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This paper investigates cooperative forwarding in two-dimensional highly dynamic wireless networks. Unlike traditional coordi-
nated cooperative forwarding schemes that require a large amount of neighborhood discovery and coordination information to be
exchanged before making the forwarding decision, this paper proposes an uncoordinated cooperative forwarding scheme where
each node determines whether or not to forward a received packet independently based on a forwarding probability determined
by its own location, the locations of the destination, and the transmitter from which it receives the packet, without the costly
or even impractical neighbor discovery and coordination process. Analytical results are derived for the successful transmission
probability and the expected number of forwarding nodes involved in the cooperative forwarding process. On that basis, discussions
are presented on the optimal forwarding probability design that meets a predesignated successful transmission probability target
using minimum number of forwarding nodes. Simulations are conducted to evaluate the performance of the proposed scheme.

1. Introduction

This paper considers the problem of cooperative forwarding
in large highly dynamic wireless networks, for example,
vehicular ad hoc networks (VANET) or mobile ad hoc
networks (MANETs). On a high level, the problem can be
described as follows: when a node in a large highly dynamic
wireless network overhears a packet belonging to a particular
source-destination pair, with minimal information about its
neighborhood and environment, how does the node make
decision on whether it should collaborate to forward the
packet?

Of course, if every node overhearing the packet forwards
the packet with a high probability, the packet can be delivered
to its destination with a high probability but it may cause
a large number of redundant transmissions thereby wasting
precious radio resources.On the other hand, if the forwarding
probability is low, the packet may not eventually arrive
at its destination. Therefore, tradeoff between three main
factors is involved in the decision process: (1) the amount
of information used in making the forwarding decision. The
more information is used, the more overhead is incurred

in collecting the information. It was reported that current
military prototype MANETs routinely experience overhead
on the order of even 99 percent of the end-to-end packet
transmissions [1].Therefore overhead involved in the cooper-
ative forwarding decision is an important consideration; (2)
the forwarding probability which determines the number of
nodes (or equivalently transmissions) involved in the cooper-
ative forwarding process; and (3) the successful transmission
probability, that is, the probability that the packet eventually
arrives at its destination within a designated amount of time.

Amajor challenge for routing and forwarding in dynamic
networks is that the nodes are constantly moving and the
network topology is highly dynamic.Therefore the traditional
layered approach, where the route between a source and its
destination is determined before the actual data transfer, is
unsuitable for dynamic networks. There are two common
approaches to end-to-end packet transmissions in highly
dynamic networks: broadcast and cooperative communica-
tion. Broadcast remains to be the most reliable and possibly
the most widely used approach for packet transmission in
highly dynamic networks [2, 3]; however it is well known
to cause a large number of redundant transmissions and
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significant wastage in radio resources. Cooperative commu-
nication on the other hand allows additional nodes in the
vicinity of the route that overhear the transmitted packet to
assist in delivering the packet to its destination, leveraging the
broadcast nature of the wireless medium to provide diversity
against time-varying link fades and outages [4].

A common feature in existing cooperative techniques is
the coordination required among the participating neigh-
bors. These coordinations typically include the discovery of
neighbors in the vicinity, the collection of channel infor-
mation to these neighbors, and the selection of the best
neighbor(s) whose cooperation will maximize the perfor-
mance improvement [3–7]. For thewell-knownopportunistic
routing schemes [8], coordination is required at every hop
to decide the node that will serve as the packet’s next hop
towards the destination. It was reported in [1] that the coor-
dination overhead may account for 99 percent of the end-
to-end packet transmissions. Due to associated coordination
overheads, existing cooperative communication methods are
suitable mostly for mesh or sensor networks with static or
relatively stable topologies. They are not useful when the
topology is very dynamic, due to either a high velocity (e.g.,
vehicular networks) or a high density of the nodes (e.g.,
networks of mobile devices carried by people on a busy street
or in a conference hall). In fact, in highly dynamic networks,
the coordination overheads are incurred too frequently to
be practical even just to maintain an up-to-date view of
the neighbor topology, let alone an up-to-date channel state
information to the neighbor nodes.

Motivated by the above observations, in this paper we
consider an uncoordinated cooperative forwarding scheme,
where nodes overhearing a packetmake forwarding decisions
independentlywithout prior coordination ormeasurement of
real-time channel information to its neighbors and evenwith-
out being aware of their existence (apart from the transmitter
of the packet). Furthermore, forwarding decision at each
node is only based on the location of that node, the locations
of the destination and the transmitter from which it receives
the packet, and some limited prior statistical knowledge
about the local environment, namely, the spatial distribu-
tion of the nodes and radio propagation characteristics. A
major challenge in the uncoordinated cooperative forwarding
scheme is the design of the forwarding probability on the one
hand minimizing the number of transmissions required to
deliver the packet to its destination and on the other hand
guaranteeing a designated transmission success probability.
In the literature, the forwarding probability has been chosen
to be a predefined fixed value [9], a linear function of the
distance between the transmitter and the receiver [10], or
to be determined jointly by the distance to the destination
and nodes’ spatial distribution [3]. In [4], theoretical analysis
was presented in the successful transmission probability
using three uncoordinated forwarding schemes in two-hop
scenario where the source and the destination are at most
two hops away. Reference [5] further obtained the optimal
forwarding scheme in the two-hop scenario. Despite the
above advances in the field, design of optimal uncoordinated
forwarding scheme for multihop scenarios, backed by solid

theoretical analysis, remains an open challenge. It is a focus
of this paper to tackle the challenge.

More specifically, themain contributions of this paper are
as follows:

(i) Considering two-dimensional highly dynamic net-
works, this paper proposes an uncoordinated cooper-
ative forwarding scheme, where each node receiving
the packetmakes forwarding decisions independently
of other nodes, using its own location, the locations
of the destination, and the transmitter from which
it receives the packet and radio propagation char-
acteristics only, without prior coordination with its
neighbors and even without being aware of their
existence.

(ii) Performance of the proposed uncoordinated for-
warding scheme is analyzed. For a pair of source and
destination separated multiple hops away and with a
known distance, the expected number of forwarding
nodes and the successful transmission probability are
obtained.

(iii) On the basis of the analysis, discussions are presented
on the design of the forwarding probability function
and forwarding area tomeet a predesignated target on
the probability of successful transmission while using
the minimum number of forwarding nodes.

(iv) Simulations are conducted to validate the perfor-
mance of the proposed uncoordinated cooperative
forwarding scheme.

The technique and analysis presented in this paper can be
useful for designing cooperative communication strategies in
large and highly dynamic networks.

The rest of the paper is organized as follows. In Section 2,
we give an accurate definition of the network models and
explain the design of the uncoordinated cooperative forward-
ing scheme and the problem formulation. Section 3 presents
performance analysis of the proposed uncoordinated coop-
erative forwarding scheme and on that basis discusses the
design of the forwarding probability function and forwarding
area. Section 4 presents simulations and discussions. Finally,
Section 5 concludes the paper.

2. Network Model

In this paper, we consider a two-dimensional (2D) dynamic
network with a single source-destination pair and the dis-
tance between them is a deterministic value 𝐿. Without
loss of generality, we assume that the source is located
at the origin (𝑆) and the destination is located at 𝐷. We
construct a 2D coordinate system using line 𝑆𝐷 as 𝑥-axis.
All other nodes apart from the source and the destination
are distributed in a square with side length 𝐿 (as shown in
Figure 1), modeling as a homogeneous Poisson Point Process
(PPP) Γ with known density 𝜌. The probability distribution
function of the distance between a pair of randomly chosen
nodes in a 2D network can be readily obtained. Therefore, it
is straightforward to extend the results obtained in this paper
to 2D networks with multiple source-destination pairs.
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Figure 1: Scenario.

When we consider a transmission between the source
and the destination, movement of nodes during the end-to-
end transmission of the packet is not considered. That is,
we consider a snap-shot of the network at a particular time
instant. A typical end-to-end transmission can be completed
in the order of milliseconds, during which the movement
of nodes is comparatively small. Moreover, we consider that
a pair of nodes are directly connected if and only if their
Euclidean distance is smaller than or equal to 𝑅. That is, the
well-known unit disk connection model is considered. The
use of the unit disk model helps us to ignore the impact of
physical layer details and focus on the impact of the topology
aspect of the network, which is the main focus of our paper.
Moreover, [11, 12] verify that the connectivity probability of
a network is higher under a log-normal connection model
(which can be considered a realistic connectionmodel in real
network) compared with that under a unit disk with the same
expected number of connections of each node.Therefore, we
can utilize the unit disk model to pursue the lower bound of
successful transmission probability under other connection
models, which can be considered the worst case for the
general connection model.

We assume that each node knows its own location; this
can be obtained easily either from an embeddedGPS receiver,
which is becoming increasingly ubiquitous in many mobile
devices and vehicles [4, 5], or via one of the numerous
wireless localization techniques available [13], the location
of the transmitter from which the node receives the packet
of interest and the location of the destination, which can be
carried in the packet header.With the popularization of smart
phones, it is easy to obtain the location information at low
cost.Therefore, the requirement for the node locationwill not
cause much additional cost.

Using the above information, the nodemakes forwarding
decision independently without prior coordination with its
neighbors and even without being aware of their existence.
More specifically, the following rule is used in making a
forwarding decision when a node overhears a packet.

(i) The node at V first judges whether it is in the
forwarding area. If the node is in the forwarding area
denoted by 𝑢 ∈ 𝐴, where 𝐴 is the location set of

the nodes in the forwarding area (we will explain
the forwarding area later), it calculates the probability
that it will forward the packet using its own location,
the location of the transmitter denoted by 𝑧, and
the forwarding probability function is 𝑃𝑓(V − 𝑧) (the
design of the forwarding probability function 𝑃𝑓 will
be explained later). Otherwise, the node simply drops
the packet.

(ii) If the node decides to forward the packet, it first waits
for a randombackoff time 𝑡.Then three situationsmay
possibly occur: (1) if it does not overhear any trans-
mission during the backoff period, it will forward the
packet as the new transmitter; or (2) the node at V
overhears the transmission from a node located at 𝑢
AND ‖V − 𝐷‖ ≥ ‖𝑢 − 𝐷‖. In this situation, the node
simply drops the packet; or (3) the node at V overhears
the transmission from a node located at 𝑢 AND ‖V −
𝐷‖ < ‖𝑢 − 𝐷‖. In this situation, the transmission by
the node at Vmay still help the packet to reach nodes
that have not received the packet before.Therefore the
node at V updates its forwarding probability using the
node at 𝑢 as the new transmitter and remakes decision
on whether it will forward the packet, independently
of its previous decision. If it decides to forward the
packet, it starts a new backoff process. Otherwise, it
gives up forwarding and discards the packet.

(iii) The process naturally stops when the packet reaches
its destination or there is no forwarding node.

The design of the uncoordinated cooperative forwarding
scheme is intended to strike a balance among the amount of
information and coordination required to make a forward-
ing decision, the transmission success probability, and the
number of transmissions (or equivalently forwarding nodes)
required to reach the destination.

A node at V is said to be a 𝑘-hop receiver if when the
packet is received by the node for the first time, the packet
has been transmitted 𝑘 times by nodes whose distances to
destination are larger than ‖V−𝐷‖, including the transmission
by the source. A node at V is said to be a 𝑘-hop transmitter
if, by the time when the node transmits following the rules
described in the last paragraph, the packet has already been
transmitted 𝑘 times by nodes whose distances to destination
are larger than ‖V − 𝐷‖ including the transmission by the
source. Following the definition, the source is counted as the
0th hop transmitter. Note that, in our forwarding scheme, it
is possible that a 𝑘-hop receiver is a 𝑚-hop transmitter for
𝑚 ≥ 𝑘. Let 𝑧𝑘 be the location of the 𝑘-hop transmitter. For a
fixed value of 𝑘, there can be at most one node that is a 𝑘-hop
transmitter.

Let 𝜙𝑘(V) be the probability that a node at V is a 𝑘-
hop receiver. Let 𝑀(V) be the number of transmissions
(or forwarding nodes) required to deliver the packet from
the source to a node located at V distance away using
our uncoordinated forwarding scheme. 𝑀(V) is a random
positive integer. Let 𝑃suc(V) be the probability that a packet
transmitted from the source successfully reaches a node at V.
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We note the following relationship that will be used in the
latter analysis:

𝑃suc (V) =
∞

∑

𝑘=1

𝜙𝑘 (V) , 𝐸 [𝑀 (V)] =
∞

∑

𝑘=1

𝑘𝜙𝑘 (V) . (1)

Given the above definitions, the objective of the uncoordi-
nated cooperative forwarding scheme design can be written
analytically as follows:

min
𝑃𝑓(𝑥)

𝐸 [𝑀 (𝐿)]

s.t. 𝑃suc (𝐿) ≥ 1 − 𝜀,

(2)

where 𝜀 is the a predesignated small positive constant.

3. Problem Analysis

In this section, we first introduce the definition of forwarding
area and give three specific cases. Then, we analyze the
performance of the uncoordinated cooperative forwarding
scheme proposed in the last section where the performance
is measured by two metrics: 𝑃suc(𝐷) and𝑀(𝐷). On the basis
of the analysis, we finally investigate the design of forwarding
probability function𝑃𝑓(𝑥) thatminimizes the expected num-
ber of transmissionswhilemeeting the performance objective
that 𝑃suc(𝐷) ≥ 1 − 𝜀.

3.1. Forwarding Area. As we mentioned above, the only
available information for an intermediate node is its own
location, the location of the transmitter, and the destination
from the packet header. Thus, a node can easily derive
whether it is located within a specific area (called forwarding
area) relative to the available locations. The forwarding area
may be basically of any shape provided that each transmission
should make a positive progress toward the destination and
all nodes in this area arewithin the transmission range of each
other. Note that one important design criterion of the for-
warding area is to guarantee that all nodes in the forwarding
area can overhear each other. Therefore, there is no hidden
node problem in our scheme. Here we pick three specific
forwarding areas due to their typicality and tractability in
mathematics. Only the nodeswithin the forwarding area have
opportunities to be a transmitter, whereas the other nodes
outside this area just drop the received packet.

As the definition of forwarding area described in the
previous paragraph, we may consider different areas that
fulfill the requirement that more potential forwarding nodes
are within the transmission range of other potential forward-
ing nodes. Obviously the forwarding area should be large
in order to increase the probability of finding a potential
forwarding node within the area. Furthermore, the shape
and the location of the area should favor nodes that are
near to the destination, thus minimizing the number of hops
(number of transmissions) to the destination. In Figure 2,
three possible areas are depicted, namely, circle, sector, and
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Figure 2: Forwarding area.

Reuleaux triangle, which all fulfill the requirement of being
forwarding area [14].

(1) Maximum Communication Area (MCA). It is defined as
the largest region within which any pair of nodes can hear
each other. Thus, it is a circle with a diameter equal to the
transmission range of a node. It is the circle with 𝑆𝑅 as its
diameter in Figure 2.Note that 𝑆𝑅 should be colinearwith 𝑆𝐷.
Such arrangement of 𝑆𝑅 maximizes the possible area within
the circle progressing to the destination. The area of MCA is
𝑆
MC
1 = 𝜋𝑅

2
/4.

(2) 60-Degree Radian Area (DRA). It is a radial region that
includes a 30-degree radian area around the line connecting
the transmitter and the destination on both sides. 𝐵1 and
𝐵
󸀠
1 are the corresponding intersection points. DRA is the

sectorial region 𝑆𝐵1𝐵
󸀠
1 that is shown in Figure 2. Note that

𝑆𝐷 is the angle bisector for this region. DRA is used in the
beacon-less protocols, that is, IGF and BLR.The area of DRA
is 𝑆DR1 = 𝜋𝑅

2
/6.

(3) Reuleaux Triangle Area (RTA). It is constructed by a 60-
degree radian area; the three arcs 󵱰𝑆𝐵1, 󵱰𝑆𝐵󸀠1, and 󵱰

𝐵1𝐵
󸀠
1 are

determined by circles with radius 𝑅 centered at 𝐵1, 𝐵
󸀠
1, and

𝑆, respectively, as shown in Figure 2.The area of RTA is 𝑆RT1 =

(𝜋 − √3)𝑅
2
/2.

3.2. Theoretical Analysis. In this subsection, we analyze the
performance of the proposed uncoordinated cooperative
forwarding scheme in detail. Recalling the definition of 𝑘-
hop transmitter, we define 𝑧𝑘 is the location of the 𝑘-hop
transmitter and 𝑧0 is the location of the source at origin in a
2Dnetwork. Let𝜑𝑘(V) be the probability that a node located at
V (if exists) is a 𝑘-hop transmitter. In the rest of this section,
we first obtain an analytical expression of 𝜑𝑘(V) recursively
for 𝑘 = 1, 2, . . .. On that basis, we obtain 𝜙𝑘(V), 𝑃suc(𝐷), and
𝑀(𝐷).

Nowwe start with 𝑘 = 1. A node at V is a 1-hop transmitter
if and only if the following conditions are met:

(i) The node has received a packet from the source.
This occurs with probability 𝑔(V), where 𝑔(V) is the
connection function. For the unit disk model, 𝑔(V) =
1 when 0 < ‖V‖ ≤ 𝑅 and 𝑔(V) = 0 otherwise.
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(ii) The destination has not received the packet. This
occurs with probability 1 − 𝑔(𝐷).

(iii) The node is in the forwarding area. This occurs with
probability 𝜏(V, 𝐴1). 𝜏(V, 𝐴1) is an indicator function
and is equal to 1 if V ∈ 𝐴1. Otherwise, it equals 0.
Define that 𝑏(𝑆, 𝑅) is a disk centered at 𝑆 with radius
𝑅.𝐴1 represents the location set of the 1-hop receivers
in the forwarding area.

(a) The constrain of MCA: 𝐴MC
1 = {V | V ∈ Γ ∩ V ∈

𝑏(𝐶1, 𝑅/2)}, where 𝐶1 represents the center of 1-
hop MCA located at (𝐶1,𝑥, 𝐶1,𝑦), where 𝐶1,𝑥 =

𝑅/2 and 𝐶1,𝑦 = 0.
(b) The constrain of DRA: 𝐴DR

1 = {V | V ∈ Γ ∩ V ∈

𝑏(𝑆, 𝑅) ∩ −𝜋/6 ≤ ∠V𝑆𝐷 ≤ 𝜋/6}.
(c) The constrain of RTA: 𝐴RT

1 = {V | V ∈ Γ ∩ V ∈

𝑏(𝑆1, 𝑅) ∩ V ∈ 𝑏(𝐵1, 𝑅) ∩ V ∈ 𝑏(𝐵
󸀠
1, 𝑅)}.

The location of 𝐵1 is (𝐵1,𝑥, 𝐵1,𝑦), where 𝐵1,𝑥 = √3𝑅/2

and 𝐵1,𝑦 = 𝑅/2. The location of 𝐵󸀠1 is (𝐵
󸀠
1,𝑥, 𝐵
󸀠
1,𝑦),

where 𝐵󸀠1,𝑥 = √3𝑅/2 and 𝐵
󸀠
1,𝑦 = −𝑅/2.

(iv) The node decides to forward the packet. This occurs
with probability 𝑃𝑓(V).

(v) The node is successful in the backoff competition and
gets the opportunity to transmit. This occurs with
probability ℎ(V). The value of ℎ(V) will be analyzed
shortly later.

Noting that the above five events are independent, it follows
that

𝜑1 (V) = 𝑔 (V) (1 − 𝑔 (𝐷)) 𝜏 (V, 𝐴1) 𝑃𝑓 (V) ℎ (V) . (3)

Next we analyze ℎ(V). Let 𝑡∗(V) be the (random) backoff
timer of the node at V. Conditioned on 𝑡

∗
(V) = 𝑡, the node at

V becomes successful in the backoff competition if all other
nodes, which have received the packet from the source AND
which are in the forwarding area 𝐴1 AND which decide to
forward the packet, have a backoff timer greater than 𝑡. Note
the backoff timer of the node at V depends on the location V
and follows a uniform distribution𝑈(0, 1−𝑃𝑓(V)),𝑓(𝑡

∗
(V)) =

1/(1 − 𝑃𝑓(V)). With the increasing ‖V‖ the maximum value
of backoff timer 1 − 𝑃𝑓(V) increases. Pr(𝑡

∗
(𝑢) < 𝑡) is the

probability of the event that the node at 𝑢whose backoff timer
is smaller than or equal to 𝑡. Because the backoff timer follows
a uniform distribution 𝑈(0, 1 − 𝑃𝑓(𝑢)), it readily follows that
Pr(𝑡∗(𝑢) < 𝑡) = 𝑡/(1 − 𝑃𝑓(𝑢)).

Using the thinning theorem [15], the set of nodes,
which receives the packet AND is in the forwarding
area 𝐴1 AND decides to forward the packet AND
has a backoff timer smaller than or equal to 𝑡, follows
an inhomogeneous Poisson distribution with density
𝜌𝑔(𝑢)(1 − 𝑔(𝐷))𝜏(𝑢, 𝐴1)𝑃𝑓(𝑢)Pr(𝑡

∗
(𝑢) < 𝑡). The number of

such nodes follows an exponential distribution with mean
∫
𝑢∈𝐴1

𝜌𝑔(𝑢)(1 − 𝑔(𝐷))𝑃𝑓(𝑢)Pr(𝑡
∗
(𝑢) < 𝑡)𝑑𝑢. The integral in

different forwarding areas (i.e., MCA, DRA, and RTA) will

be analyzed later. Therefore the probability that there is no
such node is given by

𝑒
−∫
𝑢∈𝐴1
𝜌𝑔(𝑢)(1−𝑔(𝐷))𝑃𝑓(𝑢)Pr(𝑡∗(𝑢)<𝑡)𝑑𝑢

. (4)

Further using the Slivnyak-Mecke theorem [15], the condi-
tional event that there exists a node at V does not affect the
above probability. Recall that the probability density function
(pdf) of 𝑡∗(V) conditioned on the node at V is 𝑓(𝑡

∗
(V)) =

1/(1 − 𝑃𝑓(V)). Therefore using the total probability theorem

ℎ (V) = ∫

1−𝑃𝑓(V)

0

1

1 − 𝑃𝑓 (V)

⋅ 𝑒
−∫
𝑢∈𝐴1
𝜌𝑔(𝑢)(1−𝑔(𝐷))𝑃𝑓(𝑢)Pr(𝑡∗(𝑢)<𝑡)𝑑𝑢

𝑑𝑡.

(5)

Combining (3) and (5), it follows that

𝜑1 (V) = 𝑔 (V) (1 − 𝑔 (𝐷)) 𝑃𝑓 (V) 𝜏 (V, 𝐴1)

× ∫

1−𝑃𝑓(V)

0

1

1 − 𝑃𝑓 (V)

⋅ 𝑒
−∫
𝑢∈𝐴1
𝜌𝑔(𝑢)(1−𝑔(𝐷))𝑃𝑓(𝑢)Pr(𝑡∗(𝑢)<𝑡)𝑑𝑢

𝑑𝑡.

(6)

Finally, we analyze the integral in forwarding area. We
divide the circular triangle into many small lattices ΔV
approximated to ΔV ≈ Δ𝑥Δ𝑦.

(i) For MCA, the lower and upper bound of Δ𝑥 are 0
and 𝑅; the lower bound and upper bound of Δ𝑦 are
−√(𝑅/2)

2
− (𝑅/2 − 𝑥)

2 and √(𝑅/2)
2
− (𝑅/2 − 𝑥)

2.
The exponential term in (6) can be written as

𝑒
−∫
𝑢∈𝐴1
(⋅)𝑑𝑢

= 𝑒

−∫
𝑅

0
∫
√(𝑅/2)2−(𝑅/2−𝑥)2

−√(𝑅/2)2−(𝑅/2−𝑥)2
(⋅)𝑑𝑥 𝑑𝑦

.
(7)

(ii) For DRA, the forwarding area is divided into two
parts: in the first part the lower and upper bound of
Δ𝑥 are 0 and√3𝑅/2; the corresponding lower bound
and upper bound of Δ𝑦 are −𝑥/√3 and 𝑥/√3; in
the second part the lower and upper bound of Δ𝑥
are √3𝑅/2 and 𝑅; the lower bound and upper bound
of Δ𝑦 are −√𝑅2 − 𝑥2 and √𝑅2 − 𝑥2. The exponential
term in (6) can be written as

𝑒
−∫
𝑢∈𝐴1
(⋅)𝑑𝑢

= 𝑒
−(∫
√3𝑅/2

0
∫
𝑥/√3

−𝑥/√3
+∫
𝑅

√3𝑅/2
∫
√𝑅2−𝑥2

−√𝑅2−𝑥2
)(⋅)𝑑𝑥 𝑑𝑦

.
(8)

(iii) For RTA, the forwarding area is divided into two
parts: in the first part the lower and upper bound
of Δ𝑥 are 0 and √3𝑅/2; the lower bound and upper
bound of Δ𝑦 are 𝑅/2 − √𝑅2 − (√3𝑅/2 − 𝑥)

2 and
√𝑅2 − (√3𝑅/2 − 𝑥)

2
− 𝑅/2; in the second part the

lower and upper bound of Δ𝑥 are √3𝑅/2 and 𝑅; the
lower bound and upper bound of Δ𝑦 are −√𝑅2 − 𝑥2
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and √𝑅2 − 𝑥2. The exponential term in (6) can be
written as

𝑒
−∫
𝑢∈𝐴1
(⋅)𝑑𝑢

= 𝑒

−(∫
√3𝑅/2

0
∫
√𝑅2−(√3𝑅/2−𝑥)2−𝑅/2

𝑅/2−√𝑅2−(√3𝑅/2−𝑥)2
+∫
𝑅

√3𝑅/2
∫
√𝑅2−𝑥2

−√𝑅2−𝑥2
)(⋅)𝑑𝑥 𝑑𝑦

.

(9)

Now we proceed to the case that 𝑘 takes more general
values other than 1. Let 𝑧𝑘, 𝑘 > 1, be the random location
of the 𝑘-hop transmitter. Assuming that the pdf of 𝑧𝑘,
that is, 𝜑𝑘(𝑧𝑘), is known, we will derive the pdf of 𝑧𝑘+1

conditioned on the fact that 𝑧𝑘 = 𝜗 or simplify referred
to as conditioned on 𝑧𝑘. Note that according to the design
of our uncoordinated cooperative forwarding scheme, when
the node at 𝑧𝑘 transmits as the 𝑘th hop transmitter, the
node essentially replaces the role of the source in the system.
Therefore, it readily follows that

𝜑𝑘+1 (V | 𝑧𝑘)

= 𝑔 (V − 𝑧𝑘) (1 − 𝑔 (𝐷 − 𝑧𝑘)) 𝑃𝑓 (V − 𝑧𝑘) × 𝜏 (V, 𝐴𝑘+1)

⋅ ∫

1−𝑃𝑓(V−𝑧𝑘)

0

1
1−𝑃𝑓(V−𝑧𝑘)

⋅ 𝑒
−∫
𝑢∈𝐴𝑘+1
𝜌𝑔(𝑢−𝑧𝑘)(1−𝑔(𝐷−𝑧𝑘))𝑃𝑓(𝑢−𝑧𝑘)Pr(𝑡∗(𝑢−𝑧𝑘)<𝑡)𝑑𝑢

𝑑𝑡,

(10)

where𝐴𝑘+1 represents location set of the nodes in the (𝑘+1)-
hop forwarding area in 𝑥𝑦-coordinate system, determined by
𝑧𝑘 and the location of the destination.

The difficulty of (𝑘 + 1)-hop forwarding area is the
asymmetric integral area of𝑥 and𝑦 according to𝑥-axis in𝑥𝑦-
coordinate system. Therefore, we construct 𝑥󸀠𝑦󸀠-coordinate
systemusing the line 𝑧𝑘𝐷 as𝑥󸀠-axis due to the fact that (𝑘+1)-
hop forwarding area only depends on 𝑧𝑘 and 𝐷, as shown
in Figure 3. Therefore, the transmitters 𝑧1, 𝑧2, . . . , 𝑧𝑘 lead to
different 𝑥󸀠𝑦󸀠-coordinate systems. Luckily, the integral area
of (𝑘 + 1)-hop forwarding area in 𝑥

󸀠
𝑦
󸀠-coordinate system is

symmetric according to the 𝑥󸀠-axis. Therefore, the lower and
the upper bound of the integral in𝑥󸀠𝑦󸀠-coordinate system can
be obtained easily.

Based on the angle 𝜃𝑘 (which can be calculated easily
according to the location of the source 𝑆, the location of
the destination 𝐷, and 𝑧𝑘) between two coordinate systems,

we can obtain the relationship between the two coordinate
systems:

𝑥 = 𝑥
󸀠 cos 𝜃𝑘 − 𝑦

󸀠 sin 𝜃𝑘 + 𝑥𝑘,

𝑦 = 𝑥
󸀠 sin 𝜃𝑘 + 𝑦

󸀠 cos 𝜃𝑘 + 𝑦𝑘,

(11)

where 𝑥 and 𝑦 are the location value in 𝑥𝑦-coordinate system
while 𝑥

󸀠 and 𝑦
󸀠 are the location value in 𝑥

󸀠
𝑦
󸀠-coordinate

system.Thus, the (𝑘 + 1)-hop forwarding area and the choice
of (𝑘+1)-hop transmitter only depend on 𝑧𝑘 and𝐷.Therefore,
we can first calculate the lower and the upper bound of the
integral in 𝑥

󸀠
𝑦
󸀠-coordinate system and then transform them

into 𝑥𝑦-coordinate system using (11).
Using the property that, for a fixed value of 𝑘, there

can be at most one node which is a 𝑘-hop transmitter, the
unconditional probability can be obtained as

𝜑𝑘+1 (V)

= ∫
𝑧𝑘∈𝐴𝑘

𝜑𝑘+1 (V | 𝑧𝑘) 𝜑𝑘 (𝑧𝑘) 𝜌 𝑑𝑧𝑘

= ∫
𝑧1∈𝐴1

⋅ ⋅ ⋅ ∫
𝑧𝑘∈𝐴𝑘

𝜑𝑘+1 (V | 𝑧𝑘)

× 𝜑𝑘 (𝑧𝑘 | 𝑧𝑘−1) ⋅ ⋅ ⋅ 𝜑2 (𝑧2 | 𝑧1)

⋅ 𝜑1 (𝑧1) 𝜌
𝑘
𝑑𝑧1 ⋅ ⋅ ⋅ 𝑑𝑧𝑘.

(12)

Multidimensional integral in (12) must be performed in
the same coordinate system due to the location correlation
between multihop transmitters. Therefore, we analyze the
upper and lower bound of integral areas𝐴1, 𝐴2, . . . , 𝐴𝑘 in the
same coordinate system (𝑥𝑦-coordinate); details are shown in
Section 5.

The destination is a 𝑘-hop receiver if and only if it can
directly receive from a (𝑘 − 1)-hop transmitter. Note that the
term 1 − 𝑔(𝐷 − 𝑧𝑘) in 𝜑𝑘+1(V | 𝑧𝑘) allows us to rule out the
possibility that transmission continues after the packet has
reached its destination. Further note that, for any fixed value
of 𝑘, there is at most one node that can be a 𝑘-hop transmitter.
Based on the above observations, it follows that when 𝑘 > 1

𝜙𝑘 (𝐷) = ∫
V∈𝑏(𝐷,𝑅)

𝜑𝑘−1 (V) 𝜌𝑔 (𝐷 − V) 𝑑V (13)

and 𝜙1(𝐷) = 𝑔(𝐷).
Equation (13), together with (1), allows us to determine

the transmission success probability 𝑃suc(𝐷) = ∑
∞
𝑘=1 𝜙𝑘(𝐷)

and the expected number of transmissions required to reach
the destination 𝐸[𝑀(𝐷)] = ∑

∞
𝑘=1 𝑘𝜙𝑘(𝐷).

3.3. Special Case. When both forwarding probability func-
tion 𝑃𝑓(V) and backoff function ℎ(V) are independent of
node location V, denoted as 𝑃𝑓 and ℎ, respectively, the
integrals in (6) can be converted into multiplying the areas
of corresponding integral domains. The corresponding areas
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𝑆
MC
1 , 𝑆DR1 , and 𝑆

RT
1 can be calculated according to Section 3.1.

Consider

𝜑1 (V) = 𝑔 (V) (1 − 𝑔 (𝐷)) 𝜏 (V, 𝐴1)

× 𝑃𝑓 ∫

∞

0
𝑒
−𝜌𝑃𝑓 Pr(𝑡∗<𝑡)𝑆1𝑓 (𝑡) 𝑑𝑡,

(14)

where𝑓(𝑡) is the pdf of the backoff timewhich is independent
of the node location.

Similarly, the probability that the node at V is the (𝑘 + 1)-
hop transmitter conditioned on the 𝑘-hop transmitter at 𝑧𝑘
can be expressed as

𝜑𝑘+1 (V | 𝑧𝑘) = 𝑔 (V − 𝑧𝑘) (1 − 𝑔 (𝐷 − 𝑧𝑘)) 𝜏 (V, 𝐴𝑘+1)

× 𝑃𝑓 ∫

∞

0
𝑒
−𝜌𝑃𝑓 Pr(𝑡∗<𝑡)𝑆𝑘𝑓 (𝑡) 𝑑𝑡.

(15)

Then, using (12), together with (13) and (1), we can obtain
the transmission success probability𝑃suc(𝐷) and the expected
number of transmissions required to reach the destination
𝐸[𝑀(𝐷)] in the special case.

3.4. Design of Forwarding Probability Function. As mani-
fested in (13), (1), and our discussion in Sections 1 and 3.1,
the forwarding probability function 𝑃𝑓(𝑥) and forwarding
areas play important roles in determining the performance
of the forwarding scheme. In this subsection we analyze the
design of the optimal forwarding probability function for the
optimization problem in (2).

The analytical expressions for 𝑃suc(𝐷) and 𝐸[𝑀(𝐷)] in
their present form do not allow us to readily analyze the
optimal functional form of 𝑃𝑓(𝑥) that solves the optimization
problem in (2). However, for particular forms of 𝑃𝑓(𝑥),
for example, 𝑃𝑓(𝑥) = 𝑐 and 𝑃𝑓(𝑥) = 𝑎𝑥, the optimum
parameters for 𝑃𝑓(𝑥) can be found using the method of
Lagrange multipliers and solved numerically.

In the following analysis, we consider the simple case that
𝑃𝑓(𝑥) = 𝑐 as an example. The optimization problem in (2)
now reduces to find the value of 𝑐opt:

𝑐opt = arg min
𝑃𝑓(𝑥)=𝑐

𝐸 [𝑀 (𝐷)]

s.t. 𝑃suc (𝐷) ≥ 1 − 𝜀.

(16)

The Lagrangian of the optimization problem can be
written as

L (𝑃𝑓 (𝑥) = 𝑐, 𝜂) = 𝐸 [𝑀 (𝐷)] + 𝜂 (1 − 𝜀 − 𝑃suc (𝐷)) . (17)

The optimum value of 𝑐 can then be obtained by setting the
partial derivative of L(𝑃𝑓(𝑥) = 𝑐, 𝜂) with regard to 𝑐 and
with regard to 𝜂 to 0, respectively, and solving the equations.
However in this paper, we resort to a simplermethod by using
numerical simulation. Thus, we can find that both 𝐸[𝑀(𝐷)]

and 𝑃suc(𝐷) are nondecreasing function of 𝑐. Based on the
observation, it follows that the optimum value of 𝑐 is the
solution to the equation 𝑃suc(𝐷) = 1 − 𝜀, which can be found
numerically.
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Figure 4: Probability that the destination at 𝛾𝑅 is a 𝑘-hop receiver
using constant forwarding probability in MCA.

4. Simulation

In this section, we use both simulations and numerical results
to establish the performance of the proposed uncoordinated
cooperative forwarding scheme and provide some intuitively
digestible results. Considering a 2D axis, nodes apart from
source and destination are deployed following a homoge-
neous density 𝜌 = 2/m2 [14]. The ratio 𝛾 of the distance
between source and destination 𝐿 to the transmission range
𝑅 varies from 1 to 4. The backoff time follows the expo-
nential distribution with rate 𝜆 = 1. The lower bound
of successful transmission probability 𝑃

lower
suc (𝐷) is 0.94. The

limit of maximum number of hops 𝐾𝑚 is 20. We build
the random process by Monte Carlo method in Matlab to
capture the realistic properties of the real wireless networks
(e.g., producing random nodes’ locations according to the
simulation parameters).Moreover, each point in the figures is
the average value obtained from 50000 random simulations.

The following simulations first compare the performance
of uncoordinated cooperative forwarding schemes,measured
in the expected number of transmissions 𝐸[𝑀(𝐷)], using
three different forwarding probability functions, that is,
𝑃𝑓(𝑥) = 𝑐, 𝑃𝑓(𝑥) = 𝑎‖𝑥‖, and

𝑃𝑓 (𝑥) =
{

{

{

0, 0 ≤ ‖𝑥‖ < 𝑏𝑅,

1, 𝑏𝑅 ≤ ‖𝑥‖ ≤ 1.

(18)

In Figures 4–9, the three cases are labeled as Cases 1, 2, and
3, respectively.Then, we also provide the expected number of
transmissions using some existing forwarding algorithms; for
example, consider the following.

(1) The shortest path routing [8], which is labeled as
SP: obviously, the shortest path algorithm needs global
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using constant forwarding probability in RTA.

knowledge of the network and assumes all nodes would like
to forward a packet. It can serve as a benchmark for the best
performance here.

(2) The greedy forwarding algorithm, which is labeled as
GF: it chooses the node, which has received a copy of the
packet and would like to forward, closest to the destination
in each hop as the forwarding node. Greedy forwarding
algorithm is comparatively easy to implement; however it
relies on coordination between nodes to determine the set of
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Figure 7: Expected number of transmissions using four forwarding
functions under three forwarding areas.
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nodes which have received packet and would like to forward
and to determine which node among them is closest to the
destination.

(3) The random selection forwarding algorithm, which is
labeled as RS: it chooses one of the nodes randomly, which
have received a copy of the packet and would like to forward
in each hop. The coordination is required as well in order to
avoid hidden node problem.

(4) The user-fair forwarding algorithm: the only one
difference between the user-fair forwarding algorithm and
our proposed algorithm is no forwarding area constraint.

The values of 𝑎, 𝑏, and 𝑐 in Cases 1, 2, and 3 are determined
assuming that 𝛾 = 4 and 𝑃suc(𝐷) = 0.94. Because the suc-
cessful transmission probability increases with the decreasing
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Table 1: Optimal values of 𝑐, 𝑎, and 𝑏 conditioned on 𝑃suc(𝐷) = 1 −

𝜀 = 0.94.

MCA DRA RTA
𝑐 0.5 0.7 0.53
𝑎 0.33 0.3 0.32
𝑏 0.62 0.59 0.67

𝛾 which has been discussed in Section 3.4, the successful
transmission probability is undoubtedly not less than 0.94
when 𝛾 varies from 1 to 4 conditioned on the value of 𝑎, 𝑏, and
𝑐 corresponding to 𝑃suc(𝐷) = 0.94, under the same regulated
forwarding area and forwarding probability functions (listed
in Table 1). With the same or similar successful transmission
probability 𝑃suc(𝐷), we only need to compare the expected
number of transmissions under three forwarding probability
functions. Table 1 also justifies that the forwarding probability
should be assigned higher to DRA which is of the smallest
area value.

The probability that the destination can be reached in 𝑘

transmissions using constant forwarding probability (Case
1) under three forwarding areas (MCA, DRA, and RTA)
is shown in Figures 4, 5, and 6. Unsurprisingly, there are
slight discrepancies between the analytical results and the
corresponding simulation results. The analytical results are
always larger than the corresponding simulation results.
The discrepancies are attributable to the boundary effect.
For any 𝑘-hop transmitter which is close to the border,
the corresponding forwarding area may be located partially
outside the network area, which causes an error in computing
𝜙𝑘(𝐷). This effect is the boundary effect. The impact of the
boundary effect will reduce as the network area becomes
larger compared to 𝑅. The figures also show that the dis-
crepancy between the analytical result and simulation result
in MCA is larger than that of DRA or RTA due to the
condition that the area ofMCA ismaximum among the three

forwarding areas. Moreover, in the figures there is a spike
for 𝑘 = 2. That is because (1) when 𝛾 > 1 (i.e., 𝐿 > 𝑅),
the probability that the destination is 1-hop receiver is zero
(i.e., 𝜙1(𝐷) = 0), and (2) when 𝐿 is slightly larger than 𝑅, it
has a high probability that the destination is a 2-hop receiver.
Thus, the relatively big difference between the value of 𝜙1(𝐷)

equaling to 0 and 𝜙2(𝐷) approaching 1 given that 𝐿 is slightly
larger than 𝑅 results in a spike for 𝑘 = 2.

Then, we compare the expected number of transmissions
using forwarding functions (Cases 1, 2, and 3 and SP)
under three forwarding areas (MCA, DRA, and RTA). From
Figure 7, we can see that all the three forwarding probability
functions (Cases 1, 2, and 3) perform well. Interestingly, Case
3 where 𝑃𝑓(𝑥) is set as a step function provides the best
performance among all three cases, as shown in Figure 7.This
finding is consistent with our earlier work in [4] and it is
part of our future work to dig into the findings and provide
analytical support for the optimum choice of 𝑃𝑓(𝑥).

From Figure 8, the expected number of transmission is
positively related to the area of MCA, DRA, and RTA. But
under the step function, the difference is negligibly small
especially when 𝛾 is small, which verifies the benefit of the
step function.

Finally, Figure 9 gives the comparison of the expected
number of transmissions of our proposed algorithm with SP,
GF, and RS. Due to the page limit, we only give the results
using the linear forwarding probability function (Case 2).
From Figure 9, we can see that the proposed uncoordinated
scheme has a similar performance as the coordinated GF
and SP algorithm but saving a large amount of coordination
overhead.Moreover, recall that the user-fair forwarding algo-
rithm is an uncoordinated forwarding scheme. Without the
forwarding area constraint, it is likely that the transmission
collision happens due to the hidden node problem. There-
fore, it is hard to guarantee a high successful transmission
probability under the same scenario parameters. When 𝛾 = 4

and 𝜌 = 2/m2, the successful transmission probability only
reaches 0.15 due to the transmission collision. Therefore, it
cannot be compared with other algorithms under the same
successful transmission probability constraint.

5. Conclusion and Future Work

This paper proposed an uncoordinated cooperative forward-
ing scheme for 2D highly dynamic networks. The perfor-
mance of the proposed scheme, measured in terms of the
transmission success probability and the expected number
of transmissions, is analyzed. On that basis, design of the
optimum forwarding probability function is discussed. Given
a particular form of the forwarding probability function, our
analysis can be used to numerically determine the optimum
parameter settings for the forwarding probability function
that minimizes the expected number of transmissions while
meeting the performance target on the transmission success
probability. Furthermore, the performance of the uncoor-
dinated cooperative forwarding scheme employing three
commonly used forwarding probability functions, that is,
the constant forwarding probability, the linear forwarding



10 International Journal of Distributed Sensor Networks

l(2)
k

l(1)
k

D
x

𝜃kWk+1

Bk+1

B󳰀
k+1

zk

󵱰

l(3)
k
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Figure 11: DRA with 𝜃𝑘 from −30 degrees to −60 degrees.

probability, and the step function forwarding probability, is
compared. Our preliminary study appears to suggest that,
by choosing the forwarding probability function to be a
step function, the best performance can be achieved. This
finding is consistent with the work in [4] studying a two-hop
scenario in two-dimensional networks where the source and
the destination are separated by at most two hops. It is part
of our future work plan to dig into the result and provide
analytical support for the optimum choice of 𝑃𝑓(𝑥).

Appendix

A. The Upper and Lower Integral Limit of
Forwarding Area

A.1. The Upper and Lower Integral Limit of MCA. From
Figure 2, we can obtain the center of MCA, denoted by 𝐶𝑘+1
whose coordinate in 𝑥-axis is 𝐶𝑘+1,𝑥 = 𝑥𝑘 + (𝑅/2) cos 𝜃𝑘 and
whose coordinate in 𝑦-axis is 𝐶𝑘+1,𝑦 = 𝑦𝑘 + (𝑅/2) sin 𝜃𝑘.
Moreover, 𝑥𝑘 and 𝑦𝑘 are the coordinates of 𝑘-hop transmitter
in 𝑥-axis and in 𝑦-axis, respectively. Therefore, the lower
and upper limit of 𝑥 are 𝐶𝑘+1,𝑥 − 𝑅/2 and 𝐶𝑘+1,𝑥 + 𝑅/2,
respectively; the lower and upper limit of 𝑦 are 𝐶𝑘+1,𝑦 −

√(𝑅/2)
2
− (𝑥 − 𝐶𝑘+1,𝑥)

2 and𝐶𝑘+1,𝑦+√(𝑅/2)
2
− (𝑥 − 𝐶𝑘+1,𝑥)

2,
respectively.

A.2. The Upper and Lower Integral Limit of DRA. From
Figures 10, 11, and 12, we can obtain the vertexes of DRA
𝐵𝑘+1 and 𝐵

󸀠
𝑘+1. The coordinates of 𝐵𝑘+1 in 𝑥-axis and in

𝑦-axis are 𝐵𝑘+1,𝑥 = (√3/2)𝑅 cos 𝜃𝑘 − (1/2)𝑅 sin 𝜃𝑘 + 𝑥𝑘

and 𝐵𝑘+1,𝑦 = (√3/2)𝑅 sin 𝜃𝑘 + (1/2)𝑅 cos 𝜃𝑘 + 𝑦𝑘, respec-
tively; the coordinates of 𝐵󸀠𝑘+1 in 𝑥-axis and in 𝑦-axis are

l(2)
k

l(1)
k

D
x

𝜃k

Bk+1

B󳰀
k+1

x󳰀

zk

󵱰

l(3)
k

Figure 12: DRA with 𝜃𝑘 from −60 degrees to −90 degrees.

𝐵
󸀠
𝑘+1,𝑥 = (√3/2)𝑅 cos 𝜃𝑘 + (1/2)𝑅 sin 𝜃𝑘 + 𝑥𝑘 and 𝐵

󸀠
𝑘+1,𝑦 =

(√3/2)𝑅 sin 𝜃𝑘 − (1/2)𝑅 cos 𝜃𝑘 + 𝑦𝑘, respectively. The line
between 𝑧𝑘 and 𝐵

󸀠
𝑘+1, the line between 𝑧𝑘 and 𝐵𝑘+1, and the

arc between 𝐵
󸀠
𝑘+1 and 𝐵𝑘+1 are denoted as 𝑙

(1)
𝑘
, 𝑙(2)
𝑘
, and 󵱰

𝑙
(3)
𝑘

(or
󵱰
𝑙
󸀠(3)
𝑘

). The relations between the coordinates in 𝑥-axis and in
𝑦-axis for the corresponding line or arc are listed below:

𝑙
(1)
𝑘
: 𝑦 = ((𝐵

󸀠
𝑘+1,𝑦 −𝑦𝑘)/(𝐵

󸀠
𝑘+1,𝑥 −𝑥𝑘))𝑥+𝑦𝑘 −((𝐵

󸀠
𝑘+1,𝑦 −

𝑦𝑘)/(𝐵
󸀠
𝑘+1,𝑥 − 𝑥𝑘))𝑥𝑘,

𝑙
(2)
𝑘
: 𝑦 = ((𝐵𝑘+1,𝑦 −𝑦𝑘)/(𝐵𝑘+1,𝑥 −𝑥𝑘))𝑥+𝑦𝑘 −((𝐵𝑘+1,𝑦 −

𝑦𝑘)/(𝐵𝑘+1,𝑥 − 𝑥𝑘))𝑥𝑘,
󵱰
𝑙
(3)
𝑘
: 𝑦 = √𝑅2 − (𝑥 − 𝑥)

2
𝑘 for upper limit and 󵱰

𝑙
󸀠(3)
𝑘

: 𝑦 =

−√𝑅2 − (𝑥 − 𝑥)
2
𝑘 for lower limit.

The following analyzes the upper and lower bound of the
integral corresponding to different 𝜃𝑘.

(1) Consider 𝜃𝑘 ∈ [−𝜋/2, −𝜋/3] (see Figure 12)
For 𝑥 ∈ (𝐵

󸀠
𝑘+1,𝑥, 𝑥𝑘], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 𝑙
(1)
𝑘
,

respectively.
For 𝑥 ∈ (𝑥𝑘, 𝐵𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 𝑙
(2)
𝑘
,

respectively.
(2) Consider 𝜃𝑘 ∈ (−𝜋/3, −𝜋/6] (see Figure 11)

For 𝑥 ∈ (𝑥𝑘, 𝐵
󸀠
𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 𝑙
(1)
𝑘

and 𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵

󸀠
𝑘+1,𝑥, 𝐵𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 𝑙
(2)
𝑘
,

respectively.
(3) Consider 𝜃𝑘 ∈ (−𝜋/6, 0] (see Figure 10). Define that𝑊𝑘+1 is
the location of the largest 𝑥-coordinate in the forwarding area
and its𝑥-coordinate and𝑦-coordinate are𝑊𝑘+1,𝑥 = 𝑥𝑘+𝑅 and
𝑊𝑘+1,𝑦 = 𝑦𝑘, respectively.

For 𝑥 ∈ (𝑥𝑘, 𝐵
󸀠
𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 𝑙
(1)
𝑘

and 𝑙
(2)
𝑘
,

respectively.
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Figure 13: RTA with 𝜃𝑘 from 0 degrees to −30 degrees.

For 𝑥 ∈ (𝐵
󸀠
𝑘+1,𝑥, 𝐵𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵𝑘+1,𝑥,𝑊𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.

Similarly, we can obtain the results of 𝜃𝑘 from 0 degrees
to 90 degrees.

(4) Consider 𝜃𝑘 ∈ (0, 𝜋/6]

For 𝑥 ∈ (𝑥𝑘, 𝐵𝑘+1,𝑥], the lower and upper limit of
𝑦 are determined by the equation of 𝑙

(1)
𝑘

and 𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵𝑘+1,𝑥, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 𝑙(1)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵

󸀠
𝑘+1,𝑥,𝑊𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.

(5) Consider 𝜃𝑘 ∈ (𝜋/6, 𝜋/3]

For 𝑥 ∈ (𝑥𝑘, 𝐵𝑘+1,𝑥], the lower and upper limit of
𝑦 are determined by the equation of 𝑙

(1)
𝑘

and 𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵𝑘+1,𝑥, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 𝑙(1)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.

(6) Consider 𝜃𝑘 ∈ (𝜋/3, 𝜋/2]

For 𝑥 ∈ (𝐵𝑘+1,𝑥, 𝑥𝑘], the lower and upper limit of
𝑦 are determined by the equation of 𝑙

(2)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.
For 𝑥 ∈ (𝑥𝑘, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 𝑙
(1)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.

A.3. The Upper and Lower Integral Limit of RTA. From
Figures 13, 14, and 15, we found that the location of the
vertexes 𝐵𝑘+1 and 𝐵

󸀠
𝑘+1 are same as those in DRA. The arc
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Figure 14: RTA with 𝜃𝑘 from −30 degrees to −60 degrees.
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Figure 15: RTA with 𝜃𝑘 from −60 degrees to −90 degrees.

between 𝑧𝑘 and 𝐵
󸀠
𝑘+1, the arc between 𝑧𝑘 and 𝐵𝑘+1, and the

arc between 𝐵
󸀠
𝑘+1 and 𝐵𝑘+1 are denoted as

󵱰
𝑙
(1)
𝑘

(or󵱰𝑙󸀠(1)
𝑘

), 󵱰𝑙(2)
𝑘

(or
󵱰
𝑙
󸀠(2)
𝑘

), and 󵱰
𝑙
(3)
𝑘

(or󵱰𝑙󸀠(3)
𝑘

). The relations between the coordinates
in 𝑥-axis and in 𝑦-axis for the corresponding line or arc are
listed below:

󵱰
𝑙
(1)
𝑘
: 𝑦 = √𝑅2 − (𝑥 − 𝐵𝑘+1,𝑥)

2 for upper limit and 󵱰
𝑙
󸀠(1)
𝑘

:

𝑦 = −√𝑅2 − (𝑥 − 𝐵𝑘+1,𝑥)
2,

󵱰
𝑙
(2)
𝑘
: 𝑦 = √𝑅2 − (𝑥 − 𝐵

󸀠
𝑘+1,𝑥

)
2 for upper limit and 󵱰

𝑙
󸀠(2)
𝑘

:

𝑦 = −√𝑅2 − (𝑥 − 𝐵
󸀠
𝑘+1,𝑥

)
2,

󵱰
𝑙
(3)
𝑘
: 𝑦 = √𝑅2 − (𝑥 − 𝑥𝑘)

2 for upper limit and󵱰
𝑙
󸀠(3)
𝑘

: 𝑦 =

−√𝑅2 − (𝑥 − 𝑥𝑘)
2 for lower limit.

The following analyzes the upper and lower bound of the
integral corresponding to different 𝜃𝑘.

(1) Consider 𝜃𝑘 ∈ [−𝜋/2, −𝜋/3] (see Figure 15). Define that
𝑊
󸀠
𝑘+1 is the location of the smallest 𝑥-coordinate in the

forwarding area and its 𝑥-coordinate and 𝑦-coordinate are
𝑊
󸀠
𝑘+1,𝑥 = 𝐵𝑘+1,𝑥 − 𝑅 and𝑊

󸀠
𝑘+1,𝑦 = 𝐵𝑘+1,𝑦, respectively.
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For 𝑥 ∈ (𝑊
󸀠
𝑘+1,𝑥, 𝑥𝑘], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(1)
𝑘
,

respectively.
For 𝑥 ∈ (𝑥𝑘, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵

󸀠
𝑘+1,𝑥, 𝐵𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.

(2) Consider 𝜃𝑘 ∈ (−𝜋/3, −𝜋/6] (see Figure 14)

For 𝑥 ∈ (𝑊
󸀠
𝑘+1,𝑥, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(1)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵

󸀠
𝑘+1,𝑥, 𝑥𝑘], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝑥𝑘, 𝐵𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.

(3) Consider 𝜃𝑘 ∈ (−𝜋/6, 0] (see Figure 13)

For 𝑥 ∈ (𝑥𝑘, 𝐵
󸀠
𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(1)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵

󸀠
𝑘+1,𝑥, 𝐵𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 󵱰
𝑙
(1)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵𝑘+1,𝑥,𝑊𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.

Similarly, we can obtain the results of 𝜃𝑘 from 0 degrees
to 90 degrees.

(4) Consider 𝜃𝑘 ∈ (0, 𝜋/6]

For 𝑥 ∈ (𝑥𝑘, 𝐵𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵𝑘+1,𝑥, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵

󸀠
𝑘+1,𝑥,𝑊𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(3)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.

(5) Consider 𝜃𝑘 ∈ (𝜋/6, 𝜋/3]. Define that𝑊󸀠󸀠𝑘+1 is the location
of the smallest 𝑥-coordinate in the forwarding area and its
𝑥-coordinate and 𝑦-coordinate are 𝑊󸀠󸀠𝑘+1,𝑥 = 𝐵

󸀠
𝑘+1,𝑥 − 𝑅 and

𝑊
󸀠󸀠
𝑘+1,𝑦 = 𝐵

󸀠
𝑘+1,𝑦, respectively.

For 𝑥 ∈ (𝑊
󸀠󸀠
𝑘+1,𝑥, 𝑥𝑘], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(2)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝑥𝑘, 𝐵𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵𝑘+1,𝑥, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.

(6) Consider 𝜃𝑘 ∈ (𝜋/3, 𝜋/2]

For 𝑥 ∈ (𝑊
󸀠󸀠
𝑘+1,𝑥, 𝐵𝑘+1,𝑥], the lower and upper limit

of 𝑦 are determined by the equation of 󵱰𝑙󸀠(2)
𝑘

and 󵱰
𝑙
(2)
𝑘
,

respectively.
For 𝑥 ∈ (𝐵𝑘+1,𝑥, 𝑥𝑘], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(2)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.
For 𝑥 ∈ (𝑥𝑘, 𝐵

󸀠
𝑘+1,𝑥], the lower and upper limit of

𝑦 are determined by the equation of 󵱰𝑙󸀠(1)
𝑘

and 󵱰
𝑙
(3)
𝑘
,

respectively.
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