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ABSTRACT
Colocated multiple-input multiple-output (MIMO) radar is
used for direction-of-arrival (DOA) estimation. The case of
even but otherwise arbitrary number of transmit waveforms
is considered. In order to obtain a virtual array with a large
number of virtual antenna elements and at the same time
obtain a significant signal-to-noise ratio (SNR) gain, a proper
beamspace is designed. Moreover, to allow for simple DOA
estimation algorithms at the receive array, the rotational in-
variance property (RIP) for the virtual array is guaranteed
at the transmit array by a proper beamspace design. The
main idea of such beamspace design is to obtain the RIP
by imposing a specific structure on the beamspace matrix
and then designing the beamspace matrix to obtain a desired
beampattern and a uniform power distribution across antenna
elements. Simulation results demonstrate the advantages of
the proposed DOA estimation method based on colocated
MIMO radar with beamspace design.

Index Terms— Colocated MIMO radar, direction of ar-
rival (DOA) estimation, transmit beamspace design

1. INTRODUCTION

Parameter estimation is a classical problem of applied statis-
tics. In the application of array processing, the direction-of-
arrival (DOA) parameter estimation problem is most funda-
mental [1]. Many DOA estimation techniques have been de-
veloped for the classical array processing single-input multi-
ple output (SIMO) setup [1], [2]. The development of a novel
array processing configuration that is best known as multiple-
input multiple output (MIMO) radar [3] (with colocated trans-
mit and colocated receive antenna elements) has opened new
opportunities in parameter estimation.

A virtual array with a larger number of virtual antenna
elements can be used for improved DOA estimation as com-
pared to the SIMO configuration [4], [5] for relatively high
signal-to-noise ratios (SNRs), i.e., when the benefits of in-
creased virtual aperture start to show up. The SNR gain for
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fully MIMO radar, however, decreases as compared to the
phased array radar where the transmit array transmits a sin-
gle waveform coherently from all antenna elements [6], [7]. A
trade-off between the phased-array and fully MIMO radar can
be achieved [7], which gives the best of both configurations
- the increased number of virtual antenna elements together
with SNR gain due to coherent transmission.

The increased number of degrees of freedom for MIMO
radar due to the possibility of transmitting multiple wave-
forms is used to design a transmit beampattern that is as close
as possible to a desired one, such as, for example, a perfectly
rectangular beampattern [3], [8]. However, one of the major
motivations for designing transmit beampattern is realizing
the possibility of achieving SNR gain together with increased
aperture for improved DOA estimation in a wide range of
SNRs [9], [10].

Remarkably, using MIMO radar with proper transmit
beamspace design, it is possible to achieve and guarantee the
satisfaction of such desired property for DOA estimation as
rotational invariance property (RIP) at the receiver [10], [11].
This is somewhat similar in effect to the property of orthogo-
nal space-time block codes in that the shape of the transmitted
constellation does not change at the receiver independent on a
channel. The latter allows for simple decoder [12]. Similarly,
here the RIP allows for simple DOA estimation techniques
at the receiver although the RIP is actually enforced at the
transmitter, and the propagation media cannot break it thanks
to the proper design of beamspace. Since the RIP holds at the
receiver independent on the propagation media and receive
antenna array configuration, the receive antenna array can be
an arbitrary array. In [11], we have proposed such beamspace
design technique for the special case of only two transmit
waveforms.

In this paper, we consider the problem of beamspace de-
sign for DOA estimation in MIMO radar based on the RIP
for the case of even but otherwise arbitrary number of trans-
mit waveforms. We show that if the beamspace is designed in
a way that in addition to obtaining a desired transmit beam-
pattern and a uniform power distribution across the antenna
elements, the RIP between two newly defined vectors is guar-



anteed, and therefore simple DOA estimation techniques can
be used at the receiver.

The rest of the paper is organized as follows. Section II in-
troduces the system model for mono-static MIMO radar sys-
temwith transmit beamspace. The transmit beamspace design
problem for even but otherwise arbitrary number of transmit
waveforms is considered in Section III. Section IV gives sim-
ulation examples for the proposed DOA estimation technique
based on MIMO radar with transmit beamspace design.

2. SYSTEMMODEL

Consider a mono-static radar system with a transmit array be-
ing an M -antenna uniform linear array (ULA) and a receive
array being an N -antenna array with arbitrary geometry. Let
a(θ) and b(θ) denote the steering vectors of the transmit and
receive arrays, respectively. The transmit energy focusing can
be achieved using theM ×K transmit beamspace matrixW,
where K ≤ M is the number of orthonormal basis wave-
forms [9]. Then the M × 1 vector of transmitted signals can
be expressed as

s(t) = WM×KφK×1(t), 0 ≤ t ≤ T (1)

where φ(t) = [φ1(t), . . . , φK(t)] is the set of orthonormal
basis waveforms such that

∫ T
0 φ(t)φH(t) = IK , (·)H stands

for the Hermitian transpose, IK is the identity matrix of size
K × K, and T is the radar pulse width.

Using (1), the array transmit beampattern can be written
as

p(θ) = ‖WHd(θ)‖2 (2)

where ‖ · ‖ denotes the Euclidian norm of a vector, d(θ) =
a∗(θ), and (·)∗ stands for the conjugation.

Assuming that L targets are present, the N × 1 receive
array observation vector can be written as [9]

x(t, τ) =
L

∑

l=1

βl(τ)b(θl)
(

WHd(θl)
)H

φ(t) + z(t, τ) (3)

where t and τ are the fast and slow time indexes, respec-
tively, β(θl) is the reflection coefficient of the target located
at the angle θl with variance σ2

β , and z(t, τ) is the N × 1
vector of zero-mean white Gaussian noise. By matched fil-
tering x(t, τ) to each of the orthonormal basis waveforms
φk(t), k = 1, . . . ,K, the N × 1 virtual data vectors can be
obtained as

yk(τ) =

∫

T
x(t, τ)φ∗

k(t)dt

=
L

∑

l=1

βl(τ)ejψk(θl)
∣

∣wH
k d(θl)

∣

∣b(θl) + zk(τ) (4)

where wk is the kth column of W, ψk(θ) is the phase of
the inner product dH(θ)wk, and zk(τ) !

∫

T z(t, τ)φ∗

k(t)dt

is the N × 1 noise term whose covariance is σ2
zIN . Note

that zk(τ) and zk′(τ) (k $= k′) are independent due to the
orthogonality between φk(t) and φk′(t).

It is worth noting that if wk, k = 1, . . . ,K are designed
such that the equality |wH

k d(θ)| = |wH
k′d(θ)| is satisfied,

then the RIP between yk and yk′ holds, i.e., the signal com-
ponent of yk associated with the lth target is the same as the
corresponding signal component of yk′ up to a phase rota-
tion that is given by ψk(θl) − ψk′(θl). It is worth mentioning
that the latter property, which can be exploited in search free
direction finding methods, is exactly the RIP that we are in-
terested in.

3. TRANSMIT BEAMSPACE DESIGN

3.1. Approach

In our recent work, we have developed a simple DOA estima-
tion algorithm based on the transmit beamspace preprocess-
ing for the special case of two orthonormal waveforms [11].
In this work, we consider a more general form of the problem.
Specifically, let us consider the M × K transmit beamspace
matrix W = [w1 w2 · · · wK ] where K ≤ M . As it was
mentioned earlier, the virtual data vector matched to the basis
waveform φk(t), k = 1, · · · ,K can be written as (4).

From (4), it can be easily concluded that the RIP between
yk and yk′ holds if the signal component of yk associated
with the lth target has the same magnitude as the correspond-
ing signal component of yk′ . Therefore, the RIP between yk

and yk′ , k $= k′ is equivalent to the following relationship

|wH
k d(θ)| = |wH

k′d(θ)|, θ ∈ (−π/2, π/2). (5)

Due to the fact that the number of equations in (5) is signifi-
cantly larger than the number of the variables, this condition
cannot be satisfied unless a specific structure on the beam-
forming matrix W is imposed. One possibility is to satisfy
the equations (5) approximately, however, due to the fact that
the performance of the proposed method is very sensitive to
such approximation, this option is not considered here.

In [11], based on the observation that for any arbitrary
steering vector a(θ), which corresponds to a ULA, the fol-
lowing relations hold

|wHa(θ)| = |(w̃∗)Ha(θ)|, θ ∈ (−π/2, π/2) (6)

we obtained the RIP for the special case of two waveforms
by restricting the transmit beamspace matrix to have the spe-
cific structure of W = [w w̃∗] where w̃ denotes the flipped
version of the vector w, i.e., w̃(i) = w(M − (i − 1)), i =
1, · · · ,M , and M is the size of the vector w. Then based on
the specific structure of W = [w w̃∗] which guarantees the
RIP, we designedw to have the additional required properties.

In the following, we are interested in obtaining the RIP
for the more general case of more than two waveforms which



would provide more degrees of freedom for getting a better
performance. For this goal, we show that if for some k′ the
following relation holds
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∣
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, ∀θ ∈ (−π/2, π/2)

(7)
two new sets of vectors defined as the summation of the first
k′ of the data vectors yi(τ), i = 1, · · · , k′ (4) and the last
K − k′ data vectors yi(τ), i = k′ + 1, · · · ,K would satisfy
the RIP. More specifically, by defining the following vectors

a1 !

k′

∑

i=1

yi(τ)

=
L

∑

l=1

βl(τ) ·





k′

∑

i=1

wH
i d(θl)



·b(θl)+
k′

∑

i=1

zi(τ) (8)

a2!

K
∑

i=k′+1

yi(τ)

=
L

∑

l=1

βl(τ)·

(

K
∑

i=k′+1

wH
i d(θl)

)

·b(θl)+
K

∑

i=k′+1

zi(τ)

(9)

the corresponding signal component of target l in the vector
a1 has the same magnitude as in the vector a2. The only
difference between the vectors a1 and a2 is the phase which
can be used for DOA estimation. Based on this fact, in or-
der to have the aforementioned RIP between the vectors a1

and a2, equation (7) needs to be satisfied for every angle
θ ∈ (−π/2, π/2). Based on the relations (6), it can be shown
that the equation (7) holds for any arbitrary θ only if the fol-
lowing structure on the matrixW is imposed:

• K is an even number,

• k′ equals toK/2,

• wi = w̃∗

k′+i, i = 1, · · · ,K/2.

More specifically, if the beamforming matrix is assumed to be
as

W = [w1, · · · ,wK/2, w̃
∗

1, · · · , w̃∗

K/2] (10)

the signal component of a1 associated with the lth target is
the same as the corresponding signal component of a2 up to
phase rotation of

∠

K/2
∑

i=1

wH
i d(θl) − ∠

K
∑

i=K/2+1

wH
i d(θl) (11)

which can be used as look-up table for finding DOA of a
target. By considering the aforementioned structure for the

beamspace matrixW, the RIP will be satisfied and other de-
sign requirements can be satisfied through the proper design
ofw1, · · · ,wK/2.

Since the DOA is estimated based on the phase differ-
ence between

∑K/2
i=1 wH

i d(θl) and
∑K

i=K/2+1 wH
i d(θl), to

obtain the best performance W should be designed in a way
that the magnitudes of the summations

∑K/2
i=1 wH

i d(θl) and
∑K

i=K/2+1 wH
i d(θl) take their largest possible values. Since

the phase of the product term wH
i d(θl) in

∑K/2
i=1 wH

i d(θl)
may be different for different waveforms, the terms in the
summation

∑K/2
i=1 wH

i d(θl) may add incoherently and there-
fore it may result in a small magnitude which in turn degrades
the performance. In order to avoid this situation, we design
the matrixW so that the beamforming vectorsw1, · · · ,wK/2

corresponding to different transmit waveforms do not overlap
in their corresponding transmit beampatterns.

Using (2), the corresponding transmit pattern of W can
be expressed as

p(θ) =
K

∑

i=1

dH(θ)wiw
H
i d(θ)

=
K

∑

i=1

|dH(θ)wi|
2 (12)

which is the summation of the transmit beampatterns of dif-
ferent waveforms in direction θ.

3.2. Problem Formulation

We are interested in designingW such that in addition to the
RIP, the transmit beampattern is as close as possible to the
desired beampattern and there is a uniform power distribu-
tion across the transmit antenna elements. Since as it was
explained, the beamspace matrix W should be designed in
a way that the beamforming vectors w1, · · · ,wK/2 corre-
sponding to different transmit waveforms do not overlap in
their corresponding transmit beampatterns, we consider dif-
ferent desired beampatterns denoted as Pd,k(θ) for the vectors
wk, k = 1, · · · ,K/2.

Using the minimum error criteria [8], the beampattern de-
sign problem can be formulated as

min
wk

max
θq

K/2
∑

k=1

∣

∣Pd,k(θq) − ‖[wk w̃k
∗]Hd(θq)‖

2
∣

∣(13)

s.t.

K/2
∑

k=1

|wk(i)|2 + |w̃k(i)|2 =
E

M
, (14)

i = 1, . . . ,M

where E is the total transmit power, and {θq : q = 1, . . . , Q}
is a uniform grid that approximates the interval [−π/2, π/2]



into Q number of directions. The constraint used in (14) en-
sures that the transmit power distribution across the antenna
elements is uniform.

Problem (14) results in such beamspace matrix that the
maximum sum of the errors between transmit beampattern
of wk and its corresponding desired beampattern Pd,k(θq) is
minimized and also a uniform power distribution across an-
tenna elements is guaranteed.

3.3. Solution

Using the facts that

‖[wk w̃k
∗]Hd(θq)‖

2 = 2 · |wH
k d(θq)|

2, (15)

|wH
k d(θq)|

2 = Tr(d(θq)d
H(θq)wkw

H
k ), (16)

|wk(i)|2 + |wk(M − i + 1)|2 = Tr(wkw
H
k Ai),

i = 1, . . . ,M/2 (17)

where Tr stands for the trace and Ai is an M × M matrix
such thatAi(i, i) = Ai(M − (i − 1),M − (i − 1)) = 1 and
the rest of the elements are equal to zero, the problem (14)
can be cast as

min
wk

max
θq

K/2
∑

k=1

∣

∣Pd,k(θq)/2 − (wH
k d(θq))

2
∣

∣ (18)

s.t.

K/2
∑

k=1

Tr(wkw
H
k Ai) =

E

M
, i = 1, . . . ,

M

2
(19)

Introducing the new variable X ! wwH , the problem
above can be equivalently rewritten as

min
w

max
θq

K/2
∑

k=1

∣

∣Pd,k(θq)/2 − (wH
k d(θq))

2
∣

∣ (20)

s.t.

K/2
∑

k=1

Tr(XkAi) =
E

M
, i = 1, . . . ,

M

2
(21)

rank(Xk) = 1, k = 1, · · · ,K/2 (22)

where X is the Hermitian matrix and rank(·) denotes the
rank of a matrix. The problem above can be solved by drop-
ping the rank one constraint and solving the resulting prob-
lem which is convex, and then obtaining a rank one solution
based on the solution of the relaxed problem. The latter pro-
cedure is well known as semi-definite programming (SDP)
relaxation [13], [14].

One easier but suboptimal alternative for designingW is
to design different pairs of beamforming vectors wk, w̃k

∗,
k = 1, · · · ,K/2 separately so that their corresponding trans-
mit powers from antennas would be the same and their trans-
mit beampatterns would be as close as possible to their cor-
responding beampatterns Pd,k(θ), where the beampatterns
Pd,k(θ) do not intersect. The design of such pair of beampat-
terns has been explained in [11].
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Fig. 1. Transmit Beampattern versus angle θ.

4. SIMULATIONS

The transmit array is modeled as a ULA of M = 10 om-
nidirectional antennas, spaced half wavelength apart. The
receiver consists of N = 10 omnidirectional antennas ran-
domly distributed from 0 to 9 wavelengths apart. The noise is
assumed to be Gaussian zero-mean with variance of 1.

Two examples are considered for two different purposes.
The first example is used to compare the root mean square er-
ror (RMSE) performance between the DOA estimation tech-
nique for the traditional MIMO radar with uniform transmit
power distribution [4] and the proposed beamspace MIMO
radar, while the second example is used to compare the prob-
ability of target resolution for these two methods.

In our first example, we use two targets located at −20◦

and 30◦, respectively. Transmit energy for the proposed
beamspace MIMO radar is focused in the spatial sectors
θ = [−30◦ − 10◦] and θ = [20◦ 40◦]. Fig. 1 shows the trans-
mit power distribution of the proposed beamspace MIMO
radar. It is assumed here that the beamspace matrix has four
columns that corresponds to four transmit waveforms. The
RMSE is calculated based on 500 independent runs and is
shown in Fig. 2. It is clear from this figure that the proposed
DOA estimation method outperforms the DOA estimation
method of [4] for the traditional MIMO radar.

In the second example, the transmit beamspace matrix re-
mained unchanged from that in the first example. However,
the locations of the two targets are changed to 30◦ and 32◦.
The probability of target resolution is calculated based on def-
inition that the signal is resolved if |θi − θ̂i| ≤ (θ1 − θ2)/2
where θi and θ̂i are respectively, the actual and the estimated
DOAs of two close targets. If both estimates for the DOAs
satisfy |θi−θ̂i| ≤ (θ1−θ2)/2, the angle is said to be resolved.
Probability of target resolution is calculated based on 500 in-
dependent runs. Fig. 3 shows this probability versus SNR
for the DOA estimations based on the proposed beamspace
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Fig. 2. RMSE versus SNR.

MIMO radar and the traditional MIMO radar. It can be seen
that the SNR levels in which the transition of the target res-
olution probabilities from low to high values occurs are dif-
ferent for the two tested method and favorable for the pro-
posed method as expected since the energy focussing and,
thus, higher SNR gain is achieved for the proposed method.

5. CONCLUSION

The transmit beamspace design problem for colocated MIMO
radar has been considered for the case of even but otherwise
arbitrary number of transmit waveforms. It is guaranteed by
our design that the RIP is satisfied at the receive array that
enables us to use the search-free techniques for DOA estima-
tion. It is a remarkable fact since different to the traditional
DOA estimation techniques, the RIP is enforced at the trans-
mit array and hold at the receive array of arbitrary geometry
independent on the propagation media. It is shown that the
DOA estimation performance is improved for our method due
to the effect of transmit energy focusing in sectors were the
targets are likely to be located.

6. REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array signal process-
ing research: the parametric approach,” IEEE Signal Process-
ing Magazine, vol. 13, no. 4, pp. 67–94, Aug. 1996.

[2] H. Van Trees, Optimum Array Processing.Willey, 2002.
[3] J. Li and P. Stoica,MIMORadar Signal Processing. New Jersy:

Wiley, 2009.
[4] C. Duofang, C. Baixiao, and Q. Guodong, “Angle estimation

using ESPRIT in MIMO radar,” Electron. Lett., vol. 44, no. 12,
pp. 770–771, Jun. 2008.

[5] D. Nion and N. D. Sidiropoulos, “Tensor algebra and multidi-
mensional harmonic retrieval in signal processing for MIMO
radar,” IEEE Trans. Signal Processing, vol. 58, no. 11,
pp. 5693–5705, Nov. 2010.

−30 −20 −10 0 10 20 30
0

0.5

1

1.5

SNR(dB)

Pr
ob

ab
ilit

y 
of

 T
ar

ge
t R

es
ol

ut
io

n

 

 
Proposed Beamspace Model
Uniform Power Distribution MIMO radar

Fig. 3. Probability of resolution versus SNR

[6] A. Hassanien and S. A. Vorobyov, “Why the phased-MIMO
radar outperforms the phased-array and MIMO radars,” in
Proc. 18th European Signal Processing Conf., Aalborg, Den-
mark, Aug. 2010, pp. 1234–1238.

[7] A. Hassanien and S. A. Vorobyov, “Phased-MIMO radar:
A tradeoff between phased-array and MIMO radars,” IEEE
Trans. Signal Processing, vol. 58, no. 6, pp. 3137–3151,
June 2010.

[8] D. Fuhrmann and G. San Antonio, “Transmit beamforming
for MIMO radar systems using signal cross-correlation,” IEEE
Trans. Aerospace and Electronic Systems, vol. 44, no. 1, pp. 1–
16, Jan. 2008.

[9] A. Hassanien and S. A. Vorobyov, “Direction finding
for MIMO radar with colocated antennas using transmit
beamspace preprocessing,” in Proc. IEEE CAMSAP, Aruba,
Dutch Antilles, Dec. 2009, pp. 181-184.

[10] A. Hassanien and S. A. Vorobyov, “Transmit energy focusing
for DOA estimation in MIMO radar with colocated antennas,”
IEEE Trans. Signal Processing, vol. 59, no. 6, pp. 2669-2682,
June 2011.

[11] A. Khabbazibasmenj, S. A. Vorobyov, and A. Hassanien,
“Transmit beamspace design for direction finding in colo-
cated MIMO radar with arbitrary receive array,” in Proc. 36th
ICASSP, Prague, Czech Republic, May 2011, pp. 2784-2787.

[12] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time
block codes from orthogonal designs,” IEEE Trans. Inf. The-
ory, vol. 45, no. 7, pp. 14561467, Jul. 1999.

[13] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang,
“Semidefinite Relaxation of Quadratic Optimization Prob-
lems,” IEEE Signal Processing Magaz., vol. 27, no. 3, pp. 20-
34, May 2010.

[14] K. T. Phan, S. A. Vorobyov, N. D. Sidiropoulos, and C. Tellam-
bura, “Spectrum sharing in wireless networks via QoS-aware
secondary multicast beamforming,” IEEE Trans. Signal Pro-
cessing, vol. 57, no. 6, pp. 2323-2335, June 2009.


