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This paper considers a 2-user multiple-input single-output (MISO) interference channel with confidential messages (IFC-CM),
in which the Rician channel model is assumed. The coordinated beamforming vectors at the two transmitters have the similar
parameterizations as those for perfect CSI, which could be optimized jointly and achieved by agreeing on the real parameters
between the two users. Our main contribution is that a quadratic relationship between the two real-valued parameters can be
derived for the Rician channel to reach the ergodic secrecy rate balancing point. Simulation results present the secrecy performance
over the 2-user MISO IFC-CM scenario.

1. Introduction

Security can be provided in the physical layer instead of
using passwords or keys, where signal processing techniques
can be adopted to degrade an eavesdropper’s channel so that
meaningful detection at the eavesdropper is difficult or even
impossible. Information-theoretic security, widely known as
physical-layer security, was first introduced in the 1970s by
Wyner [1]. In particular, the notion of secrecy capacity, which
is the maximum achievable rate that can be kept confiden-
tial to the eavesdropper, was defined. Later, the work was
extended to the Gaussian wiretap channel in [2]. In [3], Csis-
zar and Korner considered a more general wiretap channel
model and showed that secure communication is in fact
possible without using key encryption in the presence of the
eavesdropper. Recently, the advances in multiple-input mul-
tiple-output (MIMO), multicell communication and relay
offer new opportunities for physical-layer security.

For MIMO wiretap channel, [4] studied the performance
tradeoffs and derived upper and lower bounds on the secrecy
capacity both for finite systems and in the large-system limit.
Using artificial noise to confuse the eavesdropper, masked
MIMO beamforming has also been considered in multicast
system [5, 6]. For cooperative communication employing
relays, [7] established the utility of user cooperation in facil-
itating secure communication and derived an outer-bound

on the optimal rate-equivocation region based on a four-
terminal relay-eavesdropper channel. In [8], the optimiza-
tion of cooperative jamming (CJ) is examined to enhance
the physical-layer security of a wiretap fading channel via
distributed relays. Also, He and Yener in [9] provided an
achievable secrecy rate region for the general channel with an
untrusted relay.Most recently, physical layer secrecy has been
also applied to other communication systems, such as two-
way relay [10], satellite communications [11], and interference
channel with confidential messages (IFC-CM) [12].

In [12], the achievable secrecy rate region and an outer
bound for the IFC-CMwere presented, while [13] derived the
inner and outer bounds of a one-sided IFC-CM and analyzed
the gap between them. A 𝐾-user Gaussian IFC with secrecy
constraints was investigated in [14] and by using an inter-
ference alignment scheme with secrecy precoding at each
transmitter, and it was revealed that a nonzero secure degree
of freedom can be achieved.The scenario was extended to the
𝐾-user Gaussian many-to-one IFC in [15] where the achieva-
ble secrecy sum-rate over all users was shown to be achievable
by using nested lattice codes.

From the signal-processing perspective, secure (or secret)
communications has also receivedmuch attention. Literature
[16] has studied the power control problem and artificial
noise parameter optimization for the max-min point and
the single-user point over the two-user symmetric IFC-CM
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without multiple antennas. For the two-user MISO IFC-CM,
[17] analyzed the key points on the Pareto boundary of the
secrecy rate region for the two-user IFC with multiple-input
single-output (MISO) antennas. Also, the multiple-input
multiple-output (MIMO)Gaussian IFC-CMwas investigated
in [18] where a game-theoretic approach was proposed to
permit the two transmitters to compromise to an operating
point that better balances the network performance.

The focus of this paper is on a two-user interference
channel with confidential messages (IFC-CM) in which each
receiver is to decode its own message but could eavesdrop
the message intended for the other user, where the imperfect
CSI with Rician fading is assumed. First, the beamforming
vectors corresponding to the Pareto-optimal ergodic secrecy
rate points are characterized similar to the perfect CSI case.
The coordinated optimal beamforming vectors at the two
transmitters could be achieved by agreeing on the real param-
eters between the two users. Further, a quadratic relationship
between the two real valued parameters can be derived,
and the ergodic secrecy-rate balancing point which provides
a secrecy rate-fair operating point will be determined by
searching only one real-valued parameter.

The remainder of this paper is organized as follows. In
Section 2, we present the system model. In Section 3, the
Pareto boundary of the secrecy rate region is characterized,
and some special operating points are considered. Section 4
extends the work to the statistical CSI, and the closed-
form ergodic secrecy rate expressions are derived. Section 5
presents simulation results, and conclusions are drawn in
Section 6 finally.

Notations.Throughout, vectors are denoted by boldface small
letters while matrices are written in boldface capital letters.
We use the superscripts (⋅)∗, (⋅)𝑇, and (⋅)

𝐻 to denote, respec-
tively, the complex conjugate, transpose andHermitian trans-
pose operations. An identity matrix is denoted by I.

2. MISO IFC-CM Model

We consider a two-user MISO IFC-CM, which may arise
from a downlink cellular network with two multiantenna
base stations (BSs) each transmitting to one desirable mobile
station (MS).Themessage sent by each BS is confidential and
required to be kept confidential to the other unintended MS.
Due to the broadcast nature ofwireless channels, however, the
MSs may eavesdrop on the transmitted signals not intended
for them and thus be regarded as eavesdroppers to each other,
as is shown in Figure 1. Note that the two BSs trust each
other so that they could design the coordinated beamformers
together to optimize the secrecy rates. The MS receivers are
assumed to have a single antenna, and each BS is equipped
with𝑁 transmit antennas.

Based on the model, the received signals at the two MSs
can be written as
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Figure 1: Coordinated beamforming with two BSs and two
untrusted MSs.

where h
𝑖𝑗

∈ C𝑁×1 (𝑖, 𝑗 = 1, 2) denotes the complex channel
vector between BS 𝑖 and MS 𝑗, 𝑠

𝑖
denotes the information

symbol intended forMS 𝑖 sent by BS 𝑖, 𝑛
𝑖
is the complex Gaus-

sian noise with zeromean and variance𝜎2, andw
𝑖
denotes the

transmit beamforming vector at the 𝑖th BS and, without loss
of generality, satisfies the peak power constraint ‖w

𝑖
‖ ≤ 1.The

noises and the channels are all independent to each other.
The received signal at eachMS contains the desirablemes-

sage and also the message intended for the other MS, and the
channel can therefore be viewed as a virtual multiple-access
channel (MAC) with the achievable rate already known in
[19], which is given in the following lemma for completeness.

Lemma 1 (capacity for MAC [19]). For a 𝐾-user MAC with
channels {h

𝑘
} and transmit covariance matrices {Σ

𝑘
}, for 𝑘 =

1, . . . , 𝐾, joint decodingwith successive interference cancelation
can achieve all the corner points of the capacity region. Given a
decoding order (𝜋(1), 𝜋(2), . . . , 𝜋(𝐾)) in which user 𝜋(1) is
decoded first, user 𝜋(2) is decoded second, and so on, the
achievable rate for user 𝑘 is given by

𝑅
𝜋(𝑘)

= log
2
(1 +

h𝐻
𝜋(𝑘)
Σ
𝜋(𝑘)

h
𝜋(𝑘)

𝜎2 + ∑
𝐾

𝑙=𝑘+1
h𝐻
𝜋(𝑙)
Σ
𝜋(𝑙)

h
𝜋(𝑙)

) .

(2)

Lemma 1 states that the decoding order has no impact
on the channel sum-rate but determines the achievable
rate for each user. Specifically, the decoding order for the
intended message and the eavesdropped message determines
the message rate and the equivocation rate. We assume
that the intended message is decoded first by treating the
eavesdropped message as noise, and then the eavesdropped
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message is decodedwithout any interference.Then, the eaves-
dropped signals at the MSs can be equivalently expressed as

𝑦
𝑒1

= h𝑇
12
w
1
𝑠
1
+ 𝑛
2
,

𝑦
𝑒2

= h𝑇
21
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1
.

(3)

The level of secrecy can be quantified by secrecy rate which is
given by [3]

𝑅
𝑠
= 𝑅
𝑑
− 𝑅
𝑒
, (4)

where 𝑅
𝑑
denotes the message rate and 𝑅

𝑒
denotes the equi-

vocation rate.With the intendedmessage being decoded first,
the secrecy rates for MS 1 andMS 2 can be, respectively, writ-
ten as
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(5)

Based on the decoding order, the smallest 𝑅
𝑑
and the

largest𝑅
𝑒
are obtained at theMS receivers, and the achievable

secrecy rates in (5) correspond to the inner bound for the
secrecy rates over the general Gaussian MISO IFC-CM [12],
which provides a worst-case scenario for analysis and optimi-
zation of the beamforming vectors. A similar argument has
been used in [18] to justify their formulation.

We can define the achievable secrecy rate region to be the
set of all secrecy rate pairs where theMISObeamforming vec-
tors satisfy the power constraints at the BSs:

R
𝑠
≜ ⋃

(w1 ,w2):‖w1‖,‖w2‖≤1

(𝑅
𝑠1
, 𝑅
𝑠2
) . (6)

The outer boundary of this region is called the Pareto
boundary, because it consists of the operating points (𝑅

𝑠1
, 𝑅
𝑠2
)

for which it is impossible to improve one secrecy rate, without
simultaneously decreasing the other secrecy rate. More pre-
cisely, we define the Pareto optimality of an operating point
as follows.

Definition 2. A secrecy rate tuple (𝑅
𝑠1
, 𝑅
𝑠2
) is Pareto optimal

if there is no other tuple (𝑅̃
𝑠1
, 𝑅̃
𝑠2
) such that (𝑅̃

𝑠1
, 𝑅̃
𝑠2
) ≥ (𝑅

𝑠1
,

𝑅
𝑠2
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, 𝑅̃
𝑠2
) ̸= (𝑅
𝑠1
, 𝑅
𝑠2
) where the inequality operates

component wisely.

It is noted that for a fixed channel, the secrecy rate region
R
𝑠
is compact because the set (w

1
,w
2
) subject to the power

constraint is compact and the mapping from (w
1
,w
2
) to

(𝑅
𝑠1
, 𝑅
𝑠2
) is continuous.

3. Ergodic Secrecy Rate Region with
Rician Channel

3.1. Rician Channel Model. We consider that the channel vec-
tors follow the Rician channel model, that is,

h
𝑖𝑗
= h
𝑖𝑗
+ √𝛼Δh

𝑖𝑗
, (7)

where h
𝑖𝑗
is channel mean vector, Δh

𝑖𝑗
∈ CN(0, 𝐼) denotes

channel error vector and its entries aremodelled as independ-
ent nonzero-mean random variables, 𝛼 is the error coefficient
andwithout losing generality, and 𝛼 is assumed to be same for
all the channels.

3.2. Ergodic Secrecy Rate Region. Theergodic secrecy rates are
obtained by taking the expectation over the distribution of the
channels, that is,
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(8)

The achievable ergodic secrecy rate region can be expressed
as the set of all the ergodic secrecy rates:

R
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) . (9)

Consider 𝑅
𝑠1
first, and it has
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(10)

where the second and third terms could be tackled using [20]

Eh [log2 (1 +
󵄨󵄨󵄨󵄨󵄨
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which involves a single integral which can be effectively cal-
culated by using high-precision numerical integral methods
[21]. Also note that it is monotonic increasing with |h

𝑇

w|
2.

While for the first term, it is more difficult to reexpress it with
simpler expression, but we know that |h𝑇

11
w
1
|
2

+ |h𝑇
21
w
2
|
2

belongs to noncentral chi-squared distribution, that is, the
sum of the squares of independent Gaussian random vari-
ables having unit variance and nonzero means [22], the
expectation is monotonic increasing with each mean.
Although we do not present the closed form of the ergodic
secrecy rate, but the monotony is very useful for us to further
characterize the achievable ergodic secrecy rate region. 𝑅

𝑠2

has similar monotony.
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3.3. Characterization of Ergodic Secrecy Rate Region. It shows
that any point on the Pareto boundary should be achieved
with full power and the corresponding beamforming vectors
have the same characterization as perfect CSI case. To
proceed, we first state the following lemma, which deals with
the monotony of 𝑅

𝑠
. The lemma is stated for 𝑅

𝑠1
; similar

results hold for 𝑅
𝑠2
.

Lemma 3. 𝑅
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Proof . Fromdiscussions in the previous subsection, we know
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Next we consider the term |h
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both the first term and second term in (10). We will show it
using the method that for fixed |h𝑇
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is monotonic decreasing with |h
𝑇
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|. Note that since the

expectation over |h𝑇
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| does not affect the monotony of this

term. Thus, we have that 𝑅
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is monotonic decreasing with

|h
𝑇
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|, which completes the proof.

From the monotonicity of 𝑅
𝑠1
, we see that the same

conflicting situation happens as the perfect CSI case associ-
ated with the beamforming vectors. By utilizing the similar
method, any beamforming vector leading to a Pareto-optimal
ergodic secrecy rate tuple can be expressed as a linear com-
bination of stochastic maximal-ratio combining (MRC) and
stochastic zero-forcing (ZF) beamformers, which are defined
as
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Theorem 4. Any Pareto-optimal ergodic secrecy rate point is
achievable with the beamforming strategy:

w
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w
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where 0 ≤ 𝜆
1
, 𝜆
2
≤ 1 are real-valued parameters.

Proof. The proof is essentially the same as that of its perfect
CSI case. Hence, we only provide an outline here. The proof
uses the method of contradiction.

To do so, we write any optimal beamforming vector as

w󸀠
1
≜ w
1
+ u
1
, (15)

where w
1
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1
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1
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the same secrecy rate performance as w
1
. Hence, the optimal

beamforming vector should lie in the space spanned by h
∗

11

and h
∗

12
.

Next, we prove that the Pareto-optimal ergodic secrecy
rate point can be obtained only when full power is used.
To show this, we first consider 𝑅

𝑠1
and assume ‖w

1
‖ < 1.

Construct w󸀠󸀠
1

= w
1
+ k
1
such that ‖w󸀠󸀠

1
‖ = 1. Based on

the monotony of the associated terms, it can prove that if
‖w
𝑖
‖ < 1, then it is possible to choose a new ‖w󸀠󸀠

𝑖
‖ = 1, such

that𝑅
𝑠1
is increased and𝑅

𝑠2
is unchanged.Therefore, in order

to reach the Pareto boundary, the transmitter should operate
at full power. And any optimal beamformer in the space of
span{h

∗

11
, h
∗

12
} could be formulated as the form in (14a). See

[23] for more details regarding the proof.

It is worth highlighting that previous Theorem 4 aligns
with the result for the two-user MISO IFC-CM with perfect
CSI [23]; this is because that they have the similar monotony
with the terms associated with beamformers. This theorem
also shows that we only need to vary the scalar real-valued
parameters 𝜆

1
and 𝜆

2
in order to achieve any specific point on

the Pareto boundary of the ergodic secrecy rate region. That
is, these two BSs could achieve this specific points by setting
𝜆
1
and 𝜆

2
together.

4. Ergodic Secrecy Rate Balancing Point

4.1. Ergodic Secrecy Balancing. In the IFCmodel, user fairness
is an important metric which can be achieved by balancing
the user secrecy rates so that the weaker user is not overly
compromised. Technically, this can be obtained by maximiz-
ing the worse-user’s secrecy rate. That is,

max min {𝑅
𝑠1
, 𝑅
𝑠2
} . (16)

The secrecy rate balancing point can be realized by setting, if
a solution exists,
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Then, a simple relationship between 𝜆
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can be

achieved.
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Proposition 5. For any given 𝜆
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into a quadratic equation:
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𝜆
1
+ 1

, (22)

where 𝛼
1
= 1 − (‖Π

⊥

h
12

h
11
‖/‖h
11
‖) and 𝛽

1
= |h
𝐻

12
h
11
|/‖h
11
‖.

The functions 𝑝
2
(𝜆
2
), 𝑞
1
(𝜆
2
) can be expressed and defined in

a similar way with parameters 𝛼
2
= 1−(‖Π

⊥

h
21

h
22
‖/‖h
22
‖) and

𝛽
2
= |h
𝐻

21
h
22
|/‖h
22
‖.

By substituting (20) into (18), we have

𝑝
1
(𝜆
1
) − 𝑞
2
(𝜆
1
) = 𝑝
2
(𝜆
2
) − 𝑞
1
(𝜆
2
) . (23)

It can be easily seen that the left-hand-side (LHS) and the
RHS of (23) are functions of only 𝜆

1
and 𝜆

2
, respectively. Let

the RHS of (23) be 𝑡
2
. Then, we have

𝑝
1
(𝜆
1
) − 𝑞
2
(𝜆
1
) = 𝑡
2
. (24)

Inserting (21) and (22) into (24) and simplifying the expres-
sion, we get the quadratic equation (19) with the coefficients
as

𝑎
2
= 𝛼
2

1

󵄩󵄩󵄩󵄩󵄩
h
11

󵄩󵄩󵄩󵄩󵄩

2

− (1 + 𝜎
2

) 𝛽
1
− 2𝛼
1
𝑡
2
, (25)

𝑏
2
= 2 (1 − 𝛼

1
) 𝛼
1

󵄩󵄩󵄩󵄩󵄩
h
11

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
1
𝑡
2
+ 2𝛼
1
𝛽
1
𝜎
2

, (26)

𝑐
2
= (1 − 𝛼

1
)
2󵄩󵄩󵄩󵄩󵄩
h
11

󵄩󵄩󵄩󵄩󵄩

2

− 𝑡
2
+ 𝛽
1
𝜎
2

, (27)

𝑡
2
= 𝑝
2
(𝜆
2
) − 𝑞
1
(𝜆
2
) . (28)

Next, we show by the method of contradiction that
the secrecy rate balancing point corresponds to a unique
solution in the feasible set if (19) is solvable. Assume that
(19) has two solutions, 𝜆

1
and 𝜆

󸀠

1
, both corresponding to

the secrecy balancing point, that is, 𝑅
𝑠1

= 𝑅
𝑠2
(𝜆
1
, 𝜆
2
) =

𝑅
𝑠2
(𝜆
󸀠

1
, 𝜆
2
). However, from Lemma 3, 𝑅

𝑠2
(𝜆
1
, 𝜆
2
) is a contin-

uous monotonously decreasing function of 𝜆
1
which means

that for different 𝜆
1
and 𝜆

󸀠

1
, 𝑅
𝑠2
(𝜆
1
, 𝜆
2
) ̸= 𝑅
𝑠2
(𝜆
󸀠

1
, 𝜆
2
). This

contradicts the assumption which completes the proof.
For a given 𝜆

1
, 𝜆
2
can be determined by solving a similar

quadratic equation. Through Proposition 5, the secrecy rate
balancing point can be determined by searching only one
real-valued parameter in the feasible set. The secrecy rate
balancing point achievable by (𝜆SRB

1
, 𝜆

SRB
2

) is the one that gives
the maximal secrecy rate among all of the points that satisfy
𝑅
𝑠1

= 𝑅
𝑠2
. For the special case that there is no 𝜆

1
satisfying

the quadratic equation (19) for any 𝜆
2
in the feasible set, it

reduces to the single-user ergodic secrecy rate maximal point
where the worse-user’s secrecy rate is maximized.The single-
user ergodic secrecy rate maximal point is where 𝑅max

𝑠1
< 𝑅

ZF
𝑠2

or𝑅max
𝑠2

< 𝑅
ZF
𝑠1
is selected.Note that𝑅max

𝑠1
denotes themaximal

ergodic secrecy rate for 𝑅
𝑠1
, and 𝑅

ZF
𝑠1

corresponds to the case
that the BS 1 chooses the stochastic ZF beamforming to
minimize the interference for the other link.

4.2. Single-User Maximal Ergodic Secrecy Rate. At the single-
user ergodic secrecy rate maximal point, one BS should
choose the stochastic ZF beamforming strategy while the
other BS tries to maximize the ergodic secrecy rate. In our
two-user IFC-CM model, there are two single-user ergodic
secrecy rate maximal points for 𝑅

𝑠1
and 𝑅

𝑠2
, respectively. As

the special case of secrecy balancing, the operating point is
where 𝑅max

𝑠1
< 𝑅

ZF
𝑠2

or 𝑅max
𝑠2

< 𝑅
ZF
𝑠1

is selected.
𝑅
𝑠1
can be formulated as a function of 𝜆

1
with 𝜆

2
= 0. In

this case, there always exists an optimal 𝜆
1
, 𝜆SU−opt
1

, ensuring
that 𝑅

𝑠1
(𝜆

SU−opt
1

) = 𝑅
max
𝑠1

. The optimal 𝜆SU−opt
1

can be easily
obtained by searching over the feasible set 0 ≤ 𝜆

1
≤ 1.

Similarly, the single-user secrecy rate maximal point for 𝑅
𝑠2

can be derived by setting 𝜆
1
= 0 and 𝜆

2
= 𝜆

SU−opt
2

.The single-
user ergodic secrecy rate maximal points for 𝑅

𝑠1
and 𝑅

𝑠1
are

endpoints on the Pareto boundary of the ergodic secrecy rate
region. It can be also understood since there are no other
operating points that could improve 𝑅

max
𝑠1

or 𝑅
max
𝑠2

further
even sacrificing the other user’s secrecy rate performance.

4.3. Other Key Points

4.3.1. Stochastic ZF. At this key point, both BSs choose the
stochastic ZF beamformers, which can be achieved by simply
setting 𝜆

1
= 𝜆
2

= 0. The secrecy ZF point is not on the
Pareto boundary but in the interior of the ergodic secrecy rate
region. Also, it is clear that at high SNR or for a large number
of antennas, the secrecy ZF point will not be far away from
the optimal point.

4.3.2. Nash Equilibrium. At the Nash equilibrium, the users
(or BSs) selfishly optimize their beamforming vectors tomax-
imize their own secrecy rates assuming that beamforming of
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Figure 2: Ergodic secrecy rate region with 0 dB SNR for a random
channel realization.

the other user is fixed [25]. We can iteratively search optimal
𝜆
1
and 𝜆

2
to reach the Nash-equilibrium point. This point is

not optimal and thus in the interior of the ergodic secrecy rate
region.

4.3.3. Sum Ergodic Secrecy Rate. The sum secrecy rate point
is the point at which 𝑅

𝑠1
+ 𝑅
𝑠2
is maximized. Geometrically,

this is where the Pareto boundary of the secrecy rate region,
R
𝑠
, osculates a straight line with slope −1 [26]. It goes with-

out saying that the sum secrecy rate point is on the Pareto
boundary ofR

𝑠
.

5. Simulation Results

Simulation results are provided to study the ergodic secrecy
rate region for the two-user Gaussian MISO IFC-CM by the
Pareto-boundary characterization for the cases with Rician
channel. In the simulations, unless specified otherwise, we
assume that the number of transmit antennas at each BS is
2 and the channel mean vector is randomly generated from
an i.i.d. complex Gaussian distribution with zero mean and
unit variance. Note that 𝛼 is set as 0.1 in the all simulations.

Figure 2 shows an example of the ergodic secrecy rate
region for a two-user Gaussian MISO IFC-CM over Rician
fading with SNR at 0 dB. The achievable ergodic secrecy rate
region generated from Theorem 4 by varying 𝜆

1
and 𝜆

2
in

[0 1], and as we can see, the Pareto boundary including
all the key operating points can be obtained through the
parameterization. Also, the ergodic secrecy rate balancing
point is on the Pareto boundary and it is where the Pareto
boundary intersects the line 𝑦 = 𝑥. In comparison, the sum
secrecy rate point is the point where the Pareto boundary
touches the straight line of slope −1. Results illustrate that the
secrecy rate balancing point gives a lower sum secrecy rate
compared to the sum secrecy rate point, but the worst-user
secrecy rate is maximized. Also, the Nash-equilibrium point
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Figure 3: Ergodic secrecy rate region with 5 dB SNR for a random
channel realization.
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Figure 4: Ergodic secrecy rate region with 0 dB SNR for a random
channel realization where the ergodic secrecy rate balancing point
aligns with the single-user secrecy rate maximal point.

and the stochastic ZF point are in the interior of the secrecy
rate region, that is, not Pareto optimal.

Figure 3 provides another example of the ergodic secrecy
rate region but with SNR at 5 dB with same channel real-
ization. As can be seen, when the SNR is increased, the
corresponding ergodic secrecy rates are all improved and the
stochastic ZF point in particular gets closer to the Pareto
boundary.

Figure 4 considers the special case that the ergodic
secrecy rate balancing point reduces to the single-user
ergodic secrecy rate maximal point, which occurs when there
is no solution to (18) for (𝜆

1
, 𝜆
2
). Geometrically, the Pareto

boundary of R
𝑠
has no intersection point with the straight

line 𝑦 = 𝑥, which can be observed in the figure. Thus, the
ergodic secrecy rate balancing point is reduced to the closest
single-user ergodic secrecy rate maximal point.



International Journal of Antennas and Propagation 7

6. Conclusion

In this paper, we studied the two-user MISO IFC-CM with
Rician fading assumption. We revealed that the optimal
beamforming vectors corresponding to the Pareto optimal
point have the same parameterizations as those for perfect
CSI. The secrecy rate balancing point, which provides the
highest user fairness, was investigated. In particular, a quad-
ratic relationship between the two real-valued parameters can
be derived for the Rician channel to reach the ergodic secrecy
rate balancing point. Simulation results show the secrecy
performance of the proposed method.
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