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Motivated by call center practice, we study asymptotically optimal staffing of many-server queues with abandonment.
A call center is modelled as an M/M/n + G queue, which is characterized by Poisson arrivals, exponential service times,
n servers, and generally distributed patience times of customers. Our asymptotic analysis is performed as the arrival rate,
and hence the number of servers n, increases indefinitely.

We consider a constraint satisfaction problem, where one chooses the minimal staffing level n that adheres to a given
cost constraint. The cost can incorporate the fraction abandoning, average wait, and tail probabilities of wait. Depending on
the cost, several operational regimes arise as asymptotically optimal: Efficiency-Driven (ED), Quality and Efficiency-Driven
(QED), and also a new ED + QED operational regime that enables QED tuning of the ED regime. Numerical experiments
demonstrate that, over a wide range of system parameters, our approximations provide useful insight as well as excellent
fit to exact optimal solutions. It turns out that the QED regime is preferable either for small-to-moderate call centers or for
large call centers with relatively tight performance constraints. The other two regimes are more appropriate for large call
centers with loose constraints.

We consider two versions of the constraint satisfaction problem. The first one is constraint satisfaction on a single time
interval, say one hour, which is common in practice. Of special interest is a constraint on the tail probability, in which
case our new ED + QED staffing turns out asymptotically optimal. We also address a global constraint problem, say over
a full day. Here several time intervals, say 24 hours, are considered, with interval-dependent staffing levels allowed; one
seeks to minimize staffing levels, or more generally costs, given the overall performance constraint. In this case, there is
the added flexibility of trading service levels among time intervals, but we demonstrate that only little gain is associated
with this flexibility if one is concerned with the fraction abandoning.

Subject classifications: queues: abandonment, limit theorems, optimization; call centers; staffing; workforce management;
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1. Introduction

During the past two decades, an explosive growth in
the number of companies that provide services via the
telephone, as well as in the variety of telephone services pro-
vided, has occurred. According to some estimates, world-
wide expenditure on call centers exceeds $300 billion
(Gilson and Khandelwal 2005) and the approximate number
of call center agents reaches, for example, 4 million in the
United States, 800 thousand in the United Kingdom, and
over 500 thousand in Canada (Holman et al. 2007).

spending on training) typically constitute about 70% of a
call center’s expenditure.

“The right number,” however, also means not too few,
thus avoiding understaffing and consequent poor service
quality. Indeed, understaffing would imply excessive cus-
tomers’ wait in telequeues which is unpleasant in itself
and, moreover, is likely to lead to abandonment of frus-
trated customers. (According to a Purdue University study
(Delorey 2009), 63% of the customers name a negative call
center experience as their main reason for stopping trans-
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A central challenge in designing and managing a service
operation in general, and a call center in particular, is to
achieve a desired balance between operational efficiency
and service quality. Here we consider the staffing aspects
of this problem, namely, having the right number of agents
in place.

“The right number” means, first of all, not too many,
thus avoiding overstaffing. That is a crucial consideration
because personnel costs (e.g., salaries of operators and

actions with a company.)

One could consider the following two approaches to the
quality/efficiency trade-off. The first one is widely used
in practice. A manager specifies performance constraint(s)
and then assigns the least staffing level that satisfies these
constraints, over a predetermined time interval. In the sec-
ond approach, one assigns revenues to service completions
and costs to delay factors such as wait and abandonment,
as well as to staffing. The goal is then to identify the
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staffing level that maximizes profit. Borst et al. (2004) pur-
sued both approaches in the context of classical queues
without abandonment (M/M/n, or Erlang-C). In this paper,
we focus on the constraint satisfaction problem, with cus-
tomers’ abandonment taken into account. A subsequent
paper (Mandelbaum and Zeltyn 2009) will deal with the
cost or revenue optimization problem.

1.1. Taking Abandonment into Account:
M/M/n + G and Erlang-A

The M/M/n (Erlang-C) model was introduced by Erlang
(1948), the founder of queueing theory. It has been
prevalent in call center applications for many years,
being the mathematical engine of Workforce Management
(WFM). Erlang-C assumes Poisson arrivals at a constant
rate A, exponentially distributed service times with rate u,
and n independent statistically identical agents. Erlang-C
implicitly assumes infinite patience of customers: all of
them are willing to wait indefinitely until they get service
(which implies system instability for A/(nu) > 1).

However, an increasing number of present call cen-
ters incorporate customers’ abandonment in their staffing/
scheduling software and performance goals, and rightly so:
abandonment from telequeues have a major impact on call
center operations, which has led to a growing body of
research on queues with impatient customers. (See Gans
et al. 2003 and Zeltyn and Mandelbaum 2005a for surveys
and references.) It is the goal of this paper to contribute
to this research by developing theory that both supports
staffing practice and enhances our understanding of it.

In our research, M/M/n is replaced by M/M/n + G,
assigning to each inbound call a generally distributed
patience time T with a common distribution G (Figure 1)
and mean T < co. An arriving customer encounters an
offered waiting time V, defined as the time that this cus-
tomer would have to wait given that her patience is infinite.
If the offered wait exceeds the customer’s patience time,
the call abandons, otherwise the customer eventually gets
service. In both cases, the actual waiting time W is equal to
min(V, 7). Throughout the paper, we assume that service
is rendered according to the first-come-first-served (FCFS)
discipline.
Figure 1.  Schematic representation of the M/M/n + G
queue.

Agents

Arrivals

Abandonment

M/M/n 4+ G generalizes the M/M/n + M (Erlang-A)
model, first introduced in Palm (1957), which has exponen-
tially distributed patience times. Erlang-A is the most appli-
cable (computationally tractable) model with abandonment
(see 4CallCenters Software 2002 for free software), and
indeed, based on our experience, it is increasingly becom-
ing the model of choice in support of WFM.

REMARK 1.1 (MEASURING WAITING IN THE PRESENCE OF
ABANDONMENT). In applications, it is natural and conve-
nient to measure delay in units of the average service time.
Without abandonment, such an approach is also supported
theoretically: fixing utilization and the number of servers,
the average delay in M/M/n is proportional to the average
service time E[S] = 1/u. In contrast, in the presence of
abandonment, delay is naturally measured relative to the
average patience time 7. Indeed, the average delay does
not exceed average patience, hence average delay in units
of average patience is a unitless number in (0, 1). Practi-
cally, however, average patience is not a quantity that man-
agers internalize on a daily basis. To this end, we propose
the following approximate rule-of-thumb, that is based on
our call center’s experience: 7~ 2 - E[S]. Thus, in particu-
lar, measuring waiting in terms of E[S] or T is essentially
equivalent.

1.2. Performance Measures and
Types of Constraints

To apply a queueing model, one must first define relevant
performance measures and then be able to calculate them.
Moreover, because call centers can get very large (up to
many thousands of agents), the implementation of these
calculations must be scalable (numerically stable).

In this research, we accommodate the following three
performance measures: the fraction of abandoning cus-
tomers P{Ab}, average wait in queue E[W], and the tail
probability to exceed a deadline P{W > T}. (An important
special case of the tail probability is the delay probability
P{W > 0}.)

The choice of the probability to abandon is natural in
models with customers’ impatience. In addition to the rea-
sons explained above, abandonment statistics constitutes
the only commonly available measurement that is cus-
tomer subjective: those who abandon reveal that the service
offered is not worth its wait.

Average wait is also useful and taken into account in
practice. Finally, the probabilities to exceed deadlines pro-
vide us with the distribution of customers’ wait. This and
similar performance measures are widely used. Indeed,
P{W < T, Sr}, the fraction of served customers that wait
less than T, is often referred to in practice as service level.

Once an appropriate performance measure is chosen, a
constraint satisfaction problem could be defined. The first
approach pursued in this paper is one that is common
in the practice of call centers: constraint satisfaction on
a single interval (§4). Specifically, consider a time interval
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during which the staffing level is to be kept constant (15,
30, or 60 minutes), then specify a service-level constraint
(for example, less than 3% of customers abandon), and
finally find the minimal staffing level n* that guarantees
this desired service level in steady state. An alternative
approach, treated in §5, considers jointly several time inter-
vals; for example, a whole day, with different staffing lev-
els allowed per interval. The goal now is to minimize the
staffing levels or, more generally, staffing costs, given an
overall constraint on the performance level; for example, a
constraint on the average wait over a full day of work which
is divided into half-hour intervals. In this case, an opti-
mal solution is expected to compromise the service level at
some intervals to do better at others.

1.3. Main Contributions

As we view it, our main contributions to queueing theory
and call center applications are as follows:

e Three operational regimes are studied within the
M/M/n + G framework: Quality and Efficiency-Driven
(QED), Efficiency-Driven (ED), and also a new ED + QED
operational regime; staffing in each regime arises as asymp-
totically optimal for a special case of cost constraints.
Asymptotic statements for these regimes are formulated
and proved in Theorems 4.1, 4.2, and 4.4, respectively.

e We claborate on the new ED + QED operational
regime: our discussion in §2.3 is supported by Theorem 4.3
in §4.4, on the asymptotic behavior of its major perfor-
mance measures.

e Practical recommendations on applications of the three
operational regimes and corresponding approximations are
provided. Quality of the approximations in various realistic
settings is compared. For each type of setting, at least one
operational regime gives rise to highly accurate approxi-
mations. Our practical recommendations are summarized
in §2.4 and, then, substantiated and elaborated in §6.

e Motivated by practice, we study a global constraint
problem, where several time intervals with interval-
dependent staffing levels are considered jointly. Theo-
rems 5.1 and 5.2 treat two special cases that give rise to
global QED and ED staffing, respectively. In the case of
QED staffing, a numerical experiment in §2.5 shows that
staffing flexibility per interval provides only little gain with
respect to the single-interval approach. In addition, Theo-
rem 3.1 of the Online Appendix demonstrates that, under
some circumstances, the optimal solution combines QED
staffing at some intervals with “no staffing” at the other
intervals (very small or zero number of servers).

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

e Propositions 5.1 and 5.2 provide a detailed character-
ization of the asymptotic solution in the ED case, if the
patience hazard rate is monotone, both for Decreasing Haz-
ard Rate (DHR) and Increasing Hazard Rate (IHR).

e We extend the framework developed in Borst et al.
(2004) to cover abandonment and cost constraints. Our
asymptotic analysis differs from Borst et al. (2004), and it
requires an extension of the Laplace method used in Zeltyn
and Mandelbaum (2005a). In this new framework, many
additional interesting questions can be addressed, including
optimal staffing with respect to multiple service constraints
(see Example 2.1 in §2.5).

1.4. Structure of the Paper

Sections 2.1-2.3 provide an introduction to the three oper-
ational regimes. Section 2.4 compares between approxima-
tions, based on these regimes, while providing practical
recommendations for their use, and §2.5 introduces global
constraints. Section 3 surveys some related literature. Sec-
tions 4 and 5 present our theoretical results for single-
interval and global constraint satisfaction, respectively.
Section 6 has several numerical examples. We conclude
in §7 with some possible directions worthy of further
research. Finally, the Online Appendix includes additional
theoretical material on global constraints, the proofs of
local and global constraint results, and an extensive numer-
ical study.

2. Asymptotic Operational Regimes

How do we solve the constraint satisfaction problem
on a single interval? A straightforward approach is to
apply exact formulae for performance measures of the
M/M/n + G queue, developed in Baccelli and Hebuterne
(1981), Brandt and Brandt (1999, 2002), and Zeltyn and
Mandelbaum (2005a). However, this approach has several
drawbacks. These formulae for performance measures are
relatively complicated, involving double integration of the
patience distribution. They provide no intuition and give
rise to numerical problems for large n (number of servers).
In addition, the calculations require the whole patience dis-
tribution but its estimation is typically a very complicated,
sometimes impossible, task (see Brown et al. 2005).

In this research, an alternative approach is pursued.
Depending on the structure of the cost function, sev-
eral operational (staffing) regimes arise as asymptotically
optimal. Each regime corresponds to a different approxi-
mate solution of the constraint satisfaction problem. These
approximations are theoretically validated for large systems
but they also provide excellent fit for moderate and even
small ones. The final outcomes are regime-specific staffing
rules that are highly useful for call centers management.

The operational regimes are described in terms of the
offered load parameter R, which is defined as

R=—=X\-E[S];

o
here A is the arrival rate and u is the service rate, or the
reciprocal of the average service time E[S]. (As custom-
ary in industry, we shall measure R in units of Erlangs.)
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The quantity R represents the amount of work, measured in
time-units of service, that arrives to the system per unit of
time. It is significant to the staffing problem because R and
its neighborhood provide nominal staffing levels, deviations
from which could result in extreme performance: staffing
“high above” R would result in a very high quality of ser-
vice, and staffing “far below” R would result in a very high
utilization of servers.

An important goal of this paper is to have these last
statements quantified. To this end, we now present three
operational regimes that arise in our research as asymptot-
ically optimal. We continue with comments on the qual-
ity of approximations based on these regimes and provide
recommendations for their use. Finally, §2.5 gives a brief
introduction to global constraint satisfaction.

2.1. The QED (Quality and Efficiency-Driven)
Operational Regime

The QED regime corresponds to the least staffing level that
adheres to the constraint P{W > 0} < «, on the delay prob-
ability, given that « is neither too close to zero nor to one.
It is characterized by the so-called square-root staffing rule:
ngep =R+ BVR+0(VR), —o00<pB<oo, (1)
where B is a quality-of-service (QoS) parameter—the
larger it is, the better is the operational service level.
(Throughout the paper, the notation o(f(R)) stands for
o(f(R))/f(R) — 0, as R — o0.) The QED regime enables
one to combine high levels of efficiency (agents’ utilization
over 90%) and service quality (short delays, scarce aban-
donment), given sufficient scale.

If we fix the service rate u and patience distribution G
and let A and hence n converge to infinity according to (1),
the delay probability P{W > 0} converges to a constant
strictly between zero and one. Also, the probability to aban-
don and average wait vanish at rate 1/./n. (See Garnett
et al. 2002 and Zeltyn and Mandelbaum 2005a.)

In this paper, we shall define the QED approximation for
the optimal staffing level by

ngep = [R+ B*VR], @

where the optimal QoS parameter 3* depends on perfor-
mance goals and is calculated via Equation (21) from §4.2.
Numerical examples in §6 and the Online Appendix
demonstrate that these approximations turn out to be very
accurate even for small to moderate-size systems (few 10s
of agents).

2.2. The ED (Efficiency-Driven)
Operational Regime

The ED regime corresponds to the least staffing level that
adheres to a constraint on the fraction abandoning, or on
the average wait, given that the constraints are relatively

loose; for example, the former is to be above 10%, and the
latter in the order of average service time. The ED regime
is characterized by the staffing rule

ngp=(1—=7)-R+o(R), v=>0, (©)
which implies understaffing with respect to the offered load.
In this case, as shown in Zeltyn and Mandelbaum (2005a),
with n and A increasing indefinitely, virtually all customers
wait (P{W > 0} converges to 1), the probability to abandon
always converges to vy, and average wait converges to a con-
stant that depends on the patience distribution. As a rule, ED
approximations require relatively large n (more than 100) to
provide a satisfactory fit; see the numerical experiments in
Zeltyn and Mandelbaum (2005a, b).

Our ED approximation for the optimal staffing level is
defined by

ngp = [(1=77)-R], 4)

where the value of y* is established via Equation (26) from
Theorem 4.2.

2.3. The ED + QED Operational Regime

The following new ED + QED regime corresponds to
the least staffing level that adheres to the constraint
P{W > T} < «, on the tail probability of delay, given that T
is in the order of a mean service time (or mean patience; see
Remark 1.1) and « is neither too close to zero nor to one.

Why is a new staffing regime needed? Assume that we
vary the number of servers according to the ED staffing
rule (3), holding other system parameters constant. It fol-
lows from Zeltyn and Mandelbaum (2005a) that there exists
an ED parameter y* such that the tail probability P{W > T'}
converges to zero for y < y* and to 1 — G(T) for y > y*.
The ED approximation is thus too “crude” for the constraint
satisfaction problem P{W > T} < a, 0 <a <1 — G(T).
However, it turns out that QED fine-tuning around the ED
staffing level (1 — y*)R, taking into account «, provides
one with the staffing level that asymptotically adheres to
P{W>T}~a.

Formally, the ED 4+ QED regime is characterized by the
staffing rule

nED+QED:(1 _')’)'R+8‘/E+ o(\/ﬁ), vy >0. (5)

See §4.4 and Theorems 4.3 and 4.4 for rigorous results

on the ED + QED regime and further clarifications. The
approximate ED + QED staffing formula is

Nipigep = [(1—¥") - R+ 5*‘/E] ) (6)

with values of y* and 6* derived from Theorem 4.4.
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Table 1. Summary of practical recommendations.
Constraint P{Ab} E[W] P{W>T}
Offered load Tight Loose Tight Loose Tight Loose

1%-10% >10% <10% 7 >10% 7 0<T<10% 7 T>10% 7

5% <a<50% 5% < a<50%

Small (10s) QED QED QED QED QED QED
Moderate-to-large QED ED, QED QED ED, QED ED + QED

(100s-1,000s)

ED ifTiex
Q p

REMARK 2.1 (ED + QED REGIME IN ERLANG-A). Assume
that the patience times are exponential with rate 6, namely,
mean 1/6. (According to our experience, typical mean
patience is around 5-10 minutes.) Fix the deadline to be ¢%
of the patience mean: T = ¢/6 for some 0 < ¢ < 1. Then,
Theorem 4.4 implies that the ED parameter is equal to

y=G(T)=1-e"=1-¢"“~c,

where the last approximation is reasonable for ¢ around 0.1.
In this case, according to the ED approximation

P{Ab} ~ y = c.

This argument provides us with a useful rule-of-thumb for
Erlang-A: a deadline 7 of around 10% of the average
patience (namely, T between 30 seconds and one minute)
corresponds to approximately 10% abandonment.

REMARK 2.2(QUALITY-DRIVEN REGIME). Zeltyn and Man-
delbaum (2005a) also analyzed the QD (Quality-Driven)
operational regime, with staffing levels
nop=[(1+7)-R+0(vR)], y>0.
In this regime, the main performance characteristics,
namely P{Ab}, E[W], and P{W > 0}, converge to zero
exponentially fast, as A, n — oo. A similar regime was also
discussed in Borst et al. (2004) for Erlang-C. The QD
regime can become relevant for extreme constraints on ser-
vice level, say P{W > 0} < 2% (essentially no one waits),
which are appropriate, for example, in amply staffed emer-
gency operations. In this paper, we are interested in queues
with nonnegligible wait and abandonment, hence the QD
regime will not be considered.

2.4. Operational Regimes and Practical
Recommendations

In §§2.1-2.3, we introduced our three operational regimes.
Note that, given a specific constraint satisfaction problem,
one can fit to it several different approximations, based on
these regimes. A natural question then arises as to the exis-
tence of a single operational regime that is preferable over
the two others, at least for all constraint satisfaction prob-
lems of practical interest. For Erlang-C, Borst et al. (2004)
discovered that the QED regime qualifies: it is extremely

robust and can be applied over a very wide range of system
parameters so as to render the ED and QD regimes almost
practically useless. In §6 and the Online Appendix, we ana-
lyze this question for M/M/n + G. Here, it turns out that,
in contrast to Erlang-C, there is no single best operational
regime.

In Table 1, we summarize our guidelines for the use of
the three operational regimes, as providing approximations
for the following operational performance measures: P{Ab},
E[W], P{W > T}, T > 0. We observe that in most special
cases considered in Table 1, the QED approximations are
preferable over the alternatives. However, and in contrast
to Erlang-C (Borst et al. 2004), QED staffing turns out far
from optimal for loose constraints, if one controls either
average wait (in the case of nonexponential patience) or
the tail probability of wait in moderate-to-large call centers.
(See Example 6.2 in §6.4.) Note that, in both cases, the
optimal staffing level is significantly smaller than the offered
load.

Comments on Table 1.

e In Table 1, we measure waiting time in units of the
mean patience 7. This is natural because 7 is a tight upper
bound for E[W], hence one measures delay relative to 7.

e As we mentioned in §1.2, the constraint on the delay
probability, P{W > 0} < «, is relevant in many applica-
tions, including call centers. We treat it as a special case
of a tight tail-probability constraint (7 = 0). According
to numerical experiments in the Online Appendix, QED
approximations for P{W > 0} are excellent for a wide range
of @ (10%-90%).

2.5. Global Constraint Satisfaction

In §§2.1-2.4, we described our approach for constraint
satisfaction on a single time interval. In §5, we study
approximate solutions of some global constraint problems
where one seeks to minimize staffing costs over several
time intervals, with differing staffing levels allowed per
interval. If the staffing costs are equal at all intervals,
the problem reduces to minimizing the total staffing level.
We then expect a smaller overall number of servers rela-
tive to interval-by-interval optimization, due to the added
flexibility of trading service levels among intervals. The
following example checks the impact of this flexibility in a
realistic call center setting.
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Figure 2. Comparison between local and global heavily loaded intervals and less to lightly loaded. Over-
constraints. all, using the global constraint saves only nine work-hours
} (out of more than 3,000 hours over the day). Now assume
Arrival rate . .. .
4,000 , . . . 250 that, in addition, a second constraint on the delay proba-
bility P{W > 0} < 30% should be satisfied. In the global
3300 200 constraint case, the same staffing as for a single global
_ 3.000 constraint P{Ab} < 1% is sufficient. However, if two local
é’ 2500 - constraints should be satisfied at each interval, additional
g 150 3 servers should be added at some intervals and the difference
£ 2,000 &0 between the two schedules is 17 work-hours. (See the “two
= 1003:; constraint” curve in the bottom plot of Figure 2.) Hence,
£ 1300 2 even in the case of two constraints (which is common prac-
< 1,000 tice in call centers), global staffing does not add much with
50 respect to single-interval staffing.
200 Figure 3 demonstrates the dynamics of P{Ab} over the
0 . m = > 0 day for hourly and daily P{Ab} < 1% constraints. (P{Ab}
Time is calculated via exact M/M/n + G formulae (Zeltyn and
) ) Mandelbaum?2005a).) As expected, we observe a stable pat-
Difference between global and local staffing levels .
3 i i i - tern in the first plot. In the second plot, however, a dete-
=== One constraint rioration of the service level at night takes place (which,
| L= Two constraints l indeed, conforms to our personal experience with the way

) that many 24-hour call centers are run). Because minor

Figure 3. Dynamics of the probability to abandon.
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EXAMPLE 2.1 (COMPARISON BETWEEN GLOBAL AND f§ 0.02} .
LocAL CONSTRAINT SATISFACTION). Consider a weekday &
arrival pattern to the call center of some Israeli telecom 0.01 W
company (top plot of Figure 2). This pattern is rather typ-
ical of call centers; see, for example, Brown et al. (2005) 0 . . . .
and Green et al. (2007). Assume constant arrival rates dur- > 10 Time 15 2
ing each one-hour interval. The average service time is
equal to 218 seconds. Mean patience is taken to be six min- 0.06 Daily constraint
utes (a reasonable number, according to our experience; see
Brown et al. 2005, for example). Assume that both service 0.05
and patience times are exponential. g
(=]
Consider the constraint P{Ab} < 1%. We compare QED T 004
staffing (2) that seeks to sustain this service level over each '§
one-hour interval, against QED staffing that adheres to a > 003
global daily (24 hours) service level. The latter staffing lev- E
els are derived via Theorem 5.1. g 002
Overall, the two staffing levels are rather close. (Their =
pattern is also indistinguishable from the pattern of the 0.01
arrival rate in Figure 2, hence it has been omitted.) The “one
constraint” curve in the bottom plot of Figure 2 presents 0 5 m s 20

their difference: global staffing assigns more servers to Time
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savings in the number of agents probably do not justify
instability of the service level, the staffing levels that arise
from the hourly constraint seem preferable.

REMARK 2.3 (GLOBAL VS. SINGLE-INTERVAL CONSTRAINT
SATISFACTION). The above example seems important to us
for the following reason. Global constraint satisfaction is a
standard approach to service-level agreements in call cen-
ters and other service organizations. In these organizations,
performance constraints are usually enforced over long time
intervals (days, weeks, or even months) and not over the
basic staffing intervals with constant staffing level (half-hour
or an hour). However, it is much simpler, both mathemati-
cally and computationally, to calculate optimal staffing and
scheduling separately for each basic staffing interval. Exam-
ple 2.1 demonstrates that if a tight constraint on the prob-
ability to abandon is considered, the latter method suffices
to provide staffing that is very close to the optimal staffing
for global constraints. Note that other types of constraints
can lead to a different type of results. For example, if a sin-
gle constraint on the delay probability is considered, Theo-
rem 3.1 from the Online Supplement implies that the global
solution (combination of “no staffing” and QED staffing at
different intervals) can result in significant workforce sav-
ings with respect to the local QED optimal staffing.

3. Related Literature

For a comprehensive summary on queues with impatient
customers, operational regimes, and dimensioning, readers
are referred to §§4.1 and 4.2 in Gans et al. (2003). Here
we summarize research that is most relevant to ours.

Queues with Impatient Customers. The seminal
work on queueing systems with impatient customers is
Palm (1957), where he introduced the basic Erlang-A
(M/M/n + M) queue with exponential patience times. See
Mandelbaum and Zeltyn (2007) for a recent summary of
this model. Erlang-A was generalized to M/M/n + G (gen-
eral patience) by Baccelli and Hebuterne (1981), Brandt
and Brandt (1999, 2002), and Zeltyn and Mandelbaum
(2005). In the present research we adopt the theoretical
approach of Baccelli and Hebuterne (1981) and Zeltyn and
Mandelbaum (2005a) to the M/M/n + G model.

If the service distribution is not exponential, as is often
the case in practice (see Brown et al. 2005), exact theo-
retical solutions are not available and one has to resort to
approximations and simulation. In addition to ED approxi-
mations, as discussed below, one should mention the papers
of Whitt (2005a, b) that develop and validate an approx-
imation for the M/G/n + G model with generally dis-
tributed i.i.d. service times. Finally, Boxma and de Waal
(1994) addressed the problem of cost optimization in the
M/G/n 4 G queue via simulation and interpolation between
M/M/n + D and Erlang-A.

REMARK 3.1 (TYPES OF APPROXIMATIONS). Below we sur-
vey several types of approximations to the queueing sys-
tems that arise in our research. One distinguishes between

two main types of approximations: steady-state (asymp-
totic expressions for steady-state performance measures
like P{Ab} or E[W]) and process-limit (asymptotics for
stochastic processes such as the queue-length process). In
this paper, we are mainly interested in steady-state approx-
imations. However, many papers referred to below present
also process-limit approximations.

QED Operational Regime. As mentioned above, the
square-root staffing rule (1) was first introduced by Erlang
(1948). He reports that it had in fact been in use at the
Copenhagen Telephone Company since 1913. A formal
analysis for the Erlang-C queue appeared only in 1981, in
the seminal paper of Halfin and Whitt (1981). In this paper,
the authors establish an important relation: as A increases
indefinitely, sustaining the QED operational regime (1) with
fixed B > 0 is equivalent to the delay probability converg-
ing to a fixed level @, 0 < @ < 1. Whitt (1992) surveys
QED approximations for various classical queues without
abandonment.

Garnett et al. (2002) studied the QED regime for
Erlang-A  with exponential abandonment, establishing
results that are analogous to Halfin and Whitt (1981) and
complemented also by the ED and QD regimes. Zeltyn and
Mandelbaum(2005a) presented a comprehensive treatment
of the QED, ED, and QD regimes in steady state for the
M/M/n + G queue.

ED Operational Regime. ED approximations are
cruder than the QED approximations, hence they enable
the analysis of very general models. For example,
Whitt (2006a) presents a general fluid model (the ED
approximation) for the G/G/n + G queue with general
distributions of arrivals, services, and patience times and
Whitt (2006d) presents a multiclass fluid model that takes
skills-based routing into account.

Another important family of models that can be treated
in the ED regime are those with uncertainty about the
arrival rate. (Whitt 2006b showed that Erlang-A and other
queues with abandonment are sensitive to changes in the
arrival rate.) Recent papers of Whitt (2006c) and Harri-
son and Zeevi (2005) study ED approximations for such
models and develop asymptotic rules for optimal staffing.
In addition, Bassamboo et al. (2006, 2005) provide asymp-
totic methods of routing and admission control.

ED + QED Operational Regime. The only reference
to this regime that is known to us is Baron and Milner
(2009). That work is motivated by service-level agreements
that arise in outsourcing contracts. It includes an approx-
imation for the tail probability of wait in Erlang-A. This
approximation is a special case of our approximation for
M/M/n + G, which is covered in Theorem 4.4.

It is worth mentioning that the QED staffing rule that
arose in models of membership (subscriber) services is
(only formally) similar to our ED 4 QED staffing rule (5);
see Randhawa and Kumar (2008, 2009) and de Véricourt
and Jennings (2008).
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Dimensioning Erlang-C: Cost Optimization and Con-
straint Satisfaction. Borst et al. (2004) developed a
mathematical framework for the problem of optimal
staffing in the Erlang-C queue. The main focus of the paper
is on cost optimization with convex staffing costs and gen-
eral increasing waiting costs. Depending on the relative
importance of these costs, Borst et al. (2004) identifies the
QED, ED, and QD regimes as asymptotically optimal. It is
shown that the QED regime balances and, in fact, unifies
the other two regimes. In the case of linear costs, a rela-
tion between the waiting/staffing costs ratio and the QoS
parameter 3 from (1) is established. In addition, the con-
straint satisfaction problem is also analyzed, with the QED,
ED, and QD regimes arising as well.

Global Constraint Satisfaction. In Borst et al. (2004),
the problem of optimal staffing was studied on a single
interval in steady state, as conventionally assumed in the
literature and practice. Koole and van der Sluis (2003) ana-
lyze a shift scheduling problem with an overall, say daily,
service-level objective. They prove a useful property, called
multimodularity, which, if prevailing, significantly facili-
tates the search for the exact optimal staffing levels.

SIPP Staffing. Both the single- and multiple-interval
approaches can be viewed as the SIPP (Stationary Indepen-
dent Period by Period) method for staffing; see Green et al.
(2001). Advantages, drawbacks, and possible modifications
of SIPP were studied in Green et al. (2001, 2003, 2007).
Overall, SIPP works well if the arrival rate is slow-varying
with respect to the durations of services. Otherwise, time-
dependent models should be used; see Green et al. (2001,
2003, 2007) and Feldman et al. (2008).

4. Constraint Satisfaction on
a Single Interval

4.1. General Formulation of the Problem

We analyze the M/M/n + G queue with a fixed service
rate u and patience distribution G. We determine staffing
level (number of agents) n,, A > 0, as a function of the
arrival rate A, focusing on large A (formally A — o).

Define a performance cost function U(n,\) as a
weighted sum of the three performance measures that were
introduced in §1.2:

U(n,A) =C,y(2)-P, 1 {Ab}+ C,, (1) -E, 1 [W]
+ Cy(A) P, \{W >d,}. (7)

(The function U(n, A) is to be interpreted as the perfor-
mance cost per arrival.) The coefficients C,,(A), C,, (1), and
C, (M) in (7) are abandonment cost, waiting cost, and dead-
line cost, respectively. Note that all these coefficients and
also the deadline d, can depend on the arrival rate A. We
introduce such dependence because scaling with A, as will
be demonstrated, gives rise to very accurate approximations

that are applicable to practical problems with unscaled cost
coefficients. See Remark 4.3 that illustrates the relation
between the unscaled and scaled problems.

Define the optimal staffing level by

ny =argmin{U(n, A) < M}, (8)

where M is a cost constraint per arrival.

Because we study different types of asymptotic solutions
to (8), the following two additional definitions turn out nat-
ural and useful. The staffing level n, is called asymptoti-
cally feasible if

limsupU(n,,A) <M. 9)
A

In addition, n, is asymptotically optimal if

[ny —ml=o(f(A) =o(f(R)), (10)

where a specific function for f(-) will be defined sepa-
rately and naturally for every special case. (For example,
it can be equal to A, «/X, etc.) In words, asymptotic feasi-
bility guarantees that the asymptotic performance cost does
not exceed the cost constraint and asymptotic optimality
implies that the staffing level is close to the optimal one.

For general C,,(-), C,(-), or C,(-), problem (8) is rather
complicated and uninsightful. Instead, we explore several
basic important special cases that give rise to the three
operational regimes introduced in §2.

REMARK 4.1. As already mentioned, in this research, the
staffing level n depends on the arrival rate A and, conse-
quently, performance measures under consideration depend
on A as well. For simplicity of notation, in the rest of the
paper (except some proofs in the Online Appendix) we
shall omit indices that correspond to A and n.

4.2. QED

Here we explore types of constraints that give rise to the
QED regime, discussed in §2.1. Recall that this regime
allows us to combine efficiency (high servers’ utilization)
and service quality.

Assume that the patience density at the origin exists and
is positive: G (0) £ g, > 0. Define the following functions:

2 8o h¢(l§) ]_1 —00 < B<oo
Pap 2|1 B B g an
P,(B)2 /2y (hy(B)—B), —o0<pB <00, (12)
L PB+ 2 1)
W(B,t)E ————————, —oc0o<fPB<o0,t=0, 13
(B.1) 505 B t (13)
where
gap & (14)

8o
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and

o(x) _ o)
1—®(x)  P(x)

h¢(x) =

is the hazard rate of the standard normal distribution. ($(x)
is the standard normal cumulative distribution function,
®(x) = 1 — ®(x) is the survival function, and ¢(x) =
d’'(x) is the density.)

Theorem 4.1 from Zeltyn and Mandelbaum (2005a)
implies that under the QED scaling, as defined by the
square-root staffing rule (1) with A - oo (or R =
A/ — 00), the following approximations prevail:

P(W > 0} ~ P,(B), (1)
P(AB} ~ —=-£,(B)P, (B). (16)
BIW]~ = B)P.(B). )
plw= b~ wen-re). >0 (13)

(Here and later f ~ g stands for lim,_, . f(A)/g(A)=1.)

THEOREM 4.1 (QED). Assume that the cost function (7) is
given by

U(n,A)=C,,-vVA-P{Ab}+C, -VA-E[W]

+Cb-P{W>%}, (19)

where the constants C,,, C,, C,, t are nonnegative. Assume
that either C,, > 0 or C, > 0, or the cost constraint
M < C,.

(a) The optimal staffing level (8) satisfies

n*=R+BVR+o(VR), (20)

where [3* is the unique solution of the following equation
with respect to 3

{(cab+ ﬁ)-&(/&) Lo, W z)} B =M. (1)

8o

(b) Introduce the staffing level
noep = [R+ B*\/E-| (22)

Then, the staffing level ny, is asymptotically feasible (9)
and asymptotically optimal (10) in the sense that

|ngep — 1| = o(ﬁ).

See §2.1 in the Online Appendix for the proof of Theo-
rem 4.1.

REMARK 4.2 (ON THE SOLUTION OF EQUATION (21)). As
it will be shown in the proof of Theorem 4.1, all functions
in (21) are monotone. Therefore, its solution is tantamount
to the calculation of the inverse of the left-hand side.

REMARK 4.3 (ON +/A SCALING OF THE PROBABILITY TO
ABANDON AND WAITING TIME). In Theorem 4.1, we scale
some parameters of the problem by VA. In call center
practice, on the other hand, one works with unscaled con-
straints. The translation between the two types of the con-
straints is straightforward. Assume, for example, that the
service-level constraint is given by P{Ab} < €. According
to (16), we should first solve

P,(B)P,(B) =evVA

with respect to 8 and then apply the staffing level (22) with
the solution SB*.

4.3. ED

Here we study the ED regime defined in (3). It is charac-
terized by significant understaffing that gives rise to very
high servers’ utilization and only moderate service level.
Assume that the patience distribution function G is
strictly increasing for all x such that 0 < G(x) < 1. Define

H(x) = E[min(7, x)] = /O "Gluydu, x>0, (23)

where G(-) =1 — G(-) is the survival function of patience.

Theorem 6.1 from Zeltyn and Mandelbaum (2005a)
states that in the ED operational regime, defined by (3) and
A — oo, the probability to abandon converges to y and the
ED approximation for average wait is given by

E[W]~ H(G™'(v)). (24)

THEOREM 4.2 (ED). Assume that the performance cost
Sfunction (7) is given by

U(n, A) =C,, - P{Ab} + C, - E[W], (25)

where the constants C,,, C,, are nonnegative. Assume that
the positive cost constraint M is less than C,, + C,, - E[ 7],
where E[T] = oo is allowed. Then,

(a) The optimal staffing level (8) satisfies

n*=(1-v9-R+o(R),

where y* is the unique solution of the following equation
with respect to vy:

Capy+C, H(G™'(y)) =M. (26)
(b) Introduce the staffing level
ngp = [(1=7")-R].

Then, niy, is asymptotically feasible (9) and asymptotically
optimal (10) in the sense that

Ity — 1] = o(R).
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See §2.2 in the Online Appendix for the proof of Theo-
rem 4.2.

REMARK 4.4. With each one of the cost coefficients in (25)
vanishing, we get two important special cases: a constraint
on P{Ab} and a constraint on E[W]. Note that, in the
first case, y = M/C,, and the ED staffing nj, does not
depend on the patience distribution. In contrast, in the sec-
ond case one can observe a very significant dependence
of nf, on G; see the example in §6.2 and in §3.2 of the
Online Appendix.

4.4. ED+QED

Now we study the new operational regime, introduced in
§2.3. This regime combines ED and QED staffing, which
arises when one seeks to satisfy a constraint on the tail
probability of wait, namely,

P{W>T}<a. (27)

First, we recall from Zeltyn and Mandelbaum (2005a) that
in the ED regime (3), the waiting time converges weakly to
min(7, G~!(y)), where 7 is the patience time and G is the
patience distribution. This suggests the following approxi-
mation for the tail probability P{W > T}:

G(T), T<G '(y),
P{W> T}~ [ N > G0 (28)

In (28), we assume that vy is fixed and T is varied. But
to identify the least staffing level that adheres to (27), we
view (28) as a function of 7y:

P{W > T}~ G, 7> G(D). (29)
0, vy <G(T),

which is too crude to capture « in (27). Hence, one must
refine (29) around y = G(T). To this end, introduce ED +
QED staffing with the ED parameter y = G(T) as follows:

n=(1-G(T))-R+8VR+0(VR), —co<8<oco. (30)

The next theorem enables the calculation of & that corre-
sponds to the target level a of the tail probability. It also
presents approximations for other key performance mea-
sures in the ED 4 QED regime. The theorem is formulated
in the spirit of the M/M/n statement in Halfin and Whitt
(1981).

THEOREM 4.3 (ED + QED PERFORMANCE MEASURES).
Consider a sequence of M/M/n+G queues indexed by n =
1,2, ..., with fixed service rate u and patience distribu-
tion G. Let T and « be scalars such that 0 < T < oo,
0 < a < G(T) and the patience density g(T) = G'(T) > 0.
Then, the following four asymptotic statements are equiva-
lent, as n — oo (and hence A — oo and R — o0):

1. Staffing level: n=(1—y)R+8vR+ o(~/R);

2. Tail probability: P{W > T} =a+ o(1);

3. Probability to abandon: P{Ab} = y — 8/+v/R +
o(1/vVR);

4. Average wait: E[W] = fOT Gu)du — &/vR -
1/(ha(T)) +o(1/v/R).

Here hg(T) = g(T)/G(T) is the hazard rate of the
patience distribution G, v = G(T) and

REMARK 4.5. Note that (31) and Statement 2 of Theo-
rem 4.3 imply the following approximation for the delay
probability under the ED + QED staffing level (30):

P{W > T} ~ G(T) - cia(a ﬁ)

REMARK 4.6. If the constraint parameter « > G(T'), then
for any staffing level n,

PIW>T}<G(T)<a (32)

because the waiting time W does not exceed the patience
time 7. Hence, a > G(T) cannot be attained as a limit in
Part 2, and @ = G(T') can be attained even if n = 0, namely,
service is not provided at all.

Now we can formulate the constraint satisfaction result
for the ED + QED regime.

THEOREM 4.4 (ED 4 QED CONSTRAINT SATISFACTION).
Assume that the cost function (7) is given by
Un,A\)=C,-PlW>T}, C,>0,T=>0, (33)

and that the patience density at T is positive: g(T) > 0.
The optimization problem (8) then takes the form

n* =argmin{P{W > T} < a},

where a2 M /C,. Assume that a < G(T). Then,
(a) The optimal staffing level (8) satisfies

n*=G(T)-R+8VR+o(+/R), (34)

where

5 = @1<%>-/@. (35)

(b) Introduce the staffing level
nED+QED = [(_;(T) “R+ 5*‘/E1

Then, ngp, orp is asymptotically feasible (9) and asymptot-
ically optimal (10) in the sense that

|nED+QED —n*[= 0(‘/?)-
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See §2.3 in the Online Appendix for the proofs of The-
orems 4.3 and 4.4.

REMARK 4.7. In continuzltion to Remark 4.6, if the con-
straint parameter « > G(T), then the optimal staffing
n*=0.

REMARK 4.8. Note that the ED coefficient G(T) in (34)
depends on the patience distribution and does not depend
on the constraint a. The QED coefficient 6* provides fine-
tuning for varying values of the constraint.

Finally, recall that Table 1 provides guidelines to the
practitioners as to which operating regime to use, depend-
ing, say, on the service-level agreement and the time scales
involved. See also §6 for numerical examples on the three
regimes in the single-interval case.

5. Global Constraint Satisfaction

Here we study the global constraint satisfaction problem
that was introduced in §2.5. We make the same assump-
tions as in §§4.1 and 4.2: the service rate w and patience
distribution G are fixed. However, now we consider a set
of K time intervals that constitute a day of work. Arrivals
to each interval are governed by a Poisson process with
rates A, 1 <i< K, Zf:l r; = 1. Here we assume that these
intervals are of the same length. (This assumption could be
relaxed at the cost of more complicated notation.) Then,
r, can be interpreted as the fractions of the daily arrival
rate during interval i. The staffing costs at the intervals are
given by ¢;, I <i<K.

The vector of staffing levels is determined according to
the overall arrival rate and is denoted by

n(A) £ (ni(A), ..., ng (X)),

where n,(A) is the staffing level during interval i. More pre-
cisely, we shall let A — co while maintaining the fractions
(ry,...,r) fixed.

Introduce the performance cost function

K
U(n,A)= ZriUi(ni’ A),
i=1

where each U;(n;, A) is calculated as in (7). Note that the
performance costs per interval are weighted according to
the arrival rates on these intervals.

Now modify definition (8) of the optimal staffing level
*(A) = (nf(A), ..., nk(A)) into

K
a*(A) =argminy_c;n;(A) st U(n, A) < M.

i=1
The notion (10) of asymptotically optimal staffing level
n(A) = (n,;(A), ..., ng(A)) changes to

> em(N) = X et (V)| =o(f (V) = o(£(R)).

Finally, definition (9) of asymptotic feasibility is unchanged.

Below we present several special cases of global con-
straints that give rise to different operational regimes. Two
cases will be treated in detail: a scaled constraint on the
probability to abandon, in §5.1 (QED regime) and a con-
straint on the average wait, in §5.2 (ED regime). Several
other special cases will be reviewed briefly.

5.1. Global Constraints in the QED Regime

Assume that the performance cost function at interval i,
1 <i<K, is given by

Uy(n;, ) = C,, - Pi{Ab} - VA, (36)

where P,{Ab} is the steady-state probability to abandon
over interval i. It is easy to verify that this cost function
gives rise to the following constraint on the overall proba-
bility to abandon:

P{Ab} < (37)

a
VX
where the overall probability to abandon P{Ab} =
K rP,{Ab}, a=M/C,, and M is a cost constraint.

THEOREM 5.1 (GLOBAL CONSTRAINT ON THE PROBABILITY
TO ABANDON IN THE QED REGIME). Consider the global
constraint optimization problem characterized by the cost
function (36) or the equivalent constraint (37). Assume that
the patience density at the origin g, exists and is positive.

Define the following optimization problem with respect
1o B={B.,1<i<K}):

min i BT
P (38)

s.1. ;\/r_ipw(ﬁi)Pa(Bi) =q.

Then, at least one solution of (38) exists. Denote by 6* the
minimal value that is attained with this solution in (38).

(a) The optimal staffing level with respect to condi-
tion (37) satisfies

nf=R,+0(WR), 1<i<K, 39)
K K
Yenr=3c-Ri+8VR+0o(VR), (40)
i=1 i=1

where R; = (r;\)/ 1 is the offered load at the ith interval.
If the solution of (38) is unique and given by {8}, 1<
i <K, then (39)—(40) can be replaced by

n=R+B; /R +o(~R), 1<i<K. (41)
(b) Consider the staffing level
ir=[R,+pB;-VR]. 1<i<K, (42)

where {B}} is a solution of (38). Then, the staffing level
(42) is asymptotically feasible and asymptotically optimal
in the sense that

K K
Z ¢y — Z oy
i=1

i=1

=o(VR).
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See §4.1 in the Online Appendix for the proof of Theo-
rem 5.1.

REMARK 5.1. The intuition for the constraint in (38) is the
following. In the QED regime, the probability to abandon
at the ith interval can be approximated, according to for-
mula (16), by

P,(B)P.(B;)
A .

1

Because P{Ab} = "X  r,P,{Ab},

P.{Ab} ~

S VEPL(B)P.(B) ~ P(AB]VA ~ .

REMARK 5.2 (CONJECTURE ON THE SOLUTION OF (38)).
Our numerical experiments with problem (38) revealed
the following interesting phenomenon. Assume the case of
equal costs ¢;, 1 <i < K, at all intervals. Then, (38) has a
unique solution with equal QoS grades B} = 85 =--- = B%.
This implies, in particular, higher service levels for intervals
with higher arrival rates (recall Figure 3). One can show
that this result would follow from convexity of the func-
tion P,,(B) = P,(B)P,(B). Moreover, convexity of P,, ()
would imply uniqueness of solution for arbitrary staffing
costs ¢;. (See the proof of Theorem 5.2, where convexity
of the constraint function is used to derive similar results.)
However, convexity of P, () is an open problem. Because
P,,(B) approximates the probability to abandon, this open
problem is closely related to convexity of the probability to
abandon in M/M/n + G, as a function of n. As far as we
know, this fact has been proved only for the Erlang-A sys-
tem if the patience parameter 0 is smaller or equal than the
service rate u. See Armony et al. (2009) for the details of
the proof and Koole (2006) for a comprehensive discussion
on the dynamic programming approach to monotonicity and
convexity properties of queueing systems.

REMARK 5.3 (OTHER TYPES OF CONSTRAINTS ON PERFOR-
MANCE MEASURES). Here we briefly cover several other
types of constraints that can be treated by the same meth-
ods as in Theorem 5.1.

Scaled Constraint on the Average Wait. Because the
QED approximations (16) and (17) for probability to aban-
don and average wait, respectively, are closely related, the
global constraint E[W] < T/+/A will give rise to the QED
regime at all intervals. The QoS grades could be derived
from an optimization problem that is very similar to (38):
the objective function is the same and the constraint is
replaced by 5, /7P, (B)P,(B;) =g+ T

Constraint on the Delay Probability. Assume that one
needs to satisfy a global constraint on the delay probability
over k intervals:

P{W >0} < a.

Then, the solution will have the following properties. At
some intervals the QED regime should be used. At other

intervals there should be essentially no staffing (n; =
0o(y/R))). In addition, there can be multiple solutions to
the optimization problem. See Theorem 3.1 in the Online
Appendix for details.

Constraint on the Tail Probability: Unscaled and
Scaled Cases. Here one can either use the scaled constraint
P{W > T} < a/+/A, as in Theorem 4.1, or the unscaled
constraint P{W > T'} < «, as in Theorem 4.4. In both cases,
intervals with essentially no staffing can arise. Other inter-
vals will be staffed according to the QED regime in the
first case and according to the ED 4 QED regime in the
second case.

Multiple Constraints. In call centers and other service
systems it is often desirable to introduce several perfor-
mance constraints; for example, for the probability to aban-
don as well as the tail probability. Generalization of our
approach to this case is straightforward both in single-
interval and global settings. Recall that in §2.5 we pre-
sented a numerical example for the case of two constraints.

5.2. Global Constraints in the ED Regime

Consider the following constraint on the overall average
wait:

E[W]<T, 43)

which is equivalent to a constraint satisfaction for the per-
formance cost functions

Ui(n;, \) = C, - E[W]; (44)

here E,[W] is the steady-state average wait at interval i
and E[W] =YX, r,E,[W]. The relation between the perfor-
mance constraint 7 and the cost constraint M is given via
T=M/C,.

THEOREM 5.2 (GLOBAL CONSTRAINT ON AVERAGE WAIT
IN THE ED REGIME). Consider the global constraint opti-
mization problem characterized by the cost functions (44),
or the equivalent constraint (43). Assume that

T<T, (45)

and that the cumulative distribution function G(-) of
patience times is continuous and strictly increasing over
the distribution support.

Define the following optimization problem with respect
toy={y,1<i<K}:

K
m?XZCi'}’irz’
Y=l
K Gy _ 46
s.. Zr,»/ G(u)du=T, (46)
i=1 0
st. 0<y <1, 1<i<K.

Then, there exists at least one solution {7y}} that solves (46).
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(a) The optimal staffing level with respect to constraint
(43) satisfies

K K
Yoeni=Y ¢ (1= ¥R+ o(R).
i=1 i=1

If the solution of (46) is unique, then
i =(1-y)R +o(R), 1<i<K.
(b) Consider the staffing level
ar=[(1-=y)R]], 1<i<K, (47)
where {7y} is a solution of (46). Then, the staffing level

(47) is asymptotically feasible and asymptotically optimal
in the sense that

=o(R).

K K
Yo=Y ent
=1 i=1

Now assume that all staffing costs ¢, are equal; hence,
our goal is to minimize the overall staffing level > n,.
In addition, assume that the hazard rate of the patience
distribution exists and is strictly monotone over the distri-
bution support. Propositions 5.1 and 5.2 below cover the
decreasing hazard rate (DHR) and the increasing hazard
rate (IHR) cases, respectively.

PROPOSITION 5.1 (GLOBAL CONSTRAINT ON AVERAGE
WaIT IN THE ED REGIME: DHR). Assume that the staffing
costs ¢; =1, 1 <i <K, and the mean patience T satisfies
T < T < oo, Assume that G is a distribution with strictly
decreasing hazard rate over the distribution support. Then,
the unique solution of (46) is given by v, =v*, 1<i<K,
where y* solves

Gy _
/ Gu)du=T
0

with respect to vy.

PROPOSITION 5.2 (GLOBAL CONSTRAINT ON AVERAGE
WaIt IN THE ED REGIME: IHR). Assume that the staffing
costs c; =1, 1 < i< K, and the mean patience T satis-
fies T < 7. Assume that G is a distribution with strictly
increasing hazard rate over the distribution support. Let
{v, 1 <i <K} denote a solution of (46). Define F, =
{i: v/ =0}, &, ={i: vy =1}, H,={i: 0< vy} < 1}. Then,
{vF, 1 <i< K} has the following properties:

1. &, consists of either zero or one element.

2. If #, ={i}, then

H(ge)rer (g “

3. If there exists a subset # C {1,2,...,K} s.t. T-
Yuea e =T, then 7, is empty and T-3 e 1. =T.

4. If H, = {i}, then for all j € K, such that

F-( > rk+r,~><T, (49)

keFi\{j}

the inequality r; < r; prevails.

5.If &, = {i}, then for all j € F, such that T -
(Xkew, e+ 1;) > T, the inequality r; < r; prevails.

See §4.2 in the Online Appendix for the proofs of The-
orem 5.2, Proposition 5.1, and Proposition 5.2.

REMARK 5.4 (INTUITION FOR PROPOSITIONS 5.1 AND 5.2).
If the patience distribution is DHR (customers become
more patient as their waiting time increases), it will be
shown that the fluid limit of average wait is convex in the
ED parameter . Due to convexity of average wait and lin-
earity of staffing costs in the number of servers, extremely
low staffing levels would lead to increasing overall costs.
Therefore, Proposition 5.1 recommends sustaining the same
staffing parameters vy, and, hence, the same service level at
all intervals.

In contrast, the THR case (customers lose patience in the
process of waiting) gives rise to a concave limit of the aver-
age wait. In this case, Proposition 5.2 recommends different
service levels over different intervals. Specifically, staffing
around the offered load is recommended for some intervals
(v# =0) and essentially no staffing at the others (y=1).
There can be, at most, one interval with intermediate
staffing (0 < y; < 1). Statements 1-5 of Proposition 5.2
also elaborate on properties of this solution. Specifically,
Statements 4 and 5 show that if one should apply “inter-
mediate staffing” to one of two candidate intervals, given
that the staffing regime at the other K — 2 intervals is fixed,
the interval with the minimal arrival rate should be chosen
for “intermediate staffing.” (However, it need not be true
that the interval with the minimal arrival rate between all
intervals should be chosen for “intermediate staffing.”)

REMARK 5.5 (GLOBAL CONSTRAINT ON THE PROBABILITY
TO ABANDON IN THE ED REGIME). If the unscaled global
constraint P{Ab} < « is considered, it is straightforward to
show that asymptotically optimal staffing is ED:

n=(1-7v)R,+0o(R), 0<y,<1,1<i<K.

To calculate {v,}, the following linear programming prob-
lem should be solved:

K
max Y ¢;rY;
{vi} i=1

' (50)
st. Y yr=a, 0<y<L
i=1

If all the staffing costs ¢; are equal, then any {v;}
with )} y,r; = a is asymptotically optimal. Otherwise
assume, without loss of generality, that ¢, > ¢, > -+ > ¢.
Then, an optimal solution is obtained recursively: 7y, =
min(l, o;/r;),1 <i < K, where @, =« and o, = a;_; —
Yie1lis1, 2 S ES K.
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6. Numerical Examples

In this section, we present three educating numerical exam-
ples on the three operational regimes studied in §4. Then,
the comparison of the three regimes is performed, support-
ing conclusions that were presented in §2.4. See §2.5 for
a practically oriented numerical experiment on global con-
straints and the Online Appendix for a comprehensive study
on all types of constraints.

6.1. Constraint Satisfaction in the QED Regime

Consider a moderate-size call center with an average
of 20 arrivals per minute over a given time interval. Let the
average service time be three minutes (u = 1/3). There-
fore, the offered load is equal to R=A/u=20-3=060
Erlangs.

Assume that the customers of this call center constitute
a 50%-50% mixture of impatient customers with patience
that is distributed Exp(mean = 1) and patient ones with
Exp(mean = 5) patience. Formally, the distribution of over-
all patience is hyperexponential.

Suppose that the call center would like to maintain a high
level of service. Three possible performance constraints are
considered, unilaterally:

1. Probability to abandon should be less than 2%;

2. Average wait should be less than five seconds;

3. At least 90% of the customers should wait less than
20 seconds.

As explained in §2.4, the parameters of the problem
(high service level, around R = 60 agents needed) are
appropriate for application of the QED regime (1). We thus
calculate the optimal QoS parameter 3* via Equation (21)
from §4.2. Then, the approximately optimal staffing level
is given by formula (2). The optimal staffing ng, for the
three constraints above turns out to be 67, 62, and 61
agents, with the optimal QoS parameters 8* being 0.79,
0.14, and 0.04, respectively.

If we calculate the optimal staffing via exact M/M/n + G
formulae (Zeltyn and Mandelbaum 2005a), it turns out that
the fit is perfect: the exact optimal staffing n* is equal
to nggp in all three cases.

How does the patience distribution affect the optimal
staffing level? Maintaining a mean patience of three min-
utes, assume that patience times are now uniformly
distributed between zero and six minutes. (This could cor-
respond to a situation when after six minutes of wait cus-
tomers are routed to another location.) Then, both n* and
n*QED for the three constraints are 64, 66, and 63, respec-
tively, again a perfect fit. We observe that if the P{Ab}
constraint is considered, more agents (67 versus 64) are
needed in the case of hyperexponential patience. However,
if the wait in queue is controlled, the staffing level should
be higher (66 versus 62) for uniform patience.

As our theory reveals (formulae (11)—(18)), the patience
density near the origin is a key characteristic that deter-
mines performance of queues with a high service level.

Higher density near the origin implies more abandonment
and smaller wait. The tail of the patience distribution and
even its mean are less important. One can check that, of
the two distributions mentioned above, the hyperexponen-
tial has a higher density near the origin (3/5 versus 1/6).
Therefore, the staffing recommendations above (67 versus
64) are consistent with Zeltyn and Mandelbaum (2005a).

6.2. Constraint Satisfaction in the ED Regime

Consider a very large call center with 400 arrivals per
minute, average service time three minutes; hence, R =
1,200. Assume a hyperexponential patience distribution
with the parameters, introduced in §6.1. Assume that man-
agement has an efficiency-driven view of the call center
operations: utilization of agents should be close to 100%
but at the cost of a certain compromise on service level.

Two alternative performance constraints are considered
here:

1. Probability to abandon should be less than 10%;

2. Average wait should be less than 20 seconds.

For these parameters (large number of agents, “loose”
service-level constraints), it is reasonable to apply ED
staffing (4), where the values of parameter y* are estab-
lished via Equation (26) from Theorem 4.2. We get
nip = 1,080 agents for the first constraint and 972 agents
for the second one. The exact optimal solutions n* are
1,081 and 972 agents, respectively.

Now consider a U(0, 6) patience distribution instead.
In this case, our ED approximations prescribe 1,080 and
1,132 agents, and the exact solutions are 1,081 and 1,132.
We observe the phenomenon that was mentioned above:
staffing with respect to the P{Ab} constraint in the ED
regime does not depend on the patience distribution. How-
ever, if average wait is controlled, the influence of the
patience distribution can be very significant: 972 versus
1,132 agents.

Note that, in this example, we used only two types of
constraints, as opposed to three in §6.1: the constraint on
the tail probability P{W > T} is not treated. The reason is
that, as explained in §4.3, the ED regime does not provide
an applicable approximation for the distribution of wait-
ing time. However, as we know from §4.4, the ED + QED
refinement enables such approximations.

6.3. Constraint Satisfaction in
the ED + QED Regime

Consider the large call center from §6.2 with offered load
R =1,200. Assume the commonly used service-level con-
straint: “At least 80% of the customers should wait less
than 20 seconds.” Consider three patience distributions
with the same mean: Exp(mean = 3), U(0,6), and our
previous hyperexponential mixture of Exp(mean = 1) and
Exp(mean = 5). Applying the staffing formula (6) with val-
ues of y* and 0* derived from Theorem 4.4, we get ngp ., opp
equal to 1,099, 1,153, and 1,020, respectively. (The exact
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optimal values are 1,100, 1,153, and 1,021.) Theorem 4.4
implies that the y*s are different for the three distributions,
hence the large variations in staffing levels. One concludes
that the use of the exponential assumption on patience (the
Erlang-A model), which is slowly becoming standard in
call centers, can imply significant deviations from the opti-
mum, under some circumstances.

Another important insight from §§6.2 and 6.3 is that a
reasonable service level and beyond can be reached even
if significant understaffing with respect to R takes place,
given sufficient scale.

6.4. Comparison Between Operational Regimes

Recall that in §2.4 we discussed existence of a single opera-
tional regime that is preferable over the others. Here we re-
visit examples from §§6.1-6.3 to show that there is no such
regime. Note that the same conclusion can be deduced if
one summarizes comprehensive numerical examples from
the Online Appendix.

EXAMPLE 6.1 (CONSTRAINT SATISFACTION IN A SMALL
CaLL CENTER). Consider the setting of §6.1 with hyperex-
ponential patience, where the QED approximations provide
us with a perfect fit. Apply the ED staffing (4) and the cor-
responding approximations. It is straightforward to check,
via Pgp{Ab} = v, that the ED recommendation for the con-
straint P{Ab} < 2% is nf, =59. This is very far from the
exact optimum n* = 67 and would lead to P{Ab} = 6.7%—
more than three-fold worse than the service goal. Therefore,
the ED recommendations should not be used for small call
centers.

Now we check if the ED + QED regime is robust for a
small call center. Applying it for Exp(mean = 3), U(0, 6),
and our hyperexponential distribution, we get, respectively,
that nj, QED = 63, 64, and 61, while n* = n;“)ED =64, 66,
and 61. We observe a perfect QED fit. Hence, the ED +
QED recommendations are not that bad, but the QED ones,
nevertheless, are preferable for small call centers.

EXAMPLE 6.2 (CONSTRAINT SATISFACTION IN A LARGE
EFFICIENCY-DRIVEN CaLL CENTER). Consider the large
call center from §§6.2-6.3, where the ED and ED +
QED approximations were found appropriate. We check
if the QED approximations are robust in this case, con-
sidering the three patience distributions from the end of
Example 6.1. First, consider the constraint P{Ab} < 10%
from §6.2. QED recommends 1,081 agents for all distribu-
tions, which coincides with the exact optima.

In contrast, QED staffing for the constraint “E[W] < 20
seconds” is 1,067, 1,134, and 961 versus the exact optima
of 1,067, 1,132, and 972. We observe that the fit for our
hyperexponential patience is relatively poor. Considering
the constraint on P{W > T} from §6.3, we also get a poor
fit of QED approximations, especially for the hyperexpo-
nential distribution: ngp . ogp = 1,000 versus n* =1, 021.

Hence, using QED approximations in large ED call cen-
ters can mislead if moderate-to-loose constraints on the
waiting time are considered.

REMARK 6.1 (QED APPROXIMATIONS IN AN EFFICIENCY-
DRIVEN SETTING). Example 6.2 demonstrates that the
QED approximation for P{Ab} provides an excellent fit
for a large overloaded call center. To understand the rea-
son, recall the QED approximation of the probability to
abandon:

L
JA

For large negative [§, the normal hazard rate ,(-) is neg-
ligible. Using the definition of ﬁ in (14), we can eas-
ily deduce that the QED approximation is then close to
(R — n)/R, namely, the ED approximation.

If the patience distribution is exponential, the QED
approximation provides an excellent fit for the average wait
as well. This can be explained by the high quality of P{Ab}
approximations and the relation P{Ab} = 6 - E[W], which
prevails for both exact values and QED approximations.
(Note that the exponential parameter 6 = g,.) However,
if the patience distribution is nonexponential, P{Ab} =
& - E[W] does not prevail in the ED regime and, as we
show in §6.2 of the Online Appendix, QED approximations
can have significant bias with respect to the exact optimal
values.

P{Ab} ~ — /go[ 4 (B) — Bl.

7. Possible Future Research

To conclude, we outline several types of problems that we
propose for future research.

o Revenue/cost optimization. As already discussed in
the introduction, optimization of revenues and/or costs con-
stitutes an alternative to the approach of this paper. The
ongoing research (Mandelbaum and Zeltyn 2009) is dedi-
cated to this problem for the M/M/n + G queue, continuing
the work of Borst et al. (2004) on Erlang-C.

¢ Additional research on global constraint satisfac-
tion. Section 5 of this paper gives rise to interesting
research problems. For example, one could try to verify the
conjecture in Remark 5.2.

It would also be interesting to study the staffing level for
several joint constraints, for example, P{Ab} and P{W > T}
(or rather P{W > T, Sr}). We believe that, in this case,
unlike the single-interval problem, several constraints could
be binding for an asymptotic solution.

e Time-inhomogeneous arrival rate. Such queues are
prevalent in practice and their time-varying analysis poses
a challenge. A common approach is to approximate the
time-varying arrival rate by a piecewise-constant function,
and then apply steady-state results during periods when the
arrival rate is assumed constant. An implicit assumption is
that the arrival rate is slow-varying with respect to the dura-
tions of services. Recently, Feldman et al. (2008) developed
an alternative simulation-based algorithm for staffing time-
varying queues with abandonment to achieve a constant
delay probability. We believe that a similar approach can
be applied to other constraint satisfaction problems such as
those analyzed in this paper.
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e Generally distributed service times. The M/M/n + G
model assumes exponential services. However, this assump-
tion does not apply for many call centers. For example, in
several applications (e.g., Brown et al. 2005), we encoun-
tered a lognormal distribution of service times. Therefore,
it is important to study the M/G/n + G model with a gen-
eral service distribution. Whitt (2005a) suggests approxi-
mating, in steady state, M/G/n + G by M/M/n + G with the
same service mean. Recently, Reed (2007a, b) studied the
GI/GI/N queue in the QED (Halfin-Whitt) regime, but his
results are sample-path limits, as opposed to our steady-state
limits. We believe that additional research in this direction
is worthwhile.

e Random arrival rate. In Brown et al. (2005) and
Weinberg et al. (2007), it was shown that Poisson arrival
rates in two different call centers vary from day to day
and the prediction of arrival rates raises statistical and prac-
tical challenges. Therefore, it is very important to study
queueing models where the arrival rate A of a homoge-
neous Poisson arrival process is in fact a random variable.
In Maman (2009), it was shown that both the QED and ED
regimes and, in addition, some new regimes, can be rele-
vant in this case, depending on the order of the variation
of A. See Whitt (2006¢), and Bassamboo et al. (2006) for
the “cruder” ED case.

8. Electronic Companion

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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