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Abstract—Mobile and embedded systems increasingly process
sensitive data, ranging from personal information including
health records or financial transactions to parameters of technical
systems such as car engines. Cryptographic circuits are employed
to protect these data from unauthorized access and manipula-
tion. Fault-based attacks are a relatively new threat to system
integrity. They circumvent the protection by inducing faults into
the hardware implementation of cryptographic functions, thus
affecting encryption and/or decryption in a controlled way. By
doing so, the attacker obtains supplementary information that she
can utilize during cryptanalysis to derive protected data, such as
secret keys. In the recent years, a large number of fault-based
attacks and countermeasures to protect cryptographic circuits
against them have been developed. However, isolated techniques
for each individual attack are no longer sufficient, and a generic
protective strategy is lacking.

I. INTRODUCTION

Sensitive data that need to be protected from unauthorized
access play an increasingly important role in today’s mobile
and embedded applications. These applications include, on
the one hand, smart-logistics and smart-shop systems, next-
generation payment infrastructures and ambient assisted living
technology that process personal financial and/or health data.
On the other hand, technical systems also depend on protected
data, one example being car engine parameters that are prone
to manipulation in context of unauthorized tuning [1], [2].
The relevance of data protection will likely further increase
in emerging cyber-physical systems that are characterized by
increased interconnection, environment interaction and integra-
tion in existing infrastructures, most notably the Internet.

Protection of sensitive data in mobile and embedded
systems is based on cryptographic functions [3]. The most
important cryptographic functions are ciphers, which encrypt
information such that access is only possible for users with
appropriate authorization, for instance, knowledge of a secret
key. One can distinguish between asymmetric and symmetric
ciphers, and further between block and stream ciphers. Sym-
metric ciphers use the same secret key for encryption and
decryption, while asymmetric ciphers use two different keys:
a public key for encryption and a private key for decryption.
Block ciphers process chunks of data with a well-defined
length (e.g., 128 bits), whereas stream ciphers process data
continuously bit-by-bit.

A block cipher takes a plaintext m of fixed length and a key
k and maps this pair to the ciphertext E(m, k). Many block
ciphers follow one of the three basic schemes: substitution-
permutation networks (AES [4], Serpent [5], Feistel networks

(DES [6], MISTY [7]) and addition-rotation networks (FEAL
[8], Threefish [9]). Stream ciphers generate a key stream
that can be blended (usually, XORed) with the plaintext.
In synchronous stream ciphers (Trivium [10]), the key is
independent of plaintext or ciphertext, while self-synchronized
stream ciphers (Grain [11]) incorporate plaintext or previously
calculated ciphertext bits into the key calculation. A relatively
new trend are lightweight ciphers that are optimized towards
low area cost and power consumption of their hardware
implementation [12]. They are intended for use in mobile and
embedded applications with heavy cost pressures and strictly
limited energy supply. Examples of lightweight ciphers are
PRESENT [13], PRINCE [14], LED [15], HIGHT [16] and
Piccolo [17].

Cryptanalysis [18], [19] is a discipline that investigates
the security of ciphers to withstand attempts to circumvent
their protection, explores their vulnerabilities to various types
of attacks and develops techniques to counter such attacks.
Classical cryptanalysis concentrates on making sure that an
unauthorized attacker who does not know the key cannot
perform decryption with a realistic effort. This is achieved
by requiring decryption methods that depend on mathematical
calculations for which no efficient algorithms are known,
such as factoring of large numbers or computation of discrete
logarithm.

More recently, cryptanalysis was extended to methods tak-
ing information from side-channels into account. Such meth-
ods require access to the hardware on which the cryptographic
function is executed. Passive side-channel cryptanalysis tech-
niques monitor execution time [20], power consumption [21]
or electromagnetical emissions [22] and incorporate these data
into their effort to derive protected information, such as the
secret key or its individual bits. In contrast, active techniques,
also called fault-based attacks, manipulate the circuit on which
the cryptographic function is executed in a controlled way
[23], [24]. Faults are injected by sudden changes in power-
supply voltage or clock frequency, or by inducing parasitic
currents in structures such as memory cells, registers or logic
gates using laser irradiation [25]. Most fault-based attacks
perform a cryptographic function repeatedly, in presence and
in absence of faults, and run differential cryptanalysis on the
observed outputs [26]. Fault-based analysis approaches have
been published for block ciphers [27], [28], stream ciphers
[29], [30] and asymmetric ciphers [31], [32].

This paper is intended as a rather informal introduction to
the basic principles of fault-based attacks and their relation to
neighboring fields. It is not meant to provide a comprehensive
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Fig. 1. Fault-based attacks in the broader context

overview of this active scientific area that experienced sustain-
able growth in the last decade. The remainder of the paper
is structured as follows. Section II puts fault-based attacks
into the broader context of side-channel cryptanalysis and
reviews fundamental techniques which are also used in fault-
based attacks. Section III provides more background material
on fault-based attacks. Section IV demonstrates one particular
fault-based attack developed by the authors for the new LED-
64 block cipher [33]. Section V discusses implications of fault-
based attacks to circuit design: possible countermeasures and
their trade-offs with the traditional design objectives such as
area, performance, power consumption and testability. Section
VI concludes the paper.

II. SIDE-CHANNEL CRYPTANALYSIS

Figure 1 illustrates the broader context of cryptanalysis,
including side-channel cryptanalysis. Cryptology, the science
of secure information and communication, comprises cryp-
tography, a discipline concerned with design of protected
information systems, and cryptanalysis, which investigates
vulnerability of such systems to attacks. Attacks may aim at
decryption of protected information (ciphertext) without pos-
sessing the appropriate authorization (the secret key), and/or
at identification of the secret key which will allow the attacker
to access the protected information in the future. Classical
cryptanalysis methods include brute-force analysis (trying all
possible keys), algebraic approaches (construction of mathe-
matical equations that include variables representing the secret
key, and solving these equations), and differential techniques
(studying how slight differences in inputs of a cryptographic
function manifest themselves at its outputs and deriving secret
key information from these observations).

State-of-the-art cryptographic functions are designed with
these (and further) methods in mind. For example, the secret
key always consists of a number of bits that is large enough
to make brute-force search impractical on the fastest existing
computers. Cryptographic functions are typically based on
mathematical transformations that are difficult to analyze using
known methods. Therefore, even though the attacker may
formulate a system of equations which could yield the secret
key, solving these equations will require inefficient algorithms
that are unlikely to terminate in practical time on today’s
computers.

Side-channel cryptanalysis targets the implementation of
the cryptographic function (which may be an application-
specific circuit, a mapping on a reconfigurable platform such
as an FPGA, or software that runs on a microprocessor) rather
than the algorithm itself. One can distinguish between passive
techniques which observe the circuit behavior and active

techniques which, in addition, manipulate the circuit. Fault-
based attacks, which are the focus of this tutorial, are active
cryptanalysis techniques. However, a basic understanding of
passive techniques is useful, as they are often employed to
support fault-based attacks.

Suppose that executing a cryptographic function requires
some calculation if bit k0 of the secret key k equals to 1 and
no such calculation if k0 = 0. By observing the circuit, a
number of indications may be used to determine whether the
subroutine implementing the calculation has been executed. If
the circuit has executed the subroutine, it has

1) required more time
2) consumed more power
3) emitted more electromagnetic noise

than a circuit that has not executed the subroutine. If the
expected values for any (or all) of these three parameters are
known in advance for k0 = 1 and k0 = 0, it is possible to
measure the actual values using appropriate equipment and to
match the measured data with the precomputed ones. If the
measurements indicate that the subroutine has been executed,
then k0 must be 1, otherwise k0 must be 0.

It may be possible to derive further bits of the key using
the same technique. However, it is not necessary to reconstruct
the whole key. It is sufficient to narrow down the number
of possible key candidates to a value practical for a brute-
force attack. For example, if 30 out of 64 secret key bits
are known, trying out all combinations for the remaining bits
will take 234 attempts, which is feasible on today’s computers.
Instead of determining the values of the key bits, side-channel
analysis may yield relationships between them. For instance,
the measured power consumption may indicate the number
of 1’s in the complete key, which reduces the number of
possible candidates. Several such key space restrictions may
make exhaustive enumeration feasible.

Most published techniques are based on the follwoing side-
channels:

1) Timing [20] (measured using an external clock or
mechanisms integrated into the operated system)

2) Power and energy consumption [21] (measured at the
power-supply connections of the device)

3) Electromagnetic noise [22] (for example, current fluc-
tuations)

4) Cache contents or memory response time [34]
5) Values observed through infrastructure to facilitate

manufacturing test, such as scan chains [35], [36].

However, new unexpected side-channels are frequently discov-
ered.

Side-channel analysis is subject to a number of limitations.
Performing measurements on a circuit executing a complex
cryptographic function will result in a substantial amount of
data which may not be easy to relate to the individual com-
putation steps. For example, suppose that after the conditional
execution of a subroutine dependent on key bit k0, there are
similar subroutines executed dependent on key bits k1, k2,
k3 and so forth. In order to accurately derive the values of
individual key bits, side-channel analysis must be able to
distinguish between the different subroutines based on the
measured data.
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A further complication is the inherent inaccuracy in mea-
surements themselves. On the one hand, the instruments used
for performing measurements are imperfect but require a very
high precision to detect very small differences in, e.g., power
consumption, and accurately synchronize the start and the end
of the measurement. On the other hand, the circuits exhibit
variability in many ways. For example, the power consumption
of circuits in state-of-the-art manufacturing technologies may
vary considerably between manufactured instances of a circuit.
This variability (which may stem from the parts of the circuit
not involved in the calculation of the cryptographic function)
could dominate the subtle difference in power consumption
used by side-channel analysis. In the example above, k0 = 0
may result in a larger absolute power consumption on a
circuit instance which happens to be more power-hungry
than k0 = 1 on a different instance with a lower intrinsic
power consumption. An other source of the variability is
present in complex microprocessors that automatically reorder
the individual machine instructions and execute instructions
belonging to multiple tasks simultaneously. At a given time,
such a microprocessor may execute the cryptographic function
and some other, unrelated software in parallel, and it is difficult
to know which part of the cryptographic function is being
executed.

In addition, a number of countermeasures exist. For exam-
ple, it would be possible to execute the subroutine independent
of k0 and to simply ignore its result if k0 = 0. Such coun-
termeasures are associated with costs (in the example, wasted
resources for an unnecessary computation), and can reduce,
but not completely eliminate the vulnerability to side-channel
attacks. More information on countermeasures is provided in
Section V.

III. FAULT-BASED ATTACKS

Fault-based attacks are active cryptanalysis methods which
manipulate the circuit while it executes a cryptographic func-
tion. A number of techniques to inject faults into the circuit
have been suggested [23], [24]:

1) Increasing the operating frequency of the circuit,
or producing glitches on the clock signal within
the clock cycle. This erroneously causes the write
operation on the memory elements of the circuit: the
values at their inputs, which may be incorrect because
the time to calculate them was insufficient, are written
into the memory elements.

2) Lowering the power-supply voltage. This increases
the delay of the gates in the circuit and leads to the
similar effect as increasing the frequency. A related
technique is introducing noise on the power supply,
which also increases the delay of the gates [37],
or inducing electromagnetic disturbances by a spark
generator.

3) Depackaging the circuit and its irradiation by intense
light. The parasitic currents modify the voltage at
the irradiated circuit structures and ultimately induce
bit flips. Light sources may range from a low-cost
ultraviolet lamp or camera flash to high-precision
lasers that can be pointed to a specific register or
logic gate.

4) Using a focused ion beam to modify the circuit
structure. This requires sophisticated equipment, ex-
pensive consumables, and highly skilled personnel.

All fault-based attacks must make an assumption about the
capability of the attacker, often formalized as a fault model. In
general, a fault model must define the temporal and the spatial
resolution of the fault injection. Temporal resolution refers to
the capability of the attacker to inject a fault at a time point of
his/her choice. Many published fault-based attacks require fault
injection in a specific step of the procedure, e.g., after the 30th

of 32 rounds of an encryption algorithm. This requires that the
attacker is able to identify the clock cycle when the 30th round
finishes and can inject the fault in this cycle and not earlier
or later. In practice, this can be achieved by leveraging side-
channel information, namely monitoring power consumption.
Power consumption over time during a single round tends
to follow a specific pattern, and counting 30 such patterns
indicates that round 30 has finished.

Spatial resolution is the ability of the attacker to pin-
pointedly manipulate the desired information. Frequency and
voltage manipulation provide a low degree of control, in
particular when targeting circuits that exhibit variability. One
can assume that some of the values in the memory elements
will become erroneous, but it is uncertain which memory
elements will be affected. Moreover, if the circuit has a control
and a data part, frequency and voltage manipulation will likely
impair both parts. However, errors in the control part may
simply terminate the algorithm, put it into an infinite loop or
create other conditions that deliver no results which are useful
for the attacker.

If the attack relies on manipulating a specific structure,
such as a register, a memory element, or a logic gate, well-
controlled laser irradiation is the most effective technique.
For example, some attacks specify a variable that needs to
be modified. To implement such an attack, the attacker must
determine the register in which the variable is stored, point the
laser on this register, adjust its energy such as to induce bit
flips in the register without causing errors in the neighboring
structures, and trigger it at the required clock cycle. One can
further distinguish between the ability of the attacker to flip
some random bits of the register (such that the register assumes
an erroneous value that cannot be controlled), or to flip just
the desired bits (that is, overwrite the register with a specific
value). In the former case, it is of interest if the attacker can
find out which bits have flipped, and which value the register
finally assumed.

Temporal and spatial resolution are ultimately determined
by the capabilities of the equipment used by the attacker.
Better resolution requires more sophisticated (and therefore
more expensive) equipment but also enables more powerful
attacks. The fault model, which formalizes this capabilities, is
an integral part of a sound attack description.

IV. FAULT-BASED ATTACK ON LED-64

This section illustrates a fault-based attack on the
lightweight block cipher LED-64 [33]. The attack has been
inspired by a similar work on AES [28]. LED-64 is well
suited as an example because it is sufficiently simple and yet
it exhibits many representative properties of ciphers based on
substitution-permutation networks.

LED-64 [15] encodes a 64-bit plaintext P into a 64-bit
ciphertext C using a 64-bit secret key K.1 The state of the

1There is a 128-bit version of LED not considered here.
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Fig. 2. LED-64 encryption process

algorithm is a 64-bit value set to P in the beginning. LED-64
applies a number of transformations to the state, and in the end
of the process the state is the ciphertext C. The 64-bit state
is organized in 16 four-bit chunks, called nibbles. A four-bit
nibble can be represented as a hexadecimal number, and the
complete 16-nibble state is typically written as a 4× 4 matrix
of hexadecimal numbers.

The LED-64 algorithm consists of 32 rounds outlined in
Figure 2. In each round, the following four transformation are
applied to the state:

• AC (Add constant): A constant value is added (i.e.,
XORed) to the state. Different constants are used in
different rounds, but their exact value is irrelevant for
the understanding of the attack.

• SC (SubCells): For every four-bit nibble of the state,
its value x is replaced by a value SBox[x] according
to a look-up table SBox. This is the only non-linear
operation in LED-64.

• SR (ShiftRows): Circular shift is applied to each row
of the 4× 4 state matrix. The four nibbles in the first
row of the matrix are unchanged, while the nibbles in
the second, third and fourth row are shifted to the left
by one, two and three positions, respectively.

• MCS (MixColumnsSerial): The state is multiplied
with a matrix M :

M =



4 1 2 2
8 6 5 6
B E A 9
2 2 F B


 (1)

We omit the values of the constants for the AC step and the
SBox for the SC step. They can be found in the LED-64
specification.

After every 4 rounds, the secret key K is added (XORed)
to the state. Therefore, a total of 8 key additions is performed
during the 32 rounds.

The attacker aims at determining the value of the secret key
K. It is assumed that he can apply a plaintext P of his/her
choice to the inputs of a circuit implementing LED-64 and
observe the calculated ciphertext C at the outputs of the circuit.
Then the calculation is repeated with the same P as the input,
and a fault injection is performed. The fault is injected into
the state at the beginning of round 30 (i.e., three rounds before
the termination of the algorithm).
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Fig. 3. Fault injection during LED-64 encryption
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Fig. 4. Propagation of the injected fault

The following fault model is used: the attacker can manip-
ulate exactly one of the 16 four-bit nibbles of the state. It is
irrelevant which nibble and how many bits within that nibble
are affected, but it is important that the fault effect is restricted
to just one nibble. In the following, we will assume that the
fault affects the first nibble (top-left in the 4× 4 state matrix),
but the procedure is similar for different nibbles. Moreover,
we assume that the attacker does not know which bits in the
affected nibble have flipped. He knows that the fault replaced
the value x of the nibble by the value x⊕ f , but he does not
know the value of f .

Figure 3 illustrates the fault injection. The fault-affected
and the fault-free calculations are shown on the top and the
bottom, respectively. Since the same P and the same K
is used in both cases, the states before fault injection are
identical. The fault will propagate to the output, resulting in
the faulty ciphertext C ′ that differs from the correct ciphertext
C. The attack requires C and C ′ to obtain K by differential
cryptanalysis. For this purpose, the propagation of the fault
effect, shown in Figure 4, is discussed next.

The figure shows the differences s′ ⊕ s between the fault-
affected state s′ and the fault-free state s of the cipher. Let
s′1, . . . s

′
16 and s1, . . . , s16 denote the individual nibbles of

these states. As discussed above, we assume that the fault has
been injected into the first nibble: s′1⊕s1 = f (where the value
of f is unknown according to the fault model) and s′i⊕si = 0
for all other nibbles. In the AC step, the same constant is added
to s′ and s, such that the difference between s′ and s remains
the same. In the SC step, the non-linear SBox mapping is
applied to all nibbles. The difference SBox[s′1] ⊕ SBox[s1]
cannot be represented as function of f ; we denote this differ-
ence by f ′ (which is also unknown). However, for all other
nibbles s′i = si implies SBox[s′i]⊕ SBox[si] = 0.

Step SR does not affect the first row and induces identical
changes on the other rows of s′ and s. Step MCS, due to
the linearity of matrix multiplication, leads to the following
differences: M ·s′⊕M ·s = M × (s′⊕s) = M · (f ′, 0, . . . , 0)
(where M is the matrix from Eq. 1). The difference matrix at
the beginning of round 31 is shown in the second row of Figure
4. Note that 4, 8, B and 2 are hexadecimal scalars. As discussed
above, step AC does not lead to any changes in the difference.
Step SC maps the four non-zero differences to new, unknown
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Fig. 5. Equation construction for the attack on LED-64

values a, b, c and d. The SR step shifts the differences within
the rows, and the MCS step multiplies the difference matrix
by M . The resulting matrix not changed by step AC. It turns
out that the relationship between four unknown variables a,
b, c and d described by the entries of the difference matrix is
sufficient for cryptanalysis. Note that applying the SC step now
would replace all differences by unknown values and destroy
all residual information.

The attack is performed by creating equations for the cipher
state after step AC of round 32, in which the propagation anal-
ysis terminated. The general procedure is outlined in Figure 5.
Recall that one fault-free encryption and one encryption with
fault injection were performed and the respective ciphertexts
C ′ and C have been recorded. The state of the fault-affected
cipher after step MCS in round 32 is C ′ ⊕K, the state after
step SR is MCS−1(C ′ ⊕ K), and the state after step AC is
SC−1(MCS−1(C ′ ⊕ K)). Note that the secret key K is un-
known; therefore it is represented by 16 variables k1, . . . , k16,
each representing a four-bit portion of K. The same equation
is constructed starting with the fault-free ciphertext C. The
difference of the resulting states after step AC of round 32
must match the result of the propagation analysis in Figure 4.

The approach outlined above yields a system of equations
with unknown variables a, b, c and d (which describe the
intermediate effects of the fault injection) and k1, . . . , k16 (the
secret key). Note that neither the plaintext P nor the actual
fault value f are present in the equation. The equations are
over GF(16) in which all transforms except SBox are linear.
The equations can be solved in two ways. It is possible to
combine the equations that describe parts of the key and apply
filtering techniques which eliminate a large number of possible
key candidates, such that the number remaining candidates is
small enough for brute-force search [33]. Alternatively, the
system of equations can be mapped to a Boolean-satisfiability
instance and solved using a SAT solver [38]. The latter is an
example of an algebraic attack [39].

In summary, the relationships introduced into the crypto-
graphic function by a single fault injection are sufficient to
find the secret key in practical time using today’s computers,
as illustrated by comprehensive results in [33], [38].

V. COUNTERMEASURES AND DESIGN CONSIDERATIONS

Protection against fault-based attacks can work on mul-
tiple abstraction levels: technology, circuit, information, or
application. Technology-level approaches focus on physical
protection of circuits (to hinder the attacker from accessing
the device by storing sensitive information in parts of the
circuit that are difficult to access, or shielding these parts of
the circuit), or on identifying tampering attempts by providing
sensors that detect light irradiation, power glitches, changes in
clock frequency, and so forth. If a sensor identifies suspicious
activity, the circuit can react by self-deactivation, requesting a

new, uncompromized secret key, producing a random output to
mislead the attacker, and/or generating a system-wide alarm.
Techniques at the circuit level are more focused on the passive
side-channel analysis. For example, there are design styles
for which the switching activity (and therefore the power
consumption) is independent from the data being processed,
complicating power analysis. However, these techniques tend
to incur large area and power overheads.

A large class of countermeasures is based on different
forms of redundancy, similar to techniques used to detect
transient faults during the operation of the circuit [40]. One can
distinguish between hardware redundancy (providing multiple
copies of the same block along with voters, comparators,
error-detection and reconfiguration circuitry and the like),
time redundancy (repeating potentially erroneous calculations),
information redundancy (using special codes to detect and/or
correct errors) and software redundancy (using machine in-
structions for errors in microprocessors). All these methods are
associated with considerable area, performance and/or power
overheads.

A fundamental difference of fault-based attacks from tran-
sient faults is their deterministic nature. For example, circuit
duplication is highly effective in detect a random transient
fault, as the probability that exactly the same fault will occur
in both copies is very small. On the other hand, the malicious
attacker will deliberately attempt to inject two identical faults
into both copies in order to escape detection. When deploying
information redundancy based on the simple parity code, the
attacker will target circuit locations which propagate to an
even number of outputs. There are special non-linear robust
codes [41] that have been developed to avoid undetected
manipulations.

It is possible to develop specific protection mechanisms
for a given cryptographic function or its subroutine. For
example, the overview article [24] considers a number of
implementations of the RSA algorithm with varying degree
of protection against active and passive side-channel analysis.
While many such approaches are effective and elegant, they
are often restricted to a small class of algorithms and attack
scenarios. With over 700 attacks published so far, the need for
generic approaches is obvious [42].

A generic design flow to harden the circuits against fault-
based attacks will have to take the trade-off between robust-
ness and various types of costs (area, performance, power
consumption) into account. This is particularly important for
lightweight secure devices used in ultra-low-cost applications
with very limited available energy. There are also non-trivial
interactions with passive side-channel analysis: for instance,
adding redundancy may increase the correlation between the
data and the power consumption and make the circuit more
susceptible to a power attack. A systematic approach also
requires metrics to quantify the vulnerability of a circuit
to attacks; some first considerations on a definition of such
metrics can be found in [43].

One difficulty in doing research on fault-based attacks is
the lack of reliable information on vulnerabilities, counter-
measures and their effectiveness from the manufacturers of
actual secure circuits. They follow the security-by-obscurity
paradigm, which confronts the attacker with the additional
burden to identify the countermeasures before mounting the
actual attack. In the area of cipher design, this approach
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has long been replaced by making new developments public,
such that any vulnerabilities can be identified and published
by the scientific community before an attacker secretly finds
and exploits them. Departing from the security-by-obscurity
principle would give new impulses to the field and increase
the confidence of end-users that the designers did not overlook
some subtle side-channel through which protected information
can leak to the unauthorized attacker.

VI. CONCLUSIONS

Secure handling of protected data is a prerequisite for regu-
latory approval, societal acceptance and ultimately commercial
success of new applications. Fault-based attacks constitute a
substantial threat that needs to be understood, quantified, and
eliminated. Today’s countermeasures which address individual
attack scenarios must be subsumed by generic approaches
that considered fault-based attacks simultaneously with passive
side-channel cryptanalysis. Most realistic applications will be
subject to stringent area, performance and power constraints.
Practical approaches to harden a circuit against fault-based
attacks will offer trade-offs between robustness and costs,
combining techniques on multiple abstraction levels.
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[31] J. Blömer and M. Otto, “Wagner’s attack on a secure CRT-RSA
algorithm reconsidered,” in Workshop on Fault Diagnosis and Tolerance
in Cryptography (LNCS 4236), 2006, pp. 13–23.

[32] P.-A. Fouque, R. Lercier, D. Real, and F. Valette, “Fault attack on
elliptic curve Montgomery ladder implementation,” in Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2008, pp. 92–98.

[33] P. Jovanovic, M. Kreuzer, and I. Polian, “A fault attack on the LED
block cipher,” in Int’l Workshop on Constructive Side-channel Analysis
and Secure Design (LNCS 7275), 2012, pp. 120–134.

[34] Z. Wang and R. Lee, “Covert and side channels due to processor
architecture,” in Comp. Security Applications Conf., 2008, pp. 473–482.

[35] B. Yang, K. Wu, and R. Karri, “Secure scan: A design-for-test architec-
ture for crypto chips,” IEEE Trans. CAD, vol. 25, no. 10, pp. 2287–2293,
2006.

[36] J. DaRoit, G. D. Natale, M.-L. Flottes, and B. Rouzeire, “Scan attacks
and countermeasures in presence of scan response compactors,” in IEEE
European Test Symp., 2011, pp. 19–24.

[37] I. Polian, “Power supply noise: causes, effects, and testing,” ASP Jour.
Low-Power Electronics, vol. 6, no. 2, p. 326, 2010.

[38] P. Jovanovic, M. Kreuzer, and I. Polian, “An algebraic fault attack on
the LED block cipher,” in Int’l Conf. on Symbolic Computation and
Cryptography, 2012.

[39] P. Jovanovic and M. Kreuzer, “Algebraic attacks using SAT-solvers,”
Groups – Complexity – Cryptology, vol. 2, no. 2, pp. 247–259, 2010.

[40] I. Koren and M. Krishna, Fault-Tolerant Systems. Morgan Kaufmann,
2007.

[41] M. G. Karpovsky, K. J. Kulikowski, and Z. Wang, “Robust error detec-
tion in communication and computation channels,” in Int’l Workshop
on Spectral Techniques, 2007.

[42] M. Wagner, “700+ attacks published on smart cards: The need for a
systematic counter strategy,” in Int’l Workshop on Constructive Side-
channel Analysis and Secure Design (LNCS 7275), 2012, pp. 33–38.

[43] V. Tomashevich, S. Srinivasan, F. Foerg, , and I. Polian, “Cross-level
protection of circuits against faults and malicious attacks,” in IEEE Int’l
On-Line Test Symp., 2012.

Embedded Tutorial IV

17


