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Hybrid wireless sensor network made up of wireless body area networks (WBANS) and cellular network provides support for
telemedicine. In order to facilitate early diagnosis and treatment, WBANS collect and transmit crucial biomedical data to provide a
continuous health monitoring by using various biomedical wireless sensors attached on or implanted in the human body. And then,
collected signals are sent to a remote data center via cellular network. One of the features of WBAN is that its power consumption
and sampling rate should be restricted to a minimum. Compressed sensing (CS) is an emerging signal acquisition/compression
methodology which offers a prominent alternative to traditional signal acquisition. It has been proved that the successful recovery
rate of multiple measurement vectors (MMV) model is higher than the single measurement vector (SMV) case. In this paper,
we propose a simple algorithm of transforming the SMV model into MMV model based on the correlation of electrocardiogram
(ECG), such that the MMV model can be used for general ECG signals rather than only several special signals. Experimental results
show that its recovery quality is better than some existing CS-based ECG compression algorithms and sufficient for practical use.

1. Introduction

Remote medical monitoring system helps doctors to remotely
monitor the patient’s medical data and feedback in time.
The whole system of hybrid wireless sensor network model
composed of a WBAN [1] and cellular network is shown in
Figure 1. For providing real-time health monitoring, devices
must integrate seamlessly into the patient’s life and do not
interfere with daily activities. In order to offer continuously
sensing, processing, and early detection, an ECG sensor is
used to collect and compress ECG signals. And then real-time
ECG data are sent to a personal terminal (e.g., smartphone
or iPad). Wi-Fi, CDMA, 3G, or other cellular networks can
be utilized for transmitting the ECG data to a remote data
center. In the terminal, the original ECG signals are recovered
by computers for further diagnosis. By utilizing continuous
remote heart monitoring, it can enhance ability of prevention
and early diagnosis, elevate the personalized service quality,
and improve patient autonomy, mobility, and security.

Most of the power in an ECG sensor is consumed
when the RF power amplifier transmits data to the personal
terminal. A large amount of real-time ECG data is collected,

stored, and transmitted. Thus, it is desirable to decrease
the amount of data to be transmitted to reduce energy
consumption. The WBAN-enabled ECG monitors have three
important design constraints [2]. The most important one is
energy constrain [3]. As far as possible, it should reduce the
energy consumption because of the limited battery life. Due
to the low communication capacity of ultralow power short-
haul radio devices, another constraint is that transmitted
ECG data should be compressed to a large extent. The
third constraint is hardware costs. Low hardware costs are
easier to make a wireless remote medical monitoring system
economically viable and accepted by individual customers.
This means that data compression (on sensors) should have
low complexity.

Although conventional data compression methodologies
[4, 5] are effective in data compression, one still needs to
acquire a large amount of data at the Nyquist rate that
is compressed later. It consumes significant energy and
cannot reduce device cost. As an emerging data acqui-
sition/compression methodology, compressed sensing is a
promising program to meet these constraints. Some scholars
have applied CS algorithm to ECG compression and have
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FIGURE 1: The whole system of hybrid wireless sensor network model.

achieved good effect [6-9]. The application of CS before the
transmission of typical ECG signals achieves compression
of the data with a proportionate saving in energy. In [6],
Mamaghanian et al. proposed a novel approach based on
the CS framework to deal with the challenge of ultralow
power embedded compression of ECG signals. In [7], several
design considerations of CS acquisition systems for ECG
and EMG biosignals are presented by Dixon et al. In [8],
a dynamic compression (DC) scheme is proposed to tackle
the challenge of ultralow power and real-time wireless ECG
application. And, in [9], Ravelomanantsoa et al. proposed
a simple and efficient CS encoder device used to measure
signals within sensor nodes of a WBAN. Nevertheless, a
discrete-time ECG signal exhibits a high degree of correlation
between its successive samples. Such a signal can be better
recovered by using an algorithm that encourages tempo-
ral correlation. Recently, so called block sparse Bayesian
learning bound-optimization (BSBL-BO) algorithm has been
effectively applied for the reconstruction of ECG signals
[10]. Inspired by these applications in ECG processing, this
paper proposes a novel CS algorithm based on the temporal
correlation of ECG, which can transform the SMV model into
MMV model for enhancing the quality of the reconstructed
signal.

Higher quality of reconstructed ECG signals can better
help the doctor to understand the patient’s heart function.
An ECG signal shows a high degree of correlation between
its continuous samples. In this paper, ECG signal is firstly
divided into several segments by the presented segmenta-
tion algorithm. And then, one-dimension discrete wavelet
transform (DWT) is employed to decompose the segmental
ECG signals into sparse data. Secondly, the sparse signals
are integrated into the solution matrix. In this way, the SMV
case is transformed into MMV model. It has been proved
that the successful recovery rate of MMV model is higher
than the SMV case. The proposed transforming method is
relatively simple and of low complexity in encoder (sensor
nodes) and consistent with low power consumption of actual
system requirements.

The rest of this paper is organized as follows. First, Sec-
tion 2 introduces the CS theory. And Section 3 describes the
characteristics of ECG signals and presents the segmentation
algorithm. The framework of transforming SMV model into
MMV model is shown in Section 4. Analytical and simulation
results based on the MIT-BIH arrhythmia database are shown
in Section 5. Finally, Section 6 concludes the paper.

2. Compressed Sensing Background

Compressed sensing [11-13] solves the reconstruction of a
sparse signal which contains a few nonzero elements, from
its linear measurements, less than the number of unknowns.
Many of algorithms have been developed to resolve this
underdetermined inverse problem with sparsity prior on the
solution. Suppose @ € R™! is an unknown source vector
with only a few nonzero entries. One wishes to determine w
via the noisy measurements given by

t=Pw+vV, 1)

where t € RM*! is an available measurement vector, ® €

RMN (M « N) is a known measurement matrix, and any
M columns of @ are linearly independent (i.e., satisfies the
restricted isometry property (RIP) condition [14]), and v €
RMX1 is an unknown noise vector. Furthermore, if signal x
is not sparse itself, it may be represented as a sparse signal
in some orthonormal basis W; that is, w = ¥ixis a sparse
signal.

Estimating the sparsest solution vector in accordance
with the SMV model (1) is generally an NP-hard problem [14].
For resolving the problem of sparse signal recovery with SMV,
a number of efficient algorithms have been proposed. Typical
algorithms include basis pursuit (BP) or /,-minimization
approach [15], orthogonal matching pursuit (OMP) [16], lasso
[17], FOCUSS [18], iterative reweighted algorithms [19, 20],
and Bayesian algorithm [21, 22].
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FIGURE 2: ECG of record 100 in MIH-BIH arrhythmia database and its unbiased estimate of autocorrelation function.

In some special applications, such as magnetoencepha-
lography (MEG)/electroencephalography (EEG) source loca-
tion [23, 24], multivariate regression [25], and direction-of-
arrival (DOA) estimation [26], where a sequence of measure-
ment vectors has an identical sparsity pattern, the SMV model
(1) has been extended to the multiple measurement vector
(MMYV) model in [27], given by

T=0W+YV, 2)

where T = [t;,...,t;] € RME W = [w,,...,w;] €
RN and V € R™ is an unknown noise matrix. Actually,
model (2) can be recognized as an inverse problem either
with SMV model when L = 1 or with MMV model
when L > 1. A key assumption in the MMV model is
that the indexes of nonzero entries of every column in
solution matrix W are common. Many algorithms have been
developed to address the new challenges in this scenario.
Thanks to a great deal of solutions for the SMV model,
one class of algorithms for solving the MMV problem can
be obtained by straightforward extension of the basic SMV
approaches. And these algorithms can be roughly divided
into greedy algorithms [28, 29], algorithms based on mixed
norm optimization [30-32], iteratively reweighted algorithms
[27, 33], and Bayesian algorithms [34, 35]. Bayesian methods
have obtained lots of concerns since they usually achieve
the best recovery performance among the MMV algorithms
[36]. The sparse Bayesian learning (SBL) algorithm is firstly
introduced to sparse signal recovery for the SMV model by
Wipf and Rao [22] and later is extended to the MMV model,
deriving the MSBL approach [34]. In this paper, we choose
the MSBL algorithm as the recovery approach. Although the
successful recovery rate of MMV model is higher than the
SMV case, the MMV model is suitable for only several special
signals. In this paper, we proposed a transformed method to
make the general single ECG signals usable in MMV model.

3. The Correlation Characteristics of ECG
Signals and Segmentation Algorithm

In this section, we illustrate the correlation characteristics of
ECG signals and give the segmentation algorithm. Wavelet
transform as the sparse decomposition has been widely used
in CS theory. In this paper, the one-dimension DWT is
chosen as the sparsifying basis.

3.1. The Correlation of ECG. The correlation of ECG signal is
mainly manifested in the sampling spots and cardiac cycle.

3.11 The Correlation between Sampling Points. ECG signal
is generated by myocardial continuous motion; thus it has
a strong correlation between sample points. As shown in
Figure 2(a), we select ECG of record 100 in MIH-BIH
arrhythmia database as an example and calculate its unbiased
estimate of autocorrelation function:

(3)

Rxx, unbiased (m) = Rxx (m),

1

N — |m|
where N = 3000 is the number of samples. As can be
seen from Figure 2(b), the ECG signal has high correlation
between sampling points, and cyclical peak of the autocorre-
lation function precisely illustrates the pseudo-periodicity of
ECG signal; that is, ECG waveform of each cardiac cycle is
similar. This conclusion can be more intuitive as seen from
Figure 2(a).

3.1.2. The Correlation between the Cardiac Cycles. Typically,
long-term monitoring of ECG signals can present more
obvious periodicity after pretreatment, such as removal of
baseline drift, power frequency interference, and high fre-
quency noise. It can be seen from Figure 2(a) that the shape,
location, and duration of P wave, QRS complex wave, and T
wave are similar within the cardiac cycle.
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3.2. Segmentation Algorithm. Since the ECG is a one-
dimensional signal, it is firstly transformed into two-
dimensional data form in order to implement multiple
measurements. The most notable feature of a cardiac cycle
is the QRS complex. So we detect the entire QRS complex
firstly and then segment the ECG signal on the premise
of alignment QRS complex to make each section represent
a cardiac cycle. It is important to note that each cardiac
cycle length is not strictly equal; therefore, we find out
the longest heartbeat cycle firstly, and other sections are
complemented by average value according to longest length.
The segmentation algorithm divides the ECG signal into
beats (complexes). The specific process is shown in Figure 3.

We select ECG of record 100 as a test example. The
number of samples N = 1200, and then the ECG signal is
divided into four sections. Every section is decomposed by
5-scale one-dimensional DWT. Figure 4 shows the wavelet
coeficients ¢, ¢,, ¢;, and ¢,. As can be seen from the figure,
the variation of the wavelet coefficients is very similar (almost
identical). This feature is very important for transforming
the SMV model into MMV model. A key assumption in
the MMV model is that the indexes of nonzero entries in
every column of solution matrix are identical. Inspired by
this nature, the wavelet coefficients can generate the matrix
W which meets the requirements of MMV model.

4. The Proposed Framework of Transforming
SMV Model into MMV Model

In this section, we give the approach of transforming SMV
model into MMV model. The proposed framework is shown
in Figure 5. Our modeling instructions are summarized as
follows.

(i) ECG Segmentations. The ECG signal x is divided into
L sections x; (i = 1,2,...,L) with the length of n by the
proposed algorithm as shown in Section 3.

0 50 100 150 200 250 300
— G — G
— Q@ — G

FIGURE 4: The wavelet coeflicients ¢, ¢,, ¢;, and ¢,.

(ii) DWT. The segmentation X; is sparsely represented using
multiscale one-dimension DW'T, and the wavelet coefficient
¢; is sparse.

(iii) Transform SMV Model into MMV Model. The wavelet
coeflicients ¢; are integrated into a solution matrix W. That
is,

W:[C1 C CL]
1 1 1
Cl % oo CL
GG q (4)
n n n
Cl (12 : CL nxL

(iv) Measurement. The random Gaussian matrix M xn (M <
n) @ is employed in measurement sampling of the solution
matrix W to yield a sampled matrix T = ®W + V.
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TaBLE 1: PRD and reconstructions signal quality class.

PRD Reconstructed signal quality
0~2% “Very good” quality

2~9% “Good” quality

>9% Impossible to determine the quality

(v) Recovery. The decoder firstly recovers the solution matrix
W by the MMV algorithms, for example, M-SBL. We can use
the inverse DWT to recover the original segmentations X;.
Removing the previously complemented elements in each of
the sections X;, finally, we can obtain the reconstructed ECG

X.

5. Simulations and Analyses

The performance of the proposed transforming algorithm has
been evaluated by simulations. We employ two most widely
used performance metrics that are compression ratio (CR)
and percentage root-mean-square difference (PRD) [37]. CR
is defined as

Borie — b,
CR = 22 100, (5)
borig
where b,;; and b, represent the number of bits required for

the original and compressed signals, respectively. Here CR is
the compressibility of the ECG data, and it also indicates the
ratio of radio energy consumption saving [38]. The PRD, as
well as associated SNR, quantifies the percent error between
the original signal vector x and the reconstructed signal
vector X:

lIx — xII,

%1l

SNR = —20log,, (0.01 x PRD).

PRD = % 100, (6)

(7)

A relationship between PRD and the diagnostic distortion
is established in [39]. Table 1 lists the resulting classes of
very good quality, good quality, uncertain quality, and the
corresponding PRDs.

In this paper, the MIT-BIH arrhythmia database [40]
is used to validate the compression performance of the
proposed scheme. MIT-BIH arrhythmia database is most

commonly used for study of ECG signal compression algo-
rithms, and it consists of two-lead ambulatory ECG record-
ings from 47 people. Because lead II is most commonly used
in ambulatory ECG application, all results in this paper are
based on the ECG signals of lead II.

5.1. Performance Analysis of Proposed MMV Model. Two
types of heartbeats of 6s (N = 2161) ECG raw signals
are tested in this paper. Normal beat records 100, 103, 114,
and 234 and left bundle branch block beat records 207 and
214 are processed by the proposed algorithm as shown in
Section 4. We choose the 5-scale DWT as the sparsifying basis
Y for each section and select the common symmetric wavelet
function “syml” as the wavelet basis. When the absolute
value of wavelet coefficient is less than a very small value
e (¢ > 0), we consider that it is close to zero. In this
paper, we set ¢ = 1072, The Gaussian random matrix ®
is employed in measurement sampling of the sparse coeffi-
cients. The CR and PRD are calculated by (5) and (6). The
recovered ECG signals of using M-SBL algorithm are shown
in Figure 6. It is observed that the PRDs of all records are
less than 9% and that the proposed method can achieve good
quality ECG signal recovery and guarantee nondistortion
diagnosis.

5.2. Performance Comparison with Other Methods. This
paper numerically simulated the ECG compression with the
CSgp [6], BSBL-BO [10], and DC [8] schemes for comparison
of performance with the proposed approach. We choose the
first 512 points of MIT-BIH arrhythmia database record 100
as the test signal. The resulting relationships of the signal
distortion and compression efficiency are shown in Figure 7.
The recovered quality of proposed algorithm achieves lower
PRD and higher SNR than compared algorithms at the same
CR. What is more, with the increase of CR, the increased
rate of PRD is much lower than the compared methods.
It indicates that the proposed method has more stable
performance for bigger CR conditions.

Meanwhile, the comparisons of time consumption are
shown in Table 2. Unfortunately, the time consumption of
proposed algorithm is higher than the compared algorithms.
However, the time consumption of encoder (on sensors) is
not great. This is precisely in accordance with the require-
ments of sensor networks.
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TABLE 2: The comparisons of time consumption.

Time consumption Different algorithms

(ms) MMV DC_CS [8] BP_CS [6] BSBL_BO [10]
Encoder 12 2 9 4
Decoder 230 12 70 26
Total 242 14 79 30

6. Conclusion

In this paper, we addressed a simple algorithm of transform-
ing the SMV model into the MMV model by exploiting the
correlation of ECG signal, such that the MMV model can be
used for general ECG signals instead of only several special
signals. Based on this framework, the proposed algorithm
leads to higher reconstructed quality compared with some
existing CS algorithms. Although the time consumption
of proposed algorithm is higher, the time consumption of
encoder is not great. Extensive experiments have shown
that the proposed algorithms have superior performance for
general ECG signals.
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