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Abstract—Radio frequency identification (RFID) technology
has many applications in inventory management, supply chain,
product tracking, transportation and logistics. One research issue
of practical importance is to search for a particular group of tags
in a large-scale RFID system. Time efficiency is a core factor that
must be taken into consideration when designing a tag search
protocol to ensure scalability. In this paper, we design a new
technique called filtering vector, which can significantly reduce
transmission overhead during search process, thereby shortening
search time. Based on this technique, we propose an iterative
tag search protocol. In each round, we filter out some tags
and eventually terminate the search process when the search
result meets the accuracy requirement. The simulation results
demonstrate that our protocol performs much better than the
best existing ones.

I. INTRODUCTION

Recent years have witnessed the rapid development of radio
frequency identification (RFID) technology. It is becoming
increasingly utilized in various applications, such as inventory
management, supply chain, product tracking, transportation and
logistics [1]–[5]. Generally speaking, a RFID system comprises
three components: one or multiple RFID readers, a large set
of RFID tags, and a backend server. Each tag has a unique
ID to identify the object it is attached to. Equipped with an
antenna, a tag is capable of transmitting and receiving radio
signals, through which communications with the readers are
achieved. Hence, the readers can collect the IDs and other
useful information from tags located in their coverage areas,
and then send the gathered data to the backend server for
further process.

This paper focuses on the tag search problem in large RFID
systems. We use an example to illustrate the problem. Suppose
a manufacturer suspects that some of its products may be
defective, but those products have already been distributed
in different warehouses. The manufacturer knows the IDs of
tags attached to those suspected products and wants to recall
them for further inspection. Thus the manufacturer asks for
tag search in each warehouse: Given a set of wanted tag IDs,
the problem is to search in the coverage area of a reader and
identify the tags that belong to the set. Note that there may exist
other tags in the area that do not belong to the set. To meet the
stringent delay requirements of real-world applications, time
efficiency is a critical performance metric for the RFID tag
search problem. In our example, it is highly desirable to make
the search quick in a busy warehouse as lengthy searching
process may interfere with other activities that move things in

and out of the warehouse. The only prior work studying this
problem is called CATS [6], which however does not work
under some common conditions (e.g., if the size of the wanted
set is much larger than the number of tags in the coverage area
of the reader).

The main contribution of this paper is a fast tag search
method based on a new technique called filtering vectors.
A filtering vector is a compact one-dimension bit array
constructed from tag IDs, which can be used not only for
tag filtration, but also for parameter estimation. Using the
filtering vectors, we design, analyze, and evaluate a novel
iterative tag search protocol, which progressively improves
the accuracy of search result and reduces the time for each
iteration to a minimum by using the information learned
from previous iterations. Given an accuracy requirement, the
iterative protocol will terminate once the search result meets
the accuracy requirement. We show that our protocol performs
much better than the CATS protocol and other alternatives that
we use for comparison. In particular, the new protocol is able
to work efficiently under conditions when the CATS protocol
no longer works.

The rest of this paper is organized as follows. Section II
gives the system model and the problem statement. Section III
briefly introduces the prior work. Section IV describes our
new protocol in detail. Section V evaluates the performance of
our protocol by simulations. Section VI presents some related
RFID work. Section VII draws the conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

In our model, a RFID system consists of multiple readers,
a large number of tags and a backend server. The tags
may be battery-powered active tags, or passive tags that are
powered by radio energy emitted from the reader. Each tag
has a unique 96-bit ID according to the EPC global Class-
1 Gen-2 standard [7]. A tag is able to communicate with
the reader wirelessly and perform some computations such as
hashing. The backend server is responsible for data storage
and information processing. It is capable of carrying out high-
performance computations. The reader and the backend server
are connected via a high speed wired or wireless link. They
can be regarded as an integrated unit, still called the reader for
simplicity.

In practice, the tag-to-reader (T ⇒ R) transmission rate and
the reader-to-tag (R ⇒ T ) transmission rate may be different



and subject to the environment. For example, as specified in the
EPC global Class-1 Gen-2 standard, the T ⇒ R transmission
rate is 40kbps ∼ 640 kbps in the FM0 encoding format or
5kbps ∼ 320kbps in the Miller modulated subcarrier encoding
format, while the R ⇒ T transmission rate is about 26.7kbps ∼
128kbps [7]. However, to simplify our discussions, we assume
the T ⇒ R transmission rate and the R ⇒ T transmission rate
are the same, and it is straightforward to adapt our protocol
for asymmetric transmission rates.

B. Time Slots

The RFID reader and the tags in its coverage area use a
framed slotted MAC protocol to communicate. We assume
that clocks of the reader and all tags in the RFID system are
synchronized by the reader’s signal. During each frame, the
communication is initialized by the reader in a request-and-
response mode, namely, the reader broadcasts a request with
some parameters to the tags and then waits for the tags to reply
in the subsequent time slots.

Consider an arbitrary time slot. We call it an empty slot if
no tag replies in this slot, or a busy slot if one or more tags
respond in this slot. Only one-bit information is needed for
distinguishing an empty slot from a busy slot: ‘0’ for an empty
slot with an idle channel and ‘1’ for a busy slot with a busy
channel. We denote the length of a slot for one-bit information
as ts.

Some prior RFID work needs another type of slots, carrying
96-bit IDs, whose length is denoted as tid.

C. Problem Statement

Suppose we are interested in a known set of tag IDs
X = {x1, x2, x3, · · · }, each xi ∈ X is called a wanted
tag. For example, the set may contain tag IDs on a certain
type of products under recall by a manufacturer. Let Y =
{y1, y2, y3, · · · } be the set of tags within the coverage area of
a RFID system (e.g., in a warehouse). Each xi or yi represents
a tag ID. The tag search problem is to search for which wanted
tags are present in the coverage area. Let W denote the subset
of wanted tags that are present in the coverage area. Since
every tag in W is a wanted tag, W ⊆ X . Since each tag in W
is in the coverage area, W ⊆ Y . Therefore, W = X ∩ Y . We
define the intersection ratio of X and Y as

RINTS =
|W |

min{|X|, |Y |}
. (1)

Exactly finding W can be expensive if X and Y are very
large, and it is much more efficient to find W approximately,
allowing small bounded error [6]. We take the approximate
approach in this paper. Our solution performs iteratively. Each
round rules out some tags in X when it becomes certain that
they are not in the coverage area (i.e., Y ), and it also rules
out some tags in Y when it becomes certain that they are
not wanted ones in X . These ruled-out tags are called non-
candidate tags. Other tags that remain possible to be in both X
and Y are called candidate tags. At the beginning, the search
result is initialized to all wanted tags X . As our solution is
iteratively executed, the search result shrinks towards W when
more and more non-candidates are ruled out.

Let W ∗ be the final search result. We have the following
two requirements:

1) All wanted tags in the coverage area must be detect,
namely, W ⊆ W ∗.

2) A false positive occurs when a tag in X −W is included
in W ∗, i.e., a tag not in the coverage area is kept in the
search result by the reader. The false positive ratio is the
probability for any tag in X −W to be in W ∗ after the
execution of a search protocol. We want to bound the
false positive ratio by a pre-specified system requirement
PREQ, whose value is set by the user. In other words, we
expect

|W ∗ −W |
|X −W |

≤ PREQ. (2)

III. BACKGROUND

We discuss some prior work that can be applied to the tag
search problem.

A. Tag Identification

Plenty of RFID research concentrates on designing efficient
tag identification protocols that collect the IDs of tags in a
RFID systems. These protocols collect all tag IDs in Y and
thus can be used to solve the tag search problem simply by
computing the intersection X ∩ Y once Y is known. Each
96-bit ID transmission from a tag to the reader takes a time
slot of tid, which is much longer than the one-bit slot ts. Due
to collision, the lower bound for ALOHA-based identification
protocols such as DFSA [8] and EDFSA [9] to collect all tag
IDs is e×|Y | time slots, where e is the natural constant. Hence,
when a tag identification protocol is used, the search time is
at least

Tidentify = e× |Y | × tid. (3)

B. Baseline Protocol

A baseline protocol for the tag search problem is given in
[6], which is much faster than the tag identification protocols
when |X| ≪ |Y |. Instead of collecting all IDs in Y , the
reader broadcasts the IDs in X one by one. Each tag checks
whether the received ID is identical to its own ID. If so, the
tag transmits a one-bit short response to notify the reader about
its presence; otherwise, the tag keeps silent. Hence, the search
time of baseline protocol is

Tbaseline = |X| × (tid + ts). (4)

The baseline protocol improves time efficiency due to the
following reasons:

1) It avoids collecting all IDs of a large tag set Y when
|Y | ≫ |X|.

2) It eliminates collision incurred in the tag identification
protocols.

However, the baseline protocol also has serious limitations. It
does not work well when |X| ≫ |Y |. The energy consumption
of tags (particularly when active tags are used) is significant
because tags in Y have to continuously listen to the channel
and receive a large number of IDs until its own ID is received.



C. CATS Protocol

To further reduce the search time, Zheng et al. propose a
two-phase protocol named Compact Approximator based Tag
Searching protocol (CATS) [6], which is the most efficient
solution for the tag search problem to date.

The main idea of the CATS protocol is to encode tag IDs
into an L1-bit Bloom filter and then transmit the Bloom filter
instead of the IDs themselves. In its first phase, the reader
encodes all IDs of wanted tags in X into a Bloom filter, and
then broadcasts this filter together with some parameters to
tags in the coverage area. Having received this Bloom filter,
each tag tests whether it belongs to the set X . If the answer is
negative, the tag is a non-candidate and will keep silent for the
remaining time. After the filtration of phase one, the number of
candidate tags in Y is reduced. During the second phase, the
remaining candidate tags in Y report their presence in a second
L2-bit Bloom filter constructed from a frame of time slots ts.
Each candidate tag transmits in k slots that it is mapped to.
Listening to channel, the reader builds the Bloom filter based
on the status of the time slots: ‘0’ for an idle slot where no
tag transmits, and ‘1’ for a busy slot where at least one tag
transmits. Using this Bloom filter, the reader conducts filtration
for the IDs in X to see which of them belong to Y , and the
result is regarded as X ∩ Y .

With a pre-specified false positive ratio requirement PREQ,
the CATS protocol uses the following optimal settings for L1

and L2:

L1 = |X| logϕ
(
− α|X|
β|Y | lnPREQ

)
, (5)

L2 =
|X|
lnϕ

(
lnPREQ − α

β

)
, (6)

where ϕ is a constant which equals 0.6185, α and β are
constants pertaining to R ⇒ T transmission rate and T ⇒ R
transmission rate respectively. Because ϕ < 1, it is required
that |X| < −β

α |Y | lnPREQ; otherwise, L1 will become
negative. When α = β, i.e. the R ⇒ T transmission rate
and the T ⇒ R transmission rate are identical, the total search
time of the CATS protocol is:

TCATS = (L1 + L2)× ts

= |X|
(
logϕ

(
−|X|

|Y | lnPREQ

)
+

lnPREQ − 1

lnϕ

)
× ts.

(7)

IV. A FAST TAG SEARCH PROTOCOL BASED ON FILTERING
VECTORS

In this section, we propose an Iterative Tag Search Protocol
(ITSP) to solve the tag search problem in large-scale RFID
systems.

A. Motivation

Although the CATS protocol takes a significant step forward
in solving the tag search problem, it still has several important
drawbacks. First, when optimizing the Bloom filter sizes L1

and L2, CATS approximates |X ∩ Y | simply as |X|. This
rough approximation may cause considerable overhead when
|X ∩ Y | deviates significantly from |X|.

Second, it assumes that |X| < |Y | in its design. In reality,
the number of wanted tags may be far greater than the number
in the coverage area of a RFID system. For example, there
may be a huge number |X| of tagged products that are under
recall, but as the products are distributed to many warehouses,
the number |Y | of tags in a particular warehouse may be much
smaller than |X|.

Third, the performance of CATS is sensitive to the false
positive ratio requirement PREQ. The performance deteriorates
when the value of PREQ is very small. While the simulations
in [6] set PREQ = 5%, its value may have to be much smaller in
some practical cases. For example, suppose |X| = 100, 000,
and |W | = 1, 000. If we set PREQ = 5%, the number of
wanted tags that are falsely claimed to be in Y by CATS will
be up to |X −W | × PREQ = 4, 995, far more than the 1,000
wanted tags that are actually in Y .

We will show that an iterative way of implementing Bloom
filters is much more efficient than the classical way that the
CATS protocol adopts.

B. Iterative Implementation of Bloom Filter

A Bloom filter is a compact data structure that encodes
the membership for a set of items. To represent a set S =
{e1, e2, · · · , em} using a Bloom filter, we need a bit array of
length l in which all bits are initialized to zeros. To encode
each element e ∈ S, we use k hash functions, h1, h2, · · · , hk,
to map the element randomly to k bits in the bit array, and
set those bits as ones. For membership lookup of an element
b, we again map the element to k bits in the array and see
if all of them are ones. If so, we claim that b belongs to S;
otherwise, it must be true that b /∈ S. A Bloom filter may cause
false positives: a non-member element is falsely claimed as a
member in S. The probability for a false positive to occur in
a membership lookup is given as follows [10]:

PB =

(
1−

(
1− 1

l

)km
)k

≈
(
1− e−km/l

)k
. (8)

When k = ln 2 × l
m , PB is minimized to

(
1
2

)k
=
(
1
2

)ln 2 l
m .

In order to achieve a target value of PB , the minimum size
of the filter is − lnPB

(ln 2)2m. CATS sends one Bloom filter from
the reader to tags and another Bloom filter from tags back to
the reader. Suppose we want to have PB = 0.001 for the first
Bloom filter that encodes X . Since m = |X|, the minimum
size of the filter becomes 14.4 × |X| bits, where each bit is
implemented by a time slot ts. Similarly, the size of the second
filter is also related to its target false-positive probability.
Below we provide motivation for the idea of filtering vectors
that can significantly reduce the filter size.

A Bloom filter can be implemented in a segmented way.
We can divide the bit array into k equal segments, and the ith

hash function will map each element to a random bit in the ith

segment, for i ∈ [1..k]. We name each segment as a filtering
vector. The number of bits in a segment is l/k. The following
formula gives the false-positive probability of a single filtering
vector, i.e., the probability for a non-member to be hashed to



h1(a) h2(b) h1(b)h2(a)

0 0 0 01 1 1 1

Bloom filter

h1(a) h1(b) h2(b)h2(a)

0 0 0 01 1 1 1

Filtering vetor one Filtering vetor two

Fig. 1. Bloom filter and filtering vectors

a ‘1’ bit in the vector:

PFV = 1−
(
1− 1

l/k

)m

≈ 1− e−km/l. (9)

Since there are k independent segments, the overall false-
positive probability of the Bloom filter is

P ′
B = (PFV )

k ≈
(
1− e−km/l

)k
, (10)

which is approximately the same as the result in (8). This
means the two ways of implementing the Bloom filter have
similar effect. The value P ′

B is also minimized when k =
ln 2 × l

m , and thus the optimal size of each filtering vector
is

l

k
=

m

ln 2
, (11)

which results in
PFV ≈ 1

2
. (12)

Hence, each filtering vector can filter out half of non-members.
Fig. 1 illustrates the concept of filtering vectors. Suppose we

have two elements a and b, two hash function h1 and h2, and
an 8-bit bit array. First, suppose h1(a) mod 8 = 1, h1(b) mod
8 = 7, h2(a) mod 8 = 5, h2(b) mod 8 = 2, and we construct a
Bloom filter for a and b in the upper half of the figure. Next,
we divide the bit array into two 4-bit filtering vectors (note 4-
bit is not the optimal size of a filtering vector in this case, we
just use it for illustration), and apply h1 on the first segment
and h2 on the second segment. Since h1(a) mod 4 = 1, h1(b)
mod 4 = 3, h2(a) mod 4 = 1, h2(b) mod 4 = 2, we build the
two filtering vectors in the lower half of the figure.

In this work, we use filtering vectors in a novel iterative way:
The Bloom filters between the reader and tags are exchanged
in rounds; only one filtering vector is exchanged in each round,
and the size of filtering vector is continuously reduced in
subsequent rounds, such that the overall size of the whole
Bloom filter is much reduced. Below we use a simplified
example to illustrate the idea: Suppose there is no wanted tag
in the coverage area of a RFID reader, namely, X ∩ Y = ∅.
In round one, we firstly encode X in a filtering vector of size
|X|/ ln 2 through a hash function h1, and broadcast the vector
to filter tags in Y . Using the same hash function, each candidate
tag in Y knows which bit in the vector it is mapped to, and
it only needs to check the value of that bit. If the bit is zero,
the tag becomes a non-candidate and will not participate in
the execution further. The filtering vector reduces the number
of candidate tags in Y to about |Y | × PFV = |Y |/2. Then a

filtering vector of size |Y |/(2 ln 2) is sent from the remaining
candidate tags in Y back to the reader in order to filter X . After
filtering, the number of candidate tags in X is reduced to about
|X| × PFV = |X|/2. Only the candidate tags in X need to
be encoded in the next filtering vector, using a different hash
function. Hence, in the second round, the size of the filtering
vector from the reader to tags is reduced by half to |X|/(2 ln 2),
and similarly the size of the filtering vector from tags to the
reader is also reduced by half to |Y |/(4 ln 2). Repeating the
same process, it is easy to see that, in the ith round, the size of
the filtering vector from the reader to tags is |X|/(2i−1 ln 2),
and the size of the filtering vector from tags to the reader
is |Y |/(2i ln 2). After n rounds, the total size of all filtering
vectors from the reader to tags is

1

ln 2

n∑
i=1

|X|
2i−1

<
2|X|
ln 2

, (13)

which compares favorably to the traditional approach of
sending 14.4 × |X| bits of Bloom filter in one shot in our
earlier example. Similarly, the total size of all filtering vectors
from tags to the reader is

1

ln 2

n∑
i=1

|Y |
2i

<
|Y |
ln 2

, (14)

and PFP = (PFV )
n ≈

(
1
2

)n
. We can make PFP as small as

we like by increasing n, while the total transmission overhead
never exceeds 1

ln 2 (2|X|+ |Y |) bits. The strength of filtering
vectors in bidirectional filtration lies in their ability to reduce
the candidate sets during each round, thereby diminishing the
sizes of filtering vectors in subsequent rounds.

C. Generalized Approach

Unlike the CATS protocol, our iterative approach breaks
the bidirectional filtration in tag search process into multiple
rounds. Before the ith round, the set of candidate tags in X
is denoted as Xi (⊆ X), which is also called the search result
after the (i − 1)th round. The final search result is the set of
remaining candidate tags in X after all rounds are completed.
Before the ith round, the set of candidate tags in Y is denoted
as Yi (⊆ Y ). Initially, X1 = X and Y1 = Y . We define
Ui = Xi − W and Vi = Yi − W . Because W is always a
subset of both Ui and Vi, we have

|Ui| = |Xi| − |W |
|Vi| = |Yi| − |W |.

(15)

Instead of exchanging a single filtering vector at a time,
we generalize our iterative approach by allowing multiple
filtering vectors to be sent consecutively. Each round consists
of two phases. In phase one of the ith round, the RFID reader
broadcasts a number mi of filtering vectors, which shrink the
set of remaining candidate tags in Y from Yi to Yi+1. In phase
two of the ith round, one filtering vector is sent back to the
reader in the following distributed way: The candidate tags in
Yi+1 randomly select slots in a time frame to transmit one-bit
responses to the reader. By listening to the states of the slots,
the reader reconstructs the filtering vector from the candidate
tags in Yi+1. The received filtering vector shrinks the set of



remaining candidates on the reader’s side from Xi to Xi+1,
setting the stage for the next round. This process continues
until the false positive ratio meets the requirement of PREQ.

The values of mi will be determined in the next subsection.
If mi > 0, multiple filtering vectors will be sent consecutively
from the reader to tags in one round. If mi = 0, no filtering
vector is sent from the reader in this round. When this
happens, it essentially allows multiple filtering vectors to be
sent consecutively from tags to the reader (across multiple
rounds).

D. Values of mi

Let K be the total number of rounds. After all K rounds,
we use XK+1 as our search result. There are in total K
filtering vectors sent from tags to the reader. We know from
subsection IV-B that each filtering vector can filter out half
of non-members (in our case, tags in X − W ). To meet the
false positive ratio requirement PREQ, the following constraint
should hold

(PFV )
K =

(
1

2

)K

≤ PREQ. (16)

Hence, the value of K must be at least − lnPREQ

ln 2 .
Next, we discuss how to set the values of mi, 1 ≤ i ≤ K,

in order to minimize the execution time of each round. We
use FV (·) to denote the filtering vector of a set. In phase
one of the ith round, the reader builds mi filtering vectors,
denoted as FVi1(Xi), FVi2(Xi), · · · , FVimi(Xi), which are
consecutively broadcasted to the tags. From (11), we know the
size of each filtering vector is |Xi|/ ln 2. After filtering based
on these vectors, the number of remaining candidate tags in
Yi+1 is

|Yi+1| = |Vi| × (PFV )
mi + |W |

≈ |Vi| × (1/2)
mi + |W |

= |Vi|/2mi + |W |.
(17)

In phase two of the ith round, the tags in Yi+1 use a time frame
of 1

ln 2 × |Yi+1| slots to report their presence. After receiving
the responses, the reader builds a filtering vector, denoted as
FVi(Yi+1). After the filtration with FVi(Yi+1), the size of the
search result Xi+1 is

|Xi+1| = |Ui| × PFV + |W |
≈ |Ui|/2 + |W |
= (|Xi|+ |W |)/2.

(18)

We denote the transmission time of the ith round by f(mi),
which can be expressed as:

f(mi) =
1

ln 2
×mi × |Xi| × ts +

1

ln 2
× |Yi+1| × ts

=
ts
ln 2

(mi|Xi|+ (|Vi|/2mi + |W |)) .
(19)

To find the value of mi that minimizes f(mi), we take the first
order derivative and set the right side to zero.

df(mi)

dmi
=

ts
ln 2

(|Xi| − ln 2|Vi|/2mi) = 0 (20)

Hence, the value of f(mi) is minimized when

mi =
ln(ln 2|Vi|/|Xi|)

ln 2
. (21)

Because mi cannot be a negative number, we reset mi = 0
if ln(ln 2|Vi|/|Xi|)

ln 2 < 0. Furthermore, mi must be an integer.
If ln(ln 2|Vi|/|Xi|)

ln 2 is not an integer, we round mi either to the
ceiling or to the floor, depending on which one results in a
smaller value of f(mi).

For now, we assume that we know |W | and |Y | in our
computation of mi. Later we will show how to estimate these
values on the fly in execution of each round of our protocol.
Initially, |X1| (= |X|) is known. |V1| can be calculated from
(15). Hence, the value of m1 can be directly computed from
(21). After that, we can estimate |Y2|, |X2|, and |V2| based on
(17), (18), and (15), respectively. From |X2| and |V2|, we can
calculate the value m2. Following the same procedure, we can
iteratively compute all values of mi for 1 ≤ i ≤ K.

We find it often happens that the mi sequence has several
consecutive zeros at the end, that is, ∃p < K, mi = 0 for
i ∈ [p,K]. In this case, we may be able to further optimize
the value of mp with a slight adjustment. We first explain
the reason for mp = 0: It costs some time for the reader to
broadcast a filtering vector in phase one of the pth round. It is
true that this filtering vector can reduce set Yp, thereby reducing
the frame size of phase two of the pth round. However, if the
time cost of sending the filtering vector cannot be compensated
by the time reduction of phase two, it will be better off to
remove this filtering vector by setting mp = 0. (This situation
typically happens near the end of the mi sequence because
the number of unwanted tags in the remaining candidate set is
already very small.) But if all values of mi in the subsequent
rounds (after mp) are zeros, increasing mp to a non-zero
value m′

p may help reduce the transmission time of phase two
of the subsequent rounds, and the total time reduction may
compensate the time cost of sending those m′

p filtering vectors,
or even reduce the overall transmission time.

Consider the transmission time of these (K − p+1) rounds
as a whole, denoted by G(m′

p, p). It is easy to know

G(m′
p, p) =

(
m′

p

ln 2
|Xp|+

K − p+ 1

ln 2

(
|Vp|
2m

′
p
+ |W |

))
ts.

(22)
To minimize G(m′

p, p), we have

m
′

p =

{
0 if γ < 0

γ if γ ≥ 0
(23)

where γ =
ln(ln 2(K−p+1)|Vp|/|Xp|)

ln 2 . As a result, mp is updated
to m′

p, while other mi, where i ̸= p, remain unchanged.
Here, we give an example to illustrate how to calculate the

values of mi. Suppose |X| = 5, 000, |Y | = 50, 000, |W | =
500, and PREQ = 0.001, so K = ⌈− ln 0.001

ln 2 ⌉ = 10. Using
(21), we can calculate the values from m1 to m10. The result
is listed in Table I. There is a sequence of zeros from m7 to
m10. Thus, we can make an improvement using (23), and the
optimized result is shown in Table II.



m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 0 0 0 0

TABLE I
THE INITIAL VALUES OF mi .

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 2 0 0 0

TABLE II
THE OPTIMIZED VALUES OF mi .

E. Iterative Tag Search Protocol

Having calculated the values of mi, we can present our
iterative tag search protocol (ITSP) based on the generalized
approach in Section IV-C. The protocol consists of K iterative
rounds. Each round consists of two phases. Consider the ith

round, where 1 ≤ i ≤ K.
1) Phase one: The RFID reader constructs mi filtering

vectors for Xi using mi hash functions. According to (11),
we set the size LXi of each filtering vector as

LXi =
1

ln 2
× |Xi| =

1

ln 2
(|Ui|+ |W |) . (24)

The RFID reader then broadcasts those filtering vectors one
by one. Once receiving a filtering vector, each tag in Yi maps
its ID to a bit in the filtering vector using the same hash
function that the reader uses to construct the filter. The tag
checks whether this bit is ‘1’. If so, it remains a candidate
tag; otherwise, it is excluded as a non-candidate tag and drops
out of the search process immediately. The set of remaining
candidate tags is Yi+1.

From (12), we know that the false positive probability after
using mi filtering vectors is (PFV )

mi ≈ (1/2)mi . Therefore,
|Yi+1| = |Vi| × (PFV )

mi + |W | ≈ |Vi|/2mi + |W |.
2) Phase two: The reader broadcasts the frame size LYi+1

of phase two to the tags, where

LYi+1 =
1

ln 2
× |Yi+1| =

1

ln 2
(|Vi|/2mi + |W |) . (25)

After receiving LYi+1 , each tag in Yi+1 randomly maps its ID
to a slot in the time frame using a hash function and transmits
a one-bit short response to the reader in that slot. Based on the
observed state (busy or empty) of the slots in the time frame,
the reader builds a filtering vector, which is used to filter non-
candidates from Xi. The number of tags in the search result
Xi+1 of this round is about |Xi+1| = |Ui| × PFV + |W | ≈
|Ui|/2 + |W |.

The overall transmission time of all K rounds in the ITSP
is

TITSP =
K∑
i=i

(mi × LXi + LYi+1)× ts. (26)

F. Cardinality Estimation

Recall from Section IV-D that we must know the values of
|Xi|, |W | and |Vi| to determine mi and LYi+1 . For the purpose
of accuracy, we may estimate |Xi|, |W | and |Vi| in every round,
and then recalculate subsequent mi sequence and LYi+1 . It is

trivial to find the value of |Xi| by counting the number of tags
in the search result of the (i−1)th round. Meanwhile, we know
|Vi| = |Yi| − |W |. Therefore, we only need to estimate |W |
and |Yi|.

Besides serving as a filter, a filtering vector can also be used
for cardinality estimation, a feature that is not exploited in [6].
Since no filtering vector is available at the very beginning,
the first round of the the ITSP should be treated separately:
We may use the efficient cardinality estimation protocol ART
proposed in [11] to estimate |Y | (i.e., |Y1|) if its value is
not known at first. As for |W |, it is initially assumed to be
min {|X|, |Y |}.

Next, we can take advantage of the filtering vector built in
phase two of the (i− 1)th (i ≥ 2) round to estimate |W | and
|Yi| without any extra transmission expenditure. The estimation
process is as follows: First, counting the actual number of ‘1’
bits in the filtering vector, denoted as N∗

1 , we know the real
false positive ratio, denoted by P ∗

i−1, using this filtering vector
is

P ∗
i−1 = N∗

1 /LYi . (27)

Meanwhile, we can record the number of tags in the search
results before and after the (i − 1)th round, i.e., |Xi−1| and
|Xi|, respectively. We have |Xi−1| = |Ui−1| + |W |, |Xi| =
|Ui|+ |W |, and |Ui| ≈ |Ui−1| × P ∗

i−1. Therefore,

|W | ≈
|Xi| − |Xi−1| × P ∗

i−1

1− P ∗
i−1

. (28)

Second, using the same filtering vector, we can estimate the
value of |Yi| as well. After mapping all tags in Yi to the filtering
vector, the probability that a certain bit in the vector remains
‘0’ (i.e., no tag maps its ID to this bit) is

P0 =

(
1− 1

LYi

)|Yi|

≈ e
− |Yi|

LYi . (29)

Let N0 be the number of ‘0’ bits in the filtering vector. Each
slot of frame LYi independently has probability P0 of being
‘0’. So N0 ∼ B(LYi , P0), and

E(N0) = LYi × P0 ≈ LYi × e
− |Yi|

LYi . (30)

Also, we can count the filtering vector to obtain the actual
number of ‘0’ bits, denoted as N∗

0 . When LYi is large, we

have N∗
0 ≈ E(N0), namely, N∗

0 ≈ LYi × e
− |Yi|

LYi , so

|Yi| ≈ −LYi ln
N∗

0

LYi

. (31)

G. Additional Filtering Vectors

Estimation may have error. Using the values of mi and LYi

computed from estimated |W | and |Yi|, a direct consequence
is that the actual false positive ratio, denoted as PT , can be
greater than the requirement PREQ. Fortunately, from (27),
the reader is able to compute the actual false positive ratio P ∗

i ,
1 ≤ i ≤ k, of each filtering vector received in phase two of
the ITSP. Thus, we must have

PT =
K∏
1

P ∗
i . (32)



If PT > PREQ, our protocol will automatically add additional
filtering vectors to further filter XK+1 until PT ≤ PREQ.

H. False positive ratio Requirement

Users can set their false positive requirements PREQ

arbitrarily. We observe that it may be desirable to set the
value of PREQ relative to |W |. For example, consider a RFID
system with |X| = 20, 000. If |W | = 10, 000, PREQ = 0.01
may be good enough because the number of false positives
is about (|X| − |W |) × PREQ = 100, which is much fewer
than |W |. However, if |W | = 10, PREQ = 0.01 may become
unacceptable since (|X| − |W |) × PREQ ≈ 200 ≫ |W |. It is
desirable to set the value of PREQ such that the number of
false positives in the search result is much smaller than |W |,
namely, (|X| − |W |)× PREQ ≤ 1

λ |W |, where λ is an integer
constant. Thus, we have

PREQ ≤ |W |
λ (|X| − |W |)

. (33)

Our protocol is able to set the value of PREQ using the
estimated value of |W | after the first round.

I. Hash Functions

To keep the complexity of a tag’s circuit low, we only
implement one uniform hash function h(·), and use it to
simulate multiple independent hash functions: In phase one of
the ith ITSP round, we use h(·) and mi unique hash seeds
{s1, s2, · · · , smi} to achieve mi independent hash outputs.
Thus, a tag id is mapped to position (h(id⊕ s1) mod LXi),
(h(id⊕ s2) mod LXi), · · · , (h(id⊕ smi) mod LXi) in each
filtering vector, respectively. Each hash seed, together with
its corresponding filtering vector, will be broadcasted to the
tags. In phase two of the ith round, the reader generates a
new hash seed r and sends it to the remaining candidate tags.
Each candidate tag in Yi+1 maps its id to the slot of index(
h(id⊕ r) mod LYi+1

)
, and waits to transmit a one-bit short

response to the reader in that slot.

V. PERFORMANCE EVALUATION

A. Simulation Setting and Performance Metrics

The simulation setting is based on the EPC global Class-1
Gen-2 standard [7]. In the ITSP, filtering vectors constitute
most of the overall transmission overhead, while other
transmission cost, such as estimation of |Y | and transmission
of hash seeds, is comparatively negligible [6]. Consequently,
the key metric concerning the efficiency of the ITSP is the total
size of filtering vectors, and (26) can be used for calculating
the search time required by the ITSP.

After the search process is completed, we will calculate the
false positive ratio PFP using PFP = |W∗−W |

|X−W | , where W ∗ is
the set of tags in the search result. PFP will be compared with
PREQ to see whether the search result meets the false positive
ratio requirement.

In our simulation, we set both the R ⇒ T transmission
rate and the T ⇒ R transmission to be 100kbps. Accordingly,
ts =

1bit
100kbps = 10−5sec.
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Fig. 2. Relationship between search time and PREQ. Parameter setting:
|Y | = 50, 000; (a) |X| = 20, 000, (b) |X| = 40, 000.

B. Simulation Results

1) Performance comparison: In this subsection, we will
evaluate the performance of our protocol, using the protocols
mentioned in Section III: the CATS protocol, the baseline
protocol, and the tag identification protocols, as benchmarks
for comparison.

In the simulation, we assume X and Y are already known.
We set PREQ = 0.001, |Y | = 50, 000, vary |X| from 5,000
to 640,000, and let RINTS = 0.1, 0.3, 0.5, 0.7, 0.9. For
simplicity, we assume tid = 96× ts, during which a 96-bit ID
is transmitted. Table III shows the number of ts slots needed by
the protocols under different parameter settings. As the CATS
protocol is designed for applications where |X| < |Y |, it may
not always work when |X| ≥ |Y | (N.A. in the table).

From Table III, we observe that when RINTS is small,
the ITSP performs much better than the CATS protocol,
the baseline protocol, and the tag identification protocol. For
example, when RINTS = 0.1, the ITSP reduces the search
time of the CATS protocol, the baseline protocol and any
tag identification protocol, by as much as 90.0%, 98.8%, and
99.5%, respectively. As we increase RINTS , the gap between
the performance of the ITSP and the performance of the
CATS gradually shrinks. The CATS protocol performs poorly
when |X| ≥ |Y |, and more seriously, it does not work when
|X| ≫ |Y | due to the failure of (5). In contrast, the ITSP can
work efficiently in all cases. In practice, the wanted tags may
be spatially distributed in many different RFID systems (e.g.,
warehouses in the example we use in the introduction), and
thus RINTS can be small. As a result, the ITSP is a far better
protocol for solving the tag search problem in such practical
scenarios.

Another performance issue we want to investigate is the



|X| ITSP ITSP ITSP ITSP ITSP CATS Baseline Tag identification
RINTS=0.1 RINTS=0.3 RINTS=0.5 RINTS=0.7 RINTS=0.9

5,000 61,463 96,989 105,828 108,346 124,553 126,370 485,000 13,047,752
10,000 108,017 145,553 206,709 199,586 231,236 238,313 970,000 13,047,752
20,000 185,204 255,898 335,426 397,462 403,954 447,772 1,940,000 13,047,752
40,000 304,767 467,433 512,156 598,718 678,066 837,837 3,880,000 13,047,752
80,000 414,686 590,150 656,426 721,347 721,347 1,560,259 7,760,000 13,047,752
160,000 472,677 630,669 721,347 721,347 721,347 2,889,689 15,520,000 13,047,752
320,000 529,835 668,794 721,347 721,347 721,347 5,317,715 31,040,000 13,047,752
640,000 573,270 696,015 721,347 721,347 721,347 N.A. 62,080,000 13,047,752

TABLE III
PERFORMANCE COMPARISON OF THE ITSP, THE CATS PROTOCOL, THE BASELINE AND TAG IDENTIFICATION PROTOCOLS.

relationship between the search time and PREQ. We set
|X| = 20, 000 or 40, 000, |Y | = 50, 000, vary RINTS from 0.1
to 0.9, and vary PREQ from 10−6 to 10−2. Fig. 2 compares
the search times required by the CATS and the ITSP under
different false positive ratio requirements. Generally speaking,
the gap between the search time required by the ITSP and
the search time by the CATS keeps getting larger with the
decrease of PREQ, particularly when RINTS is small. For
example, in Fig. 2 (b), when PREQ = 10−2 and RINTS = 0.1,
the search time by the ITSP is about one half of the time by
the CATS; when we reduce PREQ to 10−6, the time by the
ITSP becomes about one fourth of the time by the CATS.
The reason is as follows: When RINTS is small, |W | is
small and most tags in X and Y are non-candidates. After
several ITSP rounds, as many non-candidates are filtered out
iteratively, the size of filtering vectors decreases exponentially
and therefore subsequent ITSP rounds do not cause much extra
time cost. This merit makes the ITSP particularly applicable
in cases where the false positive ratio requirement is very
strict, requiring many ITSP rounds. On the contrary, the CATS
protocol does not have this capability of exploiting low RINTS

values.
2) False positive ratio: Next, we examine whether the

search results after execution of the ITSP will meet the
requirement of PREQ. Recall that the false positive ratio is
defined as PFP = |W∗−W |

|X−W | . We use (33) with λ = 10 to set
the value of PREQ. The ITSP is tested under three different
parameter settings:

(a) |X| = 5, 000, |Y | = 50, 000, and RINTS varies from
0.1 to 0.9 (|W | varies from 500 to 4,500). According to
(33), PREQ ≤ 500

10×(5,000−500) ≈ 0.01111. We set PREQ =

10−2.
(b) |X| = 20, 000, |Y | = 50, 000, and RINTS varies from

0.01 to 0.9 (|W | varies from 200 to 18,000). According
to (33), PREQ ≤ 200

10×(20,000−200) ≈ 0.00101. We set
PREQ = 10−3.

(c) |X| = 80, 000, |Y | = 50, 000, and RINTS varies from
0.01 to 0.9 (|W | varies from 500 to 45,000). According
to (33), PREQ ≤ 500

10×(80,000−500) ≈ 0.00063. We set
PREQ = 10−4.

For each parameter setting, the simulation repeats 500 times
to obtain the average false positive ratio.

Fig. 3 shows the simulation results. In (a), (b), and (c),
we can see that the average PFP is always smaller than the
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Fig. 4. False positive ratio in the search result after running the ITSP. The
bold horizontal line in each figure stands for PREQ. X-coordinate marks the
ordinal of simulations.

corresponding PREQ. Hence, the search results using the ITSP
meet the prescribed requirement of false positive ratio in the
average sense.

If we look into the details of individual simulations, we
find that a small fraction of simulation runs have PFP beyond
PREQ. For example, Fig. (4) depicts the results of 500 runs
with |X| = 5, 000, |Y | = 50, 000, |W | = 500 and PREQ =
10−2. There are about 5% runs having PFP > PREQ, but
that does not come as a surprise because the false positive
ratio in the context of filtering vectors (ITSP) or Bloom filters
(CATS) is defined in a probability way: The probability for
each tag in X−W to be misclassified as one in W is no greater
than PREQ. This probabilistic definition enforces a requirement
PREQ in an average sense, but not for each individual run.

VI. RELATED WORK

The basic technologies for RFID have been around for a long
time. In the past, much research concentrated on two fronts: (1)
physical-layer technologies for transmitting IDs from tags to
an RFID reader more reliably, over a longer distance, and using
less energy; (2) MAC-layer technologies for improving the rate
at which a reader can collect IDs from tags. Tag identification
protocols, which read IDs from all tags in a RFID system,
mainly fall into two categories. One is ALOHA-based [8], [9],
[12]–[15], and the other is tree-cased [16]–[19]. The ALOHA-
based protocols work as follows: The reader broadcasts a query
request. With a certain probability, each tag chooses a time slot
in the current frame to transmit its ID. If there is a collision
and the reader does not acknowledge positively, the tag will
continue participating in the next frame. This process repeats
until all tag IDs are read successfully. The tree-based protocols
organize all IDs in a tree of ID prefixes [16]–[19]. Each in-tree
prefix has two child nodes that have one additional bit, ‘0’ or
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Fig. 3. False positive ratio after running the ITSP.

‘1’. The tag IDs are leaves of the tree. The RFID reader walks
through the tree, and requires tags with matching prefixes to
transmit their IDs.

Another related research topic is cardinality estimation in
an RFID system. Kodialam and Nandagopal [20] estimate the
number of tags based on the probabilistic counting methods
[21]. The same authors propose a non-biased follow-up work in
[22]. Han et al. [23] improve the performance of [20]. Qian et
al. [24] present the Lottery-Frame scheme (LoF) for estimating
the number of tags in a multiple-reader scenario. The work in
[25] uses the maximum likelihood method. Sheng et al. design
two probabilistic algorithms to identify large tag groups [4].

VII. CONCLUSIONS

This paper studies the tag search problem in large-scale
RFID systems. To improve time efficiency and eliminate
limitation of the prior tag search protocol (CATS), we propose
an iterative tag search protocol (ITSP) based on a new
technique called filtering vectors. The main contributions of
our work are summarized as follows: (1) The iterative method
of ITSP based on filtering vectors is very effective in reducing
the amount of information to be exchanged between tags
and the reader, and consequently saves time in the searching
process; (2) the ITSP performs much better than the existing
solutions; (3) the ITSP works well under all system conditions,
particularly under conditions of |X| ≫ |Y | when CATS no
longer works well or even fails.
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