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Abstract—One of the most relevant issues pertaining UWSN
is to guarantee a certain level of information survivability,
even in presence of a powerful attacker. In this paper, we
provide a preliminary assessment of epidemic-domain inspired
approaches to model the information survivability in UWSN.
In particular, we show that epidemic models can be used to set
up the parameters that allow the information to survive, once
estimated the maximal compromising power of the attacker.
Further, we point out that the mere application of these models
is not always the right choice. Indeed, it comes out that these
deterministic models are not enough accurate, and “unlikely”
events can cause the loss of the datum. Finally, we provide
some final comments, as well as promising research directions.
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I. I NTRODUCTION

Unattended Wireless Sensor Networks (UWSNs) are
Wireless Sensor Networks characterized by the sporadic
presence of the sink. Sensors collect data from the field,
and then they try to upload all the information they currently
store as soon as the sink comes around [1]. Typical scenarios
take into account monitoring systems to detect the presence
(or the absence) of a subject, or the modification of a certain
physical parameter [2]. An example is a monitoring system
to detect poaching in a national park, as well as a monitoring
system to check the pressure of an underground pipeline. In
both these examples, a traditional Wireless Sensor Network
(WSN) is not suitable. Indeed, the dimension of the area is
prohibitive in the former case, while technical problems to
connect the sink with underground sensors arise in the latter.
Due to the absence of a direct and alive connection with the
sink, these networks are more subject to malicious attacks
than traditional WSNs. Without providing adequate security
mechanisms, an adversary could compromise a set of sensors
during the sink absence, deleting from the sensor memory
some data, and leaving the sensor. These activities could
be conducted without leaving evidence of their occurrence.
Hence, one of the relevant problems in an UWSNs is to
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provide a certain level of assurance about theinformation
survivability. Indeed, an adversary goal could be to prevent
a sensed information from reaching the sink.

Unattended WSNs, and more in general WSNs, can
generate periodic or event driven data. In the first case,
sensors send to the sink periodic packets regarding the area
they are monitoring, while in the second case they send a
packet only if a particular event is detected. The choice of
the model to use strongly depends on the purpose of the
network. When dealing with monitoring issues, probably an
event driven protocol is preferable. Indeed, on the one hand,
if the events to detect are sporadic, sensors can save a great
quantity of power. On the other hand, event driven protocols
hardly detect malfunctioning of the sensors, issue that is
easily addressable using periodic messages. In this paper,
we will consider scenarios where the event driven choice is
more effective.

To assure information survivability,cryptographicor non-
cryptographic approaches can be used. Often the choice
depends on the sensors that are going to be used in the
network. Cryptographic approaches are suitable for high-end
sensors, that are equipped with a pseudo number generator,
and that can rely on a considerable computational power.
Non-cryptographic approaches are suitable for low-cost sen-
sors, that do not have the capability to execute computa-
tional intensive calculation. Generally, facing up with non-
cryptographic protocols is more challenging, above all when
trying to minimize the power consumption. Indeed, these
protocols usually have to exchange more messages when
compared with those based on cryptographic techniques. In
this paper, we will focus exclusively on non-cryptographic
approaches for information survivability.

Contribution

The main contribution of this paper is to assess the fea-
sibility of epidemic models in order to enforce information
survivability in an UWSN. In particular, we first show that
modelling an UWSN via epidemic models is meaningful.
Later, we define two attacker models and show that two
specific epidemic models do well capture the introduced



attacker models. Further, we show that when trying to
minimize energy consumption, optimal parameters choice
in standard models do not assure the intended data surviv-
ability. This is generally due to “unlikely” events, that are
not considered in the deterministic epidemic modelling, but
that must be considered in our settings. Moreover, we strive
to derive the parameters that achieve these two conflicting
goals: to minimize the waste of bandwidth —and therefore
the energy consumption—introduced by such models; and,
to assure information survivability. Experiments do support
our analytical findings. Finally, we highlight some further
research directions.

Organization of the paper

Section II surveys related work in the area, while Sec-
tion III introduces the two epidemic models that will be
leveraged to model information survivability in UWSN—the
SIR model is discussed in Section III-A, while the SIS model
is discussed in Section III-B. In Section IV, we detail the
features of the UWSN that we are going to consider, and we
show that the transmission in this network corresponds to the
disease-spreading in epidemic models. Section V leverages
on the SIR and SIS model to set up the parameters that
assure information survivability, while Section VI highlights
the problems that have to be taken into account when using
these deterministic models. Finally, Section VII reports some
concluding remarks.

II. RELATED WORK

Epidemic models have already been leveraged in broad-
casting and gossiping protocols for WSNs [3], but our target
is quite different: rather than having each sensor storing the
datum, we are interested in thatat leastone sensor stores it.

Kermack and Mckendrick [4] used for the first time
a mathematical formulation to predict the spreading of
diseases within a population. The mathematics of such
models has been deeply used in several network and com-
puter science related solutions. The first and more direct
application involves flooding protocols: The information is
propagated in a manner rather similar to the way a viral
infection spreads in a biological population. Demers et
al. [5] firstly recognized the power of these protocols, and
since that moment many broadcasting and flooding protocols
strongly rooted on those assumptions have been proposed. A
comparison of them can be found in [3]. Other approaches
use epidemiological model to analyze virus spreading in
wireless sensor networks [6], [7].

The previously cited papers focus on information spread-
ing, in particular on either information broadcasting or flood-
ing. However, we are not interested in providing the whole
network with a given information: we would assure the infor-
mation survivability in UWSN using the less possible waste
of energy. Data-centric storage protocols study a similar
problem usingnetwork coding. In this case information and

coding theory is involved with the intent to combine many
packets together for transmission [8], [9]. These techniques
are more performing than simple data replication when
bandwidth and sensor buffers are limited, but they introduce
a time delay and a computational overhead. Further, it should
be taken into account that bandwidth requirement is not such
a limiting issue in event driven networks, should data be
generated only sporadically. Therefore, in our settings itis
preferable to design a replication scheme that allows the
careful selection of the replication rate assuring at the same
time data survivability and limited power consumption and
bandwidth usage.

UWSNs have been introduced by Di Pietro et Al. [1]. This
work has been then extended in [10] to face an adversary that
indiscriminately erases all sensor data, and then in [11] cryp-
tographic techniques that prevent the adversary from recog-
nizing data that it aims to erase have been introduced. Sensor
cooperation to achieve self-healing in stationary UWSNs
has been explored in [12] and [13]. Almost all these works
require sensors with some cryptographic ability. Instead,we
propose a straightforward non-cryptographic technique that
use a simple replication approach without assuming such
a prerequisite. Chakrabarti et Al. [14], assuming link and
sensor fault probabilities, focus on the information survival
threshold in sensors and P2P networks. They analyze the
conditions that lead to a quick spread or quick extinction
of the datum, but the authors neither consider the presence
of an attacker, not take into account power consumption.
Finally, note that a detailed characterization of the SIS model
is provided in [15].

III. E PIDEMIC MODELS

In biology, when studying an infectious disease at the
population scale there are basically two approaches: the
stochastic and the deterministic one. Stochastic models can
accurately describe fluctuations, chance variation in risks
of exposure, and other factors, but they may become very
complex and laborious to set up. In general, it is hardly
possible to explain the dynamic of the disease. Instead,
deterministic models describe in detail, on the average, the
dynamic of the disease at the population scale, fitting very
large populations. We will focus on deterministic models.

Generally, in deterministic epidemic models, a population
of n individuals is partitioned into several compartments,
and the spreading of the disease is taken into consideration.
Given the transition probabilities between any two com-
partments, it is possible to predict the evolution of these
systems as times go by. In the following, we introduce two
of these models, that are illustrated in Figure 1. In each
instant of timet, we will useX(t) to indicate the number
of individuals that are in a compartmentX , while with
x(t) = X(t)/n we will indicate the quantity representing
the fraction of individuals in that compartment.



(a) SIR

(b) SIS

Figure 1. Epidemic models.

A. SIR

The SIR model [16] is represented in Figure 1(a). It as-
sumes three compartments named Susceptibles (S), Infected
(I) and Recovered (R). A susceptible individual becomes
infected with a certain probability (α) if it comes in contact
with an infected individual, while an infected individual
could recover with probabilityβ. Therefore, the fraction
of individuals that can contract the disease at timet is
proportional toαi(t)s(t), while the fraction of individuals
that becomes recovered at timet is proportional toβi(t).
Other transitions between compartments are not possible.
Thus, the evolution of the system is completely described
by the following three differential equations:

s′(t) = −αs(t)i(t) (1)

i′(t) = αs(t)i(t) − βi(t) (2)

r′(t) = βi(t) (3)

This system is non-linear, and it does not admit a generic
analytic solution. However, significant results can be derived
analytically. Note thats′(t)+ i′(t)+r′(t) = 0, and therefore
S(t) + I(t) + R(t) = n. By dividing the first differential
equation by the third, separating the variables and integrating
we get:

s(t) = s(0)e−
α
β
(r(t)−r(0))

The valueα
β

is thebasic reproduction numberand it is often
indicated withR0. It plays a crucial role in the dynamic of
the system. Indeed, it holds true that ifα

β
> 1

s(0) theni′(0) >
0, and there will be an epidemic outbreak with an increase
in the number of the infectious. The Basic Reproduction
Number is a metric that is useful also in other models to
determine whether or not an infectious disease will spread
through a population. In general terms, it is the mean number
of secondary cases a typical single infected case will causein
a population with no immunity to the disease in the absence
of interventions to control the infection.

B. SIS

Another well known epidemic model is the SIS [4]. It
assumes only two compartments named Susceptibles (S) and

Infected (I). Transitions between these compartments are
represented in Figure 1(b). An individual that is susceptible
to a disease becomes infected with a certain probability
(α), while an infected individual immediately becomes sus-
ceptible once (andif) it is cured of an infection (which
happens with probabilityβ). Note that a healthy individual
can contract a disease only if it is in contact with a sick one.
Thus, the evolution of this system is completely described
by the following two differential equations:

i′(t) = αs(t)i(t) − βi(t) (4)

s′(t) = βi(t)− αs(t)i(t) (5)

When considering a population that does not change during
time, s′(t) = 1 − i′(t). Therefore, equations 4 and 5 are
not independent, and to study their behavior it is enough
to study only one of them. Equation 4 has the following
general solution:

i(t) = −
(α− β)

et(β−α)+c(α−β) − α
(6)

wherec is a constant that depends on the initial conditions.
Therefore, using Equation 6, it is possible to predict the
number of sick individuals at timet, and thereby the number
of healthy individuals.

IV. M ODELING THE INFORMATION SPREAD

A. Network, Adversary, and Sink models

We consider an Unattended WSN composed byn sensors.
A secure routing protocol allows to exchange message
between all the pairs of sensors belonging to the network.
To simplify the analysis, we consider the survivability of
a single datum initially sensed by one or a little subset of
sensors. The evolution time is partitioned in rounds: in each
round both the sensors than the attacker play their game.
Sensors will use a pure replication approach to preserve the
information, while the attacker will try to compromise them
with the final target to completely erase the information from
the network before the sink collects it. We will indicate
with S(t) the number of sensors that do not possess the
datum at timet, and with I(t) the number of sensors
possessing it. Instead, withR(t) we will indicate the number
of sensors that have been destroyed by the attacker at time
t. With the notations(t), i(t) or r(t) we will indicate the
fraction of nodes belonging to the corresponding sets, that
is: s(t) = S(t)

n
, i(t) = I(t)

n
, r(t) = R(t)

n
. In this paper,

we will take into account two kind of attackers:ADVsimple
that is able to destroy sensors, andADVstealth that is able to
erase the datum without destroying the sensor, and without
changing its behavior. We will see that the system composed
by n sensors andADVsimple can be modelled with the SIR.
WhenADVsimple is replaced withADVstealth, the system can
be modeled with the SIS model. In the following, when the
context is clear, we writei, s or r instead ofi(t), s(t) or
r(t).



UWSN are characterized by the presence of an intermit-
tent trusted collection point, also calledintermittent sink. we
will consider an intermittent sink that in each round is able
to contact and check out only a subset of all the sensors
belonging to the network. More specifically, in each round
it collects the datum from each node with probabilityγ.

B. Sensors model

The behavior of the nodes belonging to the UWSN is sim-
ple: Data is transmitted by the subset of sensors possessing
it, to other sensors randomly selected among those belonging
to the network. In particular, each sensor that currently stores
the datum will transmit it with probabilityα

n
. The following

theorem shows that this behavior corresponds to the infective
process (with transition rateα) used in the SIR and in the
SIS epidemic models.

Theorem 4.1:Given a wireless sensor network composed
by n sensor, if the fraction of sensors that possess a datum
is equal toi, and if each sensor forward the datum with
probability α

n
, the valuesiα is a good approximation of

the probability that the datum reaches a sensor that do not
possess it, wheres is the fraction of sensors that do dot
possess the datum.

Proof: A sensorNa obtains the information during
roundt if it did not possess it before, and if at least one of
its neighbors forwarded the datum to it during that round.
Let us indicate withPr[A] the latter probability. It holds true
thatPr[A] = 1−Pr[B], whereB is the event “no sensor sent
the datum toNa”. Since there arein sensors that currently
possess the datum,Pr[B] =

(

1− α
n

)in
, and therefore

Pr[A] =
(

1−
(

1− α
n

)in
)

. The probability thatNa does
not possess the datum is simplys. So, the probability that
the datum reaches a sensor that do not possess it is

s ∗

(

1−
(

1−
α

n

)in
)

(7)

Now note that α
n

is a real number close to 0, indeedα
is contained in the interval[0, 1], while n >> 1. Us-
ing the binomial approximation, Equation 7 is equal to:
s ∗

(

1−
(

1− inα
n

))

= s ∗ i ∗ α, concluding the proof.

V. USING EPIDEMIC MODELS IN UWSNS

We will now show how to assure the information sur-
vivability in an UWSN leveraging on the epidemic models
introduced in Section III. Depending on the type of attacker,
the UWSN scenario will be modelled either with the SIR or
with the SIS.

A. SIR in Unattended Wireless Sensor Networks

We now consider the sensor network model described
in Section IV-A, in presence of an theADVsimple attacker:
It is able to individuate the sensors containing the target
information, and to destroy each of them with a certain
probability β. In each roundt, we will indicate withR(t)
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Figure 2. SIR: Comparing the SIR model forecasting with our experi-
mental results. Here,α = 0.605, β = 0.5, n = 100 andI(0) = 10.

the number of sensors that have been destroyed by the
attacker until roundt. Theorem 4.1 proves that if each sensor
forwards the information with probabilityα

n
, this process

corresponds to an epidemic contagion with infective rate
equal toα. Further, sensors can be destroyed by the attacker
with probability βi, indeedβ is the probability that the
attacker destroys a sensor, andi is the number of sensors
possessing the information. Hence, the described system
(composed byn sensors and one adversary that behaves
as above) can be modelled with the SIR epidemic model
(equations 1 to 3). Here, the datum corresponds to a disease.
Each healthy subject (sensor) can contract the disease (the
datum) from a sick individual (a sensor that already has the
datum) with a certain probabilityα. The adversary, instead,
corresponds to the process of recovering from the disease
(or to pass-away). A recovered subject (that is, a sensor that
has been destroyed in a previous round) cannot re-contract
the same disease (that is, re-acquire the datum). Figure 2
compares the results of a simulation executed in a network
composed by100 sensors, with the forecasting of the SIR.
The line indicated with “Simulator Mean” represents the
mean over100 measurements, whereα is set equal to0.6, β
to 0.5, andI(0) = 10. It can be seen that our model exactly
matches the SIR prediction.

Since the SIR model well describes this scenario, it is
possible to use it in order to forecast the survivability of the
datum in each roundt. To assess this, we will introduce an
analysis of the conditions that can produce an information
outbreak with an increase in the number of the sensors
storing the information. To study the conditions that can
produce an information outbreak, it is needed to study the
sign ofi′(t) whent = 0. The expressioni′(0) can be written
asi′(0) = i(0)α(s(0)− β

α
), and sincei(0) andα are greater

than or equal to 0, the sign depends on the values(0)− β
α

.
If s(0) = n−1

n
, that is only one sensor out ofn posses the

information at timet = 0, then we will have an information
outbreak only whenα > βn

n−1 . This result can be used
to set the replication rate once we forecast the maximum
compromising powerβ of an adversary.
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Figure 3. SIS: Comparing the SIS model forecasting with our experimental
results.

B. SIS in Unattended Wireless Sensor Networks

Considering the same network described in Section IV-A,
let us now to take into account the stealthy attacker
ADVstealth: It will erase all the data a sensor stores, but
without changing its behavior neither destroying it. Sinceit
does not change the behavior of the sensors, when a node is
attacked it will loose the information, but in the subsequent
steps it can re-acquire it. The described system (composed
by n sensors and one adversary that behaves as above)
can be modeled with the SIS epidemic model (equations 4
and 5). Indeed, Theorem 4.1 assures that the transmission
corresponds to the infection process of the SIS epidemic
model. The adversary, instead, corresponds to the process of
healing from the disease. A healed subject (that is, a sensor
that has been in the compromised status in a previous round)
can then re-contract the same disease (that is, re-acquire the
datum). In Figure 3, we compared the SIS model forecasting
(Equation 6), with the result of a simulation over a network
of n = 100 sensors.

In the SIS model there are two equilibrium points, called
steady states. When a steady state is reached, the rate of
sensors possessing the information will remain indefinitely
constant. We will indicate these two steady states with
STEADY0 and STEADY1. This states are reached when
i′(t) = 0. It can be proved that STEADY0 is reached when
i(t) = 0, while STEADY1 is reached wheni(t) = 1 − β

α
.

Further, it can be proved that whenα > β the system will
reach STEADY1. Note that this aspect is relevant from the
point of view of the information insurance because it means
that the information will became endemic: The network will
never loose it.

VI. PROBLEMS OF THE DETERMINISTIC MODELLING

Epidemic models can be used to forecast the behavior
of an UWSN. Since these models can be described with
differential equations that can be solved (either analytically
or numerically), several observations about the set up of a
network can be made. For example, we showed that it is
possible to study the conditions that have to be satisfied
to assure the information survivability. However, one aspect
that must be taken into consideration is the minimization
of the energy consumption. In UWSNs, like in WSNs, it

is important to minimize the communications among the
sensors. Therefore, it is important to study the conditions
that can assure the information survivability, and at the same
time the minimal power consumption.

In both the epidemic models we analyzed, saving energy
corresponds to select the minimalα, once figured out which
is the the maximum compromising power of the adversary.
However, not always this is the best choice: Epidemic
models do not take into account “unlikely” events. Let us
consider for example the SIS model. After the first round,
STEADY0 is an “absorbing” state: The transition probability
to move away from the state STEADY0 is 0. Indeed, it is
possible to move away from it only in the first round, that is
t = 0 (only in this round the datum is generated). Since we
want to minimizeα, we will use a value greater thanβ (but
very close to it). The system will then reach steady state
STEADY1, wherei(t) =

(

1− β
α

)

. With these settings,i(t)

will be close to 0 in each roundt. Unfortunately, wheni(t)
is close to 0, a statistical fluctuation can force the system to
enter STEADY0, and the prediction of endemicity (that is,
the assurance that information will survive) will be violated.
Hence, it is important to further investigate the problem
and to give probabilistically sound bounds that assure the
information survivability, even whenα is minimized.

Note that the SIR model has a similar problem wheni(t)
is close to 0. It is highlighted in Figure VI. In particular,
Figure 4(a) illustrates the prediction of the SIR model
compared with the results of our simulator whenI(0) = 5. It
can be seen that the prediction of the model and the results of
the simulations are slightly different, and unfortunatelythe
results of the simulations are worse than the SIR prediction.
Figure 4(b) shows that whenS(0) = 1 this phenomenon is
even more relevant. Also in this case the problem is that
“unlikely” events can force the system to loose forever the
datum. A possible solution can be for example to use a
higherα for the first l replication steps in order to assure
to reach a status whereS(l) is large enough with high
probability.

VII. C ONCLUSION

We modeled the information survivability in UWSNs us-
ing an approach inspired by the epidemic domain. However,
we also pointed out that these approaches do not take into
account “unlikely” events that can induce the loss of the
datum. In particular, we investigated two epidemic models
to derive the conditions that can assure the survivability of
the datum in presence of two different types of attackers—
introduced in this paper. We showed that the two selected
epidemic models well adapt to the UWSN scenario.
The approach introduced in this paper to model information
survivability in UWSNs paves the way for further investiga-
tions in the UWSN domain. For instance, assessing bounds
on the probability of the events that can compromise the
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(a) Information survivability in the SIR biologically in-
spired model starting withI(0) = 5.
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Figure 4. SIR in UWSNs: Problems that can arise without selecting the
appropriate parameters.

information survivability, while taking into consideration
energy and quality of service issues.
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