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Abstract— Wireless communication networks remain un-
der attack with ill-intentioned “hackers” routinely gain-
ing unauthorized access through Wireless Access Points
(WAPs)-one of the most vulnerable points in an information
technology system. The goal here is to demonstrate the
feasibility of using Radio Frequency (RF) air monitoring to
augment conventional bit-level security at WAPs. The spe-
cific networks of interest are those based on Orthogonal Fre-
quency Division Multiplexing (OFDM), to include 802.11a/g
WiFi and 4G 802.16 WiMAX. Proof-of-concept results are
presented to demonstrate the effectiveness of a ‘“Learning
from Signals” (LFS) classifier with Gaussian kernel band-
width parameters optimally determined through Differential
Evolution (DE). The resultant DE-optimized LFS classifier is
implemented within an RF “Distinct Native Attribute” (RF-
DNA) fingerprinting process using both Time Domain (TD)
and Spectral Domain (SD) input features. The RF-DNA is
used for intra-manufacturer (like-model devices from a given
manufacturer) discrimination of IEEE compliant 802.11a
WiFi devices and 802.16e WiMAX devices. A comparative
performance assessment is provided using results from
the proposed DE-optimized LFS classifier and a Bayesian-
based Multiple Discriminant Analysis/Maximum Likelihood
(MDA/ML) classifier as used in previous demonstrations.
The assessment is performed using identical TD and SD
fingerprint features for both classifiers. Finally, the impact
of Gaussian, triangular, and uniform kernel functions on
classifier performance is demonstrated. Preliminary results
of the DE-optimized classifier are very promising, with
correct classification improvement of 15% to 40% realized
over the range of signal to noise ratios considered.

Index Terms—Wireless, Security, Fingerprinting, Differ-
ential Evolution, Genetic, Algorithm, 4G, 802.16, WiMAX,
802.11, WiFi, Learning from Signals

I. INTRODUCTION

As fourth generation (4G) communication systems such
as last mile Worldwide Interoperability for Microwave
Access (WIMAX) and Long Term Evolution (LTE) sys-
tems evolve, so does consumer exposure and risk of
attack. The relative ease by which ill-intentioned “hack-
ers” access these systems is enabled by a couple factors,
including 1) the availability of relatively inexpensive, high
power hacking equipment (workstations, servers, etc.)
and 2) the fact that these systems fundamentally operate
through Wireless Access Point (WAPs) which are readily
accessible and remain one of the most vulnerable points
in an Information Technology (IT) network [1].
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Network WAP vulnerability has been traditionally ad-
dressed through bit-level security mechanisms in upper
Open Systems Interconnection (OSI) layers with the
majority of intrusion detection systems operate at OSI
Layer #3, the Network layer, or higher [2]. While provid-
ing some measure of security, these methods generally
ignore potentially useful information that is in device
Radio Frequency (RF) emissions. Thus, potential security
benefits available within the lower OSI Physical (PHY)
layer remains largely unexploited.

The task at hand is to exploit PHY information and
improve 4G communication security by providing more
robust device authentication for mitigating unauthorized
system access. The envisioned implementation is to aug-
ment bit-level protection mechanisms using RF air mon-
itoring devices located at network access points [3]—[8].
Given the computational power required for air monitor-
ing, typical WAP locations seem ideal as they tend to have
the necessary resources (physical space, prime power,
etc.) available. This application was targeted in [4], [5]
for GSM signals and is thought to be directly applicable
for similarly configured WiMAX and LTE systems.

Earlier related works demonstrated that RF “Distinct
Native Attribute” (RF-DNA) features, as identified using
various terminology, are indeed useful for discriminating
between specific wireless devices [3]-[13]. The effective-
ness of RF fingerprinting has already drawn the attention
of counter-measure researchers who are taking the next
step of assessing RF PHY layer security robustness [14].
But, as typically expected with RF signal processing
techniques, overall device classification performance with
RF-DNA fingerprints decreases as Signal-to-Noise Ratio
(SNR) decreases. This is commonly addressed by either
finding 1) more robust input features for a given classifier,
or 2) a more robust classifier for given input features.

The second of these approaches is considered here
using Time Domain (TD) and Spectral Domain (SD)
signal features that have been successfully exploited in
previous work [3]-[8], [15]. Given these features, the
goal is to demonstrate a more powerful “classification
engine” that is optimized through Differential Evolution
(DE). Success of the resultant DE-optimized “Learning
from Signals” (LFS) classifier is measured as either
1) improving device classification accuracy for a given
SNR, or by 2) maintaining a given classification accuracy
at a lower SNR.
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DE-optimized LFS classifier capability is demonstrated
through comparative assessment of its classification ac-
curacy with that of a Bayesian-based Multiple Discrim-
inant Analysis/Maximum Likelihood (MDA/ML) classi-
fier. Assessment reliability is ensured by inputting iden-
tical TD and SD fingerprint features into the classifiers.
The features are extracted from experimentally collected
802.11a WiFi and 802.16e WiMax signals under intra-
manufacturer conditions (same manufacturer and model,
different serial numbers). Relative to inter-manufacturer
conditions (inter-operable devices from different man-
ufacturers), intra-manufacturer classification poses the
greatest classification challenge [3]-[6] while presenting
the greatest opportunity for technical contribution.

The remainder of the paper includes: Sect. I Technical
Background on key technical aspects; Sect. III Com-
parative Assessment Methodology used to obtain results
and conduct analysis; Sect. IV Results of classification
performance; and Sect. V Summary and Conclusions for
accomplishments.

II. TECHNICAL BACKGROUND

The following subsections provide a summary of key
technical concepts that were employed in the methodol-
ogy to generate desired results. This includes a discus-
sion of RF-DNA Fingerprinting in Sect. II-A and DE-
optimized LFS Implementation in Sect. II-B.

A. RF-DNA Fingerprinting

RF-DNA fingerprinting is a PHY technique for dis-
criminating devices based on their inherent emission dif-
ferences. It has been shown that specific serial-numbered
devices possess unique characteristics that result from
minute differences in manufacturing (part type, part lot
number, assembly processes, etc.). The goal is to capture
these differences in fingerprints that can be used to
uniquely identify, by serial number, hardware devices as
an aid to network security and user authentication. Various
RF fingerprinting techniques have been demonstrated pre-
viously using various communication signals, including:
802.11 WiFi signals [3], [7], [8], [16]-[19], GSM cell
phone signals [5], [15], 802.16 WiMAX signals [6], [8],
802.15 Bluetooth signals [9], and RFID signals [12], [20].

While these earlier cited works have considered several
diverse methods for implementing RF fingerprinting, the
techniques generally share some common functionality,
including: 1) Signal Collection and Post-Collection Pro-
cessing, 2) Fingerprint Feature Generation, and 3) Sig-
nal/Device Classification. Based on processes in [3]-[5],
these functions are collectively embodied in the RF-
DNA fingerprinting process overview shown in Fig. 1 and
described in the following subsections. This approach was
adopted here to facilitate direct comparison of previous
MDA/ML classification results with new DE-optimized
LFS results to assess the impact of introducing an alter-
nate “Signal Classification Engine.”
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1) Signal Collection and Post-Collection Processing:
The first step includes signal reception, digitization, and
post-collection processing to prepare the TD signal re-
sponse for feature extraction. Relative to the process
overview in Fig. 1, this includes all processes up to the
point where the desired analysis SNR (SN R 4) is estab-
lished and the analysis signal is passed on for statistical
fingerprint generation.

All signals here were collected using an RF Signal
Intercept and Collection System (RFSICS) based on Ag-
ilent’s E3238 system [21]. The devices under test were
isolated from the RFSICS to minimize the introduction of
unrepeatable environmental and interference effects. This
is achieved by placing 1) some devices in an RF anechoic
chamber, 2) some devices in separate rooms, 3) some RF
absorbing material in strategic locations, and/or 4) combi-
nations thereof. Data transfer is easily accomplished using
the conventional File Transfer Protocol (FTP) to pass files
between devices. When possible, device transmit powers
are controlled to enable association of collected data with
specific transmitting devices.

Accounting for all collection factors, the post-filtered
SNR for signals collected under controlled conditions
is on the order of SNR¢c € [30,40] dB. This enables
direct scaling (G in Fig. 1) and addition of like-filtered
Additive White Gaussian Noise (AWGN) to generate
analysis signals at the desired SNR4. The resultant
analysis signals are used for RF-DNA fingerprinting and
device classification

2) Fingerprint Feature Generation: For fingerprint
feature generation the classifier input features are gener-
ated directly from either the TD signal response or within
an alternate feature domain through transformation, e.g.,
to the frequency domain via a Discrete Fourier Transform
(DFT). Transformation is used to exploit additional dis-
criminating features that may be present in an alternate
domain. This work considers the collected TD response
and DFT-based SD response. In both cases, the final clas-
sification features are generated by calculating statistical
metrics over selected response regions.

Three signal responses are used for TD fingerprinting,
including instantaneous amplitude, phase and frequency
(Nsr=3). For SD fingerprinting only the normalized
Power Spectral Density (PSD) response is used (Ngr=1).
In both cases, the response(s) is parsed into Ny equal
length subregions as illustrated in Fig. 2 for representative
TD and SD responses of an 802.11a WiFi signal. Features
for the entire signal response are included as well, yield-
ing a total number of feature regions of N5 =(Ng + 1).
Each of the Ngp signal responses are characterized
using Ngps statistical measures of standard deviation (o),
variance (02), skewness (7), and/or kurtosis (k). These

statistics are used to form the it" regional fingerprint
given by
2
FRi = [O—Ri OR, TR; KRi]lx(NSJ\/IXNSR) ) ()

where ¢ = 1,2, ..., N}g and only selected o, 02, 7y, and &
elements are included. The fingerprints from each region
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Fig. 1. RF-DNA Fingerprinting Process [8].
per (1) are concatenated to form the composite statistical (dimensions) input to the classifier and given by
fingerprint given by
Np = Nsy x Nsgp X (Nr+1) . 3
Fc= |Fr, 1 Fry 1 FRy o PRy s @ 3) Signal/Device Classification: For signal/device
XNp

where Np is the total number of fingerprint features
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Fig. 2. Representative 802.11a preamble fingerprint feature
regions: TD Amplitude Response and Corresponding SD
Response Based on NPSD [6].
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classification a given classifier is implemented to separate
and identify Np devices (input classes) using selected in-
put features. Classification approaches vary across the pat-
tern recognition community and generally include meth-
ods based on cross-correlation, vector distance measures,
k-nearest neighbor metrics, support vector machines, and
Fisher-based MDA/ML processing [3], [6], [9], [20], [22].

As adopted from [3], [5], [15] and used here, the
MDA/ML classifier is an extension of Fisher’s Linear
Discriminant that is used when more than two input
devices are to be classified. MDA uses a projection matrix
(W) to reduce the input dimensionality. The MDA/ML
process is that of finding W such that projected inter-
class separation is maximized and intra-class spread is
minimized [23]. Given Np devices (input classes), the
MDA/ML process projects the input features into an
Np — 1 decision space.

Device classification is performed using a ML classifier
derived from Bayesian Decision Theory, with the multi-
dimensional input data classified as being affiliated with
one of Np possible classes. A Bayesian-based decision
uses known prior probabilities, probability densities, and
relevant costs associated with making a decision. The
decision process relies on an accurate representation of
the class distribution and its parameters in order to define
the likelihood. A sample is assigned the class label of the
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class likelihood yielding the maximum response. In this
demonstration, the ML prior probabilities are assumed to
be equal and the costs uniform. This is best visualized for
the Np = 3 class problem as illustrated in the lower left-
hand corner of Fig. 1 that shows Gaussian class likelihood
functions and the resultant 2-dimensional decision space
(lower surface) with ML boundaries.

B. LFS Classification

LES classification is an adaption of Learning From
Data (LFD) techniques where the input training data is
derived from samples of a given sensor response [7],
[8], [24], [25]. LFD is an algorithm that approximates
an unknown relationship between a system’s inputs and
outputs using known available data. Most scientists and
engineers are familiar with this as a form of regression,
e.g., a least squares fit using polynomial models. But,
LFD modeling is not constrained to using polynomial
functions. Once a model of the data is “learned,” the
model can be applied to previously unseen data to provide
an approximation of the modeled system’s output. The
goal is to find useful information in the input data and
exploit that information when acting on future observed
data [25].

The LFD concept functionally includes three steps:
1) preprocessing (transformation to feature space),
2) learning or training, and 3) operation or classifica-
tion. The learned model can be applied to accomplish
three basic tasks: classification, regression, or probability
density estimation. Classification is estimation of class
association based on modeled decision boundaries. This
is used in pattern recognition systems and is of greatest
utility for RF-DNA fingerprinting. Using N input fea-
tures, the device classification goal is to find a mapping
from input sample x; = (z1,...,Zn,) to one of Np
devices (classes) where D € {Dq,Ds,...,Dy,}. This
final classification decision is based on a set of learned
boundaries or threshold values, t = (t1, to, ..., tNp—1).
Once established, this mapping function provides the
decision rule by which subsequent operation/classification
decisions are made for future samples.

LFD problems are inherently ill-posed given there are
more unknowns than available data to describe them.
Therefore, there is no unique solution to, or single model
of, the system under consideration. In such cases, a
search or optimization approach is required to minimize
some predefined error function to find the “best” solution
among possible solutions. Mean Square Error (MSE) is a
commonly used error metric and is adopted here because
the training set includes both input signals and associated
known class membership.

Many LFD approaches include parameters on the
search and fitness functions. These parameters are usually
set to common, or default values. However, the defaults
may not be the optimum for a specific set of data or a
given problem domain. It has been shown that a Genetic
Algorithm (GA) can be used to improve LFD modeling.
The concept is to improve the regression process using
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a GA to optimize the regression parameters for each
input dimension, rather than using a single, global value
for all dimensions. This GA-optimized approach has
been applied using the more powerful kernel regression
(KR) technique [24], [26] and is adopted here for LFS
classification.

C. Gaussian KR Processing

KR is a memory-based technique that stores past input
data and processes them when a new data point is
observed. So, instead of modeling the entire input/output
set (z,y) with a model, as in conventional polynomial
regression, the local KR function is estimated over the
entire input domain by fitting a simple model at every
new sample, or query point q = (q1,492,...,qgn,). The
local models are built using a distance weighting kernel
function, K (d?(x;i,q)), that assigns a weight based on
the distance between x; and q. Because of this weighting,
only observations that are close to the query point are used
to fit the model. Any kernel function can be used for KR
provided the following properties are satisfied [25]:

1) K(z;,q) > 0 (non-negative)

2) K(|| zs,q ||) is radially symmetric
3) K(x;,q) is maximum for ¢ = z;

4) K(z;,q) decreases monotonically with |z; — ¢|

While there are virtually an unlimited number of possi-
ble functions that satisfy the noted properties, a Gaussian
kernel is most commonly used. Two additional kernel
functions are also of interest, both of which limit the
influence of query point neighbors during model devel-
opment. The three kernels considered here are shown in
Fig. 3 and include the Gaussian (4), triangular (5), and
uniform (6) functions [27].

K (dis(xi,q)) = exp™ 0o dnbaa) @)
K (d%{(xia q)) =1- d%{(xia q) ) (5)
K (dfy(xi,q)) =1, dig(xi,q) <1. (6)

These kernel function have a spread, or bandwidth, that
relates to feature cluster size within in a specific dimen-
sion. For this work, h; represents the bandwidth param-
eter for the i*" dimension of a multidimensional kernel
function where H is an Np x Np diagonal matrix. To
reduce computational complexity, the inter-dimensional
cross-correlations are not considered. Therefore, all off-
diagonal elements in H are zero and H is given by

H:diag(hl,hg,...,hNF>,hiZOVi . (7)

Distance function d?(x;,q) defines the neighborhood
of points surrounding q, which is implemented here as
the squared Euclidean distance parameterized by H

dia(xi,9) = (xi —q) " H '(xi —q) . (®)

Finally, the kernel regression estimate, g, for a previ-
ously unseen system input, or query point, q, is deter-
mined by summing the model contributions for each of
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Fig. 3. Relative normalized magnitude of triangular, Gaussian, and
uniform kernel functions

Np signal bursts for each of Np devices as given by
Ns
> K(dy(xi,q)) - i
7= , Ns=Np-Np. (9

ZK(d%{(Xi,Q))

For conventional KR processing, a given bandwidth of
h € R would be used for all input dimensions—elements
of H in (7) are identical. The approach here differs in
that DE KR optimization, as demonstrated in [24], [26],
is able to “learn” the best bandwidth parameter % ; to use
for each feature dimension and improve LFS classifier
performance. A by product of this process is that one can
also infer the relative importance of a given dimension
based on the magnitude of h;. A “smaller” h; indicates
greater importance as relevant features in that dimension
cluster closer together.

D. DE-Optimized LFS Implementation

The DE-optimized LFS classifier is illustrated in Fig-
ure 4 and functionally includes three processes: Input
Feature Formatting, DE Optimized KR, and Device Clas-
sification.

1) Input Feature Formatting: Given N p devices to be
classified, the classifier input data includes N g fingerprint
vectors per device with each fingerprint containing N p
features (dimensions). Specific details for the RF-DNA
fingerprints used here are provided in Section II-A.

2) DE Optimized Kernel Regression: DE is a form of
GA processing that performs a population-based global
search to optimize a given objective function. With any
GA, a group of solutions are retained in the current
population which is iteratively updated until specific
termination criteria are satisfied. Upon termination, the
population member with the best fitness is the one that
best optimizes the objective function and it is selected as
the solution. The uniqueness of DE lies in its use of real-
valued genes within the population members and vector-
based operations to produce future generations [24], [28].
The ability to operate on real-valued vectors makes DE
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Fig. 4. DE-optimized LFS classification process [7], [8].

ideally suited for operation with our linear algebra kernel
regression process.

The DE process for this work was implemented as
detailed in Figure 5. The initial population Pge, for
Gen# = 1 contains Np randomly generated mem-
bers. Each member is represented by a vector of h,,
i =1, 2, ..., Np, kernel bandwidth values. The initial
population is evaluated for fitness using KR and the
MSE calculated for each member. Termination criteria
can be based on reaching either 1) a maximum number of
generations Nge, and/or, 2) a minimum specified MSE
Value To Reach (VT R). If not satisfied during the current
generation, vector-based mutation occurs as illustrated in
Figure 6.

There are many variants in how the vector-based muta-
tion and crossover can be implemented. To describe these
there exists a nomenclature of four positions, DE/X/Y/Z.
The one chosen here is the DE/current-to-rand/1/bin. This
indicates that DE is used, children in the population are
created by mutating a current parent population member
with a linear combination of random mates. The result is
a single child vector. Finally, binary crossover between
the child and parent is allowed to occur [29].

In this case, each population member (parent) X; is
mutated using the vector values in three other randomly
selected individuals (mates) (V1, V5 and V3). As shown
in Figure 6, the child’s final value u; in the j* feature
dimension is a linear combination of weighted parent
and mate differences using crossover multipliers of F';
and F5. Finally, if a crossover threshold C'R probability
is exceeded for each position in the vector, a binomial
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Fig. 6. DE vector-based crossover process [7].

crossover occurs which switches the values between the
parent and child in that position. The final result is a
child population containing /Np members that are then
each assigned a fitness value based on their KR MSEs.
Selection of surviving members for the next population
is based on the lowest MSE values. The fitness of each
child, u;, is compared with its parent, x;. The one with
the lowest MSE is selected for the next generation. The it-
erative mating, crossover, and selection process continues
until termination criteria is satisfied. Upon termination,
the member of the final population with the lowest MSE
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is deemed “best” and its corresponding H, along with the
original training data, is used for subsequent classification
of previously unseen input data.

3) Device Classification: Device classification in Fig-
ure 4 is implemented here as a non-linear mapping
between the “best” Y output from the DE process and
possible input devices (classes). The mapping process is
implemented via a simple comparison of each Y; in Y
with threshold values and an estimated device D; assigned
as follows:

C(Y,t) —~D
t € [ti, ta, ..., tnp—1] » Di € [D1, Da, ..., Dny]
AL <t —>l31
ti<Yi<tiyy —D; 2<j<Np-1
Y; > tNp-1 HEND
(10)

If perfect model training occurs, i.e., the DE-optimized
process results in an ideal model that perfectly represents
the input data, the training data would be classified per-
fectly (see classification mapping in the upper righthand
graphic in Figure 4 for the Np = 3 case). A more
general case of the mapping process in (10) is graphically
illustrated in the bottom portion of Figure 4. These plots
indicate less-than-perfect classification performance with
the actual Input device number shown on the top and
resultant Estimated device number on the left hand side.

III. COMPARATIVE ASSESSMENT METHODOLOGY

For reliable comparative assessment, identical finger-
print features were generated per Sect. II-A2 and input to
each classifier. This was done for both TD and SD signal
responses. The TD signal responses were generated per
the method in [3] as centered and normalized instanta-
neous responses. The SD signal response was generated
using the method in [6]-a Fourier-based Normalized
Power Spectral Density (NPSD).

Comparison is based on Monte Carlo simulation with
both classifiers trained and tested under identical condi-
tions, including: 1) identical TD and SD input features
extracted from Np=500 bursts per device, 2) N,=10
independent like-filtered AWGN realizations per burst at
each SNR, and 3) SNR increments of A ;5=3.0 dB.

MDA/ML classification was implemented with K-fold
cross-validation (Sect. 1I-A3) using K=5 to enable a
statistically significant assessment. The required value of
K can be data dependent and pilot studies confirmed that
K=5 was sufficient to ensure reliability. This value is
consistent with common practice that suggests values of
K=5 and K=10 are appropriate [30].

The DE-optimized LFS classifier was implemented
per Sect. II-B using initial parameter values of N p=40
population members; a cross-over threshold of C R=0.2;
mutation multipliers of random F4:N(0,1) and fixed
F»=0.8; and a Gaussian kernel. Initially, the DE opti-
mization was terminated after reaching N g, =200. This
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termination strategy differs from conventional DE termi-
nation that is generally based on satisfying pre-defined
MSE constraints. These initial DE parameter values were
empirically determined using a series of pilot studies
at a given SNR and provide consistent classification
performance within reasonable computation times. For
legacy reasons, the LFS DE engine was implemented with
K =4 fold cross validation to search for the best H. The
LFS results use the best H at each SNR to classify the
training data.

It is important to note that none of the demonstration
parameter values are based on optimal selection but cho-
sen for computational efficiency to enable reliable proof-
of-concept demonstration. Optimization and characteri-
zation of algorithmic and computational intensity trade-
offs between MDA/ML and DE-optimized LFS classifiers
remains an area of interest for ongoing research.

Classifier performance is first assessed using average
% Correct Classification versus SNR, with MDA/ML
performance serving as the comparative baseline for
subsequent DE-optimized LFS results. This enables a
one-on-one assessment of overall “classification engine”
power. Performance of the DE-optimized LFS classifier is
then analyzed using Classification Error versus number
of DE generations Nge,, Where % Classification Error
is calculated as 100% — % Correct Classification. This
analysis enables efficient selection of Ng., for achieving
a desired % Correct Classification while at the same time
reducing computation time.

IV. RESULTS

Classifier assessment results are presented here for each
of the OFDM-based signals of interest: 802.11a WiFi
in Sect. IV-A and 802.16e WiMAX in Sect. IV-B. The
presentation order of results and analysis are identical in
the sections, with % Correct Classification versus SNR
results provided first and followed by Classification Error
versus Ngen. The effect of various kernel functions on
classifier performance is provided at the end.

A. 802.11a WiFi Devices

Signals for 802.11a WiFi demonstration were collected
from like-model Cisco Aironet PCMCIA adapters using
a pair of laptops in point-to-point (P2P) mode in an
RF anechoic chamber. The collected 802.11a bursts were
detected using a simple amplitude detection method with
a threshold of tp=—6 dB. The detected bursts were
post-collection filtered using a 6'"-order Butterworth filter
having a —3 dB bandwidth of W p-="7.7 MHz. This same
filter was used for generating the like-filtered AWGN
required for SN R scaling.

For WiFi TD fingerprinting, Nsr=3 signal responses
were used (instantaneous amplitude, phase and frequency)
with Np=10 subregions per response and N g»s=3 statis-
tics per region (02, v, and k). Therefore, the resultant
number of fingerprint features (classifier input dimen-
sions) was Np=99 per (3). The same number of sub-
regions and statistics were used for WiFi SD fingerprint-
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ing (Nsr=1), resulting in Nr=33 fingerprint features—a
three-fold reduction in features relative to TD.

As presented in Fig. 7, 802.11a WiFi device clas-
sification is highly dependent on fingerprint type and
somewhat unexpected. The DE-optimized LFS classifier
with SD input features performs much poorer than 1) the
MDA/ML classifier with equivalent input SD features, and
2) itself when using TD input features. It is hypothesized
that the poorer DE-optimized LFS performance with SD
features can be partially attributed to the fact that there are
one-third fewer SD features than TD features (Nr = 33
SD versus Nrp = 99 TD). SD classification performance
actually degrades to that of random guessing (33%) for
SNR <12 dB.

The DE-optimized LFS classifier provided notable
improvement with TD fingerprints and outperformed
MDA/ML for SNR < 15 dB. This includes greater
than 40% better classification at the lowest SNR con-
sidered. The anomalous decrease in TD performance at
SNR = 21 dB was unexpected and warranted further
investigation to determine if this was due to simulation
error or whether it was inherent in the DE-optimized LFS
RF-DNA fingerprinting process. This was first addressed
by considering the effect of setting the DE termination
criteria to a fixed number of generations, Nge, = 200.
Recall that Nge, is only one of several parameters
that were empirically selected for initial proof-of-concept
demonstration.

The effect of fixing N ., was addressed by considering
% Classification Error versus Ngep for Ngen, € [10,900]
with other simulation parameters (Ng, Np, CR, F1, F5,
and N) the same as used to generate Fig. 7 results. The %
Classification Error results are provided in Fig. 8 for SD
fingerprinting at SINR = 15 dB and TD fingerprinting at
SNR = 21 dB. As expected, the error exhibits an overall
decreasing trend as Ng.,, increases, with DE achieving a
% Classification Error of approximately 4% for TD and
15% for SD at N¢e,=900.
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Fig. 7. Average % Correct Classification vs. SN R for the 802.11a
WiFi signal: TD (circle markers) and SD (square markers) fingerprint-
ing. Previous MDA/ML classifier (unfilled markers) [3] and new DE-
optimized LFS classifier (filled markers) [7], [8].
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Fig. 8. Average % Classification Error vs. Number of DE Genera-
tions (Ngen) for the 802.11a WiFi signal using TD features (circle
markers) at SNR = 21 dB and SD features (square markers) at
SNR =15 dB [7], [8].

Two things are worth noting in Fig. 8. First, the TD
response at Nge, =200 shows % Classification Error =
12% which corresponds directly to the minimum % Cor-
rect Classification ~ 87% anomaly in Fig. 7. Therefore,
the TD behavior in Fig. 7 is believed to be inherent in the
DE-optimized LFS RF-DNA fingerprinting process, i.e.,
Ngen=200 iterations is simply insufficient at some SN R
to realize potential DE-optimized LFS benefits. Second,
it appears that SD is asymptotically approaching a lower
bound of % Classification Error ~ 14%. Investigating the
effects of varying Nge, and other parameters remains an
area of interest in ongoing research.

B. 802.16e WiMAX Devices

Signals for 802.16e WiMAX demonstration were col-
lected from an Alvarion-based test bed that included one
Base Station (BS) transceiver (model XTRM-BS-1DIV-
5.4-90D) and six like-model Mobile Subscriber (MS) sta-
tion transceivers (model XTRM-SU-OD-1D-4.9-UL-A).
This is commercially available equipment that provides
unlicensed operation in two bands: f.€[4900, 5350] MHz
and f.€[5470,5950] MHz [31]. As specified in the gov-
erning IEEE 802.16 standards [32], the experimental sys-
tem supports channel bandwidths of 5 MHz and 10 MHz.
Results here are based on a 5 MHz channel bandwidth
at f.=5475 MHz with time division duplexing (TDD)
providing separation of BS and MS transmissions.

Consistent with the goal of RF air monitoring at WAPs,
the WiMAX MS-to-BS transmissions were of interest
here. The observed signal structure within each WiMAX
TDD frame spanned approximately t7pp=>5.0 ms and
included a BS subframe of ¢ 55=3.0 ms followed by an
S subframe of ¢t5s=2.0 ms. In addition, the S subframe
contained two distinct responses, with the first response
of t rng~300 us used for ranging (dynamic network main-
tenance) and the second region used for user data transfer.
Considering the various TDD subframe responses that are
available for RF-DNA fingerprinting, empirical studies
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showed that the MS subframe ranging only response was
most promising for RF air monitoring and thus it was
considered here for demonstration.

The WiMAX signals were collected using the RFSICS
and detected using a simple amplitude detection method
with a threshold of ¢t p=—12 dB. Once detected, the MS
ranging only region of the subframes was extracted and
post-collection filtered using a 6‘"-order Butterworth filter
having a —3 dB bandwidth of W p-=3.0 MHz. This same
filter was used for generating the like-filtered AWGN
required for SN R scaling.

For WIMAX TD fingerprinting, Ngr=3 signal re-
sponses (amplitude, phase and frequency) were used with
Nr=12 subregions per response and Ngp/=3 statis-
tics/region (o2, v, and k). Therefore, the resultant number
of TD fingerprint features (classifier input dimensions)
is Np=117 per (3). The same number of subregions
and statistics were used for WiMAX SD fingerprinting
(Nggr=1), resulting in Nyp=39 SD fingerprint features—
again, a three-fold reduction in features relative to TD.

As presented in Fig. 9, results show that the DE-
optimized LFS classifier performed well using WiMAX S
ranging-only responses. Most notably, the DE-optimized
LFS classifier outperformed the MDA/ML classifier for
SNR<6 dB using TD features. In addition, the DE-
optimized LFS classifier with TD features yielded nearly
100% Correct Classification at lower SNR, with as
much as 30% improvement noted at SNR=—6 dB.
DE-optimized LFS classifier was less effective with SD
features as classification but out performed MDA/ML
over the range 0 dB < SNR < 15 dB. As with WiFi
device classification, the poorer performance with SD
features is partially attributed to the reduces number of
features (Np=39 SD versus Np=117 TD). Future work
is planned to address the effects of dimensional TD-SD
differences.

As with earlier 802.11a results in Fig. 7, the effect of

100~

90

80

701

60

% Correct Classification

. — O~ MDAML - TD Features
- O~ MDAML - SD Features
50 : : —@— DE-LFS - TD Features
=] —8— DE-LFS - SD Features

40

30 I I I I I I

Fig. 9. Average % Correct Classification vs. SN R for the 802.16e
WiMAX signal using the S range-only response. Results shown for TD
(circle markers) and SD (square markers) features using the MDA/ML
classifier (unfilled markers) and the DE-optimized LFS classifier (filled
markers).
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fixing Ng.n, with WiMAX signals was addressed using %
Classification Error versus Ngep, for Ngen, € [10,900].
The other simulation parameters (N, Np, CR, F}, F5,
and NV,) remained the same. In this case, SNR=18 dB
was used for both TD and SD features. The results of this
analysis are presented Fig. 10. As shown, performance
with SD features converged very quickly to approximately
13% average % Classification Error. The number of gen-
erations, Ngen, =200 was clearly sufficient for generating
results in Fig.9.

For TD features, the % Classification Error versus
Ngen trend in Fig. 10 for the WiMAX signal is simi-
lar to what was observed in Fig. 8 with WiFi signals,
with % Classification Error of TD features beginning to
approach an asymptotic lower bound of approximately
3% after Ngen =800 generations. Given this lower bound,
Ngen=200 was not sufficient for maximizing perfor-
mance at SN R=18 dB. Clearly, in some cases, increased
“learning” through more generations can improve classi-
fication performance. The limits of this approach as well
as the effects of other parameters on system performance
remains an area of future research.

C. Impact of Kernel Selection: WiFi Signals

The DE-optimized LFS simulation results for 802.11a
signals shown in Fig. 7 were accomplished using a
Gaussian kernel function. The simulation was repeated
using the same parameters (N, =10, Nge, =200, SD and
TD features) but alternately using a triangular and uniform
kernel functions. The results of using three different
kernel weighting functions can be seen in Fig. 11.

Alternate kernel performance with TD features is
shown in Fig. 11(a). Relative to Gaussian kernel perfor-
mance, the two alternate kernel functions produce nearly
identical or better classification performance using the
same number of “learning” generations (N ge,=200).
Specifically, the triangular kernel was able to produce
at, or near, 100% correct classification for all SNRs. Of
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Fig. 10. Average % Classification Error vs. Number of DE Generations
(NGen) for the 802.16e WIMAX signal using TD features (circle
markers) and SD features (square markers) both at SN R=18 dB.
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particular interest, the use of the triangular kernel elimi-
nated the anomalous “dip” in performance at higher SNRs
without requiring an increase in learning generations.
The uniform kernel performed similarly across all SNRs
except at SN R=24 dB. At this point, the uniform kernel
produced reduced performance over both the Gaussian
and triangular kernels. Further research is required to fully
understand the nature of this anomaly.

Alternate kernel performance with SD features is
shown in Fig. 11(b). In this case the triangular and
uniform kernels outperformed the Gaussian kernel across
the lower half of the simulated SNR range. However,
unlike TD feature performance there is no clear top
performing kernel over the range of SNR considered. For
fixed Ngen, =200 “learning” the Gaussian kernel produced
the best performance for approximately SNR>16 dB,
with both the alternate kernels performing better at lower
SNRs. Most notable here is that MDA/ML generally
out performed LFS for all kernels and SNR considered.
Relative to better TD performance in Fig. 11(a), poorer
LFS SD performance in Fig. 11(b) is believed to be
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(a) 802.11a WiFi signal fingerprinting using TD features
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Fig. 11. Average % Correct Classification vs. SN R for 802.11a WiFi
signal fingerprinting using Gaussian (circle markers), triangular (triangle
markers), and uniform (square markers) kernel functions based on a) TD
features and b) SD features.
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partially attributable to the reduced number of SD features
(one third the number used for TD processing). The
information contained in the reduced SD feature set is
simply insufficient for LFS to effectively classify the
802.11a signals. Work continues on assessing the effect of
feature dimensionality on overall RF-DNA fingerprinting
performance.

D. Impact of Kernel Selection: WiMAX Signals

The process used in Sect. IV-C for assessing the im-
pact of kernel function selection with WiFi signals was
repeated for WiMAX signals. The results can be seen in
Fig. 12, with the alternate kernel performance using TD
features with 802.16e signals shown in Fig. 12(a).

The TD results with WiMax signals exhibited similar
performance trends as WiFi signals with improved per-
formance by all kernels at approximately SNR < 8 dB.
Additionally, the triangular kernel again performed the
best with 100% correct classification across all SNRs.
Again, the triangular weighting function effectively re-
moved the performance dips occurring at approximately
SNR > 8 dB for other kernel functions without increas-
ing the number of “learning” generations.

Alternate kernel performance using WiMax signals
and SD features is shown in Fig. 12(b). For 802.11a
signals, LFS had poorer performance than MDA/ML for
all simulated conditions. However, for WiMax signals,
LFS with the Gaussian, uniform, and triangular ker-
nels shows mixed improvement. In the previous results,
and repeated here, the Gaussian kernel performed worse
than MDA/ML across all SNRs considered. However,
the uniform and triangular kernel shapes resulted in %
Correct Classification that was better than or equal to
the MDA/ML results for almost all SNRs considered.
A unique aspect of the triangular kernel results is the
anomalous dip in performance centered at SN R = 0 dB.
It is hypothesized that increased “learning” with more
generations of training could reduce the anomalous dip
while simultaneously realizing the increased performance
of the triangular kernel at higher SNRs.

V. SUMMARY AND CONCLUSIONS

Differential Evolution (DE) is used to optimize the
performance of a Learning From Signals (LFS) classi-
fication engine operating within an RF “Distinct Native
Attribute” (RF-DNA) fingerprinting process. The DE-
optimized LFS classifier is envisioned for use in RF air
monitoring at 4G communication Wireless Access Points
(WAPs) which remain as one the most vulnerable points
within an information technology network. The goal is to
provide additional Physical layer (PHY) based security
at WAPs to augment existing bit-level mechanisms. Of
particular interest here are systems based on Orthogonal
Frequency Division Multiplexing (OFDM), to include ex-
isting 802.11a/g WiFi and emerging 4G 802.16 WiMAX
and LTE variants.

Comparative classification performance assessment is
provided for the DE-optimized LFS classifier relative to
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Fig. 12.  Average % Correct Classification vs. SNR for 802.16e
WiMAX signal fingerprinting using Gaussian (circle markers), triangular
(triangle markers), and uniform (square markers) kernel functions based
on a) TD features and b) SD features.

a common Bayesian-based Multiple Discriminant Analy-
sis/Maximum Likelihood (MDA/ML) classifier. The as-
sessment is performed using identical classifier input
features extracted from experimentally collected 802.11a
WiFi and 802.16 WiMAX signals. Classification features
are derived from statistical RF-DNA extracted from Time
Domain (TD) and Spectral Domain (SD) responses.
Relative to MDA/ML classification, DE-optimized LFS
classification performance was generally superior at lower
SNR and provided considerable improvement of over
40% in classification accuracy in some cases. Best case
classification improvement was realized with TD finger-
print features. While not quite as effective, DE-optimized
LES classification with SD fingerprinting was notable
with the difference between TD and SD performance
initially attributed to feature dimension differences as
there were one-third fewer SD features than TD features.
Analysis based on % Classification Error versus the
number of DE generations N ge,, showed that the anoma-
lous behavior of TD and SD fingerprinting at higher
signal-dominated SNR, as well as the poorer performance
with SD fingerprinting, is inherent in the DE-optimized
LFS RF-DNA fingerprinting process and directly at-



JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 9, DECEMBER 2011

tributable to forced DE termination after NV ., =200 gen-
erations. Alternatively, improved performance over spe-
cific SNR regions was also demonstrated using alternate
kernel functions. A triangular kernel was able to eliminate
the TD feature classification performance “dip” at higher
SNR without requiring additional generations of “learn-
ing” Investigation continues into the effects of varying
Ngen, kernel function shape, and other parameters that
were fixed for initial proof-of-concept demonstration.
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