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ABSTRACT

The use of secret keys in broadcast channels with receiver side in-
formation is studied. The particular scenario is analyzed where a
transmitter wants to send two confidential messages to two receivers,
while keeping an external eavesdropper ignorant. Each receiver has
one of the confidential messages as side information available for
decoding. In addition to that, the transmitter shares independent se-
cret keys of arbitrary rates with both receivers. The secret keys can
be used in different ways: They can act as one-time pads to encrypt
the confidential messages or they can be used as randomization re-
sources for wiretap coding. Both approaches are discussed and an
achievable rate region based on superposition coding is established
for the one-time pad approach. For the wiretap coding approach, the
secrecy capacity for degraded channels is derived. In the optimal
coding scheme, the available secret keys are used as the random-
ization part of the wiretap code to keep the eavesdropper ignorant.
In establishing the capacity region, a new upper bound on the sum-
rate is derived. This bound shows that in an optimal coding scheme,
in the degraded case, the total equivocation-rate of the (opposite)
secret-keys at the legitimate receivers must equal the equivocation-
rate of the secret-keys at the eavesdropper, when informed about the
messages.

Index Terms— Broadcast channel with receiver side informa-
tion, strong secrecy, secret key, capacity region.

1. INTRODUCTION

Ongoing developments in communication systems make informa-
tion available almost everywhere. Along with this, it is an important
task to secure sensitive information from unauthorized access. This
applies in particular to wireless communication systems which are
inherently vulnerable due to the open nature of the wireless medium.
In fact, transmitted signals are received by intended users but are also
easily eavesdropped by non-legitimate receivers.

The problem of secure communication from an information the-
oretic perspective was first studied by Shannon in [1]. In this work,
transmitter and receiver share a secret key which is unknown to an
external eavesdropper. Such a secret key can then be used by the le-
gitimate users as a one-time pad to perfectly protect the confidential
message from the eavesdropper.
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Subsequently, Wyner introduced in [2] the so-called wiretap
channel which models the scenario with one legitimate transmitter-
receiver pair and one external eavesdropper to be kept ignorant. In
contrast to [1], there is no secret key available so that secure com-
munication must be established by solely exploiting the properties of
the noisy channel. Later, this was generalized by Csiszár and Körner
in [3] to the broadcast channel with confidential messages. Recently,
this area of information theoretic secrecy has drawn attention as
it provides a promising approach to embed secure communication
in wireless networks; for instance see [4–7] and references therein.
Information theoretic secrecy concepts have then been extended to
multi-user scenarios such as several variations of the broadcast chan-
nel [3, 8–10], the multiple access channel [11], or the interference
channel [12]. But all these works have in common that no shared
secret keys are available at the legitimate users.

A shared secret key available at transmitter and receiver has only
been studied for the wiretap channel [13–15], where [13, 14] studied
this from a rate-distortion point of view. Then, [15] established the
secrecy capacity of the wiretap channel with shared key for the case
of no distortion allowed at the legitimate receiver. Related to this is
the problem of the wiretap channel with secure feedback, where the
feedback, basically, allows to create a shared secret key [16–18].

In this paper, we study the broadcast channel (BC) with receiver
side information and independent secret keys as introduced in Sec-
tion 2. In this communication scenario, the transmitter wants to send
two confidential messages to two receivers, while keeping an ex-
ternal eavesdropper ignorant of them. Each receiver has one of the
confidential messages as side information available for decoding. In
addition to that, the transmitter shares independent secret keys, one
with each receiver.

Secure communication can now be achieved by different ap-
proaches. As shared secret keys of arbitrary rates are available at
the transmitter and both receivers, it suggests itself to use them as
one-time pads to encrypt the confidential messages as in [1]. Un-
fortunately, each receiver is aware of only one secret key. Thus, the
more one secret key is used to protect the message for one receiver,
the more the other receiver is hurt as the (unknown) secret key acts
as interference to him. This approach is analyzed in Section 3, where
an achievable rate region based on superposition coding is derived.

On the other hand, the transmitter can apply the information the-
oretic secrecy concepts of wiretap coding by exploiting the prop-
erties of the noisy channels [2–7]. In this approach, parts of the
available resources have to be used for additional randomization to
“confuse” the eavesdropper reducing the remaining resources for the
transmission of the confidential messages. In Section 4 this approach
is analyzed and the secrecy capacity is derived for degraded chan-
nels. It is shown that it is optimal to use the available secret keys not
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Fig. 1. Broadcast channel with receiver side information, where the
transmitter shares an independent secret key with each receiver.

as one-time pads but as the randomization part of the wiretap code.
The communication problem at hand can be motivated, for ex-

ample, by the concept of bidirectional relaying in a three-node net-
work, in which a relay node establishes bidirectional communication
between two other nodes using a decode-and-forward protocol [19–
22]. In the initial multiple access phase, both nodes transmit their
messages and also additional secret keys to the relay node. Then,
the succeeding broadcast phase corresponds to the BC with receiver
side information and independent secret keys considered here.1

2. BROADCAST CHANNEL WITH RECEIVER SIDE
INFORMATION AND INDEPENDENT SECRET KEYS

In this paper we study the broadcast channel (BC) with receiver side
information and independent secret keys as depicted in Fig. 1. Let
X and Y1, Y2, Z be finite input and output sets. For input and
output sequences xn ∈ Xn and yn1 ∈ Yn1 , yn2 ∈ Yn2 , zn ∈ Zn
of length n, the discrete memoryless broadcast channel is given by
PnY1Y2Z|X(yn1 , y

n
2 , z

n|xn) :=
∏n
i=1 PY1Y2Z|X(y1,i, y2,i, zi|xi).

The transmitter wants to send confidential messages M2 and
M1 to receivers 1 and 2 respectively, while each receiver has the
other message as side information available for decoding. The trans-
mitter shares independent secret keys K1 and K2 of arbitrary rates
with receivers 1 and 2. All messages and keys are assumed to be
independent of each other and uniformly distributed over the sets
Mi := {1, ...,Mi,n} and Ki := {1, ...,Ki,n}, i = 1, 2. We also
write M12 = (M1,M2), K12 = (K1,K2),M12 := M1 ×M2,
and K12 := K1 ×K2 for short.

Definition 1. An (n,M1,n,M2,n,K1,n,K2,n)-code for the BC with
receiver side information and independent secret keys consists of a
(stochastic) encoder

E :M12 ×K12 → P(Xn), (1)

i.e., a stochastic matrix, and decoders at receivers 1 and 2

ϕ1 : Yn1 ×M1 ×K1 →M2 (2a)
ϕ2 : Yn2 ×M2 ×K2 →M1. (2b)

1Notation: H(·) and I(·; ·) are the traditional entropy and mutual infor-
mation; X−Y −Z denotes a Markov chain of random variables X , Y , and
Z in this order; ⊗ denotes the bit-wise XOR operation.

Then for an (n,M1,n,M2,n,K1,n,K2,n)-code, the average
probability of decoding error at receiver 1 is given by

ē1,n =
1

|M12||K12|
∑

m12∈M12

∑
k12∈K12

∑
xn∈Xn

×
∑

yn1 :ϕ1(y
n
1 ,m1,k1)6=m2

PnY1|X(yn1 |xn)E(xn|m12, k12).
(3)

The average probability of decoding error ē2,n at receiver 2 is de-
fined accordingly.

To keep the confidential messages secret from the eavesdropper,
we impose the strong secrecy [23, 24] requirement

I(M12;Zn) ≤ δn (4)

for δn > 0 with M12 = (M1,M2) and Zn = (Z1, ..., Zn) the
output at the eavesdropper. This requires (M1,M2) to be jointly
secure from the eavesdropper. Then, (4) implies that the individual
criteria I(M1;Zn) ≤ δn and I(M2;Zn) ≤ δn are satisfied as well.

Definition 2. A rate pair (R1, R2) ∈ R2
+ is said to be achievable

for the BC with receiver side information and independent secret
keys if for any τ > 0 there exists an n(τ) ∈ N and a sequence
of (n,M1,n,M2,n,K1,n,K2,n)-codes such that for all n ≥ n(τ)
we have 1

n
logM2,n ≥ R1 − τ , 1

n
logM1,n ≥ R2 − τ , and

I(M1,M2;Zn) ≤ δn while ē1,n, ē2,n, δn → 0 as n → ∞. The
set of all achievable rate pairs is the secrecy capacity region CS .2

In principle, there are two different methods possible to keep
the confidential messages secret. The transmitter can follow the idea
of information theoretic secrecy or wiretap coding by using a chan-
nel code that exploits the nature of the wireless channel to keep the
messages secret [2–7]. On the other hand, the availability of shared
secret keys suggests itself to use a one-time pad approach which
protects the messages with the help of the secret keys [1]. In the
following we analyze these different approaches in more detail.

3. SECRET KEYS AS ONE-TIME PAD

Let us start with the one-time pad approach, where the secret keys
are used to mask the confidential messages keeping them perfectly
secret from the eavesdropper. Basically, the idea is to use secret keys
of the same rates as the corresponding messages, i.e., |K1| = |M2|
and |K2| = |M1|, to create “new” messages based on a bit-wise
XOR operation as

M̃2 = M2 ⊗K1 and M̃1 = M1 ⊗K2 (5)

and to encode and transmit these messages to the corresponding re-
ceivers. Having decoded the XOR-ed messages M̃2 and M̃1, each
receiver can use his secret key to obtain the desired confidential mes-
sage, i.e., M̃2 ⊗ K1 = M2 ⊗ K1 ⊗ K1 = M2 and M̃1 ⊗ K2 =
M1 ⊗K2 ⊗K2 = M1 respectively. As all keys and messages are
independent of each other, the confidential messages are kept per-
fectly secret from the eavesdropper, i.e., I(M1,M2;Zn) = 0, even
if he is able to decode the XOR-ed messages M̃1 and M̃2.

Applying the one-time pad approach in this way, the problem at
hand reduces to the broadcast channel problem with two independent

2The rate between the transmitter and receiver i is denoted by Ri, i =
1, 2. However, the message associated to rate R1 is M2 which is motivated
by the application of bidirectional relaying, where the M2 originates from
node 2 and, thus, looks “swapped.” The same applies to M1 and R2.
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individual messages. Thus, one can apply classical strategies such as
superposition coding, cf. for example [25, Sec. 5.2], to encode and
transmit the XOR-ed messages.

Proposition 1 (Superposition Coding). An achievable rate region
for the BC with receiver side information and independent secret
keys is given by all rate pairs (R1, R2) ∈ R2

+ that satisfy

R1 ≤ I(X;Y1|U) (6a)
R2 ≤ I(U ;Y2) (6b)

R1 +R2 ≤ I(X;Y1) (6c)

for random variables satisfying the Markov chain U−X−(Y1, Y2).

This approach solely relies on using the secret keys as one-time
pads and does not take advantage of the properties of the wireless
channel by applying wiretap coding approaches. Thus, such an ap-
proach might not be optimal in general. However, for scenarios
where the channel to the eavesdropper is “stronger” than the chan-
nels to the legitimate receivers, we observe the following.

Remark 1. If the channels to the legitimate receivers are degraded
with respect to the eavesdropper channel, i.e., we have the Markov
chainsX−Z−Y1 andX−Z−Y2, then the confidential messages
can be kept secret from the eavesdropper by using the secret keys as
one-time pads. Wiretap coding approaches will always fail in such
scenarios as they require the legitimate channel to be “stronger”
than the eavesdropper channel.

4. SECRET KEYS AS PART OF WIRETAP CODES

Here we want to explore the case where the secret keys are used as
parts of the wiretap code and not as one-time pads. The basic idea of
wiretap coding is not to use all available resources for transmitting
the desired messages, but to spend some of the resources to “con-
fuse” the eavesdropper by applying randomized encoding strategies
[2–7]. If a sufficient amount of resources is spent for the confusion,
the eavesdropper will not be able to decode the desired confidential
messages. Obviously, the more resources are spent for the confusion,
the less resources are available for the actual message transmission.
Here is where the secret keys enter the picture in this approach. They
will not be used as a one-time pad, but as resources for the confusion.

In the following we consider the case where the legitimate chan-
nels are stronger than the eavesdropper channel in the sense that they
form Markov chainsX−Y1−Z andX−Y2−Z. Then, the secrecy
capacity region is given by the following theorem.

Theorem 1. The secrecy capacity region for the degraded BC with
receiver side information and independent secret keys is given by all
rate pairs (R1, R2) ∈ R2

+ that satisfy

R1 ≤ I(X;Y1) (7a)
R2 ≤ I(X;Y2) (7b)

R1 +R2 ≤ I(X;Y1) + I(X;Y2)− I(X;Z) (7c)

for random variables satisfying X − Y1 − Z and X − Y2 − Z.

4.1. Proof of Achievability

In the following we outline the proof of achievability. To do so, we
first observe that for any fixed input distribution, the desired region
given by (7) can equivalently be expressed as

R1 ≤ I(X;Y1)− αI(X;Z) (8a)
R2 ≤ I(X;Y2)− (1− α)I(X;Z) (8b)

for all 0 ≤ α ≤ 1. Thus, instead of proving the achievability of (7),
we show that the rates given in (8) are achievable with strong secrecy
for all 0 ≤ α ≤ 1.

4.1.1. Key Ideas

The proof of achievability is based on the following two main ingre-
dients:

1. Wiretap coding for strong secrecy. The transmitter uses a
stochastic encoder so that the codewords xnmk consist of two indices:
one for the confidential message m ∈ M and one for additional
randomization k ∈ K to confuse the eavesdropper. In particular, for
the classical wiretap channel, choosing the rate for the randomization
as

1

n
log |K| > I(X;Z) + ε (9)

for some small ε > 0, i.e., |K| > 2n(I(X;Z)+ε), allows to show that
strong secrecy, i.e., I(M ;Zn) ≤ δn, is satisfied at the eavesdrop-
per. This has been demonstrated for example in [7, 26, 27] for the
classical wiretap channel and in [10] for the BC with receiver side
information. Traditionally, the legitimate receiver has to decode both
the confidential message and the randomization index, which is pos-
sible as we have |M||K| < 2n(I(X;Y )−ε) codewords in total. Thus,
for the rate of the confidential message remains

R < I(X;Y )− I(X;Z)− 2ε, (10)

i.e., |M| < 2n(I(X;Y )−I(X;Z)−2ε), cf. also [4, 7].
2. Coding for the BC with receiver side information. The trans-

mitter encodes both messages m1 ∈ M1 and m2 ∈ M2 into one
codeword xnm1m2

∈ Xn based on the network coding idea [21, 22].
The crucial observation is that the available complementary side in-
formation at the receivers allow them to reduce the number of possi-
ble messages. In more detail, we chose rates

R1 < I(X;Y1)− ε and R2 < I(X;Y2)− ε, (11)

i.e., |M2| < 2n(I(X;Y1)−ε) and |M1| < 2n(I(X;Y2)−ε), so that in
total we generate |M1||M2| codewords xnm1m2

∈ Xn. In princi-
ple, the total rate of the codewords is above the respective capacities
of the user’s channels. However, the available side information al-
lows each receiver to “cancel” out one index reducing the remaining
rate below the respective capacity making reliable communication
possible at the rates given in (11), cf. [21, 22, 28].

4.1.2. Sketch of Proof

Having these two main ideas in mind, we are ready to prove the
achievability of the rates given in (8) for any 0 ≤ α ≤ 1. We follow
the coding scheme presented in [10, 26] and define for any given
input distribution PX ∈ P(X ) the probability measure

P ′Xn(xn) :=
PnX(xn)

T nX,δ
(12)

if xn ∈ T nX,δ and P ′Xn(xn) = 0 else, where PnX(xn) :=∏n
i=1 PX(xi) and T nX,δ is the set of δ-typical sequences, cf [29].

Now, according to P ′Xn , we generate |M1||M2||K1||K2| indepen-
dent codewords xnm1m2k1k2

∈ Xn where

|M1| < 2n(I(X;Y2)−αI(X;Z)−2ε) (13a)

|M2| < 2n(I(X;Y1)−(1−α)I(X;Z)−2ε) (13b)

|K1| > 2n(αI(X;Z)+ε) (13c)

|K2| > 2n((1−α)I(X;Z)+ε). (13d)
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The important difference to the classical wiretap coding approach is
that instead of generating “dummy” randomization indices, we use
the available secret keys as randomization resources.

As the amount of randomization resources satisfy

1

n
log(|K1||K2|) > I(X;Z) + 2ε, (14)

we can show similarly as in [10, 26] that I(M1,M2;Zn) ≤ δn holds
so that the strong secrecy requirement (4) is satisfied.

Let us now turn to the legitimate receivers. Receiver 1 hasm1 ∈
M1 and k1 ∈ K1 as side information available and is interested in
the confidential message m2 ∈ M2. Due to his side information,
the unknown indices to receiver 1 are m2 ∈ M2 and k2 ∈ K2 of
size

|M2||K2| ≈ 2n(I(X;Y1)−ε). (15)
It can be easily shown that this means that he is able to decode the
remaining indicesm2 ∈M2 and k2 ∈ K2 so thatR1 ≤ I(X;Y1)−
αI(X;Z) is an achievable rate for the confidential message M2,
cf. (8a).

Similarly, receiver 2 has m2 ∈ M2 and k2 ∈ K2 as side in-
formation so that the number of possible unknown indices reduces
to

|M1||K1| ≈ 2n(I(X;Y2)−ε) (16)
which means that he is able to decode the remaining indices m1 ∈
M1 and k1 ∈ K1 so that R2 ≤ I(X;Y2) − (1 − α)I(X;Z) is an
achievable rate for the confidential message M1, cf. (8b).

4.1.3. Discussion

In the classical wiretap coding, a certain amount of resources (≈
I(X;Z)) has to be used for additional randomization to keep the
eavesdropper ignorant. This results in a loss in rates of the confi-
dential messages. Using the secret keys for this randomization has
the advantage that parts of the additional randomization are already
as side information available at the receivers. This reduces the loss
in confidential rate in the sense that the rate is only reduced by the
remaining unknown randomization part.

4.2. Proof of Converse

It remains to show the optimality of the above presented approach,
i.e., there are no other rate pairs achievable than those given in (7).

The bounds (7a) and (7b) are the obvious single-user bounds and
follow immediately. The main part is to prove the bound (7c) on the
sum-rate.

We have the following versions of Fano’s inequality
H(M2|Y n1 ,M1,K1) ≤ ε1,n and H(M1|Y n2 ,M2,K2) ≤ ε2,n.
Following the classical approach for the wiretap channel [4, 7], we
obtain for the sum-rate

n(R1 +R2) ≤ H(M1,M2|Zn)+nδn (17a)
≤I(M2;Y n1 |M1,K1)+I(M1;Y n2 |M2,K2)

−I(M12;Zn)+nεn (17b)
≤I(M12,K1;Y n1 )+I(M12,K2;Y n2 )

−I(M12;Zn)+nεn (17c)
=I(M12,K12;Y n1 )+I(M12,K12;Y n2 )

−I(M12,K12;Zn)−I(K2;Y n1 |M12,K1)

−I(K1;Y n2 |M12,K2)+I(K12;Zn|M12)+nεn (17d)
≤I(M12,K12;Y n1 )+I(M12,K12;Y n2 )

−I(M12,K12;Zn)+nεn (17e)

with εn = δn+ε1,n+ε2,n and εn → 0 as n→∞. The steps follow
from the secrecy condition (4), Fano’s inequalities, the chain rule
for mutual information, and the fact that −I(K2;Y n1 |M12,K1) −
I(K1;Y n2 |M12,K2) + I(K12;Zn|M12) ≤ 0. To see the last step,
we write

−I(K2;Y n1 |M12,K1)−I(K1;Y n2 |M12,K2)+I(K12;Zn|M12)

= −H(K1|M12,K2) +H(K1|Y n2 ,M12,K2)

−H(K2|M12,K1) +H(K2|Y n1 ,M12,K1)

+H(K12|M12)−H(K12|Zn,M12) (18a)
= H(K1|Y n2 ,M12,K2) +H(K2|Y n1 ,M12,K1)

−H(K12|Zn,M12) (18b)
≤ H(K1|Zn,M12,K2) +H(K2|Zn,M12,K1)

−H(K12|Zn,M12) (18c)
≤ 0 (18d)

where the first step follows from the definition of mutual infor-
mation, the second step from the fact that M1, M2, K1, and K2

are independent so that −H(K1|M12,K2) − H(K2|M12,K1) +
H(K12) = 0, the third step from the Markov chains X − Y1 − Z
andX−Y2−Z due to the degradedness of the channels, and the last
step from the chain rule of entropy. Now, we can bound the sum-rate
as follows

n(R1 +R2)

≤ I(M12,K12;Y n1 ) + I(M12,K12;Y n2 )

− I(M12,K12;Zn) + nεn (19a)
= I(M12,K12;Y n1 |Zn) + I(M12,K12;Y n2 ) + nεn (19b)
≤ I(Xn;Y n1 |Zn) + I(Xn;Y n2 ) + nεn (19c)

≤ n
(
I(X;Y1|Z) + I(X;Y2)

)
+ nεn (19d)

= n
(
I(X;Y1) + I(X;Y2)− I(X;Z)

)
+ nεn (19e)

where the second step follows from the degradedness of the chan-
nels, the third step from the data processing inequality, the fourth
step from the memoryless property of the channel, and the last step
again from the degradedness.

The upper bound on the sum-rate shows that in an optimal cod-
ing scheme, the total equivocation-rate of the (opposite) secret-keys
at the legitimate receivers must equal the equivocation-rate of the
secret-keys at the eavesdropper, when informed about the messages.

5. CONCLUSION

In this paper, we studied the BC with receiver side information and
independent secret keys. In this communication problem, multiple
secret keys are shared among the legitimate users. We asked the
question how these keys should be used to securely transmit con-
fidential messages to their respective receivers keeping an external
eavesdropper ignorant of them. For reversely degraded channels,
i.e., the eavesdropper channel is “stronger” than the legitimate chan-
nels, the confidential messages can be securely transmitted by using
the secret keys as one-time pads. On the other hand, if the channels
are degraded in the sense that the legitimate channels are “stronger”
than the eavesdropper channel, it is optimal to use the secret keys not
as one-time pads but as randomization resources for wiretap coding.
Thus, the optimal use of secret keys is not obvious and open for the
general case.
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[26] Igor Bjelaković, Holger Boche, and Jochen Sommerfeld, “Se-
crecy Results for Compound Wiretap Channels,” Probl. Inf.
Transmission, vol. 49, no. 1, pp. 73–98, Mar. 2013.

[27] Jie Hou and Gerhard Kramer, “Informational Divergence Ap-
proximations to Product Distributions,” in Proc. Canadian
Workshop Inf. Theory, Toronto, ON, Canada, June 2013, pp.
76–81.

[28] Gerhard Kramer and Shlomo Shamai (Shitz), “Capacity for
Classes of Broadcast Channels with Receiver Side Informa-
tion,” in Proc. IEEE Inf. Theory Workshop, Tahoe City, CA,
USA, Sept. 2007, pp. 313–318.

[29] Imre Csiszár and János Körner, Information Theory: Coding
Theorems for Discrete Memoryless Systems, Cambridge Uni-
versity Press, 2 edition, 2011.

1605


