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Abstract. BDD-based symbolic model checking has been successful in
verification of a wide range of systems. Recently, constraint-based ap-
proaches, which use arithmetic constraints as a symbolic representation,
have been used in symbolic model checking of infinite-state systems.
We argue that use of constraint-based model checking is not limited
to infinite-state systems. It can also be used as an alternative to BDD-
based model checking for systems with integer variables which have finite
but large domains. In this paper we investigate the trade-offs between
these two approaches experimentally. We compare the performance of
BDD-based model checker SMV to the performance of our constraint-
based model checker on verification of several asynchronous concurrent
systems. The results indicate that constraint-based model checking is a
viable option for verification of asynchronous concurrent systems with
large integer domains.

1 Introduction

Model checking has been used in verification of diverse applications ranging from
hardware protocols [McM93] to software specifications [CAB+98]. The success of
model checking has been partially due to use of efficient data structures like Bi-
nary Decision Diagrams (BDDs) which can encode boolean functions in a highly
compact format [Bry86]. The main idea in BDD-based symbolic model checking
is to represent sets of system states and transitions as boolean logic formulas,
and manipulate them efficiently using the BDD data structure [BCM+90].

An important property of the BDD data structure is that it supports opera-
tions such as intersection, union, complement, equivalence checking and existen-
tial quantifier elimination (used to implement relational image computations)—
which also happen to be the main operations required for model checking. How-
ever, an efficient encoding for boolean domains may not be efficient for all vari-
able types. For example, BDD-based model checkers can be very inefficient in
representing arithmetic constraints [CAB+98].
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Another shortcoming of the BDD representation is its inability to encode infi-
nite domains. Without abstraction, BDDs cannot be used for analyzing infinite-
state systems—even those with just one unbounded integer. BDDs encode all
underlying datatypes as boolean variables; hence all BDD-based model checkers
inherently require the underlying types to be bounded.

Recently, arithmetic constraints have been used as a symbolic representation
in model checking [AHH96,BGP97]. For example, HyTech, a symbolic model
checker for hybrid systems, encodes real domains using linear constraints on
real variables [AHH96]. We developed a model checker for integer based systems
which uses Presburger arithmetic (integer arithmetic without multiplication)
constraints as its underlying state representation [BGP97,BGP99]. Our model
checker uses the Omega library [KMP+95] to manipulate Presburger arithmetic
constraints. In [DP99] model checking queries are converted into constraint logic
programs, and a CLP(R) library is used to verify concurrent systems by mapping
integer variables to real domains.

Constraint representations allow verification of infinite-state systems since
they can represent variables with infinite domains. There are algorithms for
intersection, union, complement, equivalence checking and existential quantifier
elimination for both real and integer constraint representations mentioned above.
However model checking becomes undecidable for infinite-state systems. Hence
the fixpoint computations are not guaranteed to converge. This problem is ad-
dressed using conservative approximation techniques [BGP99] which guarantee
convergence but do not guarantee a definite answer, i.e., the model checker 1)
may report that the property is verified, 2) provide a counter-example demon-
strating violation of the property, or 3) report that the analysis is inconclusive.

Using arithmetic constraints one can also represent variables with finite do-
mains. We just have to add additional constraints which show the range of values
that an integer variable can take. An interesting issue is, then, comparing the
performance of BDD-based model checking to constraint-based model checking
for finite-state systems with integer variables.

In this paper we compare the performance of a BDD-based model checker
(SMV [McM93]) and a constraint-based model checker (our model checker based
on Omega library [BGP97,BGP99]) in verification of asynchronous concurrent
systems with integer variables. On the extreme case where integer variables can
take only two values, they can be treated as boolean variables and represented
using BDDs. Using a constraint-representation would be very inefficient in such
a case. On the other hand, although BDD-based model checkers are not capable
of handling systems with unbounded integers, if the variables are restricted to a
finite set of values, they can be represented using a set of boolean variables using
a binary encoding. Our goal in this paper is to investigate the middle ground
between these two extremes where the integer variables are neither unbounded
nor have only two possible valuations.

We perceive efforts in constraint-based model checking as not only a way to
solve infinite-state verification problems, but also as a way to deal with prob-
lems with large variable domains using formalisms that are more expressive than
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boolean logic formulas. However, because of the added expressive power, manip-
ulation algorithms for these formalisms have higher complexity than correspond-
ing algorithms for BDDs. These powerful algorithms may not be worthwhile to
use for small domains because of their high complexity. On the other hand, for
large domains their complexity maybe justified. The question is, when is the use
of integer constraint representations justified instead of BDD encodings? In this
paper we investigate this issue experimentally on verification of asynchronous
concurrent systems.

The rest of the paper is organized as follows. We first discuss other related
approaches to symbolic model checking in Sect. 2. In Sect. 3, we give a brief
overview of symbolic model checking. After presenting the example concurrent
systems in Sect. 4, we discuss the experimental results we obtained using BDD
and constraint-based model checkers in Sect. 5. Finally, we present our conclu-
sions and future directions.

2 Related Work

Another approach to infinite-state model checking is to use automata-based rep-
resentations. Automata can be used to represent arithmetic constraints on un-
bounded integer variables [WB95,BKR96,KSA98]. An arithmetic constraint on k
integer variables is represented by a k-track automata that accepts a string if
it corresponds to a k-dimensional integer vector (in binary representation) that
satisfies the corresponding arithmetic constraint. Again, since the automata rep-
resentation supports the necessary operations, it can be used in symbolic model
checking.

The constraint and automata-based representations provide two different
ways of implementing model checking computations for systems with unbounded
integer variables. In [SKR98] these two approaches are compared experimentally
for reachability analysis of several concurrent systems. The results show no clear
winner. On some problem instances the constraint representation is superior,
on some others automata representation is. In automata-based representations,
restricting variables to fixed finite domains ends up converting the automata
representation to a model isomorphic to BDDs [KSA98]. Hence, for the experi-
ments we conduct in this paper the automata-based representation is equivalent
to BDD-based model checking.

Using a BDD-based model checker such as SMV [McM93] for checking sys-
tems with integer variables can easily result in inefficient encodings of arithmetic
constraints [CAB+98]. It is pointed out both in [YMW97] and [CAB+98] that
SMV can be very inefficient in constructing BDDs for integer variables. This
inefficiency can be resolved for linear arithmetic constraints by using a better
variable ordering as explained in [CAB+98]. For non-linear constraints, how-
ever, there is no efficient BDD representation [Bry86]. In [CABN97] SMV is
augmented with a constraint solver for non-linear constraints. This technique is
not applicable to the systems we analyze in this paper because of the restrictions
put on the types of systems that can be analyzed.
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Another approach to dealing with integer variables in BDD-based model
checking is to use abstractions. In [CGL92], a conservative abstraction method
is presented for model-checking infinite-state programs. The main idea is to pro-
duce a finite model of the program using a suitable abstraction technique (e.g.,
congruence modulo an integer, single-bit abstraction, symbolic abstraction), and
then to check the property of interest on the abstraction. For systems such as the
ones we analyze in this paper, finding a good abstraction maybe as difficult as
proving the invariants of the system. On the other hand, automated abstractions
such as the ones presented in [HKL+98] are not strong enough to eliminate the
integer variables in the systems we analyze in this paper.

3 Symbolic Model Checking

In model checking, the system to be analyzed is represented as a transition
system TS = (S, I, R) with a set of states S, a set of initial states I ⊆ S, and
a transition relation R ⊆ S × S. The transition system model is never explicitly
generated in symbolic model checking. For example, BDD-based model checkers
represent transition relation R as a set of boolean logic formulas.

A popular temporal logic for specifying temporal properties of transition
systems is Computation Tree Logic (CTL) [CES86] which consists of a set of
temporal operators (the next-state operators EX and AX, the until operators
EU and AU, the invariant operators EG and AG, and the eventuality operators
EF and AF) for specifying temporal properties.

Our goal in model checking a system TS = (S, I, R) and a temporal prop-
erty p is (we use p to denote its truth set) : 1) either to prove that the system
TS satisfies the property p by showing that I ⊆ p, or 2) to demonstrate a bug
by finding a state s ∈ I ∩ ¬p, and generating a counter-example path starting
from s.

Assume that there exists a representation for sets of states which supports
tests for equivalence and membership. Then, if we can represent the truth set of
the temporal property p, and the set of initial states I using this representation,
we can check the two conditions listed above. If the state space is finite, explicit
state enumeration would be one such representation. Note that as the state
space of a concurrent system grows, explicit state enumeration will become more
expensive since the size of this representation is linearly related to the number of
states in the set it represents. Unfortunately, state space of a concurrent system
increases exponentially with the number of variables and concurrent components.
This state space explosion problem makes a simple implementation of the explicit
state enumeration infeasible.

Another approach is to use a symbolic representation for encoding sets of
states. For example, a logic formula which is semantically interpreted as a set
of states, can be used as a symbolic representation. Boolean logic formulas
(stored using the BDD data structure) are the most common symbolic rep-
resentation used in model checking [BCM+90]. Recently, we used Presburger
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arithmetic (integer arithmetic without multiplication) formulas for the same
purpose [BGP97,BGP99].

Model checking procedures use state space exploration to compute the set
of states which satisfy a temporal property. Fixpoints corresponding to truth
sets of temporal formulas can be computed by iteratively aggregating states
using pre-condition computations (which correspond to the next state operator
EX). Temporal properties which require more than one fixpoint computation
can be computed recursively starting from the inner fixpoints and propagating
the partial results to the outer fixpoints.

All temporal properties in CTL can be expressed using boolean connectives,
next state operator EX, and least fixpoints. For example, EFp ≡ µx . p∨EX x.
The least fixpoint of a monotonic functional can be computed by starting from
the bottom element (i.e., false ≡ ∅) and by iteratively applying the functional
until a fixpoint is reached.

Assume that Symbolic is the data type used for encoding sets of states. In
order to implement a symbolic model checker based on Symbolic data type we
need the following procedures:

Symbolic Not(Symbolic) : Given an argument that represents a set p ⊆ S, it
returns a representation for S − p.

Symbolic And(Symbolic,Symbolic) : Given two arguments representing two
sets p, q ⊆ S, it returns a representation for p ∩ q.

Symbolic Or(Symbolic,Symbolic) : Given two arguments representing two
sets p, q ⊆ S, it returns a representation for p ∪ q.

Symbolic EX(Symbolic) : Given an argument that represents a set p ⊆ S, it
returns a representation for the set {s | ∃s′ . s′ ∈ p ∧ (s, s′) ∈ R}.

Boolean Equivalent(Symbolic, Symbolic) : Given two arguments represent-
ing two sets p, q ⊆ S, it returns true if p ≡ q, returns false otherwise.

Using the procedures described above, given a temporal formula, we can com-
pute its truth set by computing the fixpoint that corresponds to that temporal
formula.

The computation of the procedure EX involves computing a relational image.
Given a set p ⊆ S and a relation X ⊆ S × S we use X p to denote relational
image of p under X , i.e., X p is defined as restricting the domain of X to set p,
and returning the range of the result. Note that we can think of relation X as a
functional X : 2S → 2S . Then, X p denotes the application of the functional X
to set p.

Let R−1 denote the inverse of the transition relation R. Then EX p ≡ R−1 p,
i.e., functional EX corresponds to the inverse of the transition relation R. Hence,
we can compute the procedure EX using a relational image computation. Most
model checkers represent transition relation R in a partitioned form to make the
relational image computation more efficient [BCL91].

Any representation which is able to encode the set of initial states I and the
set of atomic properties AP , and supports the above functionality can be used
as a symbolic representation in a model checker. We call such a representation
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an adequate language for model checking [KMM+97]. For example, for finite-
state systems, boolean logic would be one such representation. It is possible
to implement procedures for negation, conjunction, disjunction and equivalence
checking of boolean logic formulas. If we can represent the transition relation R
as a boolean logic formula, then relational image computation R−1 p can be
computed by conjuncting the formula representing R−1 and the formula repre-
senting p, and then eliminating the variables in the domain of the resulting rela-
tion using existential quantifier elimination. BDDs are an efficient data structure
for representing boolean logic formulas, and they support all the functionality
mentioned above [Bry86]. They have been successfully used for model check-
ing [BCM+90,McM93]. However, they can not encode infinite variable domains.

Recently, we developed a model checker for systems with unbounded inte-
ger variables using Presburger arithmetic formulas as a symbolic representa-
tion [BGP97]. There are effective procedures for manipulating Presburger for-
mulas which support the above functionality—for example Omega Library im-
plements a set of such procedures [KMP+95]. We implemented a model checker
using Omega Library as our symbolic manipulator. However, model checking
computations become undecidable for infinite domains, i.e., the fixpoint compu-
tations corresponding to temporal properties may not always converge for infinite
domains. We addressed this issue in [BGP99] using conservative approximations.

4 Example Concurrent Systems

The examples we use in this paper have the following characteristics: 1) they
are all asynchronous concurrent systems, and 2) they all use shared integer
variables to control their synchronization. We think this type of systems are
especially suitable for constraint-based representations. Most of our examples
are from [And91].

We represent each concurrent system with a set of events, where each event
is considered atomic (Fig. 1). The state of a program is determined by the values
of its data and control variables. If a variable v is used in an event, then the
symbol v′ denotes the new value of v after the action is taken. If v′ is not
mentioned in an event, then we assume that its value is not altered by that
event. Each event specification defines a transition relation over the Cartesian
product of the domains of the variables in the system. The transition relation of
the overall concurrent system is defined as the union of the transition relations
of all events in the system.

Bakery algorithm, shown in Fig. 1 for two processes, is a mutual exclusion
algorithm. The algorithm we present above is the coarse grain solution [And91]
which can be further refined to implement without fetch-and-add instructions.

In Fig. 1 we show a solution to sleeping barber problem [And91]. The barber
allows a new customer into the shop with the event enext1 . The customer gets a
chair by calling the event ehaircut1 (as long as their is an available chair). Then
the barber starts the haircut with event enext2 . When the haircut is finished the



BDD vs. Constraint-Based Model Checking 447

Program: Bakery
Data Variables: a, b: positive integer
Control Variables: pc1 : {T1, W1, C1}, pc2 : {T2, W2, C2}
Initial Condition: a = b = 0 ∧ pc1 = T1 ∧ pc2 = T2

Events:
eT1 : pc1 = T1 ∧ pc′1 = W1 ∧ a′ = b + 1
eW1 : pc1 = W1 ∧ (a < b ∨ b = 0) ∧ pc′1 = C1

eC1 : pc1 = C1 ∧ pc′1 = T1 ∧ a′ = 0
eT2 : pc2 = T2 ∧ pc′2 = W2 ∧ b′ = a + 1
eW2 : pc2 = W2 ∧ (b < a ∨ a = 0) ∧ pc′2 = C2

eC2 : pc2 = C2 ∧ pc′2 = T2 ∧ b′ = 0

Program: Barber
Data Variables: cinchair, cleave, bavail, bbusy, bdone: positive integer
Control Variables: pc1 : {1, 2}, pc2 : {1, 2} pc3 : {1, 2}
Initial Condition: cinchair = cleave = bavail = bbusy = bdone = 0
∧pc1 = pc2 = pc3 = 1
Events:
ehaircut1 : pc1 = 1 ∧ pc′1 = 2 ∧ cinchair < bavail ∧ cinchair′ = cinchair + 1
ehaircut2 : pc1 = 2 ∧ pc′1 = 1 ∧ cleave < bdone ∧ cleave′ = cleave+ 1
enext1 : pc2 = 1 ∧ pc′2 = 2 ∧ bavail′ = bavail + 1
enext2 : pc2 = 2 ∧ pc′2 = 1 ∧ bbusy < cinchair ∧ bbusy′ = bbusy + 1
efinish1 : pc3 = 1 ∧ pc′3 = 2 ∧ bdone < bbusy ∧ bdone′ = bdone + 1
efinish2 : pc3 = 2 ∧ pc′3 = 1 ∧ bdone = cleave

Program: Readers-Writers
Data Variables: nr, nw: positive integer
Initial Condition: nr = nw = 0
Events:
ereader−enter : nw = 0 ∧ nr′ = nr + 1
ereader−exit : nr > 0 ∧ nr′ = nr − 1
ewriter−enter : nr = 0 ∧ nw = 0 ∧ nw′ = nw + 1
ewriter−exit : nw > 0 ∧ nw′ = nw − 1

Program: Bounded-Buffer
Parameterized Constant: size : positive integer
Data Variables: available, produced, consumed: positive integer
Initial Condition: produced = consumed = 0 ∧ available = size
Events:
eproduce : 0 < available ∧ produced′ = produced+ 1 ∧ available′ = available − 1
econsume : available < size ∧ consumed′ = consumed + 1

∧available′ = available+ 1

Program: Circular-Queue
Parameterized Constant: size : positive integer
Data Variables: occupied, head, tail, produced, consumed: positive integer
Initial Condition: occupied = head = tail = produced = consumed = 0
Events:
eproduce : occupied < size ∧ occupied′ = occupied + 1 ∧ produced′ = produced+ 1

∧(tail = size ∧ tail′ = 0 ∨ tail < size ∧ tail′ = tail + 1)
econsume : occupied > 0 ∧ occupied′ = occupied − 1 ∧ consumed′ = consumed + 1

∧(head = size ∧ head′ = 0 ∨ head < size ∧ head′ = head + 1)

Fig. 1. Example concurrent systems used in the experiments
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barber executes edone1 , and waits (edone2) till the customer leaves by executing
the event ehaircut2 .

A well-known algorithm for readers-writers problem is also presented in
Fig. 1. The invariant of the readers-writers problem states that at any time
there would be either no writers accessing the database or no readers, and the
number of writers should never be more than one.

Two algorithms given in Fig. 1 present bounded-buffer implementations.
Both these systems have a parameterized constant size which specifies the size
of the buffer. Since size is parameterized the systems given above should be
correct for any value of size.

In Table 1 we list the invariants the systems presented above have to satisfy.

Table 1. List of problem instances used in the experiments

Problem Instance Property

bakery AG(¬(pc1 = C1 ∧ pc2 = C2))
barber AG(cinchair ≥ cleave ∧ bavail ≥ bbusy ≥ bdone

∧ cinchair ≤ bavail ∧ bbusy ≤ cinchair ∧ cleave ≤ bdone)
barber-1 AG(cinchair ≥ cleave ∧ bavail ≥ bbusy ≥ bdone)
barber-2 AG(cinchair ≤ bavail ∧ bbusy ≤ cinchair)
barber-3 AG(cleave ≤ bdone)
readers-writers AG((nr = 0 ∨ nw = 0) ∧ nw ≤ 1)
bounded-buffer AG(produced − consumed = size − available

∧ 0 ≤ available ≤ size)
bounded-buffer-1 AG(produced − consumed = size − available)
bounded-buffer-2 AG(0 ≤ available ≤ size)
bounded-buffer-3 AG(0 ≤ produced − consumed ≤ size)
circular-queue AG(0 ≤ produced − consumed ≤ size

∧ produced − consumed = occupied)
circular-queue-1 AG(0 ≤ produced − consumed ≤ size)
circular-queue-2 AG(produced − consumed = occupied)

5 Experimental Evaluation

We translated the examples given in Fig. 1 to the SMV input language. For
each concurrent process we used the process declaration in SMV which sup-
ports asynchronous composition. SMV converts all integer variables to a binary
representation since it is a BDD-based model checker. We used an uninitialized
variable that always preserves its value to represent the parameterized constant
size in the bounded-buffer and circular-queue systems.

Our omega library based model checker accepts a Presburger arithmetic for-
mula for each event in the input system. It forms the global transition relation
by combining these formulas disjunctively. It uses asynchronous composition to
combine two concurrent components. It is not efficient to map variables with
small domains (such as program counters) to integer variables. So, for the exam-
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ples with control variables we used control point partitioning to eliminate the
control variables [BGP99].

To compare the performances of SMV and OMC (Omega library Model
Checker) we assigned a finite domain to each integer variable. We generated
16 different instances for each concurrent system by restricting the integer vari-
ables to different ranges. We started with a range of 0 ≤ i < 23 for each integer
variable i (which makes it possible to represent each variable i with 3 boolean
variables in SMV) and increased it until 0 ≤ i < 226 (which requires 26 boolean
variables for each integer variable).

In Figs. 2 and 3 we show the performances of both SMV and OMC in terms of
execution time and memory usage. We ran all our experiments on an Intel Pen-
tium III PC (500MHz, 128 MByte main memory) running Solaris. Each graph
shows experiments on one concurrent system. Data points in each individual
graph is generated by only changing the range of values that integer variables
are allowed to take. The x axis in these graphs show the number of boolean
variables required for the binary encoding of each integer variable (which ranged
from 3 to 26 in our experiments). So, for each point in the graph, the range
of each integer variable i in the concurrent system verified in that particular
experiment is 0 ≤ i < 2x.

In our initial experiments we observed that the execution time and the mem-
ory usage of SMV increases exponentially with the number of boolean variables
required for the binary encoding of each integer variable (which corresponds
to a linear increase in the size of the domains of the integer variables). This
exponential increase can be observed in Figs. 2 and 3.

The worst-case complexity of the BDD representation is exponential in the
number of boolean variables it represents. The exponential increase in execution
time and memory usage of SMV is a realization of this worst-case complexity.
However, as observed by Chan et al. [CAB+98] and Yang et al. [YMW97] this
is because of the inefficient representation of integer variables in SMV and can
be improved using a better variable ordering.

BDD representation is very sensitive to variable ordering [Bry86]. In SMV,
given two integer variables i and j, all the boolean variables representing vari-
able i either precede all the boolean variables representing j or vice versa. With
such an ordering the BDD representing a constraint such as i = j has exponen-
tial size in the number of boolean variables. However, if the order of boolean
variables representing i and j are interleaved the same constraint has a linear
BDD representation [CAB+98]. William Chan developed macros which generate
such an interleaved order for SMV. Using his macros, we tested the SMV system
again for the examples given in Fig. 1. As seen in Figs. 2 and 3, with this variable
ordering the execution time and the memory usage of SMV increases linearly
with the number of boolean variables required for the binary encoding of each
integer variable (which corresponds to a logarithmic increase in the size of the
domains of the integer variables).

For the examples shown in Figs. 2 and 3 the performance of OMC stays
constant with respect to increasing variable domains. This is because of the fact
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that, for these examples, the size of the fixpoint iterates and the number of fix-
point iterations stay constant with respect to increasing variable domains for the
constraint-based model checker OMC. Note that, changing the maximum value
that an integer variable can take from one integer constant to another integer
constant does not increase the size of the constraint representation. Also, for the
examples shown in Figures 2 and 3, the model checking procedure converges in
a constant number of fixpoint iterations which is independent of the size of the
domains of the variables. However, this may not always be the case. For example,
for properties bounded-buffer-3 and circular-queue-1 (Table 1) the num-
ber of fixpoint iterations depends on the size of the domain of the parameterized
constant size.

Figure 2 shows the performances of SMV and OMC on verification of both
two and three process implementations of the bakery algorithm with respect
to the property bakery shown in Table 1. The performance of both SMV and
OMC deteriorate significantly if the number of processes is increased. However,
the cost of constraint-based model checking seems to increase more significantly
compared to BDD-based model checking.

Based on Figs. 2 and 3 OMC outperforms SMV without interleaved variable
ordering if the integer variables require more than 6 boolean variables to encode.
If interleaved variable ordering [CAB+98] is used, for bakery with two processes
and barber, the execution time of OMC is better than SMV if 18 and 14 boolean
variables are used, respectively. The memory usage of OMC is always better than
SMV in these cases. For the bakery with three processes SMV with interleaved
variable ordering always outperforms OMC both in execution time and memory
usage. For readers-writers, bounded-buffer and circular-queue, OMC
always outperforms SMV with interleaved variable ordering both in terms of
execution time and memory usage.

Note that both bakery and barber algorithms given in Fig. 1 use variables
with finite domains (pc1, pc2, pc3). Presence of such variables increases the cost
of the constraint based representation since OMC partitions the state space to
eliminate them. We believe that this is why the relative performance of OMC is
not as good for these examples as it is for readers-writers, bounded-buffer and
circular-queue. A composite approach which combines the BDD and constraint-
based representations can be used in such cases [BGL98].

In Table 2 we show the performance of SMV (with interleaved variable or-
dering) and OMC for the problem instances given in Table 1 where each integer
variable i is restricted to the range 0 ≤ i < 1024 (we also restricted the param-
eterized constant size to 0 ≤ size < 16). For most of these instances SMV and
OMC have comparable performances. However for the bakery the increase in
execution time and memory usage of OMC with respect to increasing number
of processes is significantly higher compared to SMV. For 4 processes OMC did
not converge in one hour (we indicate this with ↑ in Table 2).

Another shortcoming of OMC is demonstrated in the verification of prop-
erties bounded-buffer-3 and circular-queue-1 shown in Table 1. None of
the fixpoint computations for these properties converged (in an hour) when we
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Table 2. Experiments where each integer variable i is restricted to 0 ≤ i < 1024.
In bounded-buffer and circular-queue instances the parameterized constant size
is restricted to 0 ≤ size < 16 (↑ denotes that the fixpoint computations did not
converge)

SMV (with Chan’s OMC
variable ordering)

Problem Instance Execution Memory Execution Memory
Time Usage Time Usage

(seconds) (Kbytes) (seconds) (Kbytes)

bakery (2 processes) 0.12 1507 0.29 655
bakery (3 processes) 0.82 2228 7.32 12165
bakery (4 processes) 19.15 9110 ↑ ↑
barber 0.40 2425 0.55 1458
barber-1 0.53 2490 15.37 23101
barber-2 0.35 2228 0.29 926
barber-3 0.35 2228 0.15 655
readers-writers 0.03 1245 0.05 295
bounded-buffer 0.28 2163 0.08 238
bounded-buffer-1 0.27 2228 0.05 188
bounded-buffer-2 0.26 2163 0.04 147
bounded-buffer-3 163.30 3080 ↑ ↑
circular-queue 1.08 3408 0.10 377
circular-queue-1 1228.45 6357 ↑ ↑
circular-queue-2 1.04 3342 0.07 328

tried to verify them using OMC. This is the price we pay for using an expressive
representation such as constraints which have higher worst case complexity than
BDD manipulation. For the properties bounded-buffer-3 and circular-
queue-1, the number of fixpoint iterations depend on the size of the domain of
the parameterized constant size. For these properties OMC does not converge
even for the small domain 0 ≤ size < 16. Note that, for these cases BDD based
model checking is not very efficient either (even with interleaved variable order-
ing). We think that for such cases using conservative approximation techniques
would be helpful [BGP99].

6 Conclusions

The experimental results we obtained in this work suggests that constraint-
based model checking can be more efficient than BDD-based model checking
for verification of asynchronous concurrent systems with finite but large integer
domains. This supports our view that constraint-based model checking is not
limited to infinite-state systems but can also be useful for verification of systems
with large integer domains.
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Fig. 2. Execution times and memory usage for OMC, SMV, and SMV with
Chan’s variable ordering (smv+co) in verification of bakery, barber and
readers-writers
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Fig. 3. Execution times and memory usage for OMC, SMV, and SMV with
Chan’s variable ordering (smv+co) in verification of bounded-buffer and
circular-queue
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In the future we would like to compare the performance of constraint-based
model checking with the performance of word-level model checking [CZ95]. We
are also planning to investigate the performance of our composite model checking
approach [BGL98] with respect to BDD-based representations.

We would also like to investigate the complexity analysis of both BDD and
constraint-based model checking for the type of systems analyzed in this paper.
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