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This work proposes an exact ILP formulation for the task scheduling problem on a 2D dynamically and partially reconfigurable
architecture. Our approach takes physical constraints of the target device that is relevant for reconfiguration into account.
Specifically, we consider the limited number of reconfigurators, which are used to reconfigure the device. This work also
proposes a reconfiguration-aware heuristic scheduler, which exploits configuration prefetching, module reuse, and antifragmentation
techniques. We experimented with a system employing two reconfigurators. This work also extends the ILP formulation for
a HW/SW Codesign scenario. A heuristic scheduler for this extension has been developed too. These systems can be easily
implemented using standard FPGAs. Our approach is able to improve the schedule quality by 8.76% on average (22.22% in the
best case). Furthermore, our heuristic scheduler obtains the optimal schedule length in 60% of the considered cases. Our extended
analysis demonstrated that HW/SW codesign can indeed lead to significantly better results. Our experiments show that by using
our proposed HW/SW codesign method, the schedule length of applications can be reduced by a factor of 2 in the best case.
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1. Introduction

Systems on a Chip (SoCs) have been evolving in complexity
and composition in order to meet increasing performance
demands and serve new application domains. Changing user
requirements, new protocol and data-coding standards, and
demands for support of a variety of different user applica-
tions require flexible hardware and software functionality
long after the system has been manufactured. Inclusion of
hardware reconfigurability addresses this need and allows a
deeper exploration of the design space.

Nowadays, reconfigurable hardware systems, FPGAs in
particular, are receiving significant attention. At first, they
have been employed as a cheap means of prototyping and
testing hardware solutions, while nowadays it is not uncom-
mon to even directly deploy FPGA-based solutions. In this
scenario, that can be termed Compile Time Reconfiguration
[1], the configuration of the FPGA is loaded at the end of the
design phase, and it remains the same throughout the whole
application runtime. With the evolution of technology, it

became possible to reconfigure the FPGA between different
stages of its computation, since the induced time overhead
could be considered acceptable. This process is called Run
Time Reconfiguration (RTR) [1]. RTR is exploited by creating
what has been termed virtual hardware [2, 3] following the
concept of virtual memory in general computers. When an
application bigger than the available FPGA area has to be
executed, it can be partitioned in m partitions that fit in
that area and these will be executed into numerical order,
from 1 to m, to obtain the correct result. This idea is
called time partitioning, and has been studied extensively
in literature (see [4, 5]). A further improvement in FPGA
technology allows novel devices to reconfigure only a portion
of its own area, leaving the rest unchanged. This can be
done using partial reconfiguration bitstreams. The partial
reconfiguration time depends on the FPGA logic that needs
to be changed. When both these features are available, the
FPGA is called partially dynamically reconfigurable.

However, this scenario turns the conventional embed-
ded design problem into a more complex one, where
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the reconfiguration of hardware is an additional explicit
dimension in the design of the system. Therefore, in order
to harvest the true benefit from a system which employs
dynamically reconfigurable hardware, existing approaches
pursue the best trade-off between hardware acceleration,
communication cost, dynamic reconfiguration overhead,
and system flexibility. In these existing approaches the
emphasis is placed on identifying computationally intensive
tasks, also called kernels, and then maximizing performance
by carrying over most of these tasks onto reconfigurable
hardware. In this scenario, software mostly takes over the
control dominated tasks. The performance model of the
reconfigurable hardware is mainly defined by the degree of
parallelism available in a given task and the amount of recon-
figuration and communication cost that will be incurred.
The performance model for software execution is on the
other hand static and does not become affected by external
factors. Starting from [6], HW/SW codesign researchers try
to provide both analysis and synthesis methods specific for
new architectures. Classical HW/SW Codesign techniques
need to be improved to design reconfigurable architectures,
because of a new degree of freedom. This new freedom
resides in the design flow: the system can now dynamically
modify the functionalities performed on the reconfigurable
device. The second aim of this work is to present a model
of the problem of scheduling a task graph onto a partially
dynamically reconfigurable FPGA, taking into account the
possibility of having both software and configurable hard-
ware executions. The novelty of this work resides in the
considered architectural model: Figure 1 shows the model.
There is a processor and a reconfigurable part, each one with
its own memory. The architecture is absolutely general and
can be used also for a non-FPGA scenario. Furthermore, in
an FPGA scenario, the processor can be within the FPGA
or outside the device. What is really effective is that it has
to be connected to the reconfigurable part with a channel.
The channel is modeled as a bidirectional bus. Once this
structure is ensured, the developed model works. With this
architecture, when a hardware task needs data from the
processor memory there is a latency due to this transfer.

This work provides the following contributions:

(i) an ILP formulation for the problem of minimizing
the schedule length of a task graph on a 2D partially
dynamically reconfigurable architecture to obtain
optimal performance results,

(ii) a heuristic scheduler which takes into consideration
antifragmentation techniques for general task graphs,
a mix between classical deconfiguration policies and
antifragmentation ones, and the use of out-of-order
scheduling to better exploit module reuse,

(iii) an ILP formulation and a heuristic scheduler for the
extended problems raised by introducing HW/SW
Codesign in the initial problem.

This paper will focus on the scheduling of tasks on
partially dynamically reconfigurable FPGAs in order to
minimize the overall latency of the application. Section 2
proposes a description of the target architecture, describing
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Figure 1: Considered architecture.
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Figure 2: 1D and 2D placement constraints versus 1D and 2D
reconfiguration.

the architectural solution on which the proposed model
has been based. Section 3 describes the proposed ILP for-
mulations and Section 4 the heuristic schedulers. Section 6
presents a set of experimental results comparing the ILP
results and the heuristic ones to the results of the model
presented in [7]. Finally, the conclusions regarding the
proposed approach will be addressed in Section 7.

2. Target Device and Context Description

2.1. Architecture Description. The modern FPGA devices
exploit a technology that allows powerful reconfiguration
features. First, it is possible to perform dynamic reconfigu-
ration. Second, emerging technologies allow 2D reconfigura-
tion increasing the designer’s degree of freedom. The payback
for this increasing freedom is the necessity of new tools
capable of exploiting these features in an effective way. The
possibility of having a 2D partial dynamic reconfiguration
may lead to both better solutions for well-known problems
and feasible solutions for new problems.

Figure 2 shows the differences between 1D and 2D recon-
figurations. In a 1D scenario, a module occupying only a col-
umn portion needs the reconfiguration of the entire column,
while the same module in a 2D scenario can be reconfigured
in much less area. In the case of Figure 2, in a 1D scenario the
two modules would occupy 16 columns, while by exploiting
2D reconfiguration only 8 columns can be used. When a
portion of the FPGA has to be reconfigured, a specific file
called bitstream is needed: this file contains the information
concerning the next behavior of that portion of FPGA.

The main characteristic of bitstreams is that they have
a correlation with the operation they implement: once the
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bitstream is defined, the operation is defined too, while given
an operation, there could exist more than one bitstream
implementing it. Therefore, it is possible to assign to each
bitstream an attribute called type used to identify the
operation implemented, the area occupied on the target
architecture, and the time needed to be configured and to
be executed by that bitstream. The latest FPGA technology,
such as the Xilinx V4 [8, 9] and V5 [10, 11] families, allows
2D partial dynamic reconfiguration. At the same time, the
complexity of the problem of minimizing the schedule length
of an application by exploiting reconfiguration increases.
Furthermore, thanks to multiple reconfigurator devices,
concurrent reconfigurations can be performed, different
modules can be configured simultaneously onto the FPGA.

Let us define a set of reconfiguration features that have
to be taken into account to define the schedule. Module reuse
means that two tasks of the same type have the possibility
to be executed exactly on the same module on board, with
a single configuration at the beginning. The deconfiguration
policy is a set of rules used to decide when and how to remove
a module from the FPGA. Antifragmentation techniques
avoid the fragmentation of the available space on board
trying to maximize the dimension of free connected areas.
Configuration prefetching means that a module is loaded
onto the FPGA as soon as possible in order to hide its
reconfiguration time as much as possible.

2.2. Formal Problem Description. The 2D reconfigurable
device is modeled as a grid of reconfigurable units (RU)
by representing rows and columns as two sets R =
{r1, r2, . . . , r|R|} and C = {c1, c2, . . . , c|C|}: each cell repre-
sented by a pair (r, c), with r ∈ R and c ∈ C, is made
up of ρu CLBs. Columns and rows are linearly ordered, by
which we mean that rk is adjacent to rk±1 on the FPGA,
for every 1 < k < |R|; the same property holds also
for columns. The application is provided as a task graph
〈S, P 〉, which is a Directed Acyclic Graph (DAG). S is the
set of tasks in the graph, while P is the set of precedences
among them. The tasks can be physically implemented on
the target device using a set E of execution units (EUs), which
correspond to different configurations of the resources (RUs)
available on the device, therefore different bitstreams. In such
a scenario, the reconfigurable scheduling problem amounts
to scheduling both the reconfiguration and the execution of
each task according to a number of precedence and resource
constraints. Resource sharing occurs at EU level: different
tasks may exploit the same RUs if they are executed in
disjoint time intervals. Moreover, when they also share the
same EU, they can be executed consecutively with a single
reconfiguration at the beginning. Given any task s and any
of its feasible EU implementations i, we assume that suitable
algorithms exist to readily compute the latency li,s, the size ri
and the reconfiguration time di. Therefore, it is possible to
define a function that specifies for each task:

(i) the EU on which it has to be executed,

(ii) the position on the FPGA where to place the selected
EU,

(iii) the reconfiguration start time for the selected EU, or
the possibility of reuse if possible,

(iv) the execution start time for the task.

In this work the general problem has been simplified: for
each task type there is only one available EU. In this way the
problem does not lose much in generality, but becomes easier
to solve. Since each EU is associated with a bitstream and due
to the former simplification, the model works with a number
of bitstream types equal to the number of task types.

When HW/SW Codesign is considered, there is the
necessity of mapping each task on either the processor
or the FPGA. This introduces complexity in the problem
solution. In this case the task type concept needs to be
extended: each task has both a hardware implementation,
that is, a bitstream, and a software one. These two differ-
ent implementations share the same task type. Moreover,
when HW/SW Co-design is condidered, multiple hardware
implementations are considered: each task may have more
than one bitstream to be implemented on, but the task type
remains just one. Another issue, with HW/SW Codesign,
is that there is the necessity of moving data between
the memory of the processor and the memory of the
reconfigurable device. This introduces latency that must be
taken into account in the scheduling process. This latency
depends on the amount of data needed to be transferred from
a task to one of its children.

3. The ILP Formulation for the 2D
Reconfiguration and Software Executions

We consider a 2D reconfiguration scenario, as presented
in [12]: the sets C and R of RUs are respectively the set
of columns and the set of rows of the FPGA. Therefore,
all RUs have the same ρu (conventionally, ρu = 1). Each
task must be assigned to a rectangular set of RUs and due
to the possibility of having multiple reconfigurator devices,
concurrent multiple reconfiguration may be exploited. We
consider the following model. The starting scenario [12] has
been extended to include the possibility of having a task
executed also in software, we have to extend the classical pure
reconfigurable architecture, considering also the presence of
the processor, not only to take care of the reconfiguration
itself, but also as processing element. Within this scenario,
we can work with a processor host in the static area and
a reconfigurable area, each one with its own memory. The
architecture is absolutely general and can be used also for
a non-FPGA scenario. Furthermore, in an FPGA scenario,
the processor can be within the FPGA or outside the device.
What is really effective is that it has to be connected to the
reconfigurable part with a communication channel. Such
a communication channel is modeled as a bidirectional
bus. Once this structure is ensured, the developed model
works. With this architecture, when a hardware task needs
data from the processor memory there is a latency due to
this transfer. The model considers also multiple hardware
implementations for each task, to explore a bigger solution
space. Since there are two separated memories, one for the
processor and one for the FPGA, it is needed to transfer data
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between them when a task requires it. This consideration
introduces the concept of communication in the model. In
the following are presented only those parts of the model that
need to be added to the former one.

3.1. Constants.

(i) ai j := 1 if tasks i and j ∈ S can be executed on the
same bitstreams (by convention, aii = 1), if 0 they use
different bitstreams;

(ii) aMij := 1 if task i ∈ S can be executed on bitstream
j ∈M, 0 otherwise;

(iii) li j := latency of task i ∈ S executed on an instance of
bitstream j;

(iv) lpi := latency of task i ∈ S executed on the processor;

(v) di := time needed to reconfigure an instance of
bitstream i;

(vi) ci := number of RU columns required by an instance
of bitstream i,

(vii) ri := number of RU rows required by an instance of
bitstream i,

(viii) cdli j := time needed to transfer the data needed
by task j from task i between the FPGA and the
processor memories;

(ix) NREC := number of reconfigurator devices.

The scheduling time horizon T = {0, . . . , |T|} is large
enough to reconfigure and execute all tasks. A good estimate
of |T|may be obtained via a heuristic.

3.2. Variables. Binary variables:

(i) mihkm := 1 if one instance of bitstream i is present on
the FPGA starting from time h until time h + di and
cell (k,m) are the leftmost and bottommost used by
i, 0 otherwise;

(ii) bihkm := 1 if task i is present on the FPGA at time h
and cell (k,m) is the leftmost and bottommost used
by i, 0 otherwise;

(iii) pih := 1 if task i is present on the processor starting
from time h until time h + lpi, 0 otherwise;

(iv) tmi j := 1 if task i is executed on one instance of
bitstream j, 0 otherwise;

(v) cdi j := 1 if task j follows task i and there is the
necessity to transfer data through the channel, 0
otherwise;

(vi) tih := 1 if the reconfiguration of task i starts at time h,
0 otherwise;

(vii) mi := 1 if task i exploits module reuse, otherwise 0;

(viii) Son
i := arrival time of task i on the FPGA;

(ix) Soff
i := last time instant when task i is on the FPGA;

(x) te := overall execution time for the whole task graph.

3.3. Objective Function. The objective is to minimize the
overall completion time of the task graph,

min te. (1)

3.4. Constraints. We used the if-then transformation (see
[13]) to model the constraints marked with a∗.

3.4.1. Task-to-Bitstream Assignment Constraints. Each task
executed onto the FPGA must be executed on a particular
bitstream:

tmi j ≥ mjhkm + bi(h+dj )km − 1, i ∈ S, j ∈M,

k ∈ C, m ∈ R, h ≥ 1∧ h ≤ T − dj ,
(2)

tmjn − tmin ≤ 2− bihkm − bj(h−1)km,

i, j ∈ S, n ∈M, k ∈ C, m ∈ R, h ∈ T.
(3)

When a task is executed in software, it does not need any
bitstream, otherwise it needs exactly one bitstream:

∑

j∈M
tmij = 1−

∑

h∈T
pih, i ∈ S. (4)

3.4.2. No-Board Constraints. When a task is executed on the
processor, it cannot be placed also on the board:

∑

h∈T

∑

k∈C

∑

m∈R
bihkm ≤ T

∑

j∈M
tmij , i ∈ S. (5)

3.4.3. Non-Overlap Constraints. A task cannot be present on
the FPGA with different leftmost and bottommost cells:

pihkm +
∑

l∈C\{k}

∑

j∈R\{m}
binl j ≤ 1,

i ∈ S, h,n ∈ T , k ∈ C, m ∈ R.

(6)

3.4.4. Single-Cell Constraints. A task cannot be present on
the FPGA with different leftmost and bottommost cells:

bihkm +
∑

l∈C\{k}

∑

j∈R\{m}
binl j ≤ 1,

i ∈ S, h,n ∈ T , k ∈ C, m ∈ R.

(7)

3.4.5. Cell-on-the-Right-and-Top Constraints. The leftmost
column of task i cannot be one of the last ci − 1 columns;
the same constraint has to be assumed for the last ri−1 rows:

bihkm = 0 i ∈ S, h ∈ T , k ≥ |C| − ci + 2

∨ m ≥ |R| − ri + 2.
(8)

3.4.6. Arrival Time Constraints. The arrival time is the time
in which a task comes on the FPGA. Since this time is the
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first time step in which the associated p variables are set to 1,
it must not exceed that time step:∗

Son
i ≤h

∑

k∈C

∑

m∈R
bihkm + h · pih + |T|

⎛
⎝1−

∑

k∈C

∑

m∈R
bihkm − pih

⎞
⎠,

i ∈ S,h ∈ T.
(9)

3.4.7. Leaving Time Constraints. For each task i, the leaving
time must not precede either the last instant for which b is 1
or the time p is 1 plus lpi − 1:

Soff
i ≥ h

∑

k∈C

∑

m∈R
bihkm +

(
h + lpi − 1

)
pih, i ∈ S,h ∈ T.

(10)

3.4.8. No-Preemption Constraints. A task is present on the
FPGA in all time steps between the arrival and leaving time:
this constraint works thanks to (9), (10), and (7) (No-
preemption means that once the configuration of a task begins
the configured task lasts on the FPGA until the end of its own
execution). Equation (7) ensures that all the 1s of a particular
task need to be on the same position of the FPGA for all the
time that a task exists. This is because a task can perform its
work, either be reconfigured or be executed, only if it is on
the FPGA, and in specific only when its p variables are set to
1. Equation (9) ensures that the arrival time is lesser or equal
to the first, in terms of time, 1 of a task. Equation (10) ensures
that the leaving time is greater or equal to the last, in terms
of time, 1 of a task. To ensure a task to exist on the FPGA in
a single portion of time, the difference between the leaving
time and the arrival time needs to be equal to the sum of all
the 1s of that task. Since (7) ensures a single position, this
constraint ensures that a task cannot be placed and removed
and then placed again:

Soff
i − Son

i + 1 = lpi
∑

h∈T
pih +

∑

h∈T

∑

k∈C

∑

m∈R
bihkm, i ∈ S.

(11)

3.4.9. Precedence Constraints. Precedences must be resp-
ected:

Soff
i − l j ≥ Soff

i ,
(
i, j
) ∈ P . (12)

3.4.10. Task Length Constraints. A task must be present on
the FPGA at least for its execution time:

∑

h∈T

∑

k∈C

∑

m∈R
bihkm ≥

∑

r∈M
(lir · tmir), i ∈ S. (13)

3.4.11. Reconfiguration Start Constraints. Each task has a
single reconfiguration start time or none (if it exploits
module reuse):

∑

h∈T
tih = 1−

∑

j∈M
tmij , i ∈ S. (14)

Reconfiguration starts as soon as the task is on the FPGA,
therefore, if a task needs to be configured on the FPGA, its
reconfiguration will start at the first time step in which its p
variables are set to 1, that is, its arrival time:∗

−|T|
∑

j∈M
tmij ≤ Son

i −
∑

h∈T
htih ≤ |T|

∑

j∈M
tmij , i ∈ S.

(15)

3.4.12. Reconfiguration Overlap Constraints. At most NREC
reconfigurations can take place simultaneously:

∑

i∈S

h∑

m=max(1,h−di+1)

tim ≤ NREC, h ∈ T. (16)

3.4.13. Starting Time Constraints. This is the general for-
mulation for this constraint, since multiple bitstreams must
be considered, as for the nonoverlap constraints. This does
not change the constraint formulation itself, but several
instances of the constraint have to be created, one for each
bitstream. Thus, their number increases, but they are written
in the same way, with the obvious variable replacement.
The starting instant is reserved, so that the FPGA is initially
empty:

pi0km = 0, i ∈ S, k ∈ C, m ∈ R. (17)

3.4.14. Single Processor Constraints. Only one processor is
available:

∑

i∈S

h∑

l=h−lpi+1

pil ≤ 1, h ∈ T. (18)

3.4.15. Communication constraints. When two tasks i and j
are linked by a precedence relation, the results of task i must
be transferred to j. Due to the architectural model presented
in Section 1, when two tasks are executed on the same device,
either both on the FPGA or both on the processor, there is no
need to transfer any data because the memories are local to
the devices. When one tasks is executed on the FPGA and the
other one on the processor, there is the necessity of moving
the data from one to the other. For this reason a specific set
of constraints have been developed:

−cdi j ≤
∑

l∈M

(
tmil − tmjl

)
≥ cdi j , h

(
i, j
) ∈ P ,

cdi j ≤
∑

l∈M

(
tmil + tmjl

)
, h

(
i, j
) ∈ P ,

cdi j ≤ 2−
∑

l∈M

(
tmil + tmjl

)
, h

(
i, j
) ∈ P

(19)

3.4.16. Definition of the Overall Latency.

te ≥ Soff
i , i ∈ S. (20)
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3.5. Heterogeneous Case. So far, the proposed model
describes the problem of scheduling a task graph onto a
partially dynamically FPGA with homogeneous columns: all
the FPGA cells have the same type. In the latest FPGAs
devices it is possible to have columns of different types: CLBs,
multiplexer, multiplier, BRAM, and so on. For this reason,
a task can be implemented in different ways, due to which
columns are involved in the synthesis process. Different
implementations for the same tasks are now available, and
the design space exploration must be more accurate: a
bitstream for each one of these implementations must be
created. Using the bitstream concept is very useful, because
it is possible to use exactly the same ILP formulation for the
extended problem. A preprocessing phase is needed, in order
to avoid a bitstream to be placed on not compatible columns,
and in general cells.

For each bitstream j, for each time h, for each column k,
and for each row m, the variable mihkm is set to 0 if: given a
couple (i, l) such that i ≥ k ∧ i ≤ k + cj − 1 and l ≥ m∧ l ≤
m+ r j −1, cell (i, l) of the FPGA has a different type from cell
(i− k + 1, l−m+ 1) of the bitstream. Once all these variables
have been set, the proposal ILP can be applied.

4. Napoleon: A Heuristic Approach

From the results obtained through ILP solvers applied over
the previous model, see Section 6.1, it is impossible to rely on
it because of the huge amount of time needed. It is necessary
to develop a fast technique that still obtains good results
in terms of schedule length. A greedy heuristic scheduler
has been selected as the best choice, and we developed it
taking into account the experience achieved by writing the
ILP model.

Napoleon is a reconfiguration-aware scheduler for 2D
dynamically partially reconfigurable architectures. It is char-
acterized by the exploitation of configuration prefetching,
module reuse and antifragmentation techniques. Algorithm 1
shows the pseudocode of Napoleon. First, it performs an
infinite-resource scheduling in order to sort the task set S
by increasing ALAP values. Then, it builds subset RN with
all tasks having no predecessors. In the following, RN will
be updated to include all tasks whose predecessors have
all been already scheduled (available tasks). SN , instead,
is the set of scheduled tasks. As long as the dummy
end task Se is unscheduled, the algorithm performs the
following operations. First, it scans the available tasks in
increasing ALAP order to determine those which can reuse
the modules currently placed on the FPGA. Each time
this occurs, task S is placed in the position (k,m) which
hosts a compatible module and is the farthest from the
center of the FPGA. Unused modules can be present on
the FPGA because Napoleon adopts limited deconfiguration
as an antifragmentation technique: all modules are left on
the FPGA until other tasks require their space, in order
to increase the probability of reuse. The farthest placement
criterium is also an antifragmentation technique, that aims
at favoring future placements, as it is usually easier to place
large modules in the center of the FPGA [14]. The execution

t ← 1
S ← computeALAPandSort(S,P )
RN ←findAvailableTasks(S)
while Se is unscheduled do

SN ←∅
Reuse← true
for all S ∈ RN do
(k,m)← findFarthestCompatibleModule(S, t)

if ∃(k,m) then
schedule(S, t, k,m,Reuse)
RN ← RN \ {S}
SN ← SN ∪ {S}

end if
end for
Reuse← false
for all S ∈ RN do

(k,m)← findFarthestAvailableSpace(S, t)
if ∃(k,m) and ∃ free reconfigurators then

schedule(S, t, k,m, Reuse)
RN ← RN \ {S}
SN ← SN ∪ {S}

end if
end for
RN ← RN∪ newAvailableNodes(SN)
t← nextControlStep(t)

end while
return tSe + lSe

Algorithm 1: Algorithm Napoleon(S,P ).

starting time is tentatively set to the current time step t, but
it is postponed if any predecessor has not yet terminated (see
Algorithm 2 with Reuse = true). The task is also moved from
the available to the just scheduled tasks (subset SN). When
no further reuse is possible, Napoleon scans the available
tasks in increasing ALAP order to determine those which
can be placed on the FPGA in the current time step. The
placement is feasible when a sufficient space is currently
free or it can be freed by removing an unused module, and
when a reconfigurator is available. If this occurs, the position
for task S is chosen once again by the farthest placement
criterium. The reconfiguration starting time is set to the
current time step t and the execution starting time is first
set to t + dS and then possibly postponed to guarantee that
all the predecessors of S have terminated (see Algorithm 2
with Reuse = false). Thus, there might be an interval between
the end of the reconfiguration and the beginning of the
execution of a task (configuration prefetching). When all
possible tasks have been scheduled, the set of available
tasks RN is updated: Algorithm 3 does that by scanning the
successors of the tasks in SN , which have just been scheduled,
and determining the ones which must be added to RN .
Finally, the current time step is updated by replacing it with
the first time step in which a reconfigurator is available.
Algorithm 1 shows the basic scheduling algorithm used, but
for the sake of simplicity it does not report two optimizations
to increase efficiency: if in the current time step all configured
modules are in use, reuse is not possible and the first for
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place(S, k,m)
if Reuse = true then

tS ← t
else

tS ← t
tS ← t + dS

end if
for all S′ ∈ predecessors(S) do

tS ← max(tS, tS′ + lS′ )
end for

Algorithm 2: Procedure schedule(S, t, k,m, Reuse).

RN ′ ← ∅
for all S ∈ SN do

for all S′ ∈ successors(S) do
if predecessors(S′) are all scheduled then

RN ← RN ∪ {S′}
end if

end for
end for
return RN ′

Algorithm 3: Function newAvailableNodes(SN).

loop can be skipped; if there is not enough available area to
place any task, because no new placement is possible and the
second for loop can be skipped.

4.1. HW/SW Extension. The scheduling algorithm schedule
the task at the best possible time with respect to the
schedules metric. It is simple to add the concept of HW/SW
Codesign in this algorithm. Each time a task is considered
to be scheduled, the algorithm computes the earliest time it
can finish its execution on the processor, considering both
precedences and communication delay. Then, if this time is
lower than the minimum found on the FPGA device, the
algorithm schedules the task on the processor, otherwise on
the FPGA.

Figure 3 shows the schedule result obtained by using
Napoleon in its HW/SW Codesign version. The character-
istics for each task are listed in Table 1.

The number shown underneath the name of the tasks
in Figure 3 represents ALAP values. Is it possible to see that
Napoleon exploits the processor in an intensive way: it tries
to schedule on the FPGA those task types that have more
occurrences. This is done accordingly with the ALAP values
and the available reconfigurable area: task B and task C
share the same type, but their execution on the FPGA is not
performed because it will lead to local delay in the schedule.

5. Related Works

5.1. Reconfigurable Systems and Codesign Techniques. The
VULCAN system [15] has been one of the first frameworks

Table 1: Characteristics of tasks in Figure 3.

Area rec. time HW time SW time

A 2 2 1 3

B 3 3 1 2

C 3 3 1 2

D 2 2 3 4

E 4 4 2 4

F 2 2 1 3

G 2 2 3 4

H 2 2 1 3

to implement a complete codesign flow. The basic principle
of this framework is to start from a design specification
based on a hardware description language, HardwareC, and
then move some parts of the design into software. Another
early approach to the partitioning problem is the COSYMA
framework [16]. Unlike most partitioning frameworks,
COSYMA starts with all the operations in software, and
moves those that do not satisfy performance constraints
from the CPU to dedicated hardware. More recent work [17]
proposes a partitioning solution using Genetic Algorithms.
This approach starts with an all software description of the
system in a high level language like C or C++.

Camposano and Brayton [18] have been the first to
introduce a new methodology for defining the Hardware
(HW) and the Software (SW) sides of a system. They
proposed a partitioner driven by the closeness metrics, which
provides the designer with a measure on how efficient
a solution could be, one that implements two different
components on the same side, HW or SW. This technique
was further improved with a procedural partitioning [19,
20]. Vahid and Gajski [19] proposed a set of closeness metrics
for a functional partitioning at the system level.

In the context of reconfigurable SoCs, most approaches
focused on effective utilization of the dynamically recon-
figurable hardware resources. Related works in this domain
focus on various aspects of partitioning and context schedul-
ing. A system called NIMBLE was proposed for this task [21].
As an alternative to conventional ASICs, a reconfigurable
datapath has been used in this system. The partitioning
problem for architectures containing reconfigurable devices
has different requirements. It demands a two dimensional
partitioning strategy, in both spatial and temporal domains,
while conventional architectures only involve spatial parti-
tioning. The partitioning engine has to perform temporal
partitioning as the FPGA can be reconfigured at various
stages of the program execution in order to implement
different functionalities. Dick and Jha [22] proposed a
real-time scheduler to be embedded into the cosynthe-
sis flow of reconfigurable distributed embedded systems.
Noguera and Badia [23] proposed a design framework for
dynamically reconfigurable systems, introducing a dynamic
context scheduler and hw/sw partitioner. Banerjee et al.
[24] introduced a partitioning scheme that is aware of the
placement constraints during the context scheduling of the
partially reconfigurable datapath of the SoC.
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Figure 3: A scheduling example from Napoleon.

5.2. Scheduling Solution. The literature solutions for the
considered scheduling problem do not exploit all the pos-
sible features of partial dynamic devices where HW/SW
partitioning has been taken into consideration. Actual
hardware/software codesign approaches find a partitioning of
the original specification and then schedule the partitioned
application on an architecture similar to the one described
in Figure 4, where both the processor unit and the FPGA
can execute one or more partitions. This kind of approach
can be found in [25–28] and the scheduler used is almost
always based on list-based scheduling algorithms with the
priority function given by the mobility range of nodes. All
these schedulers are static schedulers: the schedule of the
task graph is done only one time before the real execution
starts. An existing solution to the problem of partitioning
and scheduling a task graph onto an architecture containing
a processor and a partially dynamically reconfigurable FPGA
[28] is shown in Figure 5.

In this architecture both the processor and the FPGA
have their own memory. The FPGA memory is called shared
just because it can be accessed by all the hardware modules
eventually deployed on the FPGA. The authors present an
exact approach based on an ILP formulation in order to show
how the partial reconfiguration and the tasks placement issue
have to be considered in the solution of this problem. This
ILP formulation gives as a solution the complete schedule of
the task graph and for each task state if it has to be executed
in SW or in HW; moreover for the HW task it gives the time
in which the reconfiguration has to start and in which is
position of the FPGA and the execution starting time. The
formulation takes into account dependences between tasks,
configuration prefetching for the HW tasks, communication
overhead between tasks placed in different partitions, and
as an improvement also multiple task implementations and

Processor

Local memory

Global memory

Local memory

FPGA

Figure 4: Architecture model for HW/SW Codesigned reconfig-
urable devices.

Memory

Processor

Shared memory

FPGA

Figure 5: Two separated memories architectural model.

heterogeneity in the conformation of the columns of the
FPGA. This is a model for the problem considered in this
work, but module reuse is never considered.
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A refinement of the module reuse concept is described in
[29], where a solution to the problem of HW/SW Codesign
of a task graph onto a partially dynamically reconfigurable
architecture is given by an ILP formulation. The formulation
is based on two concepts:

(i) early partial reconfiguration (EPR), which is similar
to the concept of configuration prefetching and simply
tries to reconfigure a hardware module as soon as
possible onto the FPGA; the aim of this technique
is to hide as much as possible the reconfiguration
overhead;

(ii) incremental reconfiguration (IR), which is based on
the concept of module reuse and states that if a
new hardware module has to be placed over another
already onto the FPGA, the configuration data that
have to be configured are only the percentages that
are not in common between the two modules.

The problem with this approach is that, in order to obtain
a good IR, it requires the computation of all the possible
differences between two task bitstreams and this takes a very
long time. Since the developed model is required to be useful
to realize a baseline scheduler, the model proposed in [29] is
not suitable for the same aim: in an online scenario, all the
difference bitstreams need to be in memory, thus, the total
memory requirement is very large.

There is a set of works made by Teich et al., [30–
32], where the authors present online heuristics for the
scheduling/placement policy, taking into account the routing
needed by the hardware modules to communicate among
themselves. In these works, modules can communicate
among themselves without sending data to the processor.
This solution is good when tasks have to remain on the device
for a long time and they need to frequently send data to
other modules, while in a general case when the first issue
is to free as soon as possible the reconfigurable area, this
approach is not so interesting. Angermeier and Teich [33],
present a heuristic scheduler for reconfigurable devices that
minimize reconfiguration overheads. The problem with this
algorithm is that it works for an architecture where tasks
can be placed in a set of identical reconfigurable regions
that communicate among themselves through a crossbar.
Here the shape of the hardware modules must be well
defined and it is impossible to place tasks bigger than a
reconfigurable region. Furthermore, the complexity of the
problem is reduced, and the scheduler works bad when tasks
with great differences in size need to be scheduled on the
device.

Some work has been done in the field of processing
pipelines, where the whole application is a succession of large
tasks that communicate with each other: the first task with
the second one, the second with the third, and so on. Specific
algorithms have been developed for managing this kind of
an application, very important in image processing. In these
works, such as [34, 35], the scheduling algorithm handles the
HW/SW Codesign in a way that tries to minimize the overall
execution time, the communication time among tasks, and
to improve the throughput of the system.

6. Experimental Results

6.1. Pure Hardware Reconfiguration: ILP Results. This sec-
tion compares the optimal results obtained by the models
proposed in [7, 36] to the results of the model described
in Section 3 considering input specifications characterized
by only hardware and reconfigurable hardware elements.
The evaluation has been performed by scheduling ten task
graphs of ten nodes on an FPGA with 5 columns and
5 rows. The instances considered have small task graphs
and few columns and rows because the problem is NP-
complete and the computation time grows rapidly. Both task
graphs and tasks have been generated by hand in order
to verify different behaviors of the models: task graphs
with tasks of different types, high module reuse, and high
reconfiguration time. Task occupancy spreads among one
column and one row, to four columns and 4 rows. The
execution time is of the same order as the reconfiguration
time. Furthermore, the number of dependencies goes from
linear graphs to almost completely connected ones. The
optimal schedule lengths are shown in Table 2. The first and
second columns report the results of the proposed model,
with 1 or 2 reconfigurators respectively, which correspond
to a realistic scenario. The third and fourth columns report
the results of the model proposed in [36], once again with 2
or 1 reconfigurators. The former is marked by an∗ because
the original model does not accommodate more than one
reconfigurator, and, hence, we have extended it to support
multiple reconfigurators. The fifth column reports the results
of the model proposed in [7], in which the number of
reconfigurators is unlimited but the reconfiguration must
immediately precede the execution and follow the end of
the preceding tasks. It is possible to see that increasing the
number of reconfigurator devices can improve the schedule
length. This improvement is not assured because it is not
always possible to hide completely the reconfiguration time.
The model proposed in [36] is dominated by our proposed
approach because it only allows 1D reconfiguration instead
of 2D reconfiguration. Dominated means that every solution
the model in [36] can find, our approach can find it too.
Furthermore, our model can find and explore a bigger design
space thanks to the possibility of having 2D reconfiguration.
The Fekete model, [7], can obtain worse results because it
does not exploit module reuse and configuration prefetching
even if it has possibility of reconfiguring as many tasks as
it needs at the same time. This is an interesting aspect of
our proposed model: by modeling all the physical features
recently introduced in reconfigurable devices, better results
can be obtained.

6.2. Reconfigurable Hardware and Software Executions: ILP
Results. This section compares the results obtained by the
proposed HW/SW model, Section 3, and the one proposed
in [28]. These same task graphs used in Section 6.1 have
been scheduled. The only difference is that, for the HW/SW
model, multiple hardware solutions have been taken into
account, along with a software solution. The model described
in [28] does not consider model reuse, so it is reasonable
to expect a worse behavior with high possibility of reuse.



10 International Journal of Reconfigurable Computing

Table 2: ILP results comparison.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1 Fekete

ILP model ILP model [36]∗ [36] [7]

Ten1 15 17 15 17 18

Ten2 22 22 22 22 33

Ten3 16 16 16 16 25

Ten4 14 15 16 17 25

Ten5 21 21 21 21 28

Ten6 19 20 21 22 23

Ten7 20 20 20 20 28

Ten8 22 24 23 24 29

Ten9 26 26 26 26 32

Ten10 23 23 23 23 34

Table 3: ILP results comparison.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1

ILP model ILP model [28]∗ [28]

Ten1 13 13 14 14

Ten2 22 22 24 24

Ten3 14 14 18 18

Ten4 14 14 15 16

Ten5 16 16 17 18

Ten6 16 16 16 16

Ten7 16 16 20 21

Ten8 21 21 21 21

Ten9 22 22 22 22

Ten10 19 19 23 23

The resulting schedule lengths are shown in Table 3. The
second and third columns report the results of the proposed
model, with 2 or 1 reconfigurator devices respectively, which
correspond to a realistic scenario. The third and fourth
columns report the results of the model proposed in [28],
once again with 2 or 1 reconfigurator devices. The former
is marked by an∗ because the model had to be extended to
support multiple reconfigurators. The considered FPGA has
two different types of columns and so the tasks used to verify
the models. Each one of these tasks can be executed to at least
two different bitstreams; furthermore, the reconfiguration
model considered is 2D.

It is possible to see that increasing the number of recon-
figurator devices does not improve significantly the schedule
length. The reason is that multiple branches of a task graph
are executed on the FPGA and the other on the processor;
to take advantage by using multiple reconfigurator devices,
the tasks have to be on an area occupation very little with
respect to the FPGA area; moreover, multiple concurrent
branches have to be available. The model proposed in [28]
is always dominated by the one proposed here because of the
impossibility of having module reuse. The interesting aspect
of the proposed model is that it can exploit in the best
possible way the reconfiguration.

Comparing these results with the ones obtained without
HW/SW Codesign, see [12], shows that the possibility of

having a usable processor increases the schedule effective-
ness. The schedule length decreases thanks to the possibility
of having more parallelism: it is possible to execute tasks
on the FPGA, in parallel, and also on the processor, saving
reconfiguration time and FPGA area for subsequent tasks.

6.3. Reconfigurable Hardware and Software Executions:
Heuristic Results. In this section we make a comparison
between the the HW/SW Codesign model and the corre-
spondent heuristic scheduler. These schedulers have been
tested and compared on the following applications (useful
to extract features from a large set of data) that have
been selected from a popular data mining library, the NU-
MineBench suite [37]:

(1) variance application: it receives as input of a single
set of data and calculates the mean and the variance
among the whole data set;

(2) distance application: it receives as inputs of two sets of
data of equal size and calculates the distance between
them;

(3) variance1 application: it receives as input of a single
set of data and calculates the mean and the variance
among the whole data set. The tasks graph is different
than the former variance application, since it involves
different task types.

These applications are massive computing applications
where there are few task types and a lot of tasks available
at the same time. The developed schedulers are effective
in this case due to good management of the FPGA area,
the module reuse and configuration prefetching techniques.
These applications are characterized by large number of
tasks, grouped in two or three task types. Their graphs have
the shape of a reverse tree: the same operation, task, must
be done over the whole input set, then a new operation
over the results, and so on. Each task does not occupy more
than 5% of the reconfigurable device and its execution time
is really short: two or three clock cycles. Furthermore, the
communication time needed by data transfer is comparable
with the execution time. The reconfiguration time is two
orders of magnitude bigger than the execution time. Regard-
ing the software implemantations, their execution time is one
order of magnitude bigger than the hardware execution time.
Because of the comparison among heuristics and ILPs, we
choose to schedule task graphs with at most 32 tasks.

In this case, increasing the number of reconfigurator
devices allows better solution in most of the cases. This is
due to the fact that the parallelism can be handled in a more
effective way. Napoleon, in its HW/SW Codesign version,
reaches the optimal solution in just a case. With respect
to the model in [28] and [28]∗, the heuristic scheduler
obtains always better, or at least not worse, results. This is
because during the reconfiguration phases the processor can
handle some tasks. In this algorithm, the reconfiguration
time for each task is two orders of magnitude bigger than
the execution time, thus, the scheduler decides to use the
processor for a lot of tasks.
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Table 4: ILP/heuristic results comparison.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1

ILP model ILP model Napoleon Napoloen

HW/SW HW/SW

Ten1 13 13 13 14

Ten2 22 22 24 24

Ten3 14 14 15 17

Ten4 14 14 15 16

Ten5 16 16 18 18

Ten6 16 16 16 16

Ten7 16 16 19 22

Ten8 21 21 21 21

Ten9 22 22 22 22

Ten10 19 19 21 24

distance 520 520 520 520

variance 520 520 520 520

variance1 610 610 610 610

Table 5: ILP and heuristic execution time.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1

ILP model ILP model Napoleon Napoleon

Ten1 27 days 26 days 546 ms 477 ms

Ten2 31 days 25 days 413 ms 398 ms

Ten3 30 days 26 days 566 ms 513 ms

Ten4 27 days 25 days 578 ms 544 ms

Ten5 27 days 28 days 456 ms 401 ms

Ten6 34 days 31 days 670 ms 555 ms

Ten7 25 days 25 days 590 ms 487 ms

Ten8 23 days 20 days 602 ms 599 ms

Ten9 39 days 29 days 489 ms 433 ms

Ten10 36 days 37 days 716 ms 673 ms

distance 41 days 40 days 1,222 ms 1,001 ms

variance 35 days 36 days 1,321 ms 1,543 ms

variance1 45 days 41 days 1,561 ms 978 ms

Execution time for the experiments shown in Table 4 is
shown in Table 5.

It is possible to see that the ILP solutions are too heavy
to be used in real cases, while the heuristic approaches reach
good solution in a reasonable time. It is noticeble that the ILP
solutions for real applications do not scale bad: this is because
the solver exploits standard searching methods that lead to
“fast” solutions. Furthermore, due to the reconfiguration
time, the processor is used for a lot of tasks at the beginning
of the schedule, and this leads to an improvement in solution
time.

7. Conclusion

The main goal of this work was to introduce a formal
model for the problem of scheduling in a 2D partially
dynamically reconfigurable scenario. The proposed model
takes into account all the features available in a partial

dynamic reconfiguration scenario. The results show that
a reconfiguration-aware model can strongly improve the
solution. The second goal of this work was to propose a
heuristic reconfiguration-aware scheduler that obtains good
results, with respect to the optimal one, but in a much shorter
time. In fact an ILP solver takes a very long time to solve
the problem exactly, while the heuristic algorithm reaches a
good solution in a very short time. The results prove that
Napoleon can be used effectively as a baseline scheduler in
an online scenario. The next step in this work is to develop
an online scheduler that starting from the results obtained
by Napoleon, finds a feasible schedule and mapping at
runtime.
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