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Abstract—One of the most relevant issues pertaining UWSN  provide a certain level of assurance about ihf@rmation
is to guarantee a certain level of information survivability,  survivability. Indeed, an adversary goal could be to prevent
even in presence of a powerful attacker. In this paper, we a sensed information from reaching the sink

provide a preliminary assessment of epidemic-domain insped g
approaches to model the information survivability in UWSN. Unattended WSNs, and more in general WSNs, can

In particular, we show that epidemic models can be used to set generate periodic or event driven data. In the first case,
up the parameters that allow the information to survive, on@  sensors send to the sink periodic packets regarding the area

estimated the maximal compromising power of the attacker.  they are monitoring, while in the second case they send a
Further, we point out that the mere application of these modés packet only if a particular event is detected. The choice of

is not always the right choice. Indeed, it comes out that thes h del v d d h f th
deterministic models are not enough accurate, and “unlikel” the model to use strongly depends on the purpose of the

events can cause the loss of the datum. Finally, we provide Nnetwork. When dealing with monitoring issues, probably an
some final comments, as well as promising research directisn  event driven protocol is preferable. Indeed, on the one hand

if the events to detect are sporadic, sensors can save a great
Keywords-Unattended Wireless Sensor Network, Epidemic quantity of power. On the other hand, event driven protocols

Models; Data Survivability. hardly detect malfunctioning of the sensors, issue that is
easily addressable using periodic messages. In this paper,
I. INTRODUCTION we will consider scenarios where the event driven choice is

Unattended Wireless Sensor Networks (UWSNs) areénore effective.
Wireless Sensor Networks characterized by the sporadic TO assure information survivabilitgryptographicor non-
presence of the sink. Sensors collect data from the fieldcryptographic approaches can be used. Often the choice
and then they try to upload all the information they curngntl depends on the sensors that are going to be used in the
store as soon as the sink comes around [1]. Typical scenarié$twork. Cryptographic approaches are suitable for higth-e
take into account monitoring systems to detect the presend€nsors, that are equipped with a pseudo number generator,
(or the absence) of a subject, or the modification of a certaind that can rely on a considerable computational power.
physical parameter [2]. An example is a monitoring systenNon-cryptographic approaches are suitable for low-cast se
to detect poaching in a national park, as well as a monitoring®'s. that do not have the capability to execute computa-
system to check the pressure of an underground pipeline. [#onal intensive calculation. Generally, facing up withnro
both these examples, a traditional Wireless Sensor Network'yPtographic protocols is more challenging, above allmhe
(WSN) is not suitable. Indeed, the dimension of the area i$Ying to minimize the power consumption. Indeed, these
prohibitive in the former case, while technical problems toProtocols usually have to exchange more messages when
connect the sink with underground sensors arise in the.lattecompared with those based on cryptographic techniques. In
Due to the absence of a direct and alive connection with théhis paper, we will focus exclusively on non-cryptographic
sink, these networks are more subject to malicious attack8PpProaches for information survivability.
than traditional WSNs. Without providing adequate segurit Contributi
mechanisms, an adversary could compromise a set of sensorgn ribution
during the sink absence, deleting from the sensor memory The main contribution of this paper is to assess the fea-
some data, and leaving the sensor. These activities couRibility of epidemic models in order to enforce information
be conducted without leaving evidence of their occurrenceSurvivability in an UWSN. In particular, we first show that

Hence, one of the relevant problems in an UWSNSs is tgnodelling an UWSN via epidemic models is meaningful.
Later, we define two attacker models and show that two

* He is also with CNR-IIT Security Group, Pisa, Italy. specific epidemic models do well capture the introduced
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attacker models. Further, we show that when trying tocoding theory is involved with the intent to combine many
minimize energy consumption, optimal parameters choicgackets together for transmission [8], [9]. These techesqu
in standard models do not assure the intended data surviare more performing than simple data replication when
ability. This is generally due to “unlikely” events, thatear bandwidth and sensor buffers are limited, but they intreduc
not considered in the deterministic epidemic modelling, bu a time delay and a computational overhead. Further, it shoul
that must be considered in our settings. Moreover, we strivee taken into account that bandwidth requirement is not such
to derive the parameters that achieve these two conflicting limiting issue in event driven networks, should data be
goals: to minimize the waste of bandwidth —and thereforegenerated only sporadically. Therefore, in our settings it
the energy consumption—introduced by such models; andyreferable to design a replication scheme that allows the
to assure information survivability. Experiments do suppo careful selection of the replication rate assuring at theesa
our analytical findings. Finally, we highlight some further time data survivability and limited power consumption and
research directions. bandwidth usage.

UWSNSs have been introduced by Di Pietro et Al. [1]. This
work has been then extended in [10] to face an adversary that

Section Il surveys related work in the area, while Sec-indiscriminately erases all sensor data, and then in [ij-cr
tion 1l introduces the two epidemic models that will be tographic techniques that prevent the adversary from recog
leveraged to model information survivability in UWSN—the nizing data that it aims to erase have been introduced. $enso
SIR model is discussed in Section Ill-A, while the SIS modelcooperation to achieve self-healing in stationary UWSNs
is discussed in Section IlI-B. In Section IV, we detail the has been explored in [12] and [13]. Almost all these works
features of the UWSN that we are going to consider, and weequire sensors with some cryptographic ability. Insteesl,
show that the transmission in this network correspondseo thpropose a straightforward non-cryptographic techniqae th
disease-spreading in epidemic models. Section V leveragege a simple replication approach without assuming such
on the SIR and SIS model to set up the parameters that prerequisite. Chakrabarti et Al. [14], assuming link and
assure information survivability, while Section VI hightits  sensor fault probabilities, focus on the information suai
the problems that have to be taken into account when usinghreshold in sensors and P2P networks. They analyze the
these deterministic models. Finally, Section VIl repods®  conditions that lead to a quick spread or quick extinction
concluding remarks. of the datum, but the authors neither consider the presence
of an attacker, not take into account power consumption.
Finally, note that a detailed characterization of the SISleho

Epidemic models have already been leveraged in broads provided in [15].
casting and gossiping protocols for WSNs [3], but our target
is quite different: rather than having each sensor stoffireg t 1. EPIDEMIC MODELS
datum, we are interested in thetleastone sensor stores it.

Kermack and Mckendrick [4] used for the first time In biology, when studying an infectious disease at the
a mathematical formulation to predict the spreading ofpopulation scale there are basically two approaches: the
diseases within a population. The mathematics of suclstochastic and the deterministic one. Stochastic models ca
models has been deeply used in several network and comaccurately describe fluctuations, chance variation insrisk
puter science related solutions. The first and more direcdf exposure, and other factors, but they may become very
application involves flooding protocols: The informatian i complex and laborious to set up. In general, it is hardly
propagated in a manner rather similar to the way a virapossible to explain the dynamic of the disease. Instead,
infection spreads in a biological population. Demers etdeterministic models describe in detail, on the average, th
al. [5] firstly recognized the power of these protocols, anddynamic of the disease at the population scale, fitting very
since that moment many broadcasting and flooding protocol&@rge populations. We will focus on deterministic models.
strongly rooted on those assumptions have been proposed. AGenerally, in deterministic epidemic models, a population
comparison of them can be found in [3]. Other approachesf n individuals is partitioned into several compartments,
use epidemiological model to analyze virus spreading irend the spreading of the disease is taken into consideration
wireless sensor networks [6], [7]. Given the transition probabilities between any two com-

The previously cited papers focus on information spreadpartments, it is possible to predict the evolution of these
ing, in particular on either information broadcasting oofle  systems as times go by. In the following, we introduce two
ing. However, we are not interested in providing the wholeof these models, that are illustrated in Figure 1. In each
network with a given information: we would assure the infor- instant of timet, we will use X (¢) to indicate the number
mation survivability in UWSN using the less possible wasteof individuals that are in a compartmet¥, while with
of energy. Data-centric storage protocols study a similar(t) = X (¢)/n we will indicate the quantity representing
problem usingnetwork codingIn this case information and the fraction of individuals in that compartment.

Organization of the paper
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Infected (I). Transitions between these compartments are

° o ° represented in Figure 1(b). An individual that is suscéetib

to a disease becomes infected with a certain probability

@) SIR («), while an infected individual immediately becomes sus-
ceptible once (andf) it is cured of an infection (which
* happens with probabilitys). Note that a healthy individual
can contract a disease only if it is in contact with a sick one.
Thus, the evolution of this system is completely described
’ by the following two differential equations:
(b) SIS
. I (1) = as(t)i(t) — Bi(t) 4)
Figure 1. Epidemic models. s/(t) _ Bz(t) _ as(t)i(t) (5)
When considering a population that does not change during
A. SIR time, s’(t) = 1 — 4'(t). Therefore, equations 4 and 5 are

The SIR model [16] is represented in Figure 1(a). It as-Not independent, and to study their behavior it is enough
sumes three compartments named Susceptibles (S), Infectt@ study only one of them. Equation 4 has the following
(I) and Recovered (R). A susceptible individual becomeggeneral solution:
infected with a certain probabilityf if it comes in contact , (= B)
with an infected individual, while an infected individual it) = T et(B—a)tcla—B) _ 4 6)
could recover with probability3. Therefore, the fraction
of individuals that can contract the disease at timés

wherec is a constant that depends on the initial conditions.
Therefore, using Equation 6, it is possible to predict the

proportional toai(t)s(?), wh|I¢ th_e fracuon_ of |nd|V|<_juaIs number of sick individuals at timg and thereby the number
that becomes recovered at timds proportional toSi(t). P
of healthy individuals.

Other transitions between compartments are not possible.

Thus, the evolution of the system is completely described IV. MODELING THE INFORMATION SPREAD
by the following three differential equations: A. Network, Adversary, and Sink models
s'(t) = —as(t)i(t) (1) We consider an Unattended WSN composedtsgnsors.
N . . A secure routing protocol allows to exchange message
'"(t) = t)i(t) — Bi(t 2
z,( ) as(t)it) BZ,( ) @) between all the pairs of sensors belonging to the network.
r'(t) = pi(t) @) 10 simplify the analysis, we consider the survivability of

This system is non-linear, and it does not admit a generi@ Single datum initially sensed by one or a little subset of
analytic solution. However, significant results can bewsti ~ SENsors. The evolution time is partitioned in rounds:llrheac
analytically. Note that’(t)+4'(¢) +r'(t) = 0, and therefore round both_ the sensors thap the attacker play their game.
S(t) + I(t) + R(t) = n. By dividing the first differential Sensors will use a pure replication approach to preserve the

equation by the third, separating the variables and intiegra information, while the attacker will try to compromise them
we get; with the final target to completely erase the informatiomdfro

s(t) = 8(0)67%(7«@)4(0)) th.e network before the sink collects it. We will indicate
with S(t) the number of sensors that do not possess the
The value% is thebasic reproduction numbeand it is often  datum at timet, and with I(¢) the number of sensors
indicated withRy. It plays a crucial role in the dynamic of possessing it. Instead, wifR(¢) we will indicate the number
the system. Indeed, it holds true tha%if> SLO) theni’(0) > of sensors that have been destroyed by the attacker at time
0, and there will be an epidemic outbreaﬁ< with an increase. With the notations(t), i(¢) or r(¢) we will indicate the
in the number of the infectious. The Basic Reproductionfraction of nodes belonging to the corresponding sets, that
Number is a metric that is useful also in other models tois: s(t) = % i(t) = % r(t) = @. In this paper,
determine whether or not an infectious disease will spreadve will take into account two kind of attackersbVs;npie
through a population. In general terms, it is the mean numbethat is able to destroy sensors, atils;..1¢n that is able to
of secondary cases a typical single infected case will cause erase the datum without destroying the sensor, and without
a population with no immunity to the disease in the absencehanging its behavior. We will see that the system composed
of interventions to control the infection. by n sensors andDV,inpe can be modelled with the SIR.
WhenADVgipp1.e is replaced withADVgiea1:n, the system can
B. SIS be modeled with the SIS model. In the following, when the
Another well known epidemic model is the SIS [4]. It context is clear, we writé, s or r instead ofi(t), s(¢) or

assumes only two compartments named Susceptibles (S) antt).
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UWSN are characterized by the presence of an intermit- SR model
. . . . . AF N 4
tent trusted collection point, also calledermittent sinkwe TN
will consider an intermittent sink that in each round is able 008 - \\ 1
to contact and check out only a subset of all the sensors = ool \ ]
belonging to the network. More specifically, in each round \\
it collects the datum from each node with probability oot r 1
B. Sensors model I \\ |
The behavior of the nodes belonging to the UWSN is sim- % s 0 15w

Rounds

ple: Data is transmitted by the subset of sensors possessing
it, to other sensors randomly selected among those belgngirkigure 2. SIR: Comparing the SIR model forecasting with axpegi-
to the network. In particular, each sensor that currentiyest  mental results. Herex = 0.605, 8 = 0.5, n = 100 and I(0) = 10.

the datum will transmit it with probability>. The following

theorem shows that this behavior corresponds to the ingecti

process (with transition rate) used in the SIR and in the
SIS epidemic models. the number of sensors that have been destroyed by the

Theorem 4.1:Given a wireless sensor network composedattaCker until round. Theorem 4.1 proves that if each sensor

by n sensor, if the fraction of sensors that possess a datuf@rwards the information with probability, this process
is equal to7, and if each sensor forward the datum with corresponds to an epidemic contagion with infective rate
probability 2, the valuesia is a good approximation of equal toa. Fg.rtherr sensors can be destroyeq_by the attacker
the probability that the datum reaches a sensor that do ndfith probability 5i, indeed3 is the probability that the
possess it, where is the fraction of sensors that do dot attacker destroys a sensor, ané the number of sensors
possess the datum. possessing the information. Hence, the described system

Proof: A sensorA, obtains the information during (COmPposed byn sensors and one adversary that behaves
round if it did not possess it before, and if at least one of @S above) can be modelled with the SIR epidemic model
its neighbors forwarded the datum to it during that round.(€quations 1 to 3). Here, the datum corresponds to a disease.
Let us indicate witiPr[A] the latter probability. It holds true  Each healthy subject (sensor) can contract the disease (the
thatPr[A] = 1—Pr[B], whereB is the event “no sensor sent datum) from a sick individual (a sensor that already has the
the datum ta\,”. Since there areén sensors that currently datum) with a certain probability. The adversary, instead,
possess the datun®r[B] = (1— g)in and therefore corresponds to the process of recovering from the disease

ayin . (or to pass-away). A recovered subject (that is, a sensbr tha
Pr[4] = (1 - (1 N 5) ) The probability thaw‘?, does has been destroyed in a previous round) cannot re-contract
not possess the datum is simply So, the probability that {he same disease (that is, re-acquire the datum). Figure 2

the datum reaches a sensor that do not possess it is compares the results of a simulation executed in a network
an in composed byl00 sensors, with the forecasting of the SIR.
s* (1= (1 - g) (7) " The line indicated with “Simulator Mean” represents the

mean overl 00 measurements, wheteis set equal t@.6, 8
to 0.5, andI(0) = 10. It can be seen that our model exactly
matches the SIR prediction.

Now note that> is a real number close to O, indeed
is contained in the interval0, 1], while n >> 1. Us-
ing the binomial approximation, Equation 7 is equal to:

s% (1— (1—in2)) = s*ixa, concluding the proof. m Since the SIR model well describes this scenario, it is
possible to use it in order to forecast the survivability fod t
V. USING EPIDEMIC MODELS INUWSNSs datum in each round To assess this, we will introduce an

We will now show how to assure the information sur- @analysis of the conditions that can produce an information
vivability in an UWSN leveraging on the epidemic models outbreak with an increase in the number of the sensors
introduced in Section Ill. Depending on the type of attackerstoring the information. To study the conditions that can
the UWSN scenario will be modelled either with the SIR or Produce an information outbreak, it is needed to study the

with the SIS. sign ofi’(t) whent = 0. The expressioif (0) can be written
asi’(0) = i(0)a(s(0) — g), and since(0) and« are greater
A. SIR in Unattended Wireless Sensor Networks than or equal to 0, the sign depends on the valii — g_

We now consider the sensor network model describedf s(0) = "T—l that is only one sensor out af posses the
in Section IV-A, in presence of an th&DV,;npe attacker:  information at timet = 0, then we will have an information
It is able to individuate the sensors containing the targebutbreak only when > % This result can be used
information, and to destroy each of them with a certainto set the replication rate once we forecast the maximum
probability 5. In each round, we will indicate with R(t) compromising powep of an adversary.



Solution of the SIS Model
Simulation Mean -------

is important to minimize the communications among the
sensors. Therefore, it is important to study the conditions
that can assure the information survivability, and at thmesa
time the minimal power consumption.
In both the epidemic models we analyzed, saving energy
corresponds to select the minimal once figured out which
is the the maximum compromising power of the adversary.
However, not always this is the best choice: Epidemic
Figure 3. SIS: Comparing the SIS model forecasting with epeemental models do not take into account “unlikely” events. Let us
results. consider for example the SIS model. After the first round,
STEADY) is an “absorbing” state: The transition probability
) ) to move away from the state STEARQYs 0. Indeed, it is
B. SIS in Unattended Wireless Sensor Networks possible to move away from it only in the first round, that is
Considering the same network described in Section IV-A¢ = 0 (only in this round the datum is generated). Since we
let us now to take into account the stealthy attackemvantto minimizea, we will use a value greater thah(but
ADV.iea1tn: It Will erase all the data a sensor stores, butvery close to it). The system will then reach steady state

without changing its behavior neither destroying it. Siitce STEADY;, wherei(t) = (1 _ é), With these settingsi(t)

«

does not change the behavior of the sensors, when a node\{$| pe close to 0 in each rount Unfortunately, wheri(t)
attacked it will loose the information, but in the subsequenis ¢jose to 0, a statistical fluctuation can force the sysem t
steps it can re-acquire it. The described system (composgghier STEADY, and the prediction of endemicity (that is,
by n sensors and one adversary that behaves as abovgl assurance that information will survive) will be vialdt
can be modeled with the SIS epidemic model (equations ence, it is important to further investigate the problem
and 5). Indeed, Theorem 4.1 assures that the transmissigfyq 1o give probabilistically sound bounds that assure the
corresponds to the infection process of the SIS epidemigtormation survivability, even when is minimized.

model. The adversary, instead, corresponds to the profess o Note that the SIR model has a similar problem whg
healing from the disease. A healed subject (that is, & SeNSt ¢ose 1o 0. It is highlighted in Figure VI. In particular,
that has been in the compromised status in a previous roun(fﬂgure 4(a) illustrates the prediction of the SIR model
can then re-contract the same disease (that is, re-acteire tcompared with the results of our simulator whn) = 5. It

datum). In Figure 3, we compared the SIS model forecasting,, he seen that the prediction of the model and the results of
(Equation 6), with the result of a simulation over a networki,o simulations are slightly different, and unfortunatty

of n =100 sensors. results of the simulations are worse than the SIR prediction

In the SIS model there are two equilibrium points, Ca"edFigure 4(b) shows that whefi(0) = 1 this phenomenon is
steady statesWhen a steady state is reached, the rate 0L en more relevant. Also in this case the problem is that

sensors possessing the information will remain indefipitel “unlikely” events can force the system to loose forever the

constant. We will indicate these two steady states withyoyim. A possible solution can be for example to use a
STEADY, and STEADY. This states are reached when pigher, for the first/ replication steps in order to assure

7(t) = 0. It can be proved that STEADYis reached when " reach a status whers(l) is large enough with high
i(t) = 0, while STEADY; is reached wherni(t) = 1 — g. probability.
Further, it can be proved that when> 3 the system will

reach STEADY. Note that this aspect is relevant from the

point of view of the information insurance because it means

that the information will became endemic: The network will We modeled the information survivability in UWSNs us-

VII. CONCLUSION

never loose it. ing an approach inspired by the epidemic domain. However,
we also pointed out that these approaches do not take into
VI. PROBLEMS OF THE DETERMINISTIC MODELLING account “unlikely” events that can induce the loss of the

Epidemic models can be used to forecast the behaviadatum. In particular, we investigated two epidemic models
of an UWSN. Since these models can be described witho derive the conditions that can assure the survivability o
differential equations that can be solved (either anafliic  the datum in presence of two different types of attackers—
or numerically), several observations about the set up of @ntroduced in this paper. We showed that the two selected
network can be made. For example, we showed that it igpidemic models well adapt to the UWSN scenario.
possible to study the conditions that have to be satisfiedhe approach introduced in this paper to model information
to assure the information survivability. However, one aspe survivability in UWSNs paves the way for further investiga-
that must be taken into consideration is the minimizationtions in the UWSN domain. For instance, assessing bounds
of the energy consumption. In UWSNSs, like in WSNs, it on the probability of the events that can compromise the
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Figure 4. SIR in UWSNSs: Problems that can arise without sielgche
appropriate parameters.

information survivability, while taking into considerati
energy and quality of service issues.

ACKNOWLEDGMENTS

The authors would like to thank Riccardo Mariani for his
contribution to numerical simulations.

This work has been partially supported by: 1) the EU FP7

ICT project NESSoS (Network of Excellence on Engineer-
ing Secure Future Internet Software Services and Systems)
under the grant agreement n.256980; and, 2) the Prevention,
Preparedness and Consequence Management of Terrori
and other Security-related Risks Programme - Europea
Commission - Directorate-General Home Affairs, under the
ExTraBIRE project, HOME/2009/CIPS/AG/C2-065.

(1]

(2]

(3]

REFERENCES

R. Di Pietro, L. V. Mancini, C. Soriente, A. Spognardi,
and G. Tsudik, “Catch Me (If You Can): Data Survival
in Unattended Sensor Networks2008 Sixth Annual IEEE
International Conference on Pervasive Computing and Com-
munications (PerCom)pp. 185-194, Mar. 2008.

[4]

(5]

(6]

[7]

(8]

[9]

(10]

(11]

(12]

1)

(14]

(15]
R. Di Pietro, G. Oligeri, C. Soriente, and G. Tsudik, “8éag
mobile unattended wsns against a mobile adversRsiiable
Distributed Systems, IEEE Symposium pp. 11-20, 2010.

[16]

M. Akdere, C. Bilgin, O. Gerdaneri, |. Korpeoglu, O. Uls
and U. Cetintemel, “A comparison of epidemic algorithms
in wireless sensor networksComputer Communications
vol. 29, no. 13-14, pp. 2450-2457, Aug. 2006.

W. O. Kermack and A. G. Mckendrick, “A Contribution to the
Mathematical Theory of EpidemicsRoyal Society of London
Proceedings Series,Aol. 115, pp. 700-721, 1927.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemi
algorithms for replicated database maintenance,P@DC.
ACM, 1987, pp. 1-12.

S. Tang and B. L. Mark, “Analysis of virus spread in wirste
sensor networks: An epidemic mode2009 7th International
Workshop on Design of Reliable Communication Networks
pp. 8691, Oct. 2009.

P. De, Y. Liu, and S. K. Das, “Modeling Node Compro-
mise Spread in Wireless Sensor Networks Using Epidemic
Theory,” in WOWMOM ’06: Proceedings of the 2006 In-
ternational Symposium on on World of Wireless, Mobile
and Multimedia Networks Washington, DC, USA: IEEE
Computer Society, 2006, pp. 237-243.

Y. Lin, B. Li, and B. Liang, “Stochastic analysis of netvko
coding in epidemic routingJEEE Journal on Selected Areas
in Communicationsvol. 26, no. 5, pp. 794-808, June 2008.

W. Ren, J. Zhao, and Y. Ren, “Network coding based depend-
able and efficient data survival in unattended wireless@ens
networks,”JCM, vol. 4, no. 11, pp. 894-901, 2009.

R. Di Pietro, L. V. Mancini, C. Soriente, A. Spognardinca

G. Tsudik, “Data Security in Unattended Wireless Sensor
Networks,”IEEE Transactions on Computergl. 58, no. 11,
pp. 1500-1511, 2009.

——, “Playing hide-and-seek with a focused mobile ad-
versary in unattended wireless sensor networks)’ Hoc
Networks vol. 7, no. 8, pp. 1463-1475, Nov. 2009.

R. Di Pietro, D. Ma, C. Soriente, and G. Tsudik, “POSH:
Proactive co-Operative Self-Healing in Unattended Wagle
Sensor Networks,” inSRDS '08: Proceedings of the 2008
Symposium on Reliable Distributed System&Vashington,
DC, USA: IEEE Computer Society, 2008, pp. 185-194.

D. Ma and G. Tsudik, “DISH: Distributed Self-Healingfi
SSS '08: Proceedings of the 10th International Symposium
on Stabilization, Safety, and Security of Distributed Syt
Detroit, MI: Springer-Verlag, 2008, pp. 47-62.

D. Chakrabarti, J. Leskovec, C. Faloutsos, S. Madden,
C. Guestrin, and M. Faloutsos, “Information Survival Thres
old in Sensor and P2P NetworkdEEE INFOCOM 2007 -
26th IEEE International Conference on Computer Communi-
cations pp. 1316-1324, May 2007.

R. Di Pietro and N. V. Verde, “Epidemic data survivatyili

in unattended wireless sensor networks,Time Fourth ACM
Conference on Wireless Network Security (Wisec’'11), to ap-
pear.

E. Allman and J. Rhodedviathematical Models in Biology:
An Introduction Cambridge University Press, 2004.



