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Abstract 

Abundant literature is available for the route planning based on meta-heuristic algorithms. However, most researches in this field are developed 
under normal scenarios (e.g. normal weather conditions). The natural disasters, such as hurricanes, on the contrary, impose hard constraints to 
these combinatorial problems. In this paper, a route-planning problem is solved, specifically, for the repair of electrical breakdowns that occur 
after natural disasters. The problem is modeled using an assignment-based integer programming formulation proposed for the Multiple 
Traveling Salesman Problem (mTSP). Moreover, this paper proposes the creative application of an algorithm based on Ant Colony 
Optimization (ACO), specifically Multi-type Ant Colony System (M-ACS), where each colony represents a set of possible global solutions. 
Ants cooperate and compete by means of “frequent” pheromone exchanges aimed to find a solution. The algorithm performance has been 
compared against other ACO variant, showing the efficacy of the proposed algorithm on realistic decision-making. 
 
Keywords: Ant Algorithms, multiple traveling salesman problem, electrical breakdowns. 
 

 

Solución alternativa para la reparación de averías eléctricas posterior 
a desastres naturales usando optimización basada en colonias de 

hormigas 
 

Resumen 

En la literatura especializada existe abundante literatura sobre la aplicación de meta-heurísticas en la planeación de rutas. Sin embargo, la 
mayoría de las investigaciones en este campo han sido desarrolladas bajo escenarios normales (ejemplo bajo condiciones meteorológicas 
normales). Los desastres naturales, por ejemplo los huracanes, incrementan la complejidad en este tipo de problemas combinatorios. En 
este artículo se resuelve un problema de planeación de ruta, específicamente para la reparación de averías eléctricas que suceden 
posteriores a un desastre natural. El problema es modelado empleando una formulación entera basada en asignación para Múltiples 
Viajeros Vendedores (mTSP). Por otra parte, en el artículo se propone una aplicación creativa de un algoritmo de optimización basado en 
Colonia de Hormigas (ACO), específicamente Sistema de Hormigas Multi-tipos, donde cada colonia representa un conjunto de posibles 
soluciones globales del problema. Las hormigas cooperan y compiten mediante frecuentes intercambios de feromonas para buscar una 
solución del problema. El desempeño del algoritmo ha sido comparado con otras variantes de ACO, mostrando la eficacia del algoritmo 
propuesto en ambiente realístico de la toma de decisiones.  
 
Palabras claves: Algoritmo de hormigas, múltiples agentes vendedores, averías eléctricas. 
 
 
 
1.  Introduction 

 
The natural disasters are unwanted phenomena that 

humans must to deal. Unfortunately, many important 
services are interrupted during and after the disasters. 
Medical services, transportation (people and goods) and 
electricity are some of the main services that can be 
seriously damaged. Restore these services is top priority, 

which involve coordinated efforts among governments, 
private individuals and corporations [1].  

Hurricanes are the more common natural disasters of 
Caribbean islands (e.g. in Cuba, the hurricane season 
comprises six months of the year). Strong winds are one of 
undesirable effects of these meteorological phenomena. The 
strong winds can destroy an electrical networks (mostly when 
the electrical networks are on the ground), causing many 
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electrical breakdowns after the hurricanes. These breakdowns 
should be repaired in the smallest possible time. 

On the other hand, the issue of the electrical breakdown 
repair in electricity distribution networks has been treated in 
literature [2]. However, the main contributions are 
addressed to develop new technologies in order to make 
much more efficient the distribution networks. Furthermore, 
in some other, the proper size of power network [3] and the 
system reliability [4] are studied. Regarding optimization 
decision, the common researches are focused on minimizing 
the network size, and in particular cases the multi-objective 
optimization are proposed, where the network size and the 
system reliability are optimized simultaneously [5]. 

Inevitably, the power networks can be subject of often 
breakdowns, which have to be repaired as soon as possible. 
Sometimes, the number of breakdowns reaches impressive 
values, particularly after natural disasters, such as hurricanes. 
Obviously, to repair such breakdowns both human and 
material resources are required in order to reestablish so 
valuable service (the electricity). However, facilitating the 
proper sequence to repair and the quick departure of these 
resources towards the breakdown place could be crucial in the 
decision-making. In general, for repairing the breakdown is 
disposed of limited fleet of vehicles, which transport the 
specialists and necessary resources to the repair. 

When the repair sequence is planned, interesting 
constraints can be visualized. For instance, not all breakdowns 
have the same priority. Mostly, it depends on the region where 
the breakdown took place and the voltage level existing in the 
network line. Depending on the breakdown priorities, different 
repair time can be consumed for the repair activities. Another 
difficult situation occurs when an unexpected breakdown 
appears after dispatching the fleet of vehicle to the repairing 
process. Interestingly, the planning of repair sequence (route 
planning) in power networks resembles many extensions of 
Vehicle Routing Problems (VRPs). For instance, multiples 
vehicles must be assigned to different breakdowns (mTSP 
[6]), not all the repair times are the same (typical on the 
Traveling Repair Problems, TRP [7]) and dynamicity on the 
route process planning (is deep studied in the Dynamic 
Vehicle Routing Problems, DVRP [8-9]). 

As a result of the above, this paper proposes one of the 
well-known mTSP formulation (assignment-based integer 
programming formulation), which seem more appropriate 
for modeling the case study set up in the city of Santa Clara 
(Cuba). A creative application of a novel ACO proposal is 
developed for the mentioned case study. The proposed 
algorithm, called Multi-type Ant Colony System (M-ACS) 
has been successfully applied to benchmark problems (see 
in [10]) overcoming a formidable solution approach for 
mTSP, the Lin- Kernighan heuristic. 

In addition to the aforementioned, in this research, the 
algorithm is applied for real context, using multiple artificial 
ant colonies in order to solve the case study based on the 
mTSP formulation; each colony represents a set of possible 
global solutions of 𝑚𝑚m salesmen. Same type ants cooperate 
among them, sharing experiences through “frequent” 
pheromone exchange. Moreover, a competition between ant 
types (i.e. ants of different colonies) is also introduced in 
order to create certain diversity in the search process. 

The remaining parts of the paper are structured as 
follows: in Section 2 is described the basic formulation of 
the case study. Subsequently, in the Section 3 is explained 
in details the application of M-ACS for the route planning 
in the repair of the electrical breakdowns, considering all 
problem complexity beside those aspects examined on the 
basic formulation (mTSP). An extensive experimentation is 
given in Section 4, including the algorithm performance 
analysis based on some statistical test. Finally, some 
conclusions are provided in Section 5. 

 
2.  Basic formulation of the case study 

 
The route planning to repair the electrical breakdown 

can be basically formulated as Multiple Traveling Salesman 
Problem (mTSP), due to some appreciable similarities with 
this well-known theoretical variant of the VRPs. The 
similarities reside in the classical dispatching of a 
homogeneous fleet of vehicles (with the technical staff to 
repair), to which a set of nodes (breakdowns) in the graph is 
assigned. Similar to the mTSP, the breakdowns are once 
visited by the vehicles and each breakdown can be visited 
by just one vehicle (salesman). The other particular 
characteristics of the case study (the occurrence of an 
unexpected breakdown and the priority level) will be 
examined in next sections, specifically when the algorithmic 
approach is proposed. 

Formally, the mTSP can be defined on a graph 𝐺𝐺 =
(𝑉𝑉,𝐴𝐴), where 𝑉𝑉 is the set of 𝑛𝑛 nodes (vertices) and 𝐴𝐴 is the 
set of arcs (edges). Let 𝐶𝐶 = (𝑐𝑐𝑖𝑖𝑖𝑖) be a cost (typically 
distance) matrix associated with 𝐴𝐴. The matrix 𝐶𝐶 is said to 
be symmetric when 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴and asymmetric 
otherwise. The aim of this discrete combinatorial problem is 
to find 𝑚𝑚 routes (one for each salesman), which start and 
end in a same node (depot or dispatching center in the case 
study). Each salesman has to visit a node once and just one 
salesman can visit a node. 

Several integer programming formulation have been 
proposed for the mTSP in literature, the most commonly 
used one is the assignment-based integer programming 
formulation [11]. In this mathematical description, the 
mTSP is usually formulated using an assignment-based 
double-index integer linear programming formulation. The 
decision variable can be defined as follows: 

 
xij = �1 if arc (i, j) is used on a route,

0 otherwise.
 (1) 

 
The general formulation of assignment-based integer 

programming of the mTSP can be given as follows: 
 

minimize�� cij

n

j=1

n

i=1

∙ xij 
 

(2) 
 

s.t. 

� x1j

n

j=2

= m, (3) 

� xj1

n

j=2

= m, (4) 
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� xij

n

i=1

= 1,     j = 2, … , n, (5) 

� xij

n

j=1

= 1,     i = 2, … , n, (6) 

 

�� xij
j∈Si∈S

≤ |S| − 1,     ∀S ⊆ V \ {1}, S ≠ ∅, (7) 

 
xij ∈ {0,1},∀(i, j) ∈ A (8) 

 
The expression (2) describes the fact that the objective 

of the problem is the minimization of the sum of the 
associated costs (distance) for each arc (𝑖𝑖, 𝑗𝑗). The 
constraints (3) and (4) ensure that exactly 𝑚𝑚 salesmen 
depart form and return back to node 1 (the dispatching 
center). Expressions (5) and (6) represent the classical 
assignment constraints. Finally, constraints (7) are used to 
prevent subtour-s (Subtour Elimination Constraints, SECs). 

 
3.  M-ACS for route planning  

 
The M-ACS applied as a solution alternative for the case 

study is taken from the original pseudocode reported in 
[11]. According to [11], there exist 𝐶𝐶𝐶𝐶, as a set of colonies, 
which represent different group of global solutions of the 

problem (repair tours). Each colony obtains a set of global 
solutions, where each ant of the colony obtain a repair tour, 
using an Ant Colony System (ACS) algorithm and during 
the route construction, the ants that belong to a same colony 
(type) cooperate, sharing experience through “frequent” 
pheromone exchange. However the different types of ants 
are also involved in a competition process, which is based 
on the fact that the ants are repulsed by the pheromone of 
ants that belong to other colony (other type of ants). 
Combining both mechanisms (collaboration as well as 
competition), a set of global solutions can be reached for all 
colonies (better exploration process as a main advantage), 
selecting the best solution after certain number of iterations. 

 
3.1.  The adapted algorithm 

 
Concretely, each artificial ant makes the repair tour; 

thus, a breakdown is chosen until all of them are included in 
the tour. For the selection of a (not yet visited) breakdown 
three aspects are taken into account in the M-ACS: how 
good was the choice of the breakdown before (𝜏𝜏𝑟𝑟𝑟𝑟, 
pheromone trails), how promising is the choice of that 
breakdown (𝜂𝜂𝑟𝑟𝑟𝑟, measure of desirability) and how good 
were the choices of that city for the other colonies (𝜙𝜙𝑎𝑎(𝑟𝑟, 𝑠𝑠), 
colony pheromone trail). For this reason, one interesting 
characteristic of the M-ACS is the creation of a pheromone 
matrix for each ant type. In our M-ACS the pseudo-random-
proportional rule either considers the experience earned by 
each colony. The state transition rules (consider, from the 
basic formulation that 𝑖𝑖 → 𝑟𝑟 and 𝑗𝑗 → 𝑠𝑠) are given by: 
 
 

s = �
 arg maxu∈Jk(r){[τ(r, u)] ∙ [η(r, u)]β ∙ [1

ϕ� a
(r, s)]−γ} if     q ≤ q0

 S otherwise f
� (9) 

 

S: pk(s) =

⎩
⎪
⎨

⎪
⎧ [τ(r, s)] ∙ [η(r, s)]β ∙ [1

ϕ� a
(r, s)]−γ

∑ [τ(r, u)] ∙ [η(r, u)]β ∙ [1
ϕ� a

(r, u)]−γu∈Jk(s)
if     s ∈ Jk(s)

 0 otherwise  (

 (10) 

 
 

where𝜙𝜙𝑎𝑎(𝑟𝑟, 𝑠𝑠) indicates the average value of pheromone 
in the edge (𝑟𝑟, 𝑠𝑠) taken from the other colonies, excluding 
the pheromone trail of colony 𝑎𝑎 (current colony), after some 
number of iteration (𝐹𝐹). Another parameter defined in the 
M-ACS is 𝛾𝛾, which denotes the sensibility of each ant for 
using its own colony experience (𝛾𝛾 =  0) or also the 
experience of the remaining colonies (𝛾𝛾 >  0). 

The frequent pheromone exchange is performed after a 
number of iteration 𝐹𝐹, where 𝐹𝐹 is a user-defined parameter 
and can be established dividing the total number of iteration 
𝑁𝑁 in equal amount or as the user decides. Finally, the 
frequent pheromone exchange can be computed as follows: 

 

ϕa(r, s) =
∑ ϕco(r, s)co∈CO; co≠a

CO − 1
 (11) 

where index 𝑎𝑎 indicates the current colony, which 
performs the pheromone update, taking the average 

pheromone values of the other colonies, excluding its own 
pheromone trail.  

The repulsion mechanism, between ants of different types, 
can be inferred from the term [𝜙𝜙𝑎𝑎(𝑟𝑟, 𝑠𝑠)]−𝛾𝛾 in the expressions 
(10) and (11). An ant that belongs to colony 𝑎𝑎, has less 
probability to choice the breakdown 𝑠𝑠 if other ant types 
chosen this breakdown in the previous route constructions (the 
average pheromone value of the other ant types is increased). 
For this reason, ants of the same type have much more 
opportunities to preserve the chosen breakdowns when these 
are incorporated in the earliest route constructions. 

The initial pheromone is obtained from Nearest 
Neighbor Heuristic (NN). As in previous research developed 
by [10], the heuristic starts with random node and then the 
other “non-visited-node” are incorporated according to the 
minimum traveled distance criterion. 

The M-ACS pseudocode adapted to the case study 
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(Pseudocode 1) is detailed as: 
 

initialize parameters 
obtain the initial solution (ψnn) using NN 
heuristic 

ψgb ← ψnn 
Lgb ← Lnn 

initiate the pheromone trail 
for each(r, s) 

τ(r, s) = (n ∙ Lgb)−1 
end for 
do until IT =  N 
ifIT % N =  F then (N: total number of 
iteration) 
exchange pheromone between colonies, see 
Eq. (11) 
end if 
for each colonya 
for each ant k 
build a solution ψk using (new-ant-
solution) 
ifLk ≤ Lgbthen 

Lgb = Lk 
ψgb ← ψk 

end if 
end for 
end for 
update the global pheromone trail (see in 
[11]) 
IT =  IT +  1 (IT: iteration) 
loop 
 
Differing to [11], the subordinate pseudocodenew-ant-

solution is adapted to the real-life case study. Particularly, 
the main difference resides on the measure of desirability 
(𝜂𝜂𝑟𝑟𝑟𝑟), which becomes better when the distance is minimum, 
the vehicle available time is efficiently spent (maximum 
ratio in 𝑅𝑅𝑅𝑅𝑟𝑟 𝑅𝑅𝐴𝐴𝑅𝑅� ) and the breakdown priority is highest (the 
three priority level are established according to the voltage 
level, being the electrical breakdowns that occur in 220KV 
and 33KV lines of the first priority level, the second priority 
level for those which occur in 4KV lines, and the third in 
electrical lines with voltage level under 4KV (more 
frequent)). The 𝑅𝑅𝑅𝑅𝑟𝑟 values in the Pseudocode (2) follow a 
probabilistic distribution, uniform, with different parameters 
depending upon breakdown priority degree. 

 
Pseudocode {2}: The new-ant-solution 
algorithm 
initialize the parameters  
locate ant k in depot 
initialize traveled distance: Lk ←  0 
while (ant k has not completed its 
solution) 
compute the desirability:  

η(r, s) =
1

Cr,s
∙

RTs
TAT

∙ PDs 

Cr,s = max (1, cr,s) 

RTs = �
U(45,60)         if priority degree is 1
U(25,35)         if priority degree is 2
U(10,20)          if priority degree is 3

 

select next node s using expression (9) or 
(10) 
 

 

 
Figure 1. Optimization framework for dispatching the unexpected 
breakdowns. 
Source: The authors 

 
 
update the local pheromone trail τ(r, s), see 
[11] 
update the tour: ψk ← ψk + 〈s〉 
update traveled distance:Lk ← Lk + dij 
end while 
where the pseudocode terms are: 
 
Cr,s: Road distance between the breakdown r and the 
breakdown s. 
RTs: Repair time consumed by the breakdown s. 
TAT: Total available time of the vehicles in charge of 
the breakdown repair. 
PDs: Priority level of the breakdown s (0 ≤ PDs ≤ 1). 
 
 

3.2. Treatment of the unexpected breakdowns 
 
The proposal consists of two integrated modules 

(dispatcher and optimizer module), in which a sequence of 
static mTSP problems is created. Dispatcher module 
initializes all the data structures, controls the time, handle 
the occurrence of all breakdowns (pending breakdowns of 
unexpected breakdowns), provide to the Optimizer module 
the input data and update the routes according to the results 
of the Optimizer module. On the other hand, the Optimizer 
module is responsible for solving the static problems 
generated by the other module. The static problem solutions 
are given by M-ACS. 

In the Pseudocode (3) the main actions suggested by the 
proposed framework are explained in details. The 
pseudocode show the steps that should be followed when 
some unexpected breakdowns occurs. 

 
Pseudocode (3): Insertion of the unexpected breakdowns 
initialize () 
time ←  0 
Locate the vehicles at dispatching center 

PendingBreakdowns ←  InitialBreakdowns()  
do until PendingBreakdowns =  {} 

breakdown arrival time ←  time 

solutions input 

routes breakdowns 

Customers Vehicles 

Dispatcher 

Static 
problems 

Optimizer 
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create the static problem with the 
breakdowns: 
PendingBreakdowns +
 NewBreakdowns(breakdown arrival time) 

Solution =  Optimizer module (static problems) 
time =  breakdown arrival time 

 Update the route of the vehicles 
 Update the PendingBreakdowns 
Loop 
 

3.3.  Complexity analysis of M-ACS 
 
The time complexity of ACO algorithms is mainly based 

on its search strategies, where a set of 𝑚𝑚 ants develop a tour 
construction with complexity 𝐶𝐶(𝑛𝑛2) until a number of 
iterations is reached. The pheromone trails are stored in a 
matrix with 𝐶𝐶(𝑛𝑛2) entries (one for each edge) as in all ACO 
strategies [12]. In M-ACS a set of 𝐶𝐶𝐶𝐶 colonies is defined, 
each colony represents a subgroup of the total number of 
ants 𝑚𝑚. In the computational analysis this total number of 
ants is the important parameter and not the number of 
colonies. This is because the pheromone exchange between 
the colonies, which only is performed every 10% of the 
iterations, takes 𝐶𝐶(𝑛𝑛2) as well and therefore does not 
increase the complexity of the standard pheromone updates 
within each colony. Yielding an overall time complexity of 
𝐶𝐶(𝑛𝑛2), equal to the other ACO strategies. 

 
4.  Computational results 

 
In this section the M-ACS algorithm is tested on a real-

life case study, set up in the city of Santa Clara, Cuba. This 
city, with a 300 000 population, has been one the most 
affected by the hurricanes over the last twenty years [13]. 
Therefore, the decision making related with route planning 
after natural disasters has received great deal of attention for 
the local authorities. The company involved in the decision 
making process presents serious financial difficulties, in 
particular with the computational resources. Hence, the 
approximate algorithm proposed in the paper is aimed to 
facilitate such computational resource lacks.  

This case study consists on route planning for repairing 
the electrical breakdowns after the hurricanes crossing the 
mentioned city. The Fig. 2 shows the road network of Santa 
Clara, where the traveled distance of each arc (𝑟𝑟, 𝑠𝑠) in the 
network is calculated using the professional software 
MapInfo 6.0. 

The dispatching center (the star in Fig. 2) and some 
electrical breakdowns after a devastating hurricane (e.g. 
hurricane IKE) are depicted as well. As we mention before, 
this case study can be modeled using the assignment-based 
formulation of the m-TSP, where each salesman represents 
a vehicle equipped with all resources for repair of the 
electrical breakdown. 

The algorithm proposed in this paper was coded in 
JAVA and all experiments were executed on a 
microcomputer Intel Dual Core with 2.4 GHz, 4 GB RAM. 

After a significant amount of executions, the parameters´ 
values were tuned for the M-ACS applied to the case study. 
The aforementioned parameter setting has been supported 
by the ANOVA statistical technique, resulting significantly 
better  

 

 
Figure 2. View of dispatch center in Santa Clara city. 
Source: MapInfo 6.0. 

 
 

(minimum criterion) the objective function value with the 
following parameters: 
• The 𝑞𝑞0 value is defined as 0.75; 
• Parameters 𝛼𝛼,𝛽𝛽, 𝛾𝛾 were setting as  1; 
• The evaporation coefficient 𝜌𝜌 performs better as 0.1; 
• Ten ants were assigned to each colony in the 

construction of solutions and; 
• Every 10 iterations, 10% of the total number of 

iteration (100), occurs the pheromone exchange. 
The temporal scope of the M-ACS application was shift of 

8 hours. In this case is considered that the first moment in the 
route planning process (after the hurricane) starts at the 
beginning of the shift and every 30 minutes after the first 
moment is check for new unexpected breakdowns. If certain 
breakdown(s) occur(s), the proposed algorithm develops an 
insertion process to the previous route based on the strategy 
described in Pseudocode (3).  

 
Table 1.  
Shift description in all decision making process. 

Shift Fleet size 
Breakdowns Unexpected 

breakdown Total  P1 P2 P3 

01 8 126 6 2 118 16 
02 12 196 4 8 184 21 
03 4 109 2 2 105 11 
04 15 435 7 12 416 37 
05 16 338 12 8 318 27 
06 11 291 11 14 266 30 
07 20 455 20 12 423 52 
08 12 288 7 8 273 32 
09 8 351 14 19 318 36 
10 6 78 2 6 70 5 
11 23 128 3 7 118 13 
12 4 211 7 15 189 21 
13 10 514 19 18 477 34 
14 13 432 16 23 393 45 
15 11 134 3 5 126 8 
16 16 218 9 12 197 15 
17 13 543 27 21 495 42 
18 21 122 6 13 103 11 
19 15 215 8 12 195 19 
20 12 312 7 14 291 31 

Source: The authors 
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In this computational experiment the algorithm 
performance is compared with other classical ACO 
variant, the Ant Colony System (ACS). Due to its 
similarities (excepting the competition and cooperation 
process of colonies) with the proposed algorithm was 
not explained in Section 3. However, the typical 
parameters of this algorithm (𝑞𝑞0,𝛼𝛼,𝛽𝛽,𝜌𝜌and number of 
iteration) are tuned using the same values defined in M-
ACS. 
The computational experimentation is based on the 
application of the ACO variants (M-ACS and ACS) for 
20 shifts, in which a high diversity (related with 
different priority degree and unexpected) of breakdowns 
are under consideration. In the Table 1 are showed the 
main characteristics of every shift, including the fleet 
size, total number of breakdown during 8 hours, quantity 
of breakdown according to the priority degree and the 
amount of unexpected breakdown that occurred after the 
first route planning. 

Table 2 presents the objective function value (total 
traveled distance, in Km.) applying the solution 
approaches based on ACO, the M-ACS and ACS. The 
values in boldface represent the objective function value 
for each shift. First three columns indicate the shift code 
and the solution quality of both algorithmic approaches. 
The last column illustrates a descriptive analysis (∆) 
which is developed according to the follow expression: 

 

∆= �1 −
SolM−ACS

SolACS
� × 100 (12) 

 
where𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀−𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 are the objective function 

values after applying the M-ACS and ACS respectively. 
A positive value of ∆ indicates in what percentage the 
proposed algorithm (M-ACS) overcomes the other ACO 
strategy (ACS); otherwise, the M-ACS performs worse 
than the ACS.The descriptive results depicted in Table 2 
proof the efficacy of the proposed ACO solution 
approach (M-ACS). In only one shift, number 10, the 
classical ACS performs better regarding solution quality. 
It is quite interesting that only in minimum scale 
instance the ACS overcomes the M-ACS. 

In addition to the descriptive analysis, a 
nonparametric test is applied aimed to know whether the 
average improvement (∆) results significant. The 
objective function values have been introduced on the 
IBM SPSS 21, comparing both performance values (see 
in Table 3) using Wilcoxon Signed Rank Test. A 𝑝𝑝-value 
is computed for this test, depending of it, is determined 
whether the hypothesis is rejected (when 𝑝𝑝-value is 
lower than the significance value) or not. 

Having closer look to the 𝑝𝑝-value figure can be 
decided that the M-ACS performs significantly better 
than the classical ACS, which means that the 
competition and cooperation process between colonies 
of ants is much more suitable in the route planning 
process to repair breakdowns which occur in power 
network distribution, the real-life case study examined 
in the present paper. 

 

Table 2. 
 Results of solution approaches of ACO for all shift of the case study.  

Shift M-ACS ACS ∆ 
01 144.21 156.24 7.70 
02 222.96 293.83 24.12 
03 119.67 146.65 18.40 
04 532.01 612.56 13.15 
05 486.71 511.19 4.79 
06 312.19 336.91 7.34 
07 551.11 623.86 11.66 
08 424.13 458.13 7.42 
09 432.78 465.26 6.98 
10 100.34 93.56 -7.25 
11 150.32 162.44 7.46 
12 411.03 416.78 1.38 
13 623.21 648.19 3.85 
14 514.45 531.73 3.25 
15 114.13 126.11 9.50 
16 421.83 429.14 1.70 
17 661.36 664.21 0.43 
18 112.44 121.75 7.65 
19 401.92 418.33 3.92 
20 456.11 472.16 3.40 

Average --- --- 6.84 
Source: The authors 
 
 
Table 3.  
Results of Wilcoxon´s test.  

 Comparison p-value Hypothesis 

Shifts 
1…20 

M-ACS  
vs. ACS 0.001 Rejected 

Source: own creation using SPSS 20 
 
 

5.  Conclusions 
 
In this paper, we have adapted and then applied a 

previous introduced ACO algorithm, called Multi-type Ant 
Colony System (M-ACS) (see in [11]), which significantly 
improves the performance of other efficient ACO strategy, 
the Ant Colony System (ACS). Comparison of our 
algorithm to classical ACO algorithm have shown that, the 
M-ACS is currently one the best performing variant for the 
Multiple Traveling Salesman Problem (mTSP), which have 
identified as the basic formulation in a realist route planning 
process to repair electrical breakdowns. 

A case study, set up in the city of Santa Clara, confirms 
that our solution approach can be applied to real world 
instances. Thus, the proposed algorithm supports the 
decision making process related with the route planning to 
repair the electrical breakdown after natural disasters. 
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