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Abstract—This paper describes an investigation into creating agents that can learn how to perform a task by observing an expert,

then seamlessly turn around and teach the same task to a less proficient person. These agents are taught through observation of

expert performance and thereafter refined through unsupervised practice of the task, all on a simulated environment. A less

proficient human is subsequently taught by the now-trained agent through a third approach—coaching, executed through a haptic

device. This approach addresses tasks that involve complex psychomotor skills. A machine-learning algorithm called PIGEON is

used to teach the agents. A prototype is built and then tested on a task involving the manipulation of a crane to move large

container boxes in a simulated shipyard. Two evaluations were performed—a proficiency test and a learning rate test. These tests

were designed to determine whether this approach improves the human learning more than self-experimentation by the human.

While the test results do not conclusively show that our approach provides improvement over self-learning, some positive aspects

of the results suggest great potential for this approach.

Index Terms—Machine learning, intelligent tutoring systems, haptic feedback, teaching agents, learning agents, augmented

feedback, psychomotor skill learning
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1 INTRODUCTION

THE immense potential of teaching by and with compu-
ters has been recognized for many years—almost since

their inception. In the earliest computer-aided instruction
(CAI), computers were initially seen as simple providers of
content—an early and much more primitive version of
modern eBooks. Then, intelligent tutoring systems (ITS)
came along in the early 1970s to inject intelligence in the
form of domain expertise, as well as a pedagogic element to
computer-aided instruction. Their goal was, and remains, to
use computers to autonomously and effectively teach
humans. That is, to act as a surrogate one-to-one tutor
and interactively provide direction and feedback to a
student to improve his/her performance in carrying out a
task. We seek to extend the concept of teaching with
computers by using machine learning to first “train the
trainer,” so to speak. Before fully discussing our objectives,
a brief look at how computers have been used for teaching
humans is warranted.

1.1 Teaching with Computers—A Historical
Perspective

Much research has been conducted in ITS over the last

nearly 45 years, beginning with the SCHOLAR system in

1970 [1], which included a set of possible right and wrong

answers that could potentially be given by a student in

response to a specific question. Other ITS systems of the

time focused on getting correct answers from an expert
system and comparing these to the students’ answers.
Furthermore, it would provide that answer to the student
if he/she was deemed to need help. In the 1980s, Woolf,
[2], [3] one of the pioneers in ITS, focused on planning and
student modeling. Student modeling is the process of
building a model of the student’s “organization of knowl-
edge in the subject domain,” so that the ITS can attempt to
understand what the student thinks he/she knows about
the topic being taught [2]. This allows the ITS to adapt its
teaching to the rate at which the student is learning, as well
as detecting and resolving any misconceptions and confu-
sions that the student may have. If the student model
suggests that the student holds an erroneous belief about
the subject, additional questions about that belief can be
asked to verify its existence, and clarify its nature [3].
Woolf [3] provides examples of this with sample dis-
courses between a student and an ITS, regarding the
subjects of rain and temperature in Oregon. Student
modeling has become, and remains to this day, a heavily
researched element of ITS [4]. In one of her works with
Beck [5], Woolf further expanded student modeling by
incorporating a machine-learning (ML) agent into an ITS
called AnimalWatch. This system uses “information about
the student, the current topic, and the problem, and the
student’s efforts to solve the problem” [5] to attempt to
predict the answer given by a student to specific math
questions, as well as the time taken to provide that answer.
ITS have largely concentrated their efforts in teaching
academic subjects, such as math, science, history, and so
on, through carefully and extensively authored systems
that provide extensive feedback to the trainee about his/
her performance. ITS research has flourished in the last
30 years, as can be seen in the 2009 special edition of IEEE
TLT on ITS [6].

In parallel, researchers in the 1980s and 1990s began to
make use the emerging power of computer simulation and
graphics to place trainees in virtual environments that are
nowadays often barely distinguishable from the real world.
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Simulators have been used effectively to teach pilots,
astronauts, and truck drivers how to operate the complex
machines they control. Simulators have been mostly used to
teach tactical skills, particularly by the US military as well
as those of other nations. While they are also used to
teach psychomotor skills, they originally contained no
pedagogy—just presentation of a virtual environment on
which the trainee could practice.

Integration of intelligent tutoring concepts into training
simulators began in the 1980s. Interrante and Biegel
developed an intelligent simulation training system (ISTS)
[7] in an attempt to introduce feedback, assessment, and
pedagogy into simulation-based training—a kind of ITS for
simulation systems, as its name suggests. The ISTS con-
tained a graphic simulation component and an intelligent
tutor [7]. The tutoring system serves to instruct the student
in the correct manner of manipulating the simulation, and to
evaluate the student’s performance at the end. Other
instances of intelligent tutors linked to training simulation
for military flight training can be found in [8] and [9].

Our motivation comes from the general desire to further
integrate (some of) the teaching ability found in ITS into
simulation-based training systems. This would increase the
effectiveness of simulations-based training, beyond merely
serving as immersive environments where the trainee(s) can
exercise their skills. Furthermore, we seek to provide this
interaction through a haptic interface (one that uses our
sense of touch—see the definition in Section 2.2), rather than
through words, voice or graphics. Furthermore, and equally
importantly, we also seek to reduce the time and effort
required to author such systems by developing a method
that uses machine learning to seamlessly create agents that
learn and teach autonomously, with little human interven-
tion. We refer to these agents as Learning and Teaching
Agents, or LATA.

We focus our work on effectively teaching psychomotor
skills to a human, rather than the academic subjects
normally addressed by ITS, or the tactical skills covered
by most military simulators. The Encarta Dictionary [10]
defines psychomotor skills as “relating to bodily movement
triggered by mental activity, especially voluntary muscle
action.” In our context, this implies the manipulation of
some control elements (e.g., steering wheel, joystick, brakes,
buttons, dials) to effectively manage the actions of a device.
We focus on providing feedback in real time—a form of
coaching—and through haptic interaction.

This paper reviews the state of the art in Section 2. Then,
in Section 3, we set forth the objectives of the research in the
context of prior work described in Section 2. We propose
and describe our approach in Section 4. Section 5 describes
the infrastructure used to test the prototype system.
Section 6 describes how the LATA agents were taught the
psychomotor skills, while 7 describes how they were used
to teach humans the same skills. Relevant test results are
included and discussed in these sections. Lastly, Section 8
concludes and summarizes the paper.

2 STATE OF THE ART

Our work draws from several research areas in engineering
and computer science as well as in education. These

relevant areas enjoy rich and extensive bodies of research
literature. A comprehensive coverage of each area is
beyond the scope of this paper. In this section, we provide
a review of the relevant literature in these areas to place our
work in the context of the state of the art. Given its central
aspect within our work, we begin by discussing feedback to
the student.

2.1 Feedback and Coaching

Coaching is a very traditional method of teaching physical
skills to unskilled humans. Webster’s dictionary [11] defines
it as “to instruct (a person) in a subject, or prepare (a
person) for an examination, by private tutoring.” The term
coaching, if not the concept, originated in sports [12], where
the terms “coach” and “coaching” seem to be ubiquitous,
for example, football coach, tennis coach, first-base coach.
When coaching a trainee, a coach seeks to exhort the trainee
into performing the skill correctly, teaching him/her by
demonstration of correct action and by continuously
providing feedback. Human-based coaching is generally
oral, such as when providing spoken directions on how to
perform a task properly. However, it can also be physical,
such as when a coach holds a child’s hands as the child
holds a baseball bat, moving both through the correct
motion to help the child learn to swing at a baseball resting
on a tee. This process is generally one-to-one, as suggested
in the dictionary’s definition above.

In recent years, the term “coach” has evolved into one
with many related, but somewhat different meanings. It is
commonly used alongside other seemingly unrelated
nouns, such as life coach, health coach, workout coach, executive
coach, and several others. Whitmore [12] defines coaching as
“unlocking people’s potential to maximize their own
performance,” implying directed self-learning. However,
we assert that coaching is still best recognized as the general
concept of instructing a trainee through demonstration and
feedback on a one-to-one basis, with the goal of improve-
ment in the trainee’s performance.

There is no reasonable doubt that availability of feed-
back to a student is a very important part of learning.
Bilodeau and Bilodeau [13] found that for motor skill
learning, nearly any kind of feedback improves the
performance of a student. They state that student feedback
is “the strongest, most important variable controlling
performance and learning” [13]. Todorov et al. [14] classify
feedback into knowledge of results and augmented feedback. In
knowledge of results, students can learn to improve their
performance by simply knowing the optimal results of
the task or skill being learned, and comparing their
performance against it. Such feedback is often naturally
available from the environment. Augmented feedback, on
the other hand, requires “extra, artificially generated
information” [14] to be provided. Kulhavy and Stock [15]
refer to these same types of feedback as verification and
elaboration, where the former only informs the student of
the correctness of their answer while the latter provides
direction on how to improve performance.

Todorov et al. [14] used a virtual environment to
provide augmented feedback about the performance of a
game in the real world that requires psychomotor skills
(ping-pong). Their experiments measured arm motion in
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the real world and transferred those to a simulation that
was used to provide the feedback. The feedback provided
was visual. They found that feedback augmented by this
simulation did improve the learning of psychomotor skill
in some situations.

Computer-based coaching emerged as a discipline in the
1970s, in conjunction with the progress made in ITS, as these
can serve as a form of computer-based coaches. ITS can
provide an assessment of the student after completing an
exercise as well as provide interventions and guidance
during the exercise. ITS can also demonstrate the correct
approach if the student requires it and facilitate a one-on-one
learning experience. Mason and Bruning [16] in their
extensive review of the literature on computer-based feed-
back in 2001 found that there was no best way to provide
feedback, and that each application was different vis-à-vis
the best type of feedback to provide. The following examples
illustrate applications of ITS as computer-based coaches.

Burton and Brown [17] discuss the subject of computer
coaching and point to how subtly difficult it can be to build
such systems. Deesen and Tilak [18] patented a method for
computer-based coaching for graphic art design in 1992,
although they list several other potential applications. It
appears to consist mainly of providing textual feedback.
Dickson and Parsons [19] argue for computer-based
coaching for athletic endeavors, although they provide no
new research. Constantino-González and Suthers [20]
designed and built an ITS called COLER, which served as
a computer coach for collaborative problem solving, with
database design using entity-relationship (ER) modeling
serving as the test application [20]. COLER offers advice to
help resolve conflicts and reconcile differing solutions
among group members [20].

Zissos and Witten [21] designed and built Anchises, an
ITS that serves as a computer coach for users of the EMACS
text editor. Anchises’ coaching took the form of advice
offered to the user when “bad plans” were detected, or the
system determined the user was ignoring a command that
may be helpful [21]. In a pilot experiment involving eight
users ranging from novice to expert, Anchises was found to
give 88 percent of the advice that it should have, and only
10 percent of the advice that is should not have [21].

Much closer to our work, Acovelli and Gamble [22] have
one of the earliest mentions of agent-based coaching. They
discuss the limitations of traditional feedback in coaching
and focus their work on providing timely and contextually
appropriate textual feedback to the trainee.

Geng et al. [23] introduce an ITS architecture to teach
psychomotor skills, in particular, how to fly an airplane.
They state that “most flight simulators do not provide
enough automated assessment” Their feedback is in the
form of spoken instructions.

Research has been ongoing in teaching marksmanship,
another important psychomotor skill in a military context.
Chung et al. [24] describe their research, as well as that of
several others in this domain. Most of the research they
describe comes from psychology and the science of
marksmanship, rather than training. Nevertheless, their
own system provides feedback to the trainee by selecting
prerecorded videos of how to perform the action correctly.

Belghith et al. [25] describe a simulation-based ITS for
learning how to manipulate a telerobotic arm on the space
station. Their feedback is largely through selected movies
and generated paths.

The provision of feedback in military simulators has
focused on after-action review (AAR), rather than real-time
coaching. In an AAR session, the instructors meet the
trainee team after the training session to provide them with
feedback on their performance. This feedback typically
refers to the tactics used by the trainees and is generated by
the human instructors, generally happens offline and
immediately after the training session. However, there have
been some efforts at automating this process and providing
feedback in real time during the training session. Jensen
et al. [26] devised automatic AAR to detect different types
of common errors in command and control simulations.
They also incorporated analysis that could explain the
events that led to the error. Surdu and Pooch [27] use agents
to detect deviations in the ongoing operations as compared
to the planned operations. Jensen et al. [28] use finite state
automata to track the current state in the simulation and
compare it to the expected behavior, which is hardcoded
into an evaluation algorithm. Abbot [29] also presents a
means to do automated AAR as a comparison between the
actions of the trainee and an expert agent modeled by a
machine-learning technique. Fernlund et al. [30] also used
machine learning to build the agents against which to
compare trainee tactical behavior. In a way, the works of
Abbot and of Fernlund et al. were two early instances of
agents that can learn and teach. However, the teaching and
learning functions were not seamless, the teaching was
done only as AAR rather than in real time, and the subject
was tactical behavior rather than psychomotor skills.

In summary, while feedback is currently provided with
most, if not all ITS, it is not as prevalent in simulation-based
trainers. When it is provided, it is done mostly in terms of
AAR for military trainers. Feedback is generally not
provided in real time (with some exceptions as noted
above) and when it is, it is generally provided through text,
voice or graphics. Lastly, the knowledge necessary to
provide the feedback is generally (likewise with some
exceptions) created by hand at presumably great expense
(although cost is not discussed in the papers reviewed). We
next review haptics and haptic feedback.

2.2 Coaching through Haptic Feedback

Humans have learned to rely most strongly on vision and
hearing for sensing the world around us. Yet, may times, and
especially in stressful situations, these sensory channels can
be overwhelmed with such a dense input stream that we
cannot process all the inputs received. The fifth sense, touch,
is often underused, to the detriment of learning systems.

Haptics is the study of the sense of touch. Srinivasan and
Basdogan [31] define a haptic interface as one that “displays
tactual sensory information to the user by appropriately
stimulating his or her tactile and kinesthetic sensory
systems.” Under the most general of definitions, mice and
keyboards could be considered passive haptic devices
because they provide input to the computer, as the human
is able to feel the interaction with the device, and by
extension, the computer. Additionally, one’s ability to use
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his/her sense of position to move one’s hand and press
a button could also be considered haptic interaction.
However, these are basic, one-way interactions, as the
computer does not reflect back any outputs through these
same devices. Such reflection traditionally takes place
visually through the display and/or audibly through
speakers. Computer haptic devices, on the other hand,
refer to an active force-feedback system within an interface
device. These devices can provide sensing cues that are
presented to a human in a natural way.

Our work employs the touch and feel of a control device,
such as a joystick, to act as the interface between the human
teacher/learner and the computer. Haptics is an important
element of our presented approach. Our focus is to use
haptics as the primary means to provide verification as well
as elaboration feedback to trainees in psychomotor teaching
applications, where arms, hands, and/or feet are used to
control a machine or device. We use haptics as the only
means of providing feedback to the trainee when teaching
psychomotor skills.

One obvious use of computer haptic interfaces has been
to use them to engage trainees who suffer from vision and/
or hearing impairment [32]. Another obvious application is
training for surgery. In fact, much discussion has taken
place in the medical literature about training surgeons via
virtual reality [33], [34]. This has been particularly acceler-
ated by the emergence of robotic surgical procedures, where
the actual robots are used to practice, thus providing a
semblance of haptic feedback [35], albeit only as verification
feedback and not as elaboration. van der Meijden and
Schijven [36] conducted a study about the effectiveness of
haptic feedback (among other things) on training for
surgery, and found that “no firm consensus exists on the
importance of haptic feedback in performing minimally
invasive surgery,” despite of some positive results.

Haptic response to surgical robots has been a research
issue since 1985. Westebring-van der Putten et al. [37]
reviewed the literature for this body of research and found
it to be extensive. However, their discussion of haptics in
medical applications (surgery) mostly refers to haptic
feedback in the actual devices, and not in the context of
training. Okamura [38] indicates that the lack of such haptic
feedback in surgical devices “is a limiting factor” in the
success of these devices.

Other applications of haptic feedback in medical educa-
tion include the work of Schaffer et al. [39] who used
haptics to train cardiologists. Burdea et al. [40] use virtual
reality and haptic feedback to train physicians in the
diagnosis of prostate cancer. Brooks et al. [41] use haptics
to explain molecular docking to medical students. Williams
et al. [42] use haptics to teach osteopathic medical students
about back problems. Nijholt et al. [43] introduce the
concept of haptic feedback for training medical students
to do subcutaneous injections on simulated patients.
However, they did not seek to model expertise, but only
to provide predefined haptic feedback for specific tasks. In
each case, the learner was able to improve better than
through trial and error.

In other areas, Lloyd and Bull [44] use a haptic interface
to allow students to inspect their student models and see for

themselves how their knowledge is being modeled in an
adaptive learning environment. Their system combines a
graphic interface with a haptic feedback device that
distinguishes between hardness and softness to indicate
topics mastered by the student and those not so. They
found that the students found haptic feedback preferable to
a text-based one.

Williams et al. [45] used haptics to teach engineering
mechanics in college-level classes. They found that students
preferred this interface to the conventional ones. Okamura
et al. [46] devised a “haptic paddle” to better communicate
effects of dynamic systems such as viscous damping and
inertia, and to be able to better build control systems.

For psychomotor skills, as they are defined in this paper
(manipulation of control elements to effectively manage the
actions of a device), adding haptic feedback has the
potential to increase learning over purely visual learning.
In a study on teaching force skills by Morris et al. [47],
visuohaptic feedback was shown to provide better recall of
a desired sequence of motions, and the desired force to be
applied to each motion, than purely visual or haptic
feedback. A study by Feygin et al. [48] on the benefits of
haptic guidance in teaching psychomotor skills demon-
strated that haptic feedback can benefit performance,
especially when training the temporal aspects of a task.
One reason why haptic feedback may be beneficial is that
psychomotor skills involve haptic input (pushing buttons,
moving joysticks or steering wheels, etc.), and because the
human body has an excellent kinesthetic (knowledge of
body position) memory [48]. Presenting the correct haptic
input through haptic feedback removes the need for the
brain to perform complicated sensorimotor transformations
[48]. Interestingly, however, there is also literature that
suggests that haptic guidance can have negative effects on
learning, by either distracting the learner or by causing an
overdependence on the guidance or feedback [49].

In summary, the works reviewed make use of haptics for
some applications, although few are for teaching psycho-
motor skills. Surgery training is one exception, although
most of the work involves improving the haptics of the
robotic surgical systems, rather than being used in
psychomotor skill training.

2.3 Learning Agents

There is a rich extensive body of research literature in
machine learning (ML) compiled over the last 50 years or
so, ever since Samuel’s seminal checkers program in 1963
[50]. Some impressive results have been accomplished over
the years—too many to fully do justice here. Much of the
ML literature involves learning how to classify a set of
elements found in a database by using examples of such
classifications. Many techniques exist to do this. These
include neural networks with its many different varieties,
support vector machines, genetic programming, inductive
learning, neuroevolution, as well as many others. Learning
can be said to be either supervised, where the truth-value of
each example is provided along with the examples;
unsupervised, where the truth-value is not provided; and
reinforcement learning, a sort of trial and error learning where
successful behavior is reinforced and unsuccessful behavior
is punished in the process of the agent experiencing the
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environment. A comprehensive review of these methods
and approaches is beyond the scope of this paper.

Of particular interest to our work is observational learning
(OL), where agents can be built by merely observing a
human (or another agent) performing a task. Observational
learning is similar in some ways to supervised learning, but
there are two important differences. In observational
learning, the learning examples are time based, continuous,
and not easily separable throughout the exercise. Second,
there is no explicit linkage between cause and effect. This
important aspect of learning must be extracted from the
behavior observed by the learning entity. A form of
supervised learning that is more related to OL is that of
sequential learning [51].

Much research has been done in building agents through
OL. Work in this area began in 1979 with Bauer’s learning to
program from examples of human-written program source
code [52]. More recently, Sammut et al. [53] built a pilot
agent by observing someone fly an airplane. Sidani and
González [54] developed a system that learns how to behave
in a signaled traffic intersection by observing a human do
the same in a simulation. Pomerleau [55] created a driving
agent that learned from observing a human drive a real
automobile. Fernlund et al. [56] used contextual reasoning
and genetic programming to build agents of automobile
driving through observation of humans in a simulation.

Observational learning has also seen significant ad-
vances and applications in robotics, where it is normally
called learning from demonstration. See Ontañón et al. [57],
and Bentivegna and Atkeson [58] for examples of work in
this area, among many others.

In our work, we utilized a previously developed
machine-learning algorithm called PIGEON [59] that was
shown in [60] to successfully teach an agent how to perform
a task or carry out a mission. It did so through a
combination of unobtrusive observation of a human
performer (an actor) plus exploratory self-learning. PIGEON
was able to produce a robust agent capable of performing
physical tasks proficiently and in a human-like manner in
three different domains (see [59] for details). For the scope
of our research, we limited the learning tasks to psycho-
motor skills through a haptic computer interface.

2.4 Teaching and Learning

As anyone who has ever taught others knows, learning and
teaching are inseparable—one must learn something well
before teaching it to others. In fact, it can be said that the
true test of one’s understanding of a subject is his/her
ability to teach it effectively to others. Once an agent has
learned something, it can be copied inexpensively and
easily disseminated to teach that something to others in
remote locations, such as a battlefield or a remote hospital.
Such an agent could also provide an infrastructure for later
evaluating a trainee. Furthermore, it could easily be
enhanced when necessary.

Nechyba and Xu [61] introduced the idea of integrating
teaching and learning. They used pretrained neural net-
works to provide feedback, but used visual cues rather than
a haptic interface. Sano et al. [62] use haptics to provide
coaching for human-to-human knowledge transfer using a

machine interface. Their system, however, coached a hu-
man trainee with a human trainer, not an agent.

In summary, little work has been reported in the
literature that uses learning agents and teaching agents in
a seamless fashion.

3 OBJECTIVES OF THIS RESEARCH

Our work addresses two problems simultaneously: 1) the
incorporation of augmented, automated feedback into
simulation-based training for psychomotor skills; 2) facil-
itating the authoring of such computer coaches, often
termed a difficult and time-consuming task. We address
the first through real-time haptic feedback, and the latter
through a combination of learning and teaching by the same
agent. The seamless combination of these two functions in
an agent has to the best of our knowledge, not been
reported in the literature.

Our work seeks to teach (coach) psychomotor skills to
humans through computer agents that possess the appro-
priate skill to be transferred. These psychomotor skills are
naturally haptic. We refer to these as teaching agents and
assume that they are expert at the skill. The teaching system
compares the trainee actions to those of the teaching agent,
and provides the necessary feedback to the human through
the haptic interface.

Teaching humans, however, is only part of our research.
We also address the (earlier) step of building these teaching
agents in ways that avoid, or at least reduce, the long and
expensive efforts required to do this by hand. In effect, we
seek to teach what will later become the teaching agents
mentioned above. We can call them learning agents while
they learn, but they are the very same agents that will later
be used to teach humans. We can reduce the time and effort
taken to teach the target skills to these learning agents by
using machine learning. We use a simulation of the physical
world to test our system.

We have two specific objectives in this research: 1) a
technical objective to determine whether such a system can
be built and work effectively from a computational
standpoint; and 2) an educational objective to determine
whether this concept can be effectively used to train
humans in learning complex psychomotor skills. Note that
we do not attempt to quantitatively show that we can build
teaching agents less expensively than the traditional
manual way. We found no data in the literature about the
time and cost consumed in building these systems. Rather,
we sought to show that creating these agents nearly
automatically is feasible, and this can be construed to
require less effort than doing so manually.

The result of our work is the LATA system, which as
mentioned above, stands for Learning And Teaching Agent.
In effect, LATA is an intermediate agent that learns from
proficient humans in a central location and then teaches the
same skill to less proficient humans.

4 THE LATA SYSTEM

The LATA system is the result of our research embodied in
a prototype system. The first part of this research (learning)
has been conceptually shown by us elsewhere, albeit in a
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different application (see [59]) and is only briefly repeated
here for the sake of completeness. The teaching part is the
focus of this paper.

A prototype was built and a series of experiments were
designed and executed to prove or disprove our hypotheses
that such a system can improve learning in humans beyond
self-experimentation on the environment. We selected the
manipulation of a crane used to move large containers
(boxes) around a large flat surface such as a shipyard. This
task requires the psychomotor skills to move the gripper
smoothly and grab the appropriate box in the right place,
and moving it to its destination.

This research had two phases: 1) to teach the LATA
agent how to manipulate the crane, and 2) to use the LATA
agent to coach another human in manipulating the same
crane. The second phase is the central focus of this paper
and is described in detail. Nevertheless, the first phase is
also discussed for the sake of completeness, albeit briefly.
We begin with a discussion of PIGEON—our machine-
learning algorithm.

4.1 The Learning Algorithm—PIGEON, NEAT, and
PSO

We briefly discuss the machine-learning algorithm of choice
for our work—PIGEON, which was developed by us and
fully described elsewhere. See [59] and [60] for these details.

PIGEON stands for Particle swarm Intelligence and Genetic
programming for the Evolution and Optimization of Neural
networks. It combines neuroevolution in the form of the
NEAT system [63] with Particle Swarm Optimization (PSO)
[64] to perform quick learning. NEAT was developed by
Stanley and Miikkulainen [63] and stands for Neuro-
Evolution of Augmenting Topologies. It is a hybrid algorithm
consisting of artificial neural networks and genetic algo-
rithms (GA). The output of NEAT is a trained neural
network. In PIGEON, NEAT “complexifies” the architec-
ture of a population of neural networks in an evolutionary
manner, and then uses PSO to optimize the weights of the
neural networks. PSO is a social optimization algorithm that
trains a population of individuals similarly to GAs. PSO
numerical optimization capability has been shown to be
able to quickly train neural networks (set the weights) when
directly applied to them. PIGEON combines NEAT and
PSO in an alternating manner, with cycles of NEAT and
PSO interlaced. It was applied to three different domains of
increasing difficulty and complexity [60]: Chaser (purely
reactive psychomotor skills), Sheep (reactive psychomotor
skills with planning), and Car (more complex reactive
psychomotor skills with planning and tactical decision
making). PIGEON succeeded in creating proficient and
human-like agents that performed nearly as well as their
human instructors—sometimes better.

PIGEON uses NEAT to provide the structure for the
agent—the neural network—and allows NEAT to enhance
that structure by “complexifying” the neural network
structure of the emerging agents to meet the requirements
of the fitness function. NEAT is essentially a GA, so it will
create a population of neural network agents, rather than
just one. These agent neural networks are all competing to
become the best performing one. The fitness function used
by NEAT is based on the Similarity Factor or on the

Performance Rating, depending on the phase of agent
training. During observational learning, the Similarity
Factor fitness function used was the similarity of the agents’
behavior to that of the human actor. In the experiential
learning phase, rewards depended on the performance
rating of the agent’s behavior against some absolute
standard. The agent neural networks being evolved by
PIGEON seek to maximize their fitness and/or rewards.
The output of PIGEON is a neural network-based agent that
is able to exercise a skill in the performance of a task. The
interlaced enabling and disabling of NEAT and PSO in an
alternating manner is the essence of PIGEON.

4.2 General Inputs and Outputs to PIGEON

The inputs to PIGEON include environmental variables
determined a priori by a human designer. These variables
are deemed important criteria with which to make decisions,
either micro decisions such as when making use of the
psychomotor skill, or higher-level decisions such as when
making explicit tactical decisions, for example, turn left.
These inputs include the current internal state of the agent
and its external environment. The output of the neural
network-based agents is a command to the actuators that
control the platform of interest. Such commands manifest
themselves in the actions of the platform in the simulation.

Once PIGEON has finished its work and a LATA agent
has been trained, the inputs used by the LATA agent in the
teaching process are the same it used in learning. Its outputs
are also the same commands used to control the platform.
Inputs and outputs are highly domain dependent, so they
can be better explained in the context of the evaluation
environment in Section 4.

4.3 Feedback through LATA Agents

Feedback is provided by the LATA system through
counterforce exerted by the haptic device(s) that the trainee
uses to perform a task. This counterforce indicates the
correct manipulation of these devices. This counterforce can
be felt by the student in real time as he/she performs the
task, and can be interpreted as corrective feedback. In effect,
the corrective feedback reflects how the teaching agent
would perform that skill at that very moment in time, and
this is felt by the trainee as the counterforce on the haptic
device (a joystick in our case).

However, the Chaser, Sheep, and Car domains on which
Stein did his experiments [59] were not found suitable for
our work because they were either too simple or irrelevant
from a practical point of view (i.e., Chaser and Sheep), or
already mastered by most people (i.e., Car). A fourth
domain called Crane was used. Crane provided a complex
task with which most humans are not familiar and would
have to learn. We describe the Crane simulation as well as
what was to be learned and taught.

5 TEST INFRASTRUCTURE—THE CRANE DOMAIN

AND ITS SIMULATION

The crane manipulation task was chosen because it
involves a psychomotor skill that requires the coordination
of both hands, as well as multistage planning and tactical
decision making. Additionally, a task had to be selected
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that would not already be commonly known to human test
subjects. Volunteer participants would probably already
know how to drive a car; however, operating a crane
would likely be a new experience. Therefore, tests that
include only learning from a baseline of a novice should
conceivably show the appropriate amount of learning
attributable to the LATA system.

5.1 Task to Be Learned

The task presented to the human actor was to seize, lift, and
move several boxes (one at a time) from a given location to a
designated collecting area in a fixed amount of time. The
human test subjects had to use spatial reasoning to move in
three dimensions, as well as psychomotor skills to
maneuver the gripper above the target box, pick up the
box, and move it safely around obstacles (other boxes). Ten
boxes were randomly distributed on the “playing field”
such that there is minimum spacing between individual
boxes. Each trial was limited to 60 seconds during which
the subject must pick up as many boxes as possible and
move them to the drop off zone. With the time allotted, it
is possible, although difficult, to pick up all 10 boxes.
Competent humans were able to pick up and move nearly
eight boxes on average. The cutoff point to be considered
competent at the task was arbitrarily set at picking up and
moving seven boxes.

5.2 The Crane Simulation and Its Physics

A simulation of the crane and its environment was built as
part of this research. The physics model of the simulation
calculates the motion based on first-order physics. The
inputs from the user were directional vectors for motion
proportional to the actions and not direct positions. This
model approximated the movement of a real crane, with
limitations on speed of translation and gripping. The
simulation provided collision detection, friction, and
gravity for interaction between the crane and boxes, boxes
with other boxes, and boxes with the ground. The physics
model provided a simplified version of a crane easily
understood by users.

5.3 Visual Appearance of Simulation

The visuals of the simulation are a three-dimensional
environment rendered using a simplified block model. The
important aspects of the simulation were for the test subjects
to easily identify the target boxes to pick up as well as the
drop off location. As seen in Fig. 1, the test subject is
presented with two views. The top view shows a third person
perspective of the crane (represented by the “C”-shape) that
follows the crane through the environment. Therefore, the
crane appears to be fixed in position at the center of
the screen, with the world moving around it. A second view
was added in the bottom of the screen, where a top-down
perspective gives an overview of the entire map. Using this
view, the user can place himself/herself in the world, as well
as strategize about the order in which to pick up the boxes.
A projection of the crane on the floor was provided to help in
the alignment process.

The border of the “playing field” is delineated by dark
lines. The drop-off zone is likewise delineated by a lined
square on the lower right side of the “playing field.” The
crane is the facedown, black C-shaped clamp in the upper

middle of the screen; the boxes to pick up are represented
by black cubes located on the surface; the box being picked
up turns gray as it is grasped by the crane. Boxes already
moved to the drop-off zone remain solid black (none shown
in Fig. 1). Additionally, the visual projection of the crane
mentioned above appears as a circle on the “floor” below
the crane.

5.4 Interaction

The interaction with the simulation is strictly through the
joystick interface. Typically, joysticks are considered only as
input devices because they translate the angles of the
joysticks into the computer for processing. However, force-
feedback joysticks are also able to translate output from the
computer into a force that can be felt by the user.

Two Logitech Flight System G940 force-feedback joy-
sticks were utilized for their high torque capabilities. A
custom Linux kernel driver was written to communicate
with these devices. Each joystick is limited to two-axis
movement (X-Y) and each axis could be independently
given force values. These joysticks were not just force
resistance but active force feedback to allow the agents’ full
actions to be felt by the trainee while being coached.

This simulation provided the testbed for training the
LATA agents through observation and through experience
(practice). It was also the same environment where just-
trained LATA agents were used to coach the human
subjects in operating the crane. The crane operation task
is moderately difficult for humans because multiple
variables must be tracked. The general population in the
US does not have experience operating this kind of heavy
machinery, and it therefore provided for a large group of
eligible test subjects. In preparation for the tests, a human
participant taught himself to an expert level in operation of
the crane in this simulated environment to serve as the actor
in observational learning.

5.5 Specific Inputs and Outputs

Six inputs and four outputs compose the internal structure
of the neural network agent for the crane simulation. The
six environmental inputs to the networks are angle and
distance to the target location from the crane position, the
height above the floor, the gripper position, and the angle and
distance to the closest noncaptured box. All angles are in
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radians from -� to �. The distances are the raw values, and
the playing surface is limited to a 3 � 3 area.

The four network outputs represent the four controllable
actions: X-Y-Z translation and gripper operation. These are
the same as those used in training. The left joystick
controlled the X-Y translation of the crane while the right
joystick controlled the Z translation and the opening/closing
of the gripper. These joysticks were then mounted on a desk.
Utilizing only these actions, the human could fully manip-
ulate the crane, pick up boxes, and drop them off.

6 PHASE I—TEACHING THE LATA AGENT

Phase I is about teaching the LATA agents the task of
manipulating the crane. The (observational) learning
function by the LATA agent is depicted in Fig. 2. The
expert (or actor) executes the skill in the simulator and his/
her actions are observed by PIGEON and learned by the
ultimate agent—the neural network output of PIGEON. In
this section, we briefly discuss Phase I, which is itself
composed of two parts—observational learning and ex-
periential learning.

6.1 Observational Learning

Observational learning collects data unobtrusively from an
actor performing the task in a real or simulated environ-
ment. These data include the actions of the actor and
environmental variables for use in learning. The LATA
agent is trained to perform the task using only these data.
Observational learning does not require information verba-
lized by an expert. The manual process traditionally used to
build computer coaches required a large effort, and experts
could not always explain why they performed certain
actions—“they just know” what to do. Experts can also be
noncommunicative, overcommunicative and even hostile,
thereby making the knowledge acquisition process difficult.
Since observational learning (as we define it here) does not
involve direct communication with the expert, it alleviates
this problem.

The human expert (now called the actor) was observed
operating the crane, moving the designated boxes. All
(preselected) environment variables seen by the actor as
well as the actions executed by the actor were recorded.
These data were stored to disk and used by PIGEON offline
in the observational learning process. The Similarity Factor
metric used these data to grade how similarly the agent

performs to the actor, given the same task and environment.
The similarity serves as the fitness function.

The algorithm shown in Fig. 3 calculates the Similarity
Factor between the actor and the agent; its output is between
0.0 and 1.0. It utilizes the sum-squared error calculated over
the action differences between the actor and the agent. Since
the actions are normalized from 0.0 to 1.0, the squared error
can be extended to an unlimited number of inputs because it
is averaged over the number of inputs. The Similarity Factor
is higher as the error decreases. The PIGEON algorithm
seeks to maximize fitness (minimize error). This value is
then scaled to between 0 and 100 percent for easier
understanding by humans.

The Similarity Factor, however, does not reflect how well
the agent accomplishes the task—just how similarly to the
human it behaves. The proficiency of an agent, or of the
actor for that matter, is judged by the Performance Rating,
an objective score that grades how proficiently the task is
completed. The primary purpose of the Performance Rating
is to provide an unbiased number than can be used to
compare the performance between individuals, whether
human or computer agents. The Performance Rating is
much more domain specific than the Similarity Factor. For
the crane simulation, the Performance Rating is based on
the number of boxes picked up (10 points awarded per box
picked up and moved successfully) as well as partial credit
for how close any other box may have been brought to the
designated area (the Manhattan-distance between the box’s
location and the edge of the designated area). These partial
scores can break ties when two agents collect the same
number of boxes. This partial credit can never be more than
picking up and fully delivering one box. A formal definition
of the Performance Rating calculation for the crane domain
is given in Fig. 4.

When the agent is trained through observational learn-
ing, the agent is kept on “rails” in that it is physically
positioned to the same location as the human trainer, such
that the environmental inputs are the same at every time-
step. When the agent is acting on its own, however, it is
making all the decisions. Those decisions can move the
agent into unforeseen environmental conditions that can
cause the agent to perform poorly with respect to its
Performance Rating, in spite of possibly having scored a
high Similarity Factor.

Because observational learning is the first training
method used in our learning process, PIGEON starts the
observational learning process with a random initial seed in
the neural network. The experiential learning process
(practice), however, begins with the best agent trained
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through observation, and seeks to improve the Performance
Rating of that agent.

In our observational learning, the PIGEON algorithm
was run on observed data for the human actor for
1,000 generations. The average Similarity Factor was 83.8
while the highest was 85.8 (out of a possible maximum of
100). For 10,000 generations, the average improved slightly
to 84.9 while the best agent improved to 87.1. See Table 1.
Therefore, the agent was able to learn to match the actions
of the actor reasonably well when presented with the same
environmental input values that were seen by the actor.

Table 2 displays the Performance Rating of the best
performing agent (100 is the maximum score attainable). By
any definition, these agents can be considered competent
performers, although not quite as good as the human actor.

6.2 Experiential Learning

The LATA agents trained through observation were
subsequently subjected to experiential learning (practice)
to improve their proficiency. PIGEON was used in this
learning process as well. This resulted in a more competent
agent, not so much on the average but on the best run by the
best performing agent. Table 3 indicates this.

Using these agents trained to competence by the above
methods, we now turn to see how they were used to train
humans, and whether their use made any difference in
human training

7 PHASE II—TRANSFERRING LEARNING VIA HAPTIC

FEEDBACK

We now describe Phase II—determination of whether skills
can be transferred successfully from a LATA agent to a less
proficient human via haptic-based coaching.

7.1 Teaching Humans via Coaching

Feedback is provided “haptically” in real time while the
human is operating the crane, and not through a score
computed at the end of the run, as in verification feedback.
The LATA agent acting as a coach reacts in real time to the
needs of the task and the trainee’s actions when control-
ling the crane, and provides counterforce corrections to the
trainee based on what he/she does at every moment in
real time. Fig. 5 depicts the arrangement of the trainee and
the LATA.

The underlying concept of our teaching LATA agent is to
provide real-time corrections. An analogy is the student-
driver car that teenagers typically use in high school driver
education, where the student and the teacher have identical
setups except that the teacher’s steering wheel and brakes
always override the actions of the student’s. If the student
did something wrong, the teacher could provide corrective
input to show proper performance (and sometimes avoid
an accident!). In our application, the teaching LATA agent is
the teacher and the “identical setup” is the very same haptic
device now controlled simultaneously by the trainee and by
the LATA agent. If the trainee performs an action deemed
improper, the LATA agent provides feedback by physically
forcing the joystick toward the desired (and correct)
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Fig. 4. Algorithm 2: Performance Rating calculation in crane.
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position, thereby actively and forcefully countering the
actions of the trainee. The trainee will notice this and accept
it as constructive feedback. For all experiments described,
the joystick is the main interface device for bidirectional
communication—the human trainee uses it to control the
crane and the LATA agent uses it to indicate to the trainee
how well it is performing the task.

7.2 Force Feedback

The LATA coach compares the position at which the human
has set the actual joysticks to the positions of “virtual
joysticks” computed by the LATA agent. Between these two
positions, a force vector can be drawn from one point to the
other. If we treat the joystick like a virtual spring, the farther
these two points are from one another, the larger the force
that would be given. Alternatively, if the points were close
to one another, the force would be minimal. This computed
force vector is then broken up into its components for each
axis and a command is given to an electric motor connected
to each axis of the joystick independently. This motor in the
joystick is strong enough to provide many pounds of force
at the handle.

7.3 Experimental Plan and Experiments

A set of experiments was designed to evaluate the merits of
the LATA system acting as a coach on novice human
trainees. The first experiment, called the Proficiency Test,
evaluated the overall performance level achieved by the
human test subjects. The second experiment, called the
Learning Rate Test, determined how quickly the test subjects
could learn a task to a certain level of competence with the
help of the LATA coach. Both experiments gauged how
much knowledge was gained using the LATA coaching
system when compared against self-learning. In both cases,
a control group of test subjects who learned the skills
strictly through unsupervised practice served as a bench-
mark for comparison.

The essence of this evaluation was to determine whether
the LATA system could train a set of novice human test
subjects to a higher performance level (as measured by the
Performance Rating), and how quickly could the LATA
system train an individual to a fixed competency level.
Since each of these experiments assumes novice human test
subjects, there is no overlap between any control and test
group; furthermore, there is no overlap between the
Proficiency Test group and the Learning Rate Test group.
Test subjects were volunteers drawn from a pool of students
in the College of Engineering and Computer Science at our
home institution. They were assigned to the test and control
group based on a coin flip. All experiments took place in a
closed cubicle without any external interaction. The experi-
ments took place over the course of approximately one
month, with several different test subjects performing the
exercise each day. Both groups received initial verbal
instruction on what each joystick did and an explanation
of the crane simulation in terms of objects, colors, and goals.

7.3.1 Proficiency Test Plan

Twenty-eight volunteers were used for the Proficiency Test.
They were randomly partitioned into two groups of 14. For
both groups, the experiment required that each test subject
perform 20 trials of the crane simulation to pick up and

deliver as many boxes as possible to the designated area in
a 60-second span. The test subjects were given 1 minute of
rest between trials. For the control group, all 20 trials of the
crane simulation were unsupervised. That is, the test subject
could gain experience by practicing with the crane
simulator as he/she wished.

For the test group, the first five trial runs were
unsupervised, as were for the control group. For the next
10 trial runs, however, the test group subjects would
undergo coaching by the LATA coach through the joysticks.
Finally, the last five runs were independently operated
again. Since the first five trial runs for both groups were
unsupervised, they were used to set the baseline perfor-
mance of each individual (the “before” runs). Then, after
10 training runs by either unsupervised practice (control
group) or haptic LATA coaching (test group), the final five
trial runs were used as the measure for the skill level gained
by the individual test subjects (the “after” runs). To
normalize the data, the baseline performance was sub-
tracted from the final performance to adjust for the natural
abilities of the test subject.

7.3.2 Learning Rate Test Plan

Twenty human test subject volunteers were used in the
Learning Rate test. They were also equally distributed
between two groups of 10 individuals each. No test subject
that participated in the Proficiency Test was used in the
Learning Rate Test. To calculate the learning rate, the test
subjects were to be trained up to the performance level of the
LATA coach—retrieving seven boxes in 60 seconds. The
subjects would perform trial runs as required until they were
able to capture seven boxes on their own. For the sake of
practicality, there was an imposed limit of 40 trial runs, but
this limit was never reached. Test subjects in the control
group were simply allowed to operate unsupervised until
they captured seven boxes. The subjects in the test group
would alternate between operating unsupervised (for one
trial) then be coached by LATA on the next trial. This allowed
the trainee to get a feel for the joystick as guided by the LATA
coach, then try it for themselves on every other trial.

7.3.3 Qualitative Evaluation—Questionnaire

In addition to quantitative evaluations done above, quali-
tative metrics were also recorded. Each test subject in the
Proficiency Test experiment was given an anonymous
questionnaire after completing his or her experiment. The
following questions were on the questionnaire (rated on a
scale 1 to 5, where 5 is most positive):

. Do you feel you improved over the 20 runs?

. Would you feel you are an expert at this task?

. Do you feel the computer haptics helped in training
(test group only)?

Note that this was only given to those subjects that
participated in the Proficiency Test. Because all subjects in
the Learning Rate test achieved the same proficiency, we
felt that it was not as relevant and did not administer this
questionnaire to them.

7.4 Experimental Results

All trials for the Proficiency and the Learning Rate tests took
place on the same computer workstation with the same
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joysticks. The test subjects were all engineering or computer
science undergraduate students. Although joystick move-
ments were recorded to disk and each subject filled out a
questionnaire, no personal identifying information was kept.

Because the test groups were small, the samples cannot
assume a normal distribution. Therefore, the comparisons
within groups and between groups were calculated with
rank statistics. Rank statistics computes its values from the
median and relative rank of the values. For paired tests
(such as the same individual before and after), the Wilcoxon
signed-rank test (signrank) is used when the sample size is
less than 20. For unpaired tests (such as comparing two
independent groups), the Wilcoxon rank-sum test (rank-
sum) is used because it is robust with respect to outliers and
works with population sizes of less than 20.

7.4.1 Proficiency Test Results

The data from the Proficiency Test experiment from both
groups in the “before” and “after” cases can be seen in
Table 4, a tabular histogram of how many runs scored at
what level of proficiency. The maximum proficiency is 100.
There are 70 runs total in each column (14 subjects � 5 runs
each). From this histogram, we can see that there was clear
improvement in both groups, where the average perfor-
mance was able to improve approximately 20 points better
between the beginning and ending trials. However, an
eyeball comparison of the magnitude of improvement is not
precise and requires statistical analysis.

The first determination to make was whether the two
samples were from the same population by comparing the
performance of both groups from the “before” baseline
runs. According to the rank-sum test, the p-value of the
two groups is 0.945, which is not less than the 0.05 needed
to reject the Null-Hypothesis that the two groups are
initially the same. Therefore, they are deemed to be from the
same population

The second determination was to confirm that there was
improvement from “before” to “after.” The signed-rank test
for both groups in a paired test between the before and after
is calculated to be 0.00012, which is much less than 0.05.
This rejects the Null-Hypothesis that there was no change
between the before and after performances. Thus, perfor-
mance gain is verified for both groups.

Third, we quantify the performance gains by both
groups and compare them. To compare the performance

gains by the control and test groups, these were tested
against each other in the “after” training set. To assess
improvement, the baseline scores were subtracted from the
final scores then divided by the baseline to normalize. The
results indicate that the median individual was able to
improve 40 percent beyond his/her original performance
level. However, the p-value of 0.80 of the rank-sum check
between the control and test groups could not reject the
Null-Hypothesis that the LATA coaching method did not
improve performance gain over self-learning.

It is interesting to note, nevertheless, that from Table 3
we can see that the human expert who served as the actor in
observational learning was able to attain a proficiency
rating of nearly 78. The control group was able to attain
such a high proficiency in only six runs, while the test
group was able to do it in 11 runs, nearly double.

7.4.2 Learning Rate Test Results

The learning rate experiment examines how many trial
sessions it would take to reach the specific proficiency level
of picking up and delivering seven boxes in the 60-second
time period. This is the same performance level achieved by
the LATA agent coach. The median individual took an
average of 7.5 training sessions to reach that performance
level. According to the rank-sum test, the comparison
between the learning rates was 0.285 and was not
significantly low to a 0.05 value to reject the Null-
Hypothesis that the use of the LATA haptic system did not
improve the learning rate of the human subjects. Therefore,
it is likely that the amount of time required for improve-
ment is not different between the control and test groups.

However, because half of the time for the test group
is considered coaching during which they were not in
full control of the crane (the LATA agent was partially
in control), one could argue that the amount of time to learn
could be considered to be halved. If so, then the p-value on
the rank-sum test would be 0.0137, which is now less than
0.05. This would reject the Null-Hypothesis and support the
hypothesis that the test subjects learned more quickly with
LATA haptic training.

7.4.3 Qualitative Evaluation Results—Questionnaire

The test subjects from the Proficiency Test experiment
(only) were asked a series of questions on an anonymous
questionnaire. This questionnaire was designed to capture
the opinions of the test subjects about the experiment and
about themselves. The first question was whether they
thought they improved over the course of the 20 runs. The
control group averaged 3.8 versus 4.5 for the test group.
Both groups believed that they had some improvement but
the rank-sum test had a p-value of 0.0167, which rejects the
Null-Hypothesis that the groups improved the same.
Therefore, evidence suggests that the test group believed
they improved more.

When asked whether they felt they were an expert at the
crane simulation at the end of the training, both groups
slightly agreed with 3.4 and 3.9 for control and test groups,
respectively. The p-value on the rank-sum was 0.247, which
does not reject the Null-Hypothesis that the test group did
not improve more than the control group. Evidence
suggests, therefore, that both groups believe they became
experts to the same degree.
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The final question was whether the subjects in the test
group (only) believed that the haptics helped in the learning
process. The participants responded with an average value
of 3.7, which is higher than the neural value of 3.00. There is
some evidence that the students believed that the haptic
feedback helped in the learning process.

7.5 Analysis

There is evidence to suggest that the test group subjects
were able to use the LATA coach to gain a high proficiency
level. The test group subjects were also able to learn up to
the level of the LATA coach reasonably fast. However, there
is mixed evidence as to whether LATA coaching was able to
improve beyond a human’s ability to learn a psychomotor
skill task on his/her own through practice. Some evidence
suggests that test group members were able to perform at
the level of the human expert more frequently than were
control group subjects. The quantitative evidence for the
Learning Rate Test, when adjusted for the coaching runs,
supports the premise that the LATA coaching indeed
resulted in improved gains over the control group subjects.
Furthermore, the qualitative data support this as well based
on the responses from the test group subjects. However, the
Proficiency Test results do not support this claim, as neither
does the unadjusted Learning Rate Test data.

The reason for the mixed results could be traced to the
test domain rather than a weakness with the LATA
coaching concept. As seen in the Learning Rate experiment,
the human test subjects could learn to a base competency
level of seven boxes retrieved in approximately 7.5 trials.
Since the experiment for Proficiency was 20 trials, the
humans in the control group were able to learn up to that
proficiency level before the first 10 trials. This indicates that
the skills were significantly easier to master than we had
anticipated. Further research is warranted with a task is
harder to accomplish and would therefore take longer than
20 trials to master. Additionally, the experiment could have
been made more difficult by requiring the achievement of
nine-block level that an expert can achieve, which would
have taken more time.

8 CONCLUSIONS

Our presented LATA system builds a computer agent
trained to the level of the expert using observational
learning and practice; then, it uses that same agent and
haptic interface to teach less proficient human novices. The
goals of this research were to prove technical feasibility of
such a system, and show that it has educational value. The
concept was limited to learning complex psychomotor skill
tasks such as would be found in operating a crane in a
simulated shipyard, moving boxes around.

In the context of other research, while there is significant
work reported in the provision of feedback to the student,
haptics (both for teaching as well as for actual use), learning
agents, teaching agents, and psychomotor skill learning, no
other work combined all the aspects of providing feedback
in real time though a haptic interface for a system that
employs agents to teach psychomotor skills that were
developed though machine learning.

From a technical standpoint, we were successful in
building this system in a practical manner. While not yet
ready for real-world applications, the system required

modest amounts of human intervention to build the
learning agent. We found that the PIGEON learning
algorithm was able to teach a LATA agent to a high level
of performance through automatic observation of the
human’s actions in the operation of a crane, and then
subsequent practice. The resulting LATA agent was able to
perform at close to (but not quite) the level of the original
human expert from whom it learned.

The learning agent—now considered a teaching agent—
was then evaluated for its ability to teach other humans
using force-feedback joysticks as the interface. Through a
study of both gains in proficiency and learning rate,
humans test subjects were shown to be able to learn up to
the ability of the LATA agent. However, it could not be
statistically shown that this caused the human to improve
more than learning on his/her own. Nevertheless, there is
some evidence to suggest that the humans could learn more
quickly with LATA, although that could not be entirely
confirmed based on the experiments performed. According
to the test subjects, there is evidence that they believed that
they improved to a higher level with the haptic training and
that they became experts themselves.

In summary, we found only weak evidence to suggest
that the teaching agent has educational value above that of
self-learning, at least as related to the selected crane
manipulation task. This inability to show conclusively that
LATA was able to train a human better than a self-learning
process on the Crane simulation was disappointing.
However, on the positive side, the LATA agents were able
to be created nearly automatically (with little human
assistance), learn the skill nearly to the level of an expert,
and then be used to train a novice human to that same level.
The benefits of wide distribution of qualified trainers
through an agent that can be created (nearly) automatically
without explicit programming are significant. Therefore, we
strongly believe that further research is warranted based on
our results.

In conclusion, our work was technically successful
and did perform the learning and teaching functions.
Furthermore, the educational value of our approach
showed some potential as well as some positive feedback.
However, its value in improving learning beyond current
means remains to be proven conclusively.

We believe that further research on this promising avenue
of teaching and learning is warranted. One should begin
with subjecting the current prototype to a more suitable set
of tests (i.e., more challenging) than the Crane simulation.
That would help establish more clearly the utility of this
approach. Flying an airplane (simulator) could be one such
domain for further testing. Surgery could be another.
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