, pp. 531–8.
[74] S. De Cnoddder, K. Pauwels, and O. Elloumi, “A rate based RED

mechanism,” in Proceedings of the 10th ACM International Workshop
on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV), Chapel Hill, NC, USA, 2000.

[75] J. Orozco and D. Ros, “An adaptive RIO (A-RIO) queue management
algorithm,” in Quality for All, ser. Lecture Notes in Computer Science,
G. Karlsson and M. Smirnov, Eds. Springer-Verlag Berlin/Heidelberg,
2003, vol. 2811, pp. 11–20.

[76] M. Kisimoto, H. Ohsaki, and M. Murata, “On transient behavior
analysis of random early detection gateway using a control theoretic
approach,” in Proceedings of the 2002 IEEE International Conference
on Control Applications, vol. 2, Glasgow, UK, 2002, pp. 1144–6.

[77] T. Alemu and A. Jean-Marie, “Dynamic configuration of RED pa-
rameters,” in Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM ’04), vol. 3, Dallas, TX, USA, 2004, pp.
1600–4.

[78] T. Eguchi, H. Ohsaki, and M. Murata, “On control parameters tuning

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1469

TABLE XXI
SUMMARY OF HEURISTIC AQM SCHEMES FOR IMPROVED FAIRNESS (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

GREEN [191] Rate-based Based on an analytic model developed by Mathis et al. [192] for the steady-
state behaviour of TCP, it determines the packet dropping probability. This TCP
model for the throughput (T) of a long-lived flow is as follows:

T =
c× s

rtt
√
p

where c is a constant that depends on the acknowledgment strategy (i.e. ac-
knowledgment of every packet of delayed acknowledgment), s is the maximum
segment size, rtt is the round-trip time of the connection and p is the packet
loss probability.
If L is the capacity of the outgoing link, and N is the number of active flows at
the queue (where an active flow has had at least one packet in the queue during
a given time-interval), then the fair-share throughput of each flow is L

N
to which

T , the throughput of a given flow should be roughly equal. Substituting this
into the TCP model and making p the subject of the formula:

L

N
=

c× s

rtt
√
p
⇒ p =

(
c× s×N

L× rtt

)2

It can be deduced that as N increases or rtt decreases, p, the dropping
probability will increase. Having p dependent on N and rtt makes the overall
AQM performance independent of load and more fair to connections with larger
rtt without maintaining per-flow state. GREEN slows down flows with low rtt

To work, GREEN needs to
determine s, rtt, and N . Ac-
cording to [191], the router
estimates s by looking at the
size of each packet. N is es-
timated by counting the num-
ber of flows that have at least
one packet pass through within
a certain time-frame. If the
duration this time interval is
too long, then N will be high
and the overall link utilization
will drop. If too short, the
number of flows will be un-
derestimated and the allowed
throughput per flow will be
made higher than it should
be. To estimate the rtt at the
router, the TCP sender trans-
mits this rtt information in
the IP header which the router
will retrieve. As an alterna-
tive, it was suggested by [191]
that the router employ IDMaps
tracer and maintain a database
of rtt estimates for each flow
identified by source and desti-
nation IP addresses.

Stochastic Fair
BLUE [193]

An extension to the BLUE algorithm ([68], [62], [12]) it attempts to protect
responsive TCP flows from non-responsive flows by rate-limiting the latter to
their fair share. To perform this rate-limiting, it must first identify the non-
responsive flows. It does this by employing a bloom filter with multiple levels
of independent hash functions [68], [66], [12]. This requires a small amount
of state (and hence some additional memory resources) but not on a per-flow
basis.
SFB has L different levels with N accounting bins within each level. Asso-
ciated with each bin is a dropping probability which is based on the queue
occupancy for the flows that have been hashed into that bin. There are L
independent hash functions, one per level, which maps a flow based on its flow
ID (source address, destination address, source port, destination port, protocol)
into one of the N accounting bins in that level. A flow is therefore mapped
into L-bins, one per level. The dropping probability is increased as the bin
occupancy increases and is decreased as the occupancy decreases according to
the BLUE algorithm. A non-responsive flow will typically push the dropping
probability to one for the bins it occupies. It is true that a responsive flow may
occupy some of the bins that a non-responsive flow occupies, but provided
that the number of non-responsive flows is much smaller than the number
of available bins it is likely that the responsive flow will occupy unpolluted
bins which will have lower dropping probability values. The actual dropping
probability a flow will experience will be the minimum across all the bins it
occupies. If this value is equal to one, SFB identifies this flow as non-responsive
and rate-limits it.

To address misclassification
problem, it was suggested by
[12] the use of “moving”
hash functions. The hash func-
tions are changed and the
bins reset at random or pe-
riodic times effectively creat-
ing virtual bins across time.
A non-responsive flow will al-
ways behave badly with ev-
ery reconfiguration, whereas
a responsive flow will lose
the risk of being misclassi-
fied. However, at the time
point of reconfiguration, non-
responsive flows will be tem-
porarily treated as respon-
sive flows. To remedy this, it
was then suggested by [12]
that “double-buffered moving”
hash functions be used for
which there are two sets of
bins instead of one.

for active queue management mechanisms using multivariate analysis,”
in Proceedings of the 2003 Symposium on Applications and the
Internet, Orlando, FL, USA, 2003, pp. 120–7.

[79] T. Ziegler, “On averaging for active queue management congestion
avoidance,” in Proceedings of the Seventh International Symposium
on Computers and Communications (ISCC 2002), Taormina-Giardini
Naxos, Italy, 2002, pp. 867–73.

[80] B. Zheng and M. Atiquzzaman, “DSRED: improving performance of
active queue management over heterogeneous networks,” in Proceed-
ings of the IEEE International Conference on Communications (ICC
2001), vol. 8, Helsinki, Finland, 2001, pp. 2375–9.

[81] Y. Chait, C. V. Hollot, and V. Misra, “Fixed and adaptive model-
based controllers for active queue management,” in Proceedings of the
American Control Conference, Arlington, VA, USA, 2001, pp. 2981–6.

[82] K. Jiang, X. Wang, and Y. Xi, “Nonlinear analysis of RED - a
comparative study,” in Proceedings of the 2004 American Control
Conference, vol. 4, 2004, pp. 2960–5.

[83] J. Aweya, M. Ouellette, D. Montuno, and A. Chapman, “An adaptive

buffer management mechanism for improving TCP behavior under
heavy load,” in Proceedings of the IEEE International Conference on
Communications, vol. 10, Helsinki, 2001, pp. 3217–23.

[84] W. Li, L. Zeng-zhi, and C. Yan-ping, “A control theoretic analysis of
mixed TCP and UDP traffic under RED based on nonlinear dynamic
model,” in Proceedings of the Third International Conference on
Information Technology and Applications (ICITA 2005), vol. 2, July
2005, pp. 747–750.

[85] Y. Hong and O. Yang, “Design of TCP traffic controllers for AQM
routers based on phase margin specification,” in Proceedings of the
2004 Workshop on High Performance Switching and Routing, Phoenix,
AZ, USA, 2004, pp. 314–18.

[86] Y. Hong, O. Yang, and C. Huang, “Self-tuning PI TCP flow controller
for AQM routers with interval gain and phase margin assignment,”
in Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM ’04), vol. 3, November 2004, pp. 1324–1328.

[87] Y. Hong and O. Yang, “Self-tuning TCP traffic controller using gain
margin specification,” Communications, IET, vol. 1, no. 1, pp. 27–33,

1470 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XXII
SUMMARY OF HEURISTIC AQM SCHEMES FOR IMPROVED FAIRNESS (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

BLACK [72] Based on the premise that a FIFO queue approximately assigns to a flow
bandwidth proportional to its buffer occupancy, BLACK uses a buffer occu-
pancy fraction as an indicator of bandwidth share and attempts to equalize this
bandwidth share among the flows so as to improve fairness among them.
BLACK uses limited state information to estimate the buffer occupancy
fraction. It uses cache memory (called High Bandwidth Flows (HBF) cache
memory) to store the flow id of those flows that have occupied the queue.
Upon each packet arrival, and if the queue is above a certain threshold, the
router randomly picks a packet from the queue. If the flow ids are the same,
then if the flow was not recorded in the HBF cache, then it is stored with
“Hit” value of one (1). To store this new flow in the cache, the last item in the
cache (which is the least recently seen flow) is replaced by this new flow with
a probability of 0.05, and moved to the top of the cache. This replacement will
occur only when the estimated buffer occupancy is greater than the fair share.
If the flow was already recorded then “Hit” value is incremented. The flow id
moves to the top of the cache. After m samplings, the “Hit Fraction” for flow
i is calculated as

Hi = (1− α)Hi + αĤi

where Hi (on the RHS) = Hiti
m

, Ĥi is the Hit Fraction over the previous
sampling interval and α < 1 is a constant. It is this “Hit Fraction” that gives
an estimate of the buffer occupancy of a flow. The dropping probability for
flow i for the next sampling period is updated on every sample of that sampling
period as

p̂i =
H̄i − 1

Nact(
1

Nact

)
where

H̄i =
Hiti +Him

m′ +m

where Hiti is the number of Hits at the sampling time, Hi, the current Hit
Fraction as calculated from before, m′, the number of samples taken so far
in the new sampling interval, and Nact, the estimate of the number of active
flows. The inverse of Nact is the approximate fair share of the bandwidth.
This dropping probability is further scaled according to RED’s congestion
avoidance state as

pfinal,i = p̂i × q̄ −minth

maxth−minth

Those flows that do not make the HBF cache memory are governed entirely
by RED. High bandwidth flows will more likely remain in the HBF cache and
will be penalized in proportion to how much greater than the fair share of
bandwidth they use.

To estimate Nact, the orig-
inal BLACK algorithm as-
sumed that the traffic intensity
of all the flows were roughly
the same so that Nact is equal
to m divided by the number
of match events, however, this
assumption is far from reality
and in an enhanced version
proposed in [66], Nact is es-
timated by the Direct Bitmap
method. (The authors suggest
that for higher accuracy and
less memory requirements, the
Multiresolution Bitmap, Trig-
gered Bitmap, or Adaptive
Bitmap be used.) Nact is de-
termined by bln(b/z) where z
is the number of zero bits in
the hash table during an inter-
val. They used a b = 100bits.

February 2007.
[88] K. Kim, “Design of feedback controls supporting TCP based on

the state-space approach,” Automatic Control, IEEE Transactions on,
vol. 51, no. 7, pp. 1086–1099, July 2006.

[89] J. Sun, G. Chen, K. Ko, S. Chan, and M. Zukerman, “PD-controller:
a new active queue management scheme,” in Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM ’03), vol. 6,
December 2003, pp. 3103–3107.

[90] S. Ryu, C. Rump, and C. Qiao, “A predictive and robust active queue
management for Internet congestion control,” in Proceedings of the
Eighth IEEE International Symposium on Computers and Communi-
cation (ISCC 2003), vol. 2, June 2003, pp. 991–998.

[91] S. Xiang, B. Xu, S. Wu, and D. Peng, “Gain adaptive smith predictor
for congestion control in robust active queue management,” in Proceed-
ings of the Sixth World Congress on Intelligent Control and Automation
(WCICA 2006), vol. 1, 2006, pp. 4489–4493.

[92] L. He, H. Zhu, Y. Jing, and F. Gao, “Application of IMC-Smith con-
troller in the large-delay network congestion control,” in Proceedings
of the Sixth World Congress on Intelligent Control and Automation
(WCICA 2006), vol. 1, 2006, pp. 4595–4599.

[93] H. Wang, Z. Tian, and C. Qiu, “RSP: Robust Smith predictor for queue
management in time-delay networks,” in Proceedings of the 2010 IEEE
International Conference on Wireless Communications, Networking
and Information Security (WCNIS), June 2010, pp. 623–627.

[94] B. Meng, “Robust controller design for active queue management

system,” in Proceedings of the 2010 IEEE Fifth International Confer-
ence on Bio-Inspired Computing: Theories and Applications (BIC-TA),
September 2010, pp. 1037–1040.

[95] Q. Chen and O. W. W. Yang, “Robust controller design for AQM
router,” Automatic Control, IEEE Transactions on, vol. 52, no. 5, pp.
938–943, May 2007.

[96] M. Firuzi and M. Haeri, “Adaptive generalized predictive control of
active queue management in TCP networks,” in Proceedings of the
International Conference on Computer as a Tool (EUROCON 2005),
vol. 1, November 2005, pp. 676–679.

[97] P. Padhy and R. Sundaram, “Analysis and design of improved PI-
PD controller for TCP AQM routers,” in Proceedings of the 2010
International Conference on Power, Control and Embedded Systems
(ICPCES), December 2010, pp. 1–5.

[98] P. Singh and S. Gupta, “Variable length virtual output queue based
fuzzy congestion control at routers,” in Proceedings of the 2011
IEEE 3rd International Conference on Communication Software and
Networks (ICCSN), May 2011, pp. 29–33.

[99] C. Wang, B. Li, K. Sohraby, and Y. Peng, “AFRED: an adaptive fuzzy-
based control algorithm for active queue management,” in Proceedings
of the 28th Annual IEEE International Conference on Local Computer
Networks (LCN ’03), October 2003, pp. 12–20.

[100] S. Ghosh, Q. Razouqi, H. Schumacher, and A. Celmins, “A survey of
recent advances in fuzzy logic in telecommunications networks and
new challenges,” Fuzzy Systems, IEEE Transactions on, vol. 6, no. 3,

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1471

TABLE XXIII
SUMMARY OF HEURISTIC AQM SCHEMES FOR IMPROVED FAIRNESS (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

LUBA [27] It uses link utilization and arrival rates to penalize misbehaving flows.
The overload factor, U , is calculated as U = λ

μ
where λ is the aggregate

arrival rate at the router and μ is the outgoing link capacity. λ is calculated as
B
τ

where B is the number of bytes of packets arriving at the queue and τ is
the measurement interval called the lubaInterval.
There is a target utilization, Û < 1 from which the fair share is determined as
FS = τμÛ

n
, where n is the number of active flows in the lubaInterval. Now,

if U < Û , no packets are dropped at all.
LUBA maintains a history table fo flow IDs. Associated with each entry
are the variables: count (which is the number of consecutive lubaIntervals
the flow exceeds its fair share), mar (which is the mean arrival rate or the
number of bytes over the count lubaIntervals), last bytes (which is the number
of bytes in the current lubaInterval) and dropRatio (which is the packet
drop probability in the current lubaInterval). There is a lower bound on this
dropRatio, pa, assigned to all flows that are determined to be well-behaved.
The countThreshold, T — a design parameter — is used to decide when a flow
is well-behaved and when it is not. A flow is purged from the history table
if its mar < FS. However if its mar ≥ FS and count > T , its dropRatio is
updated to 1 − FS

mar . This update only occurs when U > Û . However, if the
opposite is true (i.e. U < Û) then the history list is completely purged and
re-initialized.
To avoid punishing bursty flows, a U < 3

2
is tolerated and the length of the

lubaInterval is adjusted by τ = cL
λ−μ

where c is a constant.

pp. 443–447, August 1998.
[101] J. Sun, M. Zukerman, and M. Palaniswami, “Stabilizing red using a

fuzzy controller,” in Proceedings of the IEEE International Conference
on Communications (ICC ’07), June 2007, pp. 266–271.

[102] H. Abdel-jaber, M. Mahafzah, F. Thabtah, and M. Woodward, “Fuzzy
logic controller of Random Early Detection based on average queue
length and packet loss rate,” in Proceedings of the International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2008), June 2008, pp. 428–432.

[103] S. Zargar, M. Yaghmaee, and A. Fard, “Fuzzy proactive queue man-
agement technique,” in Proceedings of the 2006 Annual IEEE India
Conference, September 2006, pp. 1–6.

[104] M. Moghaddam, “A fuzzy active queue management mechanism for
Internet congestion control,” in Proceedings of the 2010 Third Inter-
national Workshop on Advanced Computational Intelligence (IWACI),
August 2010, pp. 203–208.

[105] X. Changbiao and L. Fengfeng, “A congestion control algorithm of
fuzzy control in routers,” in Proceedings of the Fourth International
Conference on Wireless Communications, Networking and Mobile
Computing (WiCOM ’08), October 2008, pp. 1–4.

[106] Y. Xian, L. Wang, and Y. Wen, “An adaptive target queue length FREM
algorithm,” in Proceedings of the IEEE International Conference on
Communications Technology and Applications (ICCTA ’09), October
2009, pp. 845–850.

[107] S. Masoumzadeh, G. Taghizadeh, K. Meshgi, and S. Shiry, “Deep
blue: A fuzzy Q-learning enhanced active queue management scheme,”
in Proceedings of the International Conference on Adaptive and
Intelligent Systems (ICAIS ’09), September 2009, pp. 43–48.

[108] C. Nyirenda and D. Dawoud, “Multi-objective particle swarm optimiza-
tion for fuzzy logic based active queue management,” in Proceedings
of the 2006 IEEE International Conference on Fuzzy Systems, 2006,
pp. 2231–2238.

[109] S. Mohammadi, H. Pour, M. Jafari, and A. Javadi, “Fuzzy-based PID
active queue manager for TCP/IP networks,” in Proceedings of the
2010 10th International Conference on Information Sciences Signal
Processing and their Applications (ISSPA), May 2010, pp. 434–439.

[110] Z. Chuan and L. Xuejiao, “A robust AQM algorithm based on fuzzy-
inference,” in Proceedings of the International Conference on Measur-
ing Technology and Mechatronics Automation (ICMTMA ’09), vol. 2,
April 2009, pp. 534–537.

[111] P. Singh and S. Gupta, “Variable length virtual output queue based
fuzzy congestion control at routers,” in Proceedings of the Third IEEE
International Conference on Communication Software and Networks
(ICCSN), May 2011, pp. 29–33.

[112] Y. Qiao and L. Qiongyu, “A new active queue management algorithm
based on self-adaptive fuzzy neural-network PID controller,” in Pro-

ceedings of the 2011 International Conference on Internet Technology
and Applications (iTAP), August 2011, pp. 1–4.

[113] Y. Qiao and H. Xiaojuan, “A new PID controller for AQM based
on neural network,” in Proceedings of the 2010 IEEE International
Conference on Intelligent Computing and Intelligent Systems (ICIS),
vol. 1, October 2010, pp. 804–808.

[114] F. Yanfei, R. Fengyuan, and L. Chuang, “Design of an active queue
management algorithm based fuzzy logic decision,” in Proceedings
of the International Conference on Communication Technology (ICCT
2003), vol. 1, April 2003, pp. 286–289.

[115] Y. Aoul, A. Nafaa, D. Negru, and A. Mehaoua, “FAFC: fast adap-
tive fuzzy AQM controller for TCP/IP networks,” in Proceedings of
the IEEE Global Telecommunications Conference (GLOBECOM ’04),
vol. 3, November 2004, pp. 1319–1323.

[116] Y. Jing, Z. Chen, and G. Dimirovski, “Robust fuzzy observer-based
control for TCP/AQM network systems with state delay,” in Proceed-
ings of the American Control Conference (ACC), July 2010, pp. 1350–
1355.

[117] G. Di Fatta, F. Hoffmann, G. Lo Re, and A. Urso, “A genetic algorithm
for the design of a fuzzy controller for active queue management,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. 33, no. 3, pp. 313–324, August 2003.

[118] M. Yaghmaee and H. Farmad, “Improving the loss performance of
random early detection gateway using fuzzy logic control,” in Pro-
ceedings of the Ninth International Symposium on Computers And
Communications (ISCC 2004), vol. 2, Alexandria, Egypt, 2004, pp.
927–32.

[119] C. Luo and C. Ran, “An adaptive retransmission and active drop
mechanism based on fuzzy logic,” in Proceedings of the 2004 Asia-
Pacific Radio Science Conference, August 2004, pp. 162–165.

[120] J. Kim, J. Park, and Y. Choi, “Adaptive wavelet neural network
controller for AQM router in TCP network,” in Proceedings of the Fifth
Mexican International Conference on Artificial Intelligence (MICAI
’06), November 2006, pp. 388–397.

[121] Y. Gao and J. Hou, “A state feedback control approach to stabilizing
queues for ECN-enabled TCP connections,” in Proceedings of the
Twenty-second Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2003), vol. 3, 2003, pp. 2301–
2311.

[122] M. Ardestani and M. Beheshti, “A robust discrete-time controller
for delay sensitive applications,” in Proceedings of the Seventh In-
ternational Conference on Information, Communications and Signal
Processing (ICICS 2009), December 2009, pp. 1–6.

[123] A. Abharian and M. Alireza, “Hybrid GA-BF based intelligent PID
active queue management control design for TCP network,” in Pro-

1472 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XXIV
SUMMARY OF HEURISTIC AQM SCHEMES FOR DIFFERENTIATED SERVICES

AQM Congestion
Indicator

Control Function Special Characteristics

RIO [194] Average
(EWMA)
queue length

It can be used within the DiffServ framework and more specifically for the
AF PHB (Assured Forwarding PHB). At the network’s edge, packets are
tagged as “in” or “out” (according to their service level agreement (SLA))
and therefore will be treated differently in the network especially when it
approaches congestion [194], [75].
RIO is based on RED and essentially employs two parallel instances of
RED, one for the “in” packets and one for the “out” packets. However,
this implies two sets of parameters that must be tuned, exacerbating
the parameter-tuning problem of RED [39]. For the “in” packets the
parameters are q̄in, maxth in, minth in and Pmax in. For the “out”
packets the parameters are maxth out, minth out and Pmax out. Upon
the arrival of an “in” packet, the average queue occupancy for “in” packets
(q̄in) is updated. The average queue occupancy for all packets, q̄total, is
updated when either “in” or “out” packets arrive.

To ensure proper differentiation
between the higher priority
“in” packets and the “out”
packets, minth out < maxth in,
Pmax out > Pmax in and
maxth out < maxth in. This
pushes the “out” packets into
congestion avoidance/control
phases faster than the “in” packets.
Thus RIO drops “out” packets
more quickly. Also q̄total is used
as the congestion indicator for
“out” packets whereas q̄in for the
“in” packets. This is because it is
for the “in” packets the network
was provisioned (and not for the
“out”), and it was desired that
RIO perform well regardless of
the traffic mix (of “in” and “out”
packets).

RIO-Coupled
(RIO-C)

Average
(EWMA)
queue length

The original RIO algorithm had been extended to support n priority
classes instead of two (2). When n = 3 packets are labelled red (lowest
priority, highest drop precedence), yellow, green (highest priority, lowest
drop precedence). Again, there will be n sets of RED parameters for
differentiation among the classes. The average queue length for a given
class j will depend on the occupancy of all the packets belonging to its
class and all the classes of higher priority, so that the lowest priority class
will have its average queue length based on the total queue length (all
packet clases). What has just been described is more specifically RIO-C
(i.e., RIO-Coupled).

RIO-Decoupled
(RIO-DC) &
WRED

Average
(EWMA)
queue length

For RIO-Decoupled (RIO-DC), average queue length for a given class j
depends only on the queue occupancy of packets belonging to class j
[75]. Another variant, Weighted RED (WRED), the average queue length
is based on the total queue length which is used for all classes [75], [62].
In all cases, the EWMA queue averaging weight, wq , is the same for all
classes.

Again, RED’s parameter tuning
problem is multiplied some n-
times over.

ceedings of the 2011 3rd International Conference onElectronics
Computer Technology (ICECT), vol. 4, April 2011, pp. 227–232.

[124] L. Massoulie and J. Roberts, “Bandwidth sharing: objectives and
algorithms,” IEEE/ACM Transactions on Networking, vol. 10, no. 3,
pp. 320–8, 2002.

[125] S. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525–36,
2003.

[126] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, pp. 33–37, 1997.
[Online]. Available: citeseer.ist.psu.edu/kelly97charging.html

[127] S. Kunniyur and R. Srikant, “Stable, scalable, fair congestion control
and AQM schemes that achieve high utilization in the Internet,” IEEE
Transactions on Automatic Control, vol. 48, no. 11, pp. 2024–8, 2003.

[128] , “End-to-end congestion control schemes: utility functions, ran-
dom losses and ECN marks,” IEEE/ACM Transactions on Networking,
vol. 11, no. 5, pp. 689–702, 2003.

[129] V. Reguera, F. Alvarez Paliza, E. Garcia Fernandez, and W. Godoy,
“Voice over IP quality of service using active queue management,” in
Proceedings of the 2006 International Telecommunications Symposium,
September 2006, pp. 835–840.

[130] Q. Yang and J. Pitts, “Scalable voice over Internet protocol service-
level agreement guarantees in converged Transmission Control Proto-
col/ Internet Protocol networks,” Communications, IET, vol. 4, no. 8,
pp. 1026–1035, 2010.

[131] Y. Xiaogang, L. Jiqiang, and L. Ning, “Congestion control based on
priority drop for H.264/SVC,” in Proceedings of the International
Conference on Multimedia and Ubiquitous Engineering (MUE ’07),
April 2007, pp. 585–589.

[132] S.-R. Kang, Y. Zhang, M. Dai, and D. Loguinov, “Multi-layer ac-
tive queue management and congestion control for scalable video
streaming,” in Proceedings of the 24th International Conference on
Distributed Computing Systems, 2004, pp. 768–777.

[133] Y. Li, X. Gong, W. Wang, X. Que, and J. Ma, “An autonomic active

queue management mechanism to improve multimedia flow delivery
quality,” in Proceedings of the 2010 International Conference on
Communications and Mobile Computing (CMC), vol. 1, April 2010,
pp. 493–497.

[134] V. Robles, M. Siller, and J. Woods, “Active discarding packet mech-
anisms for video transmission,” in Proceedings of the IEEE Interna-
tional Conference on System of Systems Engineering (SoSE ’07), April
2007, pp. 1–5.

[135] M. Usha and R. S. D. Wahida Banu, “Pushout policy in active queue
management to support quality of service guarantees in IP routers,” in
Proceedings of the 10th IEEE Singapore International Conference on
Communication systems (ICCS 2006), October 2006, pp. 1–5.

[136] C. Chrysostomou, A. Pitsillides, G. Hadjipollas, A. Sekercioglu, and
M. Polycarpou, “Fuzzy explicit marking for congestion control in
differentiated services networks,” in Proceedings of the Eighth IEEE
International Symposium on Computers and Communication (ISCC
2003), vol. 1, June 2003, pp. 312–319.

[137] C. Chrysostomou, A. Pitsillides, G. Hadjipollas, M. Polycarpou, and
A. Sekercioglu, “Congestion control in differentiated services networks
using fuzzy logic,” in Proceedings of the 43rd IEEE Conference on
Decision and Control (CDC), vol. 1, December 2004, pp. 549–556.

[138] M. Jiang, J. Wu, and C. Wu, “MBIO: An new active queue management
algorithm for DiffServ network,” in Proceedings of the 2006 IEEE
International Conference on Networking, Sensing and Control (ICNSC
’06), 2006, pp. 803–806.

[139] E. Ng, K. Phang, T. Ling, and L. Por, “Fuzzy active queue management
for assured forwarding traffic in differentiated services network,” in
Proceedings of the International Conference on Computing Informatics
(ICOCI ’06), June 2006, pp. 1–5.

[140] L. Zhu, N. Ansari, G. Cheng, and K. Xu, “Edge-based active queue
management,” Communications, IEE Proceedings-, vol. 153, no. 1, pp.
55–60, February 2006.

[141] C. Joo, J. Hong, and S. Bahk, “Assuring drop probability for delay-
insensitive traffic in a differentiated service network,” in Proceedings

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1473

TABLE XXV
SUMMARY OF HEURISTIC AQM SCHEMES FOR DIFFERENTIATED SERVICES (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

Adaptive
RIO [39], [75]

Average
(EWMA)
queue length

Adaptive RIO (ARIO) extends RIO by using Adaptive RED (ARED)
instead of RED. ARIO therefore is a priority-class based AQM like
RIO which provide mechanisms for differentiation among packet classes
flowing through the network. One of the banes of RIO was the problematic
parameter tuning inherited from RED, which was magnified by the multiple
number of classes to be handled in RIO. ARED was developed to
significantly alleviate this issue in RED by having automatic adaptation
of all RED’s parameters save one. ARIO uses a full ARED for each class.
This ARED is itself based on Gentle RED (GRED).
ARIO, like ARED, attempts to maintain the queue occupancy near a
target level. In fact, it attempts to keep the average queue size within
the interval (q̄low, q̄high) where q̄low = minth +0.4(maxth−minth)
and q̄high = minth +0.6(maxth−minth). It automatically translates
the QoS parameter of delay into the algorithm’s parameters. Let q̄j and
Pmax j be the average queue occupancy and maximum drop probability
of priority class j respectively. With the required delay, dt, as the in input,
the automatic parameter tuning occurs as follows:

min
th

= max

(
5, dt

C

2

)
max
th

= 3min
th

wq = 1− e−
1
C

where maxth and minth are the same for all classes.
If q̄j > q̄high and Pmax j < 0.5, Pmax j is increased additively as

Pmax j = Pmax j + α where α = min

(
0.01,

Pmax j

4

)
. But if the

packet belongs to the highest drop precedence (i.e. lowest priority), then
Pmax j is taken as the minimum of the two lower drop precedences. Now,
if q̄j < q̄low and Pmax j > 0.01, Pmax j is decreased multiplicatively
as Pmax j = Pmax j × β where β = 0.9 is the decrease constant. It
can be seen that Pmax j is bounded between 0.01 and 0.5 for all classes.

The average queue occupancy for
each class is calculated individually
according to the EWMA method
as in RED. It is updated on each
packet arrival for that class. How-
ever, Pmax j is updated after a
fixed time interval (0.5 second).
With all the parameters updated,
the decision process for packet dis-
card for each class is as in RED
with their average queue occupan-
cies compared to the queue thresh-
olds.
The version of RIO here, as one
can deduce, is RIO-DC instead of
RIO-C. The reason for his design
choice according to [75] is to
maintain an average queue target
for all traffic under all conditions.
If RIO-C was used there would
be different average queue sizes
for different traffic mix (of classes)
which would be more difficult to
control.

Rate-based
RIO [47]

current
traffic load
which is the
ratio of the
estimated
arrival rate
to the service
rate

Rb-RIO supports three priority classes. A weighted average arrival rate is
maintained for each class (EARj where j = 1, 2, 4 in ascending order
of priority). If the sum of the estimated arrival rate for all three classes
(TEAR) is less than the service rate then all packets are accepted into the
queue. But if not, and the sum of the estimated arrival rates for the two
higher priority classes is less than the service rate (SR), accept all packets
belonging to those classes, but drop packets belonging to the lowest class
with probability = TEAR−SR

EAR1
. If however, the sum of the estimated arrival

rates for the two higher priority classes is greater than the service rate
but the estimated arrival rate of the highest priority class is less than the
service rate, all packets for the highest priority class are accepted, the
packets of the second-highest priority class are dropped with probability
= EAR2+EAR3−SR

EAR2
, but all packets of the lowest priority are dropped.

Finally, if the estimated arrival rate of the highest priority class is greater
than the service rate, all packets of the lower priority classes are dropped
with probability one, but the packets of the highest priority are dropped
with probability = EAR2−SR

EAR3
.

of the 2005 Second IEEE Consumer Communications and Networking
Conference (CCNC), January 2005, pp. 515–520.

[142] T. Minagawa and T. Ikegami, “Controlling user flows with RIO
and WFQ,” in Proceedings of the 2010 International Symposium on
Communications and Information Technologies (ISCIT), October 2010,
pp. 87–92.

[143] X. Chang and J. Muppala, “The effects of AQM on the perfor-
mance of assured forwarding services,” in Proceedings of the Per-
formance,24th IEEE International Computing, and Communications
Conference (IPCCC 2005), April 2005, pp. 321–328.

[144] D. Agrawal, N. da Fonseca, and F. Granelli, “Integrated ARM/AQM
mechanisms based on PID controllers,” in Proceedings of the 2005
IEEE International Conference on Communications (ICC 2005), vol. 1,
May 2005, pp. 6–10.

[145] Y. Chait, C. Hollot, V. Misra, D. Towsley, H. Zhang, and J. Lui, “Pro-
viding throughput differentiation for TCP flows using adaptive two-
color marking and two-level AQM,” in Proceedings of the Twenty-First
Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM 2002), vol. 2, 2002, pp. 837–844.
[146] Y. Chait, C. Hollot, V. Misra, D. Towsley, H. Zhang, and Y. Cui,

“Throughput differentiation using coloring at the network edge and
preferential marking at the core,” Networking, IEEE/ACM Transactions
on, vol. 13, no. 4, pp. 743–754, August 2005.

[147] K. Nahm, Q. Li, and C.-C. Kuo, “Layered video multicast with ECN
over differentiated service networks,” in Proceedings of the 2002 IEEE
International Conference on Multimedia and Expo (ICME ’02), vol. 1,
2002, pp. 381–384.

[148] G. Min and X. Jin, “Performance modelling of Random Early De-
tection based congestion control for multi-class self-similar network
traffic,” in Proceedings of the IEEE International Conference on
Communications (ICC ’08), May 2008, pp. 5564–5568.

[149] Y. Huang, s. Mao, and S. Midkiff, “A control-theoretic approach to
rate control for streaming videos,” Multimedia, IEEE Transactions on,
vol. 11, no. 6, pp. 1072–1081, October 2009.

[150] M. Farrokhian and M. Haeri, “AQM for dynamic QoS adaptation in
DiffServ networks based on STAC,” in Proceedings of the International

1474 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE XXVI
SUMMARY OF HEURISTIC AQM SCHEMES FOR DIFFERENTIATED SERVICES (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

Rate-based
n-RED [74]

arrival-rate
and average
queue length

Let the highest priority class be denoted by j = 3, the second-highest, j =
2 and the lowest, j = 1. Let EARj be the estimated arrival rate for class
j and TEAR, the total estimated arrival rate where TEAR =

∑3

j=1
EARj .

Let AT be the accepted traffic.
If TEAR < AT all packets from all classes are accepted. If TEAR > AT
but

∑3

j=2
EARj < AT, all class 2 and 3 packets are accepted but

class 1 packets are dropped with probability CP×TEAR
EAR1

. If, however,∑3

j=2
EARj > AT but EAR3 < AT, then all class 3 packets are accepted,

class 1 packets are dropped with probability one and class 2 packets with
probability (CP×TEAR)−EAR1

EAR2
. But if EAR3 > AT, then all class 1 and

2 packets are dropped with probability 1 and class 3 packets are dropped
with probability (CP×TEAR)−EAR1−EAR2

EAR3
.

Now CP = CF×Pdrop where Pdrop = max

(
0, TEAR−R

TEAR

)
where R is

the service rate and CF is a correction factor. CF = q̄
B

AP, where q̄ is the
average queue occupancy, B is the queue size and AP is the aggressiveness

factor. In all, CP = q̄
B

APmax

(
0, TEAR−R

TEAR

)
.

EARj = min
(

EARarr
j ,EARupper

)
, where EARarr

j = (1 − w)L
T

+

wEARarr
j , EARupper = (1 − w)Lmax

T
+ wEARarr

j and R = (1 −
w)L

T
+wR, where w = e−

T
K , and where T is the difference between the

current time and the time of the last update. L is the packet size (Lmax is
the maximum packet size) and K is a constant. A too small value for K
makes w small, hence it tracks the instantaneous arrival rate more closely.
If, on the other hand, K is too large, the EAR will not be able to catch
bursts. EARupper is calculated across all packets regardless of class and
is employed so as to prevent a constant value of EARj when no packets
for class j arrives for a good while.

Dynamic Class-
Based Threshold
(D-CBT) [22]

There are three classes of traffic in CBT: tagged (flow-controlled multime-
dia) UDP2, untagged (other) UDP and TCP. CBT attempts to protect TCP
flows from UDP flows and UDP multimedia flows from other UDP flows
by applying threshold tests for the two UDP classes. Associated with each
of these UDP classes is a static threshold. If the weighted-average queue
occupancy of either of these two classes exceed their respective thresholds,
their incoming packets will be dropped before being sent to the RED
algortihm of the queue. TCP packets do not go through a threshold test
but are directly controlled by the RED algorithm. This is more specifically
called “CBT with RED for all”. There is a different version called “CBT
with RED for TCP” for which only the TCP packets go througth the RED
algorithm and the average queue size is calculated only on the TCP packet
occupancy. The reasoning is that subjecting UDP flows, which are mostly
unresponsive, to early congestion notifications is useless. D-CBT builds
on “CBT with RED for all”. Instead of having static thresholds, D-CBT
adapts the thresholds as the traffic mix (UDP, TCP) changes, so that there
can be a more fair bandwidth allocation. The threshold tests are activated
only when the average queue length (calculated by RED) is greater than
the RED minth parameter value. All queue averages are computed using
the same weight upon each packet arrival. More specifically

D-CBT will therefore need to keep
some state information, i.e. the
number of active flows for each
class. D-CBT defines “active” dif-
ferently from FRED in that a flow
is active if is has a packet in the
outbound queue within a prede-
fined interval since last checked. D-
CBT authors say that an exact flow
count is not necessary for D-CBT
to work although higher accuracy
is preferred.

SICE-ICASE Joint Conference, October 2006, pp. 3223–3227.
[151] Y. Xiao, H. Du, Z. Cao, and M. Lee, “Active queue management for

differentiated service network,” in Proceedings of the 2006 IET Inter-
national Conference on Wireless, Mobile and Multimedia Networks,
November 2006, pp. 1–5.

[152] B. Ng, D. Chieng, and A. Malik, “POWer Adaptive Random Early
Detection for Diff-Serv Assured Forwarding service classes,” in Pro-
ceedings of the 2006 2nd IEEE/IFIP International Conference in
Central Asia on Internet, September 2006, pp. 1–5.

[153] S. Tartarelli and A. Banchs, “Random Early Marking: improving TCP
performance in DiffServ Assured Forwarding,” in Proceedings of the
IEEE International Conference on Communications (ICC 2002), vol. 2,
2002, pp. 970–975.

[154] H. Ma, W. Yuan, and S. Qin, “Realizing a loss proportional differenti-
ation Assured Forwarding service through active queue management,”
in Proceedings of the 2010 2nd International Conference on Future
Computer and Communication (ICFCC), vol. 1, May 2010, pp. 62–
66.

[155] Z. Cao and Y. Xiao, “A new DiffServ supported AQM algorithm,”

in Proceedings of the 2006 8th International Conference on Signal
Processing, vol. 3, November 2006.

[156] Y. Xiaoping, C. Hong, and Z. Zhenyu, “A queue management algorithm
for differentiated services,” in Proceedings of the 2011 International
Conference on Intelligent Computation Technology and Automation
(ICICTA), vol. 2, March 2011, pp. 941–944.

[157] S. Wen, Y. Fang, and H. Sun, “Differentiated bandwidth allocation
with TCP protection in core routers,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 20, no. 1, pp. 34–47, January 2009.

[158] Y. Xue, H. Nguyen, and K. Nahrstedt, “CA-AQM: Channel-aware
active queue management for wireless networks,” in Proceedings of
the IEEE International Conference on Communications (ICC ’07), June
2007, pp. 4773–4778.

[159] J. Wang, M. Song, and H. Yang, “Rate-based active queue management
for congestion control over wired and wireless links,” in Proceedings of
the First International Conference on Communications and Networking
in China (ChinaCom ’06), October 2006, pp. 1–6.

[160] H. Wang, Y. Zhang, and C. Wang, “A wireless network congestion
control algorithm based on adaptive QoS and wireless bandwidth,”

ADAMS: ACTIVE QUEUE MANAGEMENT: A SURVEY 1475

TABLE XXVII
SUMMARY OF HEURISTIC AQM SCHEMES FOR DIFFERENTIATED SERVICES (CONT’D)

AQM Congestion
Indicator

Control Function Special Characteristics

D-CBT (cont’d)

Tagged UDP threshold =

(
number of tagged active flows
total number of active flows

)
×q̄red

Untagged UDP threshold =

(
number of tagged active flows
total number of active flows

)
×(minth +0.1(maxth−minth))

Selective
Fair Early
Detection [70]

rate-based This algorithm attempts to provide fair bandwidth allocation and can be
easily adjusted to assign priorities to flow aggregates as in a differentiated
services framework.
For each active flow or flow aggregate SFED maintains a token bucket. The
rate at which tokens fill the token bucket is proportional to the allocated
bandwidths. The rate at which tokens are removed from the token bucket is
equal to the incoming rate of the flow. The occupancy of the bucket (which
quantifies this rate mismatch) is then used to determine the probability of
dropping/marking a packet. The height of the each token bucket represents
the burst length it can accommodate, therefore bursty flows are not unduly
punished. A flow is active if its bucket is not full. The bucket for the
inactive flows is removed and the tokens are redistributed fairly (e.g. round
robin) across all the other token buckets (i.e. the number of tokens is
conserved). Also, the token addition rate is increased fairly across all the
token buckets.
In a priority-less system, all the heights of the buckets are the same. The
sum of the heights is proportional to the buffer size and is conserved when a
flow is added or deleted. When there is a new flow, all the bucket heights
are reduced, to accommodate the new token bucket and when the flow
becomes inactive, the height of all the other token buckets are increased.
The probability dropping function is similar to Gentle RED. For the ith
token bucket, its bucket occupancy is denoted be xi. Also N is the number
of flows (hence the number of buckets) in the system, and LN is the
maximum height of each bucket.

p(xi) ==

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 λ1 < xi
LN

< 1

Pmax

(
λ1− xi

LN
λ1−λ2

)
λ2 < xi

LN
< λ1

Pmax + (1 − Pmax)

(
λ1− xi

LN
λ2

)
0 < xi

LN
< λ2

where λ1 and λ2 are occupancy ratio thresholds. Also associated with
SFED is the parameter σ which accounts for the tokens during deletion
and creation of token buckets. In terms of implementing priorities among
flows so that bandwidths are allocated proportional to their weight, the
heights and token addition rate into each bucket is scaled in proportion to
the flow’s weight.

SFED’s complexity in terms of to-
ken distribution and bucket cre-
ation is O(N). SFED’s authors
then proposed Randomized SFED
(R-SFED) to reduce this complex-
ity to O(1). They claim that R-
SFED performs almost as good as
SFED.

in Proceedings of the 2nd International Conference on Biomedical
Engineering and Informatics (BMEI ’09), October 2009, pp. 1–4.

[161] D. Li, J. Theunis, K. Sleurs, J. Potemans, E. Van Lil, and A. Van de
Capelle, “Improving RED performance during handovers in wireless
IP networks,” in Proceedings of the 4th International Symposium on
Wireless Communication Systems (ISWCS 2007), October 2007, pp.
441–445.

[162] H. Mukaidani, L. Cai, and X. Shen, “Stable queue management for
supporting TCP flows over wireless networks,” in Proceedings of the
2011 IEEE International Conference on Communications (ICC), June
2011, pp. 1–6.

[163] K. Chavan, R. Kumar, M. Belur, and A. Karandikar, “Robust active
queue management for wireless networks,” Control Systems Technol-
ogy, IEEE Transactions on, vol. 19, no. 6, pp. 1630–1638, November
2011.

[164] L. Andrew, S. Hanly, and R. Mukhtar, “CLAMP: Active queue man-
agement at wireless access points,” Proceedings of the 11th European
Wireless Conference 2005 - Next Generation Wireless and Mobile
Communications and Services (European Wireless), pp. 1–7, April
2005.

[165] , “Active queue management for fair resource allocation in wire-
less networks,” Mobile Computing, IEEE Transactions on, vol. 7, no. 2,
pp. 231–246, February 2008.

[166] R. Alasem and H. Abu-Mansour, “EF-AQM: Efficient and fair band-
width allocation AQM scheme for wireless networks,” in 2010 Second
International Conference on Computational Intelligence, Communica-
tion Systems and Networks (CICSyN), July 2010, pp. 169–172.

[167] S. Yi, M. Kappes, S. Garg, X. Deng, G. Kesidis, and C. Das,
“Proxy-RED: an AQM scheme for wireless local area networks,”
in Proceedings of the 13th International Conference on Computer
Communications and Networks (ICCCN 2004), October 2004, pp. 460–
465.

[168] X. Chang, X. Lin, and J. Muppala, “A control-theoretic approach to
improving fairness in DCF based WLANs,” in Proceedings of the 25th
IEEE International Performance, Computing, and Communications
Conference (IPCCC 2006), April 2006, p. 86.

[169] J. Alcaraz and F. Cerdan, “Using buffer management in 3G radio
bearers to enhance end-to-end TCP performance,” in Proceedings of the
20th International Conference on Advanced Information Networking
and Applications (AINA 2006), vol. 2, April 2006.

[170] J. Lakkakorpi and R. Cuny, “Comparison of different active queue man-
agement mechanisms for 3G radio network controllers,” in Proceedings
of the IEEE Wireless Communications and Networking Conference
(WCNC 2006), vol. 1, April 2006, pp. 80–85.

[171] R. Cuny and J. Lakkakorpi, “Active queue management in EGPRS,” in
Proceedings of the IEEE 63rd Vehicular Technology Conference (VTC

1476 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

2006), vol. 1, May 2006, pp. 373–377.
[172] J. Zhang and D. Pearce, “On designing a burst-sensitive RED queue at

GPRS links in a heterogeneous mobile environment,” in Proceedings
of the IEEE 16th International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC 2005), vol. 3, September 2005,
pp. 1719–1723.

[173] O. Akin, S. Ergut, and R. Rao, “Client side active queue management
for 3G cellular networks,” in Proceedings of the 3rd IEEE Consumer
Communications and Networking Conference (CCNC 2006), vol. 2,
January 2006, pp. 907–912.

[174] J. Lakkakorpi and A. Sayenko, “Backhaul as a bottleneck in IEEE
802.16e networks,” in Proceedings of the IEEE Global Telecommuni-
cations Conference (GLOBECOM 2008), December 2008, pp. 1–6.

[175] L. Jun, Y. Wu, F. Suili, G. Hua, and Z. Hongcheng, “A cross-
layer queue management algorithm in 802.16 wireless networks,”
in Proceedings of the International Conference on Communication
Software and Networks (ICCSN ’09), February 2009, pp. 25–29.

[176] J. Lakkakorpi, A. Sayenko, J. Karhula, O. Alanen, and J. Moilanen,
“Active queue management for reducing downlink delays in WiMAX,”
in Proceedings of the 2007 IEEE 66th Vehicular Technology Confer-
ence (VTC-2007), October 2007, pp. 326–330.

[177] S. Saleh and M. Fleury, “Video streaming with multi-TFRC and
uplink queue management,” in 2010 Digest of Technical Papers of the
International Conference on Consumer Electronics (ICCE), January
2010, pp. 75–76.

[178] P. Kulkarni, M. Nazeeruddin, S. McClean, G. Parr, M. Black, B. Scot-
ney, and P. Dini, “Deploying lightweight queue management for
improving performance of Mobile Ad-hoc Networks (MANETs),”
in Proceedings of the International conference on Networking and
Services (ICNS ’06), July 2006, p. 102.

[179] K. Kumar, I. Ramya, and M. Masillamani, “Queue management in mo-
bile adhoc networks (manets),” in Proceedings of the 2010 IEEE/ACM
International Conference on Green Computing and Communications
(GreenCom), International Conference on Cyber, Physical and Social
Computing (CPSCom), December 2010, pp. 943–946.

[180] L. Suo-ping and H. Zhi-peng, “A AQM model with multi-priority
and multi-receiver for Mobile Ad Hoc Networks,” in Proceedings of
the International Conference on Wireless Communications, Networking
and Mobile Computing (WiCom 2007), September 2007, pp. 1457–
1460.

[181] B. Abbasov, “AHRED: A robust AQM algorithm for wireless ad
hoc networks,” in Proceedings of the International Conference on
Application of Information and Communication Technologies (AICT
2009), October 2009, pp. 1–4.

[182] W. Lee, F. Liu, and H. Lo, “Improving the performance of MPEG-4
transmission in IEEE 802.15.3 WPAN,” in Proceedings of the 8th IEEE
International Conference on Computer and Information Technology
(CIT 2008), July 2008, pp. 676–681.

[183] D. Pacifico, M. Pacifico, C. Fischione, H. Hjalrmasson, and K. Johans-
son, “Improving TCP performance during the intra LTE handover,”
in Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM 2009), December 2009, pp. 1–8.

[184] S. Zhao, P. Wang, and J. He, “Simulation analysis of congestion control
in WSN based on AQM,” in Proceedings of the 2011 International
Conference on Mechatronic Science, Electric Engineering and Com-
puter (MEC), August 2011, pp. 197–200.

[185] D. Katabi, M. Handley, and C. Rohrs, “Congestion control

for high bandwidth-delay product networks,” in Proceedings of
the 2002 conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications. New York,
NY, USA: ACM, 2002, pp. 89–102. [Online]. Available:
http://doi.acm.org/10.1145/633025.633035

[186] F. Abrantes and M. Ricardo, “XCP for shared-access multi-
rate media,” SIGCOMM Comput. Commun. Rev., vol. 36,
no. 3, pp. 27–38, July 2006. [Online]. Available:
http://doi.acm.org/10.1145/1140086.1140091

[187] N. Dukkipati, N. McKeown, and A. Fraser, “RCP-AC: Congestion
control to make flows complete quickly in any environment,” in
Proceedings of the 25th IEEE International Conference on Computer
Communications (INFOCOM 2006), April 2006, pp. 1–5.

[188] T. Ott, T. Lakshman, and L. Wong, “SRED: stabilized RED,” in
Proceedings of the Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies on Computer Communica-
tions (IEEE INFOCOM ’99), vol. 3, New York, NY, USA, 1999, pp.
1346–55.

[189] W.-C. Feng, D. Kandlur, D. Saha, and K. Shin, “A self-configuring
RED gateway,” in Proceedings of the Eighteenth Annual Joint Confer-

ence of the IEEE Computer and Communications Societies (INFOCOM
’99), vol. 3, March 1999, pp. 1320–1328.

[190] V. Phirke, M. Claypool, and R. Kinicki, “RED-worcester - traffic
sensitive active queue management,” in Proceedings of the 10th IEEE
International Conference on Network Protocols, Paris, France, 2002,
pp. 194–5.

[191] W. Feng, A. Kapadia, and S. Thulasidasan, “GREEN: proactive queue
management over a best-effort network,” in Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM’02), vol. 2,
Taipei, Taiwan, 2002, pp. 1774–8.

[192] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behaviour of the TCP congestion avoidance algorithm,” Computer
Communication Review, vol. 27, no. 3, pp. 67–82, 1997.

[193] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Stochastic fair blue: a
queue management algorithm for enforcing fairness,” in Proceedings
of the Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society on Computer Communications (IEEE
INFOCOM 2001), vol. 3, Anchorage, AK, USA, 2001, pp. 1520–9.

[194] D. Clark and W. Fang, “Explicit allocation of best-effort packet delivery
service,” IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp.
362–73, 1998.

Richelle Adams received the B.Sc. degree in Electrical and Computer
Engineering in 1998 and the M.Sc. degree in Communication Systems in
2001 from the University of the West Indies, St. Augustine Campus, Trinidad
and Tobago. In 2007, she received the Ph.D. degree in Electrical and Computer
Engineering from the Georgia Institute of Technology, Atlanta, in 2007.
Currently, she is a Lecturer in the Department of Electrical and Computer
Engineering, The University of the West Indies. Her research interests
include infinitesimal perturbation analysis for active queue management in
communication networks, wireless networks and disaster communications.
She also holds the IEEE Wireless Communication Engineering Technologies
(WCET) certification.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

