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The influence that intrinsic local-density fluctuations can have on solutions of mean-field
reaction-diffusion models is investigated numerically by means of the spatial patterns arising from
two species that react and diffuse in the presence of strong internal reaction noise. The dynamics of
the Gray—ScotftGS) model[P. Gray and S. K. Scott, Chem. Eng. S88, 29 (1983; 39, 1087

(1984); J. Phys. Chem89, 22 (1985] with a constant external source is first cast in terms of a
continuum field theory representing the corresponding master equation. We then derive a Langevin
description of the field theory and use these stochastic differential equations in our simulations. The
nature of the multiplicative noise is specified exactly without recourse to assumptions and turns out
to be of the same order as the reaction itself, and thus cannot be treated as a small perturbation.
Many of the complex patterns obtained in the absence of noise for the GS model are completely
obliterated by these strong internal fluctuations, but we find novel spatial patterns induced by this
reaction noise in the regions of parameter space that otherwise correspond to homogeneous
solutions when fluctuations are not included.2@05 American Institute of Physics

[DOI: 10.1063/1.1900092

I. INTRODUCTION namical changes, two examples of which include noise-
induced transitiofsand stochastic resonante.

General interest in the spatiotemporal pattern formation  |n view of these considerations, and regarding the pat-
problem stems from its wide application to self-organizationterns obtained in the mean-field approximation, it is impor-
phenomena in fields as diverse as physics and chemiiry, tant to understand how fluctuations affect the stability of an
biology;” and materials scienceOne of the simplest models  established spatial pattern and in what way do the determin-
of biochemical relevance leading to spatial and temporal pastic and stochastic effects compete. Fortunately, it is pos-
terns when diffusion is included is that due to Gray and Scotkjple to include systematically the effects of microscopic
(GS).” Numerical simulations of the deterministic GS systemgnsity fluctuations in such systems by starting with the cor-
have revealed a rich set of strikingly complex and irregulategponding master equation, representing this stochastic pro-
patterns’ In these mean-field approximations of chemical .oqq by second-quantized bosonic operators, and then pass-
species that diffuse and react, the fluctuations are completehﬁg to a path-integral representation to map the system onto a

ignored. It is well known that if the spacial dimensionality continuum field theorﬂlo'llln many cases, primarily for two-
O.f thg st);]stgn: 1S gn}?lletr tr;gn a (iertam .uppe: cr;nc?l Q'Tﬁ n'body reactions, this field theory can be mappadctlyonto
slond, the Intrinsic fluctuations piay an Important role in e Langevin equation description in which the noise is com-
late time asymptotic behavior and the results obtained from . ificid S
the mean-field equations are not corfé&luctuations can pletely and rigorously specified.In other cases, primarily

: . : for three-body reactions to which the GS system belongs, the
also influence the dynamics on local spatial and temporal ¢ i field th b imated b i
scales’ Indeed, it is well established nowadays that noise cafact continuum nield theory can be approximated by honfin-
lead to an unsuspected variety of dynamical effects. Far fron & Langeym equations prowded. that the hlgher-order field
being merely a perturbation to idealized deterministic behayt"€ory vertices are truncated. Since mean-field models of
ior or regarded as a bothersome source of randomness BRt€M 1£9rmat|on are generally of the reaction-diffusion
structural disruption, noise can induce counterintuitive dy-YPe, ~itis useful to employ the Langevin description for
handling the fluctuations, as this allows for a direct compari-

a S _ son with the results obtained within the naive mean-field
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PElectronic mail: zorzanomm@inta.es apprOXimation' )
®Electronic mail: fmoran@bio.ucm.es In this paper we use the standard mapping of the master
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equation to a stochastic field theory and use the latter to A
obtain a set of approximate nonlinear Langevin equations in U+2v—-3V,
order to be able to assess the nature and influence that inter-

nal reaction noise has on the spatial patterns obtained from vi P,

the purely deterministic GS model. (1)
The remainder of this paper is organized as follows. In v

Sec. Il we introduce the chemical reactions defining the u-Q,

Gray-Scott model and derive a field-theoretic description of U

these reactions by means of the Doi—Peliti formalt§r. —U.

Once we obtain the continuum action, we derive an approxi: . .
w ! inu 1on, W v pp XIV(x,t) andU(x,t) represent the concentrations of the chemi-

mate Langevin equation description of the GS model. TheCal speciesv and U, and are functions ofl-dimensional

advantage of this i; that the noise propertieg are spec_:ifiegpacex and timet. \ is the reaction rateP andQ are inert
automatically and indicate how the mean-field reaction-yroqycts u is the decay rate of, v is the decay rate df,
diffusion equations must be modified to take into accountandy, is the constant feed rate. A nonequilibrium constraint
properly the(unavoidablg internal density fluctuations. The s represented by a feed term for The rate at whictU is
ensuing noise is real and multiplicative, and in magnitude isupplied is positive if the concentration dfdrops below an
of the same order as the GS reaction itself. In Sec. Il weequilibrium value and negative if it exceeds it. The equilib-
present the results of the numerical simulations of the Langefium U concentration is given by,/ ». The chemical species
vin equations derived in Sec. Il and assess the impact thd{ andV can diffuse with independent diffusion constabis
strong multiplicative noise has on the subsequent evolutio@"dD,- All the model parameters are positive.

of spatially localized structures in two dimensions. Conclu-

sions are drawn in Sec. IV. A. Continuous time master equation

Our starting point is the continuous time master equation
describing the above reactiof§ on ad-dimensional hyper-
cubic lattice, allowing multiple occupancy per site. Consider
theU andV particles moving diffusively on a lattice of spac-
ing | and some probability of decaying, and of reacting
whenever they meet on a lattice site. IR&{m},{n};t) be the

Il. THE U+2V—3V REACTION probability to find the particle configuratigimy, {n} at time
t. The setdm}=(m;,m,, ..., my) and{n}=(ny,ny,,...,ny) de-
The Gray-Scott modéls a variant of the autocatalytic scribe the occupation numbers of thteand U particles on
Selkov model of glycolysis, corresponding to the following each lattice site, respectively. The appropriate master equa-
chemical reactions: tion is given by

%P({m},{n};t) = %(Z){(mj +DP(...,m-1m+1,..;)-mP}+ %(Z){(nj +DP(...,m-1,n+1,...;t) - n;P}
ij )
+ %E {(m-D(m-2)(n+1DP(...m=-1,..,n+1,..;t)-m(m-1)nP}

+ﬂ2 {(m+DP(....m+1,...;t) —mP} + VE {(n+P(....,n;+1,...;t) —nP}

+UOE{P(...,mi+1,...;t)—P}. 2)

This equation describes the evolution®fin time. A given  anotherV particle, with ratex, and when & particle orU
configuration can change due to one of the six independergarticle decays spontaneously with ragesand v, respec-
processes: by the diffusion &f particles[first line of (2)] tively. Finally, the probability changes due to the constant
whereD,, is the diffusion constant and by the diffusion of the source ofU particles, with feed ratg,. In the diffusive terms

U particles whereD,, is the diffusion constant. It will also the symbol(i,j) indicates summing over sitdsand their
change when twd/ particles meet & particle to produce nearest neighbors
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B. Mapping to bosonic field theory T . A
. . S=fddxf dil a’| 9,a - D,V? + pa - —a*b
This master equatiofi2) can be mapped to a second- 0 2

quantized description following a procedure developed by N
Doi.'? Briefly, we introduce annihilation and creation opera- + b*(ﬁfb —D,V2b + vb - ug+ —a2b)
torsa anda' for V andb andb' for U at each lattice site, 2

with the commutation relationga;,a]=8; and[b;,bf]1=4;. N
- ) L] *) w0 % *3 L]
The vacuum state satisfiag0)=b;|0y=0. We then define the -4 b[2a°-2a'b +a”~a”’b ])- g
time-dependent state vector (8)
- We will represent the quadratic termsah b" (indicated
)= > P({m},{n},t)H (a")™(b)™|0). (3)  with the underbrageby an integration over Gaussian noise
{m}{n} ' terms, which will allow us to then integrate out the conjugate

jelds if we ignore the terms cubic in these conjugate fields.

The master equation can be written as a Schrodinger-like ™", ; . . -
oing so, we derive an approximate Langevin description of

equation the exact field theory irf7). To carry this out explicitly, we
W (t)) note that
-7 o =HW), (4)
ghhatia’-a'b)] J DED P&, 7)e™ €07, 9
where the lattice hamiltonian or time-evolution operator is a
function ofa, a', b, andb' and is given by where the noise functions and » are distributed according
b 5 to a double Gaussian as
H=|—2”E (af—af)(eu—aj)ﬂ—;‘E (b = b)(b = b)) 7
(i.j) (i) P(&m) =exp — (7,H)A )] (10
A
- 52 [(a")%ab; - (a)%a?blb] + VE (bl - Db, and where thdinverse matrix A of noise-noise correlation
: : functions is
+u2 (& - Da +up> (L-b). (5) N (o 1) Ale ((nn) <77§>) (D
i ' T 2na?h\1 2)’ () @)

This has the formal solutiofi (t))=exg~Ht)[¥(0)). Integrating out the conjugate fields andb” from the func-

Finally, this second-quantized bosonic operatdy is  {jona| integral(8) then leads to the pair of coupled nonlinear
mapped onto a continuum field theory. This procedure is NOW angevin equations

standard and we refer to Ref. 11 for further details. In our

. . )\
;:nzizg,rafﬁr the GS system, we end up with the following path galxt) = D,V2a(x,t) - palxt) + Ea(x,t)zb(x,t) +EX.D),

o (12
U(r.0)= f DaDabbDbe 34205, (®) D040 = D,T(0) = #hlx) = 22l %bi,0)

over the continuous fielda(x,t), a(x,t), b(x,t), andg(x,t) +Up + 7(X,1),

where the actiorS is given by with positive noise correlations that can be read off directly

T o . from (11)
— d Py .
S= f d xfo dt{a&ta+ D,VaVa+bob+D,VbVb (Ex,0) = (7(x ) = 0,
+u(@-1)a+ v(b-1)b-uyb- 1) (EX,DEX ) = Aa(x ) 2(x,t) (x - X ) St - '),
_ (13)
- %@azb —Ezazbb)} . (7) (&) (X, 1)) = 2na(x, 1) ?b(x, 1) 84(x - ) 8(t — t'),

We have omitted terms related to the initial state. Aside from (X, 7(x',)) = 0.

taking the continuum limit, the derivation of this action is Thus the multiplicative reaction noise isal, a point well

exact, and in particular, no assumptions regarding the precisgorth mentioning sincémaginarynoise terms are known to

form of the noise are required. arise in some effective Langevin descriptions of diffusion-

limited reactions* It is important to emphasize that the

mathematical character of the Langevin noise., whether

the noise turns out to be real or imagingiy determined by

__ the nature of the underlying reaction processes. Thus, for
For the final step we perform the shii=1+a" andb  example, particle annihilation leads to imaginary noise while

=1+b" on the actiorS and obtain particle production or coagulation leads instead to real noise.

C. Approximate Langevin equation description
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In the GS case treated here, the three-body reaction exeaction-diffusion system was numerically investigated lead-
pressed in1) leads to the net production &-type species, ing to a great variety of patterns in a rather small region of
so we can expect the noise in the Langevin equatiofar ~ the parameter spacéiVe investigate here this region and its
be real, which is, in fact, the case. neighborhood when the reaction-diffusion system is sub-
The mathematical structure of the noise correlations irjected to the intrinsically large amplitude internal reaction
(13) merits some comment. We note that this equation estalroise.
lishes a relation between the moments of the noise sources The noise term in tha equation has a field-dependent
and the values of the fluctuating concentration fields. Strictlyautocorrelation or strength. On the contrary, the noise in the
speaking, the noise cumulants should depend on the md-field equation has zero autocorrelation, i.e., it is a noise of
ments of the fields. Thus, for example, by employing a sozero strength which we henceforth take as null in our nu-
called “curtailed characteristic functional,” van Kampen wasmerical studies. For real noise, we can identify the figds
able to exactly compute the cumulants of the noise source fandb with the particle densitie¥ andU, respectively. With-
a spatially independent Markov procégsThe apparent in- out loss of generality, we redefine the noise VAUV 6 with
consistency in13) is common in the literature. We empha- 6 a Gaussian whitéuncorrelatell zero-mean noise of unit
size that this is not an artifact of the approximation usedstrength. We thus consider the following reaction-diffusion
here; similar relationgi.e., equating averaged to fluctuating system subjected to multiplicative noise di=2 space di-
variableg arise even when the functional integration over themensions:
conjugate fields can be performed exa&flﬂ.’ here are two
ways out of this .apparent inconsistency: on the one hand, we 7Y =\UV2— uV + D, V2V + vmva(x,y,t),
note that the noise cumulants are proportional to delta func-  dt
tions which limit the effects of the fluctuations to the single
point x=x" and single time=t’. Alternatively, in using the
identity in (9), one always has the freedom to define the  — =Uy—AUVZ- U+ D, V?U, (14)
. . . . . at
matrix A of noise correlation§l1) as being strictly constant,
at the expense of s_hiftingthe square root O)f_the fielq- with  (6,(x,y,06,x .y ,t'))=8x-x")dy-y")8(t-t") and
dependent prefac_tor into th(_a resultant Langeym equ_atlon. Mvhere V2=(P1ox2) + (Pl y?). We study this system fox
we foII_ow this optl_on, the noise comes out stncfcly white "f‘”d_:l, D,=1, andD,=0.5 and settingiy= .
the noise correlations are mathematically consistent. This, in The numerical simulations of system evolution have

fact, is the option we employ below when we come 10 CON-yeen performed using forward Euler integration of the finite-
sider the numerical simulations. Finally, we note that thesgitterence equations following discretization of space and
Langevin equationgl2) reduce to the GS reaction-diffusion yjme in the stochastic partial differential equaticis). The
system in the mean-field approximation in which the par-gpatia| mesh consists of a lattice of 26856 cells with cell
ticles are uncorrelated. size Ax=Ay=2.18 and periodic boundary conditions. The
noise has been discretized as well. The system has been nu-
merically integrated up t6=5000(with time stepAt=0.05.
After the transient timgroughly t= 2000, depending on the
Based on the microscopic master equati@hand the exact system parameters and initial conditipnduring
field-theoretic action of the systefB), we have derived an which the perturbation spread, the system went into an
approximate effective Langevin descriptiqd2) for this  asymptotic state.
chemical system where the statistical properties of the inter- For comparison with the deterministic case studied in
nal noise termg¢13) have been explicitly calculated. Notice Ref. 5, we have used the sarRek coordinates which cor-
that the unavoidable internal reaction noise is multiplicativerespond td==» andk= - ». Following Ref. 5, we first con-
and its intensity is comparable to that of the reaction termssidered the time evolution of an initial perturbation in the
This problem can thus not be analyzed by perturbatiorhomogeneous trivial stable state of the reaction-diffusion
theory and must be treated numerically. In the case of weakystem. The initial conditions consisted of one localized
additive noise(Gaussian white noise and colored Ornstein—square pulse witfU=0.5, V=0.25 plus random Gaussian
Uhlenbeck noisgthe stochastic system described in Ef) noise perturbing the trivial steady statg=1, V=0). The
has been investigated in detai The patterns to which the perturbing pulse measured 22 cells, just wide enough to
system converged changed drastically with small changes iallow the autocatalytic reaction to be locally self-sustaining.
the noise intensity. Using the lowest-order one-loop renorin the Figs. 1a)-1(e) and(R), only the concentration of the
malization groupRG),>” we demonstrated that a weak addi- substrateJ is shown. When displayed in color, the blue rep-
tive noise induces a modification in the parameters of theesents a concentration of between 0.2 and 0.4, where the
system. By combining analytic and numerical work, we es-substrate is being depleted by the autocatalytic production of
tablished an equivalence between a sequence of patterns gan- yellow represents an intermediate concentration of
erated by varying the noise amplitude but keeping all otheroughly 0.8, and red represents the trivial steady stdte
parameters fixed, and a companion sequence generated By, V=0) where all fluctuations cease entirely. None of the
keeping the noise fixed and varyirige., renormalizingin- noise-free patterns reported in Ref. 5 survive in this strong,
stead some of the model parameters according to the predistochastic regime. However, besides the trivial time-
tions of the RG flow equations. In the deterministic case, thisndependent solution shown iR), (U=1, V=0), we have

IIl. NUMERICAL SIMULATION
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FIG. 1. Reference patterns of the GS reaction-diffusion system subject to internal reaction noise. The individual simulations referred to anethieciex
left to right, as follows:(R) k=0.08,(a) k=0.07,(b) k=0.06,(c) k=0.05,(d) k=0.04, ande) k=0.03. The initial condition was the uniform red, trivial state
(U=1,v=0) with a small localized perturbing pulgsee text for detai)s Concentration of fieldJ(x,y,t) is displayed at=5000 for the parameter range
F=1=0.025,k=u-»=[0.025:0.08.

found nontrivial spatial patterns in a widerandF region of  trivial one survives. In the trivial red stat®)=1, V=0), the
parameter space than that surveyed in Ref. 5. In spite of thetochastic fluctuations, whose amplitude is given\byJV,
strong intrinsic noise, the existence of the relatively orderedease entirely and hence this stataactive Whereas in the
pattern(a) with self-replicating moving globules is remark- blue uniform statg§U=0.3, V=0.25 the nonvanishing fluc-
able. These globules consist of localized closed structures, ituations drive the system away to one of the patterns shown.
which the reactant concentration differs from the surroundfurthermore, the range in parameter space over which pat-
ing concentration field. In the interior of each of these unitsterns can be found is greater in the noisy case than in the
in blue, there is a region with sustained autocatalytic produceleterministic one; the range is roughly twice as wide inkhe
tion of V which is causing the local depletion of the substraterange and approximately three times as wide inkhange.
U. This blue region corresponds roughly to the stéte For completeness we considered next the case of uni-
=0.3,V=0.25 depending on the exact parameter values. Théorm, unperturbed, initial conditions. As mentioned before,
main difference between patteta) and(b) is the ability of  for the parameter region on the left side of the solid line in
these structures to split into new closed units, which is lost irFig. 3, the blue statdJ=0.3,V=0.25 is the nontrivial stable
pattern(b) leading to a merged structure. For fixed v, ask  solution of thenoise-free reaction-diffusion system. In Fig.
(or equivalentlyu, the decay rate of th¥ particles is de- 4, upper row, we show the time evolution of this state for
creased, there is a smooth transition from pattésn (k F=0.05 andk=0.055, i.e., within the region where it should
=0.06 through(e) (k=0.025 and then again t6R). Similar  be stable in the noise-free case. However, due to the reaction
patterns can be found with differektand F. As F is de-  noise, the blue pattern evolves towards patt@jn like the
creased the size of the structures in the patterns increasesiform red state did under the influence of local perturba-
see, for instance, Fig. 2 and compare the patterns with thiéon, see Fig. 3. Therefore, the local-density fluctuations are
corresponding ones shown in Fig. 1. strong enough to spontaneously form a pattern also starting
In Fig. 3 we present the parameter space mapping of thfom the blue uniform stable state. If we $e£0.05 andk
patterns found. The solid line separates two relevant regions0.0725, which corresponds to the right side of the solid
of the deterministic reaction-diffusion case: on the right siddine, we find that the evolution of this pattern converges to
of the solid line there is a single trivial, spatially uniform the globular patterifa), see the lower row of figures in Fig.
state (R) whereas on the left side there are two spatially4. This is also remarkable since in the noise-free reaction-
uniform stategR and uniform blug¢ Both are linearly stable. diffusion case, spots cannot form spontaneously from a uni-
In the vicinity of this line, asF is decreased, the uniform form state.
blue states looses stability through a Hopf bifurcation lead-  Therefore, if we take into account the unavoidable in-
ing to a great variety of patterns. For a detailed analysis of
the patterns found in parameter space, for the time evolutior —ozs , , . . . . . .

of this initial condition in the deterministic case, see Ref. 5. \H\
Notice that patterr(a) appears for a set of parameters that o -
Lo .. .2 c . B
under the deterministic case would have led to a trivial so- >
lution of the type(R). On the contrary, the patterns found in . .
the deterministic reaction-diffusion case do not survive when o . . o 1
the internal reaction noise is taken into account. In particular,
the uniform blue state disappears. Therefore, of the two uni- |, 4 . e |
form stable solutions of the deterministic case, only the . . w 4 . b b R
e e ed d d c b a R
e e e ed d c cb a R R
0.05 R e e ed d c ba RR B
R e e ed c / baR R
e d o~ b, a R
R e ed b b a R
0 e - R a R
o 0. I01 OAI02 0. .03 OA.04 OA.05 OAIOS OA‘07 0. ‘OB 0.09

k

FIG. 2. The concentration of the fiel(x,y,t) displayed att=5000 for FIG. 3. Parameter space diagram withu—v and F=v. The letters indi-

(from left to right (a) F=0.0025,k=0.05;(b) F=0.01,k=0.05; and(c) F cate the location where similar patterns to the reference ones in Fig. 1 were
=0.01,k=0.0375. AsF is decreased the size of the structures in the patternsound. A transitional pattern between two reference cases is designated by a
increases. The patterns are designated with the corresponding letter of tipair of two corresponding letterge.g., ed and cb R indicates that the
reference case in Fig. 1, which have a greater value dfotice that the size  system evolved to thmactiveuniform trivial, red, state. See the text for an

of the square region depicted in the figures is the same. explanation of the solid-line.
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The Langevin equations derived in the present paper are
approximate in that the multiplicative noise appearin¢lip)
is Gaussian distributed. Recall that the noise represents the
terms in the actiors (8) quadratic in the conjugate fields
andb’. The presence of cubic terms in these fields indicates
that the fluctuations are actually skew@t symmetrig, but
there is unfortunately no exact identifye., in the spirit of
Hubbard-Stratanovighallowing one to replace the cubic
terms by equivalent noise terms, as we did9n Neverthe-
FIG. 4. Time evolution of the homogeneous initial conditin=0.3v  |€SS, we note that the quadratic and cubic terms are all pro-
=0.25. In the upper row the sequence referred to in the text is, from left toportional to the reaction term\a?b. We thus expect that the
right, (B)-(i)-(ii)-(c) for k=0.055 and==0.05, and in the lower row i3)-  nojse in the putative exact Langevin description has a
e A o ier o8 e st 597 strength comparable with that of the Gaussian approxima-

tion. The internal reaction noise depends both on the density

of the substrate and product, i.e., when either of them is zero
fhere is no reaction and therefore no noise either. The nu-

trinsic reaction noise, the dynamics of the system can b

noise intensity of this multiplicative stochastic term is artifi-
cially damped, we do recover all the complex patterns ob
tained for the purely deterministic mean-field situation.

fluctuations persist and the asymptotic particle densities are
finite. In fact, fluctuations are always present in the GS
model, since the substrat¢is being constantly replenished
at the rateuy,>0, and provided thaV is nonvanishing, the

IV. DISCUSSION noise amplitude/\UV is always positive and finite. Only for

The standardnoise-fre¢ GS reaction-diffusion equa- the trivial stateU=1,V=0, where the density of is vanish-
tions presume that there is particle diffusion due to the uning, do the stochastic fluctuations cease entirely and hence
correlated Brownian motion of the molecules involved andthe Staté(R) is inactive o _
that the reaction rate is simply given by the product of the The mte_rnal reaction noise is unavoidable and as strong
probability of finding two molecules of autocatalyst and a@S 'ghe reaction term. We .have demonstrated numepcally that
molecule of substrate at the same point. This approximatioffS influence can dramatically change the dynamics of the
clearly neglects the existing correlation between the molSYyStem producing new stable states in the reaction. In par-
ecules and the presence of microscopic particle density fludicular, we report on the existence of globular replicating
tuations which cause these mean-field rate equations to bregkuctures in the Langevin GS reaction-diffusion system,
down. In a Langevin description, these same fluctuation/ith internal reaction noise, in a region of parameter space
lead to multiplicative noise terms whose mathematical propWhich in the deterministic case was expected to decay to the
erties depend on the nature of the reactions present. Partidigvial, uniform solution. _ _
production or clustering leads to positive noise correlations, ~rough this study case of a chemical reaction system
and real noise, while particle annihilation leads to anticorreV€ have provided a specific example where the evolution of
lations and hence imaginary noise. the densities depepds strongly on microscopic qu_ctuann;,

Starting from the microscopic master equation, we havénd cannot be derived from mea}n—fleld rate equatlons. This
derived a field-theoretic action of the GS reaction system an@PProach may also be relevant in other chemical processes
from there we have deduced effective Langevin-type equat@Pable of generating spatially organized structures, and in
tions where the form of the noise is specified precisely with-Particular, in the case of low spatial dimensionality.
out any assumption. An alternative but equivalent approach
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