

Comparison of Artificial Life Techniques for Market Simulation

Feng Gao, Student Member, IEEE, G. Gutierrez-Alcaraz, Member, IEEE, and
Gerald B. Sheble, Fellow, IEEE

Iowa State University, Ames, IA, USA
gaofeng@iastate.edu, ggutier@iastate.edu, gsheble@iastate.edu

Abstract

Electricity industries worldwide are undergoing a
period of profound upheaval. Conventional vertically
integrated mechanism is replaced by a competitive
market environment. A pure operating cost
optimization is not enough to model the distributed,
large-scale complex system. A market simulator will
be a valuable training and evaluation tool to assist
sellers, buyers & regulators to understand system’s
dynamic performance and make better decisions
avoiding bunch of risks. The objective of this research
is to model market players by adaptive multi-agent
system, compare the performances of different
artificial life technique such as Genetic Algorithm
(GA), Evolutionary Programming (EP) and Particle
Swarm (PS) in simulating players’ behaviors, identify
the best method to emulates real rational participants.

.
1. Introduction

Electricity industries worldwide are undergoing a
period of profound upheaval. Conventional vertically
integrated mechanism is replaced by a competitive
market environment. A pure operating cost
optimization is not enough to model the distributed,
large-scale complex system. A market simulator will
be a valuable training and evaluation tool to assist
sellers, buyers & regulators to understand system’s
dynamic performance and make better decisions
avoiding bunch of risks.

Evolutionary computation is a general term for
several computational techniques which take their
inspiration from natural selection in the biological
world and use this mechanism of EVOLUTION as
key elements in their design and implementation [1].
There are a variety of evolutionary computational
models that have been proposed and studied which
are referred to as evolutionary algorithms. ALIFE is a
common acronym to tie all of the ideas based on

biological emulation, including evolutionary
computation. It is the attempt to simulate, or in some
case emulate, the governing principles of life.
Artificial life techniques, including artificial neural
networks, have found success in solving several
different complicated centralized non-convex
optimization problems and for emulating intelligent
market participants’ individual decentralized
optimization problem.

Post et al. [2] proposed a market-based auction
pricing mechanism for the interchange of electricity,
where a generic transportation model is assumed and
solved by linear programming. Richter and Sheble [3]
presented a Genetic Algorithm based framework to
evolve utility bidding strategies in a double side
auction marketplace and developed a market
simulator by Pascal language. Agent technology is a
means to help in the coordination and negotiation
between the market players. Praca et al. [4] presented
a multi-agent architecture for all market-acting
entities such as producers, distributors and regulators.
A Java software pack of electricity market simulator
is implemented in [5].

The objective of this paper is to determine how to
model market players as adaptive multi-agent system,
to compare the performances of different artificial life
techniques (Genetic Algorithm (GA), Evolutionary
Programming (EP) and Particle Swarm (PS)), to
simulate corporate (players’) behaviors, to identify the
best method to emulates real rational decision making
by participants.

The rest of the paper is organized as follows:
Market structure and rules are introduced in Section
II. Section III presents the multi-agent system and
evolutionary algorithms which are applied to simulate
players’ behaviors. A sample result is shown in
Section IV. Finally, conclusions are summarized in
Section V.

2. Market Structure

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

The electricity market structure normally consists
of two types of players: buyers and sellers in addition
to the central broker. Transmission companies,
TRANSCOs, are considered exogenous to the market.
Each seller is modeled as a corporation with variable
and fixed costs of production. Each buyer is modeled
as a corporation with fixed and variable costs of
delivery. Each buyer and seller has a fixed amount to
buy or sell. Each buyer and seller is given a network
location which is used to determine the transportation
capability from each buyer to each seller individually.

The broker matches the bids from each buyer to
each seller by ordering the bids inversely by type of
player, similar to the Florida Coordination Group
approach as described in [6]. Thus the highest buyer
is matched with the lowest seller. The broker then
verifies that the transaction can occur based on the
remaining network capability between these players.
If sufficient capacity exists, and then the transaction is
committed, the remaining transportation matrix is
updated to reflect the actual flow based on the
contract, and the next buyer and seller are matched.
A buyer or seller may have to engage in more than
one transaction if the amount bid is not equal or if the
network restricts the flow. The broker always
commits transactions to sell all bid amounts unless
restricted by the network. The broker continues to
match bids until the surplus profit is zero. The surplus
profit is the difference between the buyers’ and the
sellers’ bids. The transaction price is always the
difference between the two bids, divided by two. This
is similar to the power pool split savings approach
that many regions have been using for years [7].

3. Market Simulation

As a complex system, electricity market is
composed of many interacting units, such as
Generation Companies (GENCOs), Transmission
Companies (TRANSCOs), Distribution Companies
(DISCOs), Load Service Entities (LSEs), and
Independent System Operator (ISO) etc. The overall
interaction patterns generated among the constituents
can exhibit extreme complexity. A complex system
like Electricity Market will show emergent properties
arising from the interactions of individual companies
(players) that are not properties of the individuals. It
is impossible to analytically predict market
performance directly from the structure of the
constituents and the form of their interaction rules.
Multi-agents system is a promising tool in which each
player is changing its mode of behavior over time in
reaction to (and possibly also in anticipation of) the
modes of behavior expressed by other players. Market

simulation does imply that agents “optimize”. We
simulate not an individual person’s behavior but a
business or a company’s function in the market. It is
not a simple operation of “addition” or “multiply”. It
is the individual actions of each company that
embodies the simulation of the complete markets.
Consequently, the fact that agents are evolving
together over time provides a way to observe and
understand the dynamic behaviors of electricity
market.

3.1. Multi-Agents System

The term "agent" is usually used to describe self –
contained program, which can control their own
actions, based on their perceptions of their operating
environment [8]. Usually agents have some of these
characteristics, (a) Autonomous (b) Intelligent (c)
Rational (d) Learning ability (e) Social incorporation
ability. Multi-agent systems model complex
distributed systems as a set of software agents that
interact in a common environment. The
decomposition of a system into a number of agents
lets the system react and adapt better in a changing
environment [9].

An agent that can respond to its environment is
called adaptive. There are four primary ways of
adapting [9]:

1. Reaction – A direct, predetermined response
to a particular event or an environmental
signal. Typically expressed in the form "when
event, if condition(s), then action";

2. Reasoning – A more advanced form of
reactive response that uses a set of inferences
rules;

3. Learning – Changing that occurs during the
lifetime of an agent;

4. Evolution – Changing in a population that
occurs over successive generations of agents.

Each agent has its own competencies and

knowledge, but it needs to interact with other agents
to solve complex problems, avoid conflicts, acquire
and share information, among others. Researchers
have proposed two models of software agents [9].

1. Cognitive approach: each agent contains a

symbolic model of the outside world, about
which it develops plans and makes decisions
in the traditional (symbolic) AI way;

2. Reactive approach: simple-minded agents
react rapidly to asynchronous events without
using complex reasoning.

3.2. Evolutionary Algorithm

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

Evolutionary algorithms share some common
conceptual base of simulating the evolution of
individual structures via processes of selection and
reproduction. Several different types of evolutionary
algorithms were developed independently. These
include genetic programming (GP), evolutionary
programming (EP), evolutionary strategies (ES) and
genetic algorithms (GA) [10]. This paper focuses on
the following algorithms: Genetic Algorithms,
Evolutionary Programming, and Particle Swarm.

3.2.1. Genetic Algorithm

Genetic algorithms (GAs), developed by Holland
(1975), have traditionally used a more domain
independent representation, namely, bit-strings.
Genetic algorithms are performance driven method of
finding useful structures with a computer, based
loosely on the theory of evolution. In evolution
successful creatures mate, blending their genes, said
genes then undergoing a small number random
changes via mutation. A GA uses selection to pick
parents in some sort of relation to their quality. It
blends structures via a process called crossover.
Small changes are accomplished by mutation [7].

Crossover

Crossover selects bits from each of two
chromosomes to produces new chromosomes. There
are several kinds of options for performing crossover.
The "No crossover" makes the new chromosomes
copies of the old chromosomes. When this is used, all
innovation in the search for better bidding strategies
results from mutations. One point crossover chooses a
random position in the chromosomes and exchanges
the bits after that point. Two-point crossover chooses
a pair of positions in the chromosomes and exchanges
those bits between the positions. Uniform crossover
either swaps or leaves alone the bits in the
chromosomes at each position with 50-50
probabilities. This form of crossover is probably best
for efficient search but is computationally intensive,
as it requires a lot of random numbers.

Mutation

After crossover has produced new genes the
resulting new genes are mutated. The mutation rate is
the probability, independent for each bit, that the bit
will be flipped. Mutation provides an ongoing source
of exploration in the search for better bidding
strategies. This is absolutely necessary in a situation
where the measure of quality is not absolute.

Selection

Normally there are three selection techniques,
proportional selection, rank selection, and roulette

selection. All of them choose potential parental
strategies in proportion to a number derived from the
agent’s profit [7].

In the research reported in [7], parameters used to
develop GENCOs’ bids are evolved using a GA. Each
member of the GA population corresponds to a
GENCO participating in an auction. There are three
distinct evolving parts, or genes, for each of the
GENCOs. First, the number of 1 MW contracts to
offer at each round of bidding is evolving. This gene
is filled with integer values. Valid integers are
between 0 and a maximum value that corresponds to
that GENCOs’ maximum capability divided by the
number of rounds of bidding. Secondly, bid
multipliers for each round of bidding are evolved.
These bid multipliers are used in combination with
the GENCOs’ costs and their expected equilibrium
price to develop a bid. This gene is represented by
binary strings that are mapped to a value between the
GENCOs’ cost and forecasted equilibrium price
during the bidding process. Thirdly, there is a gene
that selects which prediction technique to use to
forecast the equilibrium price. This is an integer
valued gene with valid integers being from 0 to 4,
since there are 5 classical prediction techniques from
which each GENCO may choose. Additional
forecasting methods can be incorporated easily

Roulette selection is a parent selection method that
chooses more highly fit creatures with a greater
probability than the lesser fit creatures. This fitness
bias is more pronounced (especially when population
sizes are small) than other parent selection methods
like tournament selection.

Based on sensitivity tests, three-point crossover
was selected to create the children. Crossover is used
on both the number of contracts desired and the bid
multiplier. The bid multipliers for each GENCO are
concatenated together into one string prior to
crossover, and three crossover locations are selected
randomly from a uniform distribution over the
chromosome’s entire length.

The standard bit-flip mutation operator is used on
the binary strings representing the bid multipliers. The
number of contracts gene has the possibility of being
mutated by two different mutation operators. The first
mutation operator (mutation-A) adds an integer to the
existing integer. If the result is not a valid integer, the
value is wrapped around, i.e. if the result is greater
than the maximum, then the maximum is subtracted
from it. The second mutation operator (mutation-B)
shuffles the values among the different loci. If a good
number is found in one locus, it can spread to other
locations more quickly. Mutation on the prediction
technique selection gene involves randomly selecting
one of the valid predication techniques.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

The fitness of each creature is exactly equal to its
profit after participating in an auction. A generation
level for each GENCO can be determined by the
number of contracts that the GENCO was able to
obtain during the auction process. Profit becomes the
total revenue to generate at that level, minus the total
cost. Total revenue is equal to the sum of the contract
price multiplied by the number of contracts over all
rounds of bidding.

At each generation, one half of the population is
replaced with the children. Although the parents were
not taken strictly from the top half of the population,
it is always the creatures on the bottom of the
population that are replaced each generation [3].

3.2.2. Evolutionary Programming

Evolutionary Programming (EP) is a technique in
the field of evolutionary computation. EP was
proposed as a Finite State Machine (FSM) model by
L. J. Fogel in 1960s [11]. In that model, the mutation
operator of the state of machine is a kind of a uniform
distribution. In 1990s, the thinking of evolutionary
programming was extended by D. B. Fogel and then
EP was made an optimization tool. Now, EP has
become a powerful optimization tool and has been
applied to many real problems. The purpose of EP is
to do a stochastic search in order to seek an optimal
solution to an optimization problem [12].

The schematic diagram of the EP algorithm for
optimization is depicted in Figure 1 [12]:

Vector
Representation

Initialization

Np Parents Offspring
Creation

Np Offsprings

Np Parents | Np Offsprings

EvaluationCompetitionSelection

Competing
Pool

Gaussian
Perturbation

Figure 1: Schematic Diagram of EP algorithm

Vector Representation of Decision Variables [13]:

The real-valued decision variables that need to be
determined using the EP algorithm are represented as
an n-dimensional vector p which is associated with
an n-dimensional objective function ()f p . Each

vector p is a member of the population that will be
evolved during EP computation. Each objective
function ()f p is a value of member p that will be
calculated during EP computation. Each member p
and its objective function ()f p is a probable
solution for the optimization problem.

Parent Creation:

An initial starting population consisting of parent
individuals (), 1, 2,p i i Np= is formed by
generating a uniform random number (that represents
an operating point within the operating range) for
each component within each ()p i .

Offspring Creation:

An offspring population consisting of offspring
individuals (equal to that of parent individuals)

()' , 1, 2,p i i Np= is formed from parent population
by disturbing individual parent. The disturbance is
done by adding a Gaussian Random Variable of zero
mean and pre-calculated Standard Deviation (the
mutation factor) to each component of ()p i .

Objective Function Evaluation:

The fitness of each parent individual ()p i is
evaluated by calculating the objective function value
of each component. Just like for parent population,
the fitness of each offspring individual ()'p i is
evaluated by calculating the objective function value

()()'f p i of each component ()'p i .

Competition:

The competition scheme is designed such that
()p i and ()'p i members of parent and offspring

population stochastically compete with all the
members of the two populations based on their
objective function values ()()f p i and ()()'f p i . The
purpose of the competition scheme (or decision rule)
is to form a competing pool such that the members
(within the two populations) with better solutions
have more chances of survival as compared to other
members.

Selection:

Based on the competition scheme, the top
Np members out of 2* Np members from the

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

competing pool are selected as the survival population
to be used as the parent population for next iteration.

Stopping Rule:

The process of forming new population and
selecting the ones with better solutions is continued
until a specified number of iteration (Ng) is reached or
the function value of the best solution is not further
improved.

3.2.3. Particle Swarm

Particle Swarm (PS) is a recently proposed
algorithm by James Kennedy and R. C. Eberhart in
1995, motivated by social behavior of organisms such
as bird flocking and fish schooling. PS algorithm is
not only a tool for optimization, but also a tool for
representing sociocognition of human and artificial
agents, based on principles of social psychology. PS
as an optimization tool provides a population-based
search procedure in which individuals called particles
change their position (state) with time. In a PS
system, particles fly around in a multidimensional
search space. During flight, each particle adjusts its
position according to its own and a neighboring
particle’s experiences, making use of the best position
encountered by itself and its neighbor. Thus, a PS
system combines local search methods with global
search methods, attempting to balance exploration and
exploitation [14].

PS shares many similarities with evolutionary
computation techniques such as GA. The system is
initialized with a population of random solutions and
searches for optima by updating generations.
However, unlike GA, PS has no evolution operators
such as crossover and mutation. In PS, the potential
solutions, called particles, fly through the problem
space by following the current optimal particles.

In each iteration particles are updated by following
two "best" values. The first one is the best solution
(fitness) it has achieved so far. (The fitness value is
also stored.) This value is called Pbest. Another
"best" value that is tracked by the particle swarm
optimizer is the best value obtained so far by any
particle in the population. This best value is a global
best and called Gbest. When a particle takes part of
the population as its topological neighbors, the best
value is a local best and is called Lbest.

Assuming a physical n-dimensional search space,
the position and velocity of individual i are
represented as the vectors (),i il inX x x=

and (),i il inV v v= , respectively, in the PS algorithm.

Let (),Pbest Pbest
i il inPbest x x=

and (),Gbest Gbest
i il inGbest x x= , respectively, be the best

position of individual i and its neighbours’ best
position so far. Using the information, the updated
velocity of individual i is modified under the
following equation:

()

()
1

1 1

2 2

k k k k
i i i i

k k
i i

V V c rand Pbest X

c rand Gbest X

ω+ = + −

+ −
 (1)

Where:

k
iV is the velocity of individual i at generation k

1k
iV + is the velocity of individual i at generation k+1

ω is the weight parameter

1 2,c c represents the weight factors

1 2,rand rand are random numbers between 0 and 1
k
iX is the position of individual i at generation k

1k
iX + is the position of individual i at generation k+1

k
iPbest best position of individual i at generation k
k
iGbest best position of the group until generation k

Each individual moves from the current position to

the next one by modified velocity (1) using the
following equation:

1 1k k k
i i iX X V+ += + (2)

Particles' velocities on each dimension are clamped

to a maximum velocity Vmax. If the sum of
accelerations would cause the velocity on that
dimension to exceed Vmax, which is a parameter
specified by the user, then the velocity on that
dimension is limited to Vmax. The market simulation
procedure of PS is shown below in detail:

1) Initialization of a generation of particles at

random.
2) Each particle is regarded as a bid of a buyer /

seller. All of bids consist of initial position
vector;

3) Applying Florida Coordination Group or
Linear programming [15] to match buyers
and sellers’ bids. After obtaining market
clear price, profits of each buyer / seller can
be calculated consequently.

4) According to the calculated profit of each
buyer/seller, update iGbest and iPbest for
each generation;

5) Update the velocity vector by (1);

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

6) Update the position vector by (2). If
inequalities are violated, keep the direction
of the velocity vector and shrink the
magnitude of the velocity vector by a scalar

 (0< <1) each time, until all of inequalities
are satisfied;

7) Go to step 3)

4. Comparative Analysis

In Section 4, an algorithm analysis of GA, EP and
PS is discussed in detail. All of the three techniques
are compared generation by generation. In GA,
Mutation and crossover produce new adaptive
components in an essentially random fashion. The
direction of changing between current and next
generation really is stochastic. Figure 2 shows the
procedure that new offsprings are created through
crossover and mutation operators.

k
iX

k
jX

Crossover
Mutation 1k

iX +

1k
jX +

'k
iX

'k
jX

Mutation

Figure 2: Procedure of New offsprings Creation by

GA

In order to relate GA to traditional optimization
techniques, such as Newton method etc., it is
important to define a "gradient" for GA. Since the
direction of changing between current and next
generation is uncertain, Simulation is proper to
measure the expected "gradient" of GA. Given
specific crossover and mutation fashions, execute a
large number of simulations, the direction is
determined as the difference between 1k

iX + and k
iX .

According to the discussion in the previous section,
EP can be described by a dynamic equation.

1 2(0, ())k k k
i i iX X Gaussian ϕ+ = + (3)

Where k

iX represents the bidding of individual i at
generation k and 1k

iX + is the bidding of individual i at
generation k+1

The standard deviation k

iϕ is the mutation factor
and indicates the range the offspring is created around
its parent and is given by:

i

k
k best

k
i

f
f

ϕ β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4)

Where:
β represents the scaling factor

k
bestf is the best profit at generation k
k

if is the profit of individual i at generation k

The magnitude of k

iϕ is proportional to the
magnitude of changing in the offspring as compared
to the parent. The bigger the value of k

iϕ , the greater is
the changing in 1k

iX + as compared to k
iX and vice

versa. According to equation (3), the Gaussian
random perturbation term defines the direction of
changing in EP, as Newton method does.

Particle swarm dynamic equation (1) and (2)
essentially provide a clear definition of direction of
changing. Plugging equation (1) into (2), equation (5)
shows particle swarm updating procedures:

()

()
1

1 1

2 2

k k k k k
i i i i i

k k
i i

X X V c rand Pbest X

c rand Gbest X

ω+ = + + −

+ −
 (5)

The gradient of PS contains more information

compared with GA and EP. Individual particle has a
memory of its own optimal value, k

iPbest . All
particles share a common knowledge, i.e. k

iGbest , the
optimal value until current generation. All of particles
move within a solution space according to historical
global & local best solutions.

EP makes use of a Gaussian random perturbation
term to update each generation. All of the candidates’
updating directions form an n-dimension random
vector. EP does not apply local information; however
each generation does share a common knowledge
implicitly. The mutation factor k

iϕ is proportional to
the ratio between the best profit and individual profits
up to now. The bigger the ratio between the best profit
and individual profits, i.e. individual profits is far
from the best one, the greater is the change in 1k

iX + as
compared to k

iX and vice versa.
The “gradient” of GA employs neither global nor

local historical information. Crossover and mutation
operators bring in new sense of change in direction
through the use of a random alteration of solution
value. Therefore it is necessary to apply simulation to
measure the expected "gradient" of GA.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

EP and PS can be more appropriate than GA if
solution space is well defined, for both of them utilize
previous global information. Furthermore, PS
balances local and global searching, displays more
advantages. However more operations are needed.

On the other hand, if solution space is highly
skewed and tortuous, the previous global information
may be wrong and mislead the searching procedure in
PS and EP. Thus, GA will outweigh EP and PS in the
case.

Table 2 summarizes the major manipulations of
three techniques during one generation. N is the
population size, M is the number of encoding bits in
GA, and L is the number of players. Mutation
prediction is applied to accelerate GA [16]. For the
sake of simplicity, "One Point Crossover" operation is
executed in GA (Table 1).

Position 1 2 3 4 5 6 7 8 9 10
Parent 1 0 1 1 0 1 1 0 0 0 0
Parent 2 1 1 0 1 1 1 1 0 0 1
Cut Pattern 1 1 1 2 2 2 2 2 2 2
Offspring 0 1 1 1 1 1 1 0 0 1

Table 1: One Point Crossover Operation

 GA EP PS
of Calling
Random Number
Generator

1.5*N*L N*L 2*N*L

of Multiplication _ 3*N*L 5*N*L
Local historical
information No No Yes

Global historical
information No Yes Yes

Table 2: Compare of Manipulations in GA, EP and PS in
One Generation

The major manipulations discussed in the paper
include the number of calls to a random number
generator (RNG) and the number of multiplication.
As an example of the importance of reducing the
number of calls to a RNG, one should consider the
amount of computer used for even a simple problem
like economic dispatch. A company with 100 units,
where each unit is represented by a 20-bit gene, there
are 400 solutions in the population, would require
800000 call to the RNG for each generation. Since
there are a number of generations required to find a
solution, our experience is between 100 to 500, the
total number of calls to the RNG would be between
80 to 400 million calls. The MATLAB RNG requires
a variable amount of time, the average from
experiments, is approximately 0.0000158 second.
However, this value is very volatile as found by

experiment. Thus, approximately 21 minutes to 1.76
hours. Thus, most ED solutions by GA are cut short
for practical reasons.

5. Conclusions

This paper discusses and compares the multi-agent
system and ALIFE algorithms in the application of
electricity market simulation. This paper describes
how to apply three techniques based on the idea of
evolutionary computation to emulate market
participants’ behaviors. They are Genetic Algorithm,
Evolutionary Programming and Particle Swarm.
Genetic Algorithm is a promising tool to model
market agents for its adaptivity. Evolutionary
programming is close to genetic algorithm, but a
Gaussian random perturbation takes place of
crossover and mutation operators. Gaussian
perturbation operator makes evolutionary
programming more refined to emulate real players.
Particle swarm navigates through the problem
solution space by following the current optimal
particle and individual previous best solution. Particle
swarm is a combinatory method of local search with
global search. All of the three techniques are
compared according to the characteristics of solution
space.

6. References

[1] Spears, W.M., Jong, K.A.D., Baeck, T., Fogel, D.B. and
Garis, H.de, “An Overview of Evolutionary Computation,”
In Proceedings of the European Conference on Machine
Learning, 1993.

[2] Post, D.L., Coppinger, S.S. and Sheble, G.B.,
“Application of auctions as a pricing mechanism for the
interchange of electric power”, IEEE Transactions on
Power Systems, Volume 10, No. 3, Aug. 1995 Page(s): 1580
– 1584.

[3] Richter, C.W. and Sheble, G.B., “Genetic algorithm
evolution of utility bidding strategies for the competitive
marketplace”, IEEE Transactions on Power Systems,
Volume 13, Issue 1, Feb. 1998 Page(s): 256 – 261.

[4] Praca, I., Ramos, C. and Vale, Z.A., “Competitive
electricity markets: simulation to improve decision-
making”, Power Tech Proceedings, 2001 IEEE Porto
Volume 1, 10-13 Sept. 2001 Page(s): 6.

[5] Lam, Y.C. and Wu, F.F., “Simulating electricity markets
with Java”, Power Engineering Society 1999 Winter
Meeting, IEEE, Volume: 1 31 Jan - 4 Feb 1999 Page(s):
406-410.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

[6] Wood, A.J. and Wollenberg, B. F., Power Generation
Operation and Control, 2nd ed., Wiley, New York, 1996.

[7] Sheble, G.B., “Computer Simulation of Adaptive Agents
for an Electric Power Auction”, EPRI Report, 1997.

[8] Ferber J., Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence, Addison-Wesley, 1999.

[9] Deuel R., “Adaptive Agents and Multiagent Systems,”
IEEE Distributed Systems Online, Vol. 5, No. 7, July 2004.

[10] Goldberg, D.E., Genetic Algorithms in Search,
Optimization, and Machine Learning, Pennsylvania:
Addison-Wesley, Reading, 1989.

[11] Koza, J., Goldberg, D.E., Fogel, D. and Riolo, R., (ed.),
Proceedings of the First Annual Conference on Genetic
Programming, MIT Press, 1996.

[12] Yang, H., Yang, P. and Huang, C., “Evolutionary
Programming Based Economic Dispatch for Units with
Non-Smooth Fuel Cost Functions”, IEEE Transactions on
Power Systems, Vol. 11, No. 1, Feb 1996, pp. 112-118.

[13] Wong, K. and Yuryerich, J., “Evolutionary-
Programming-Based Algorithm for Environmentally-
Constrained Economic Dispatch”, IEEE Transactions on
Power Systems, Vol. 12, No. 2, May 1998, pp. 301-306.

[14] Park, J., Lee, K., Shin, J., and Lee, K. Y., “A Particle
Swarm Optimization for Economic Dispatch with
Nonsmooth Cost Functions”, IEEE Transactions on Power
Systems, Vol. 20, Feb. 2005, pp. 34–42.

[15] Fahd, G., Richards, D. A., and Sheble, G. B., “The
Implementation of an Energy Brokerage System using
Linear Programming,” IEEE Transactions on Power
Systems, Vol. 7, Feb. 1992, pp. 90–96.

[16] Gao, F, Sheble, G.B., “Economic Dispatch Algorithms
for Thermal Unit System Involving Combined Cycle
Units”, 15th Power Systems Computation Conference,
Liège, Belgium, 2005.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

