
IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2004 Published by the IEEE Computer Society, Vol. 5, No. 7; July 2004

Adaptive Resource Management in Middleware: A Survey

Hector A. Duran-Limon, Tecnológico de Monterrey
Gordon S. Blair, Lancaster University
Geoff Coulson, Lancaster University

Current middleware technologies cannot meet the demands of new application areas, such as embedded and mobile systems,
that require mechanisms for dealing with a changing environment. This article reviews several approaches for providing
adaptive resource management for middleware.

Current middleware technologies, such as the Common Object Request Broker Architecture (CORBA)1 and .NET
(http://msdn.microsoft.com/net), mask system and network heterogeneity problems and alleviate the inherent complexity of
distributed systems in many application areas. However, the recent emergence of new application areas for middleware, such
as embedded systems, real-time systems, and multimedia, imposes challenges that few existing middleware platforms can
meet. In particular, because they impose greater resource-sharing and dynamism demands, these application areas require more
complex and sophisticated middleware. Resource sharing must be controlled and predictable to ensure that activities running
on the same middleware instance have adequate resources.

Dynamism is most obvious in mobile computing systems, which are inherently dynamic. Consider, for instance, a mobile
computer that's initially connected to a fixed network. At this point, the machine has plenty of network resources. However,
when the user moves it to another place and replaces the network connection with a wireless one, the mobile computer
experiences a lack of network bandwidth. Furthermore, many applications (distributed multimedia, for example) are inherently
dynamic for instance, the number of participants in a videoconference system can change at any time. So, the application's
resource requirements fluctuate over time. Other application areas and types have dynamism requirements as well. Even
embedded real-time applications can benefit from middleware support for dynamism when just-in-time component loading and
automated system evolution are desirable goals.

Adaptive resource management helps systems meet these requirements, especially when unexpected perturbations lead to
resource scarcity. Dynamically redistributing resources within application activities can address such problems that is,
systems should be able to change resource reservations over time on a per-activity basis. This approach is only possible,
however, when the system knows both the resource requirements and the resource availability. Selecting the most appropriate
replacement for a component requires that the system also know the resource demands of the components running the
application. Such replacements usually involve a trade-off between resource types. For instance, replacing a Global System for
Mobile Communications (GSM)2 compressor with a mixed-excitation linear predictive (MELP) coder3 compressor trades
network bandwidth for CPU demand.

Some researchers have introduced adaptive resource management support in middleware platforms and as a result have
produced approaches offering facilities for configuring and reconfiguring resources. This article reviews the most important
work in adaptive resource management in middleware. Our goal is to help practitioners in general and next-generation
middleware architects in particular evaluate the strengths, limitations, and drawbacks of current and new approaches and to
define some guidelines for future efforts. Relevant research not covered in our review include Realize,4 Darwin,5 Agilos,6
Globus,7 and FlexiNet.8

1
IEEE Distributed Systems Online July 2004

RESOURCE MANAGEMENT IN MIDDLEWARE

Resource management has two purposes:

 Enhance system performance by maximizing use of system resources, such as CPU, memory, and network
bandwidth

 Distribute and allocate system resources according to application resource requirements

Developers must sometimes choose one goal at the other's expense. For instance, hard real-time applications (critical
applications that can't tolerate missed deadlines) usually overbook resources to support worst-case execution times.

Resource management also plays an important role in the adaptation process in terms of both resource awareness and dynamic
resource reallocation. That is, a middleware platform can provide facilities that inform a system of computational resource
availability, current management policies, and resource allocation among the system's activities. Such platforms also provide
facilities to dynamically reconfigure allocated resources and replace management policies when perceiving environmental
changes. For example, a platform could redistribute CPU time and memory to meet the needs of the system's activities.

This article assumes that the most adequate and natural locus for applying adaptation is at the middleware level. Adaptation at
the operating-system level is platform-dependent and requires deep knowledge of the operating system's internals. In addition,
unwanted changes at this level could be catastrophic because they might affect every application running in a node. At the
other extreme, some research in operating systems9 and networking10 has advocated leaving as much flexibility and
functionality to applications as possible to satisfy their many requirements. Application-level adaptation imposes an extra
burden on the application developer, however. In addition, because they're application-specific, adaptation mechanisms
developed at this level can't be reused.

Two aspects openness and ease of use are essential to achieving adaptive resource management in middleware. Although
other aspects are also important, a system is adaptive and practical if it meets at least these two aspects. For example,
consistency support ensures that the system is always in a valid state; however, consistency check mechanisms aren't essential
if developers take care to maintain the system in a safe state.

Openness and flexibility

Current middleware follows the traditional software engineering approach that is, it hides the implementation details from
the user. Encapsulating the implementation details results in a "black box" that's difficult to inspect and modify. To achieve the
resource management adaptation that middleware requires, developers must introduce open resource configuration and
reconfiguration.

Resource management in middleware should adapt to the deployment platform's specific requirements. Therefore, both
resource configurations (that is, resource allocation) and resource management policies should be configurable. For example,
in embedded systems, devices such as PDAs and sensors, which have limited battery life, need power management to use
energy efficiently. Because memory and CPU resources are also limited, the resource system should conform to the constraints
imposed by the deployment platform. Resource configuration usually occurs at compile or load time. In either case, it
inevitably involves the use of a description language (or languages) to specify the configuration.

Resource management in middleware should also dynamically adapt to resource availability and other contextual changes.
Such resource management systems should support both runtime reallocation of system resources (also termed runtime
resource reconfiguration) that is, redistribution of the resources used by a set of executing tasks and dynamic changes to
the resource management policies. A mobile application is one type of highly dynamic system requiring resource adaptation.
Communication delays between nodes can vary unexpectedly as the number of hops to reach the destination changes;
conditions in the geographical area can cause random periods of disconnection; and an area can unexpectedly become
congested, resulting in a lack of communication resources.

2
IEEE Distributed Systems Online July 2004

Openness should be flexible. Flexibility relates to the magnitude of the changes that are allowed. A system is flexible if it
supports both coarse- and fine-grained resource management adaptation, which it achieves by representing resources at
multiple abstraction levels. Coarse-grained resource management occurs among several applications and can involve node
clusters. The middleware inspects an application's resources and, if other, more important applications require additional
resources, lowers its allocation on their behalf. Fine-grained resource management involves inspecting and reconfiguring the
resources used by a single application's sessions (that is, stream connections). Resource abstractions involved in this case
include thread and memory pools.

Finally, resource management can also occur at the operation (that is, function) level, whereby the system manages lower-level
resource abstractions, such as a single thread and chunks of memory buffer.

Ease of use

Performing adaptive resource management of applications involving multiple resource types can be difficult. Managing the
resources of large-scale applications can introduce further complexity. For example, distributed multimedia usually involves a
number of heterogeneous resources, including network bandwidth, CPU cycles, and memory buffers and storage. Resource
management in environments with heterogeneous resources typically requires abstract resource models to alleviate the
complexity of coordinating and adapting diverse resources. Such models should offer uniform resource abstractions, which
enable consistent resource management over various resource types. In addition, uniform resource abstractions let systems
evolve easily because they can incorporate new resource types and resource management policies as they become available.

Modeling resource management for single client-server interactions isn't difficult for small-scale applications. For large-scale
applications involving hundreds or thousands of interactions, however, code complexity increases considerably. Consider, for
example, an automatic car control system that lets hundreds of cars cooperate to avoid collisions and traffic congestions, or a
video-on-demand system that allows thousands of simultaneous sessions. Hence, modeling resource management of more than
one interaction from a single operation invocation to all the interactions in an application or group of applications also
requires abstractions.

MIDDLEWARE APPROACHES

Standardization efforts are ongoing in several areas of middleware.

 Remote procedure calls extend traditional procedure calls to a distributed paradigm, allowing procedures in
heterogeneous distributed platforms to be called as if they were local. The Open Group incorporated its RPC
standard into the Distributed Computing Environment standard. Most Unix-based operating systems and many
non-Unix systems support DCE's basic core of services.

 Transaction-oriented middleware aims to interconnect heterogeneous database systems. It supports the
processing of distributed transactions across platforms, offers high performance and availability, and ensures data
integrity.

 Message-oriented middleware provides asynchronous rather than synchronous interactions. That is, the client
need not be synchronized with the server because the client deposits messages in a message container, such as a
queue, which the server can collect at any time.

 Object-oriented middleware supports the remote invocation of object methods. CORBA, Java remote method
invocation (Java RMI, http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html), the Distributed Component
Object Model (DCOM, www.microsoft.com/com/dcom.asp), and .NET are important OO middleware platforms.

3
IEEE Distributed Systems Online July 2004

 Component-oriented middleware is a recent evolution of OO middleware. It allows for the large reuse of
software and introduces more reconfigurable capabilities into distributed applications. That is, component-based
technology lets developers dynamically insert and replace pieces of binary code. Examples of these technologies
include Enterprise JavaBeans (EJB, http://java.sun.com/products/ejb) and the CORBA Component Model
(CCM).11

Often a middleware platform involves more than one middleware type. For instance, the Java Message Service (JMS)
specification (http://java.sun.com/products/jms/docs.html) combines the message and object paradigms. Another example, the
CORBA Notification Service,12 is an OO platform featuring event communication services.

Object- and component-oriented middleware are fundamental to resource management. The encapsulation and abstraction
properties of the object and component approaches are attractive for modeling and managing middleware resources.13
Transaction-oriented middleware is suitable for managing storage and communication resources, but it offers little resource-
processing support. Message-oriented middleware deals well with communication resources but it achieves limited integration
with processing and storage resources. In addition, encapsulating storage resources with RPC-oriented middleware is difficult.
Object- and component-oriented middleware, on the other hand, provide a natural way for cleanly encapsulating and
integrating these resources. For instance, both approaches can easily hide the complexity of resource management algorithms.

Crucially, the flexibility criterion demands resource representation at multiple abstraction levels. In addition, the ease-of-use
criterion requires the use of abstract resource models. The object and component paradigms are clearly best suited for
representing these abstractions.

Our review of approaches to adaptive resource management at the middleware level uses openness, flexibility, and ease of use
as evaluation criteria.

Real-time CORBA and Dynamic Scheduling

Real-time CORBA (RT-CORBA)14 offers facilities for end-to-end predictability of operations in fixed-priority CORBA
applications. The standard provides support for processing, communication, and memory resources. It represents processing
resources as thread pools (that is, group of threads). Users configure communication resources by selecting an object request
broker (ORB)/transport protocol and establish connections in advance using the explicit binding mechanism. Memory
resources are configured within thread pools. Users specify these resources through CORBA Interface Definition Language
(IDL) interfaces.

The standard presents a platform-independent priority scheme and defines a priority propagation mechanism that propagates
thread priorities across computing nodes. RT-CORBA supports priority transforms, which it implements as "hooks" that
intercept requests and can change invocation priority.

The OMG's Dynamic Scheduling adopted standard15 aims to overcome RT-CORBA's limitations in terms of dynamic
scheduling. Dynamic Scheduling CORBA extends the concept of activity (an analysis or design concept describing a sequence
of control flow that can traverse system boundaries), introduced in RT-CORBA, to an implementation entity, or distributable
thread. A distributable thread carries its scheduling parameters across system boundaries and can encompass one or more
threads. A distributable thread can be partitioned into a (potentially nested) set of scheduling segments, each representing a
control flow associated with particular scheduling parameters that can span node boundaries. Scheduling segments can be
useful, for example, when independently developed software components define their own scheduling segments.

Openness and flexibility. Priority transforms let the system change priorities during resource reconfiguration to
accommodate external factors such as server load. The Dynamic Scheduling CORBA standard lets the system modify
scheduling parameters during operation, giving dynamic applications more flexibility to adapt. In addition, Dynamic
Scheduling provides language support (IDL definitions) for configuring processing, communication, and memory resources.
Because it has no resource model for representing resources at multiple abstraction levels, its ability to support resource
configuration and reconfiguration is limited.

4
IEEE Distributed Systems Online July 2004

Ease of use. RT-CORBA's distributable threads handle the complexity of large-scale applications. A distributable thread
represents the processing resources of a coarse-grained distributed interaction. Expanding these threads to encompass
communication and memory resources as well would improve the approach. In addition, this approach does not support the
uniform representation of heterogeneous resources.

UML scheduling profile

The OMG bases its standard for a Unified Modeling Language scheduling profile16 on a generic framework for modeling
resources.17

In the UML world, a profile is the specialization of UML's general semantics for a particular domain. Within this resource
framework, a resource is a generic abstraction denoting physical (processors, memory, networks, and so on) or logical (such as
buffers, queues, and semaphores) devices. The framework views a resource as a server with associated quality-of-service
attributes that attends client demands. A QoS contract captures both the client's QoS requirements and the QoS offered by the
server.

The UML scheduling profile provides a layered interpretation of the relationship between clients and resources. In a layered
interpretation, a two-viewpoint model represents the distributed system. The client (application) side of the relationship relates
to the logical viewpoint, whereas the resource (platform) side is the engineering viewpoint. The logical viewpoint represents
the logical interactions of the distributed-system entities. It abstracts away how the system implements its entities as well as the
interaction mechanism details. The engineering viewpoint then establishes how the system realizes the logical viewpoint. More
concretely, this viewpoint describes how a specific technology implements the logical-viewpoint elements. A realization
relationship is the relationship between the two models whereby elements of the logical model are mapped to elements of the
engineering model. Recursively applying the realization relationship can provide different levels of abstraction. At one level of
abstraction, the engineering model can be viewed as a logical model and mapped to its own engineering model. The recursion
finishes when it reaches hardware resources.

Openness and flexibility. The logical model is related to the Reference Model for Open Distributed Processing (RM-
ODP)18 computational viewpoint, which provides representation for a system's elements along with their logical interactions.
In addition, the layered interpretation engineering model, which realizes the logical model, resembles both the RM-ODP
engineering and technology viewpoints. Because we can apply the models recursively, they can represent various levels of
abstraction. The UML scheduling profile also fully supports resource configuration at multiple abstraction levels. However, the
standard focuses more on support for modeling real-time systems' QoS requirements and does not address resource
reconfiguration issues directly.

Ease of use. The approach supports the separation of concerns, thus simplifying complex design problems by separating
logical aspects from implementation concerns. Furthermore, because the logical and engineering models are detached, the
logical model can be realized on several different platform configurations without modification. Hence, the standard provides
tools to address the complexity of large-scale systems and presents a comprehensive resource model for representing
heterogeneous resources uniformly.

Real-Time Adaptive Resource Management

Honeywell's Real-Time Adaptive Resource Management platform19 provides middleware mechanisms for QoS negotiation
and adaptation. In the RTARM resource model, service managers, representing resource management components, manage
both specific resources and computing nodes. As Figure 1 shows, SMs are in recursive hierarchy, with higher-level SMs
constructed on top of lower-level SMs. At the top level, SMs coordinate end-to-end resource negotiation and adaptation. At the
lowest level, SMs model individual resources, such as CPU and network resources, within a node. Interestingly, lower-level
SMs provide an adapter mechanism, which supports the incorporation of current and future components implementing
scheduling algorithms or protocols. A plug-and-play feature lets RTARM dynamically load SM components, allowing users to
implement a different SM by replacing the set of components that realizes a particular SM component.

5
IEEE Distributed Systems Online July 2004

Figure 1. Hierarchy of system managers (SMs) in the Real-Time Adaptive Resource Management (RTARM) platform.

A distributed session is the unit of resource negotiation, allocation, and scheduling. The system creates a distributed session for
each application program. Subsessions are sessions running on individual computing nodes that encompass the set of resources,
such as threads and buffer, used for execution. A task is a unit of resource management for a given resource agent. For
instance, a CPU task represents the list of threads belonging to a subsession.

Finally, the resource framework provides the ripple scheduling algorithm, consisting of two major elements:

 A scheduling spanning tree describes the execution path across multiple nodes of an application.

 A two-phase negotiation and adaptation protocol performs an admission control test on the associated spanning
tree and propagates either a commit or an abort command along the tree.

The protocol also shrinks the executing sessions' QoS if the amount of resources available to attend the demands of all sessions
is insufficient. After QoS shrinking, it preempts low-criticality sessions if sufficient resources aren't available. At the end of the
negotiation phase, the protocol expands the executing sessions' QoS to maximize the application QoS.

Openness and flexibility. The ripple scheduling algorithm fully supports resource reconfiguration. RTARM offers both
coarse- and fine-grained adaptation. The distributed session the unit of resource management encompassing all the resources
required for executing an application supports coarse-grained adaptation. In case of resource contention, for instance, the
system might suspend an entire application on behalf of a higher-priority one. Low-level SMs can achieve fine-grained
reconfiguration. Although the framework provides mechanisms for resource reconfiguration, its support for static resource
configuration seems limited.

Ease of use. A main strength of the RTARM framework is its generic resource model, in which SMs model different
resource management components uniformly. Hence, it fully supports the management of heterogeneous resources. Using
distributed sessions tackles the complexity of large-scale applications.

The ERDOS QoS architecture

The ERDOS (end-to-end resource management of distributed systems) project20 offers a generic and comprehensive resource
framework providing a middleware architecture with QoS-driven resource management capabilities. The framework offers
facilities for admission control, negotiation, and graceful degradation.

Three models resource, system, and application describe a distributed system as a graph whose nodes are subsystems or
resources and whose edges are connections. A subsystem then includes either a set of resources or a set of subsystems

6
IEEE Distributed Systems Online July 2004

governed by a single resource management scheme.

The resource model provides a uniform abstraction of the resources system. The system model defines a hierarchical structure
in which the resources are at the bottom layer. The application model captures application information such as the application
component graph and its associated QoS properties. The application component graph is reconfigurable to allow for the
dynamic replacement of components. The application model also lets users recursively encapsulate object interactions. ERDOS
defines an extended CORBA IDL to capture this model.

Openness and flexibility. In the ERDOS framework, systems reconfigure resources by performing QoS degradation and
modifying the application graph structure. A hierarchical resource model allows both coarse- and fine-grained adaptation.
Users can configure resources using an extended CORBA IDL; however, the extensions only partially capture the resource
framework.

Ease of use. In large-scale applications, the application model lets users recursively encapsulate object interactions. A
service's granularity can range from that provided by a single component to that of the entire application. Finally, users can
model multiple types of resources uniformly; thus, the approach fully supports the representation of multiple resource types.

QuO and TAO projects

A joint effort between the Quality Objects (QuO)21 and ACE Orb (TAO) projects22 aims to study adaptive middleware for real-
time systems.23 QuO provides a framework for specifying the QoS of CORBA object interactions; TAO is an RT-CORBA
implementation focusing on optimization.

One approach integrates the middleware with resource management at the operating system and network levels. More
specifically, it layers QuO on top of TAO and incorporates integrated-service (IntServ) mechanisms24 and the differentiated-
service (DiffServ) architecture.25 TAO provides a mechanism that maps RT-CORBA priorities14 to DiffServ network
priorities. QuO's adaptive mechanisms then change these priorities dynamically according to network traffic conditions. In
addition, the approach reserves CPU resources using the TimeSys Linux operating system,26 which supports CPU process
reserves based on parameters such as period and computation time.

QuO provides the QoS Description Language (QDL) for specifying QoS aspects. QDL's designers followed aspect-oriented
programming techniques,27 decomposing programs into different aspects of concern. Developers use a different language to
program each of these aspects separately: a contract description language to specify QoS contracts, an adaptation specification
language28 to specify delegates' adaptive behavior, and a connector setup language to define how the QuO objects are
associated with the client and object.

Openness and flexibility. QuO's adaptive mechanisms let users introduce dynamic changes according to monitored
conditions. However, QuO offers no resource model for uniformly representing resources at different levels of abstraction, as
do some of the approaches presented earlier. Thus, its flexibility for resource management is limited. Because the approach is
RT-CORBA compliant, it provides some support for both resource configuration and resource reconfiguration.

Ease of use. QDL removes some of the complexity of programming QoS. However, the approach provides no resource
description language. In addition, the QuO/TAO approach focuses on single client-server interactions and doesn't directly
support resource management for a large number of interactions. However, as an RT-CORBA compliant ORB, it does provide
support for dealing with large-scale applications. Finally, it gives no support for the treatment of heterogeneous resources.

DynamicTAO

DynamicTAO29 is a CORBA-compliant reflective ORB supporting runtime distributed reconfiguration. Its implementation is a
more flexible extension of the TAO ORB. A system can use reflection to inspect and change its internals in a principled way30;
thus, a reflective system performs both self-inspection and self-adaptation. To accomplish this, the system has a representation

7
IEEE Distributed Systems Online July 2004

of itself that is causally connected to its domain that is, any change in the domain must affect the system, and vice versa.

Figure 2 shows the dynamicTAO architecture. DynamicTAO specifies component dependencies and component resource
requirements (hardware and software) in a simple prerequisite description format. Examples of hardware requirements are
machine type, operating system, percentage of CPU time, and minimal RAM. Software requirements can include a file system,
a window manager, and a Java virtual machine. The 2K resource management service31 offers a hierarchy of resource
managers, with global resource managers at the top and local resource managers at the bottom. Local resource managers are
present in each node of the distributed system. Global resource managers constitute a cluster of either local or global managers.

Figure 2. DynamicTAO architectural framework.

A collection of component configurators performs dynamic customization. These configurators maintain information about the
dependencies between the components they manage. The DomainConfigurator holds references to ORB instances and to
servants running within an address space. In addition, TAOConfigurators attach and detach components and implement
strategies such as scheduling, concurrency, security, and monitoring. Components are implemented as dynamically loadable
libraries that can be linked to the system at runtime.

Openness and flexibility. The finest granularity for a resource manager is constrained to a node-wide scope, hence
limiting the possibilities for finer-grained resource reconfiguration. For instance, users can inspect a given node's CPU
availability. Nevertheless, dynamicTAO provides no specific facilities for reconfiguring the resource usage of a single
application or a particular application task running on a single node. Moreover, the approach's main focus is application
adaptation, such as changing a video application's frame rate and dynamic customization of the ORB (core ORB component
replacements) rather than resource adaptation. Although the prerequisite description format supports resource configuration,
only coarse-grained configuration is feasible because a node is the finest granularity for a resource abstraction. So, partial
support is offered for both configuration and reconfiguration of resources.

Ease of use. Resource managers partially support the representation of heterogeneous resources. The resources modeled
by a resource manager are limited to clusters of resource managers (that is, collections of resource managers managed by
higher-level resource managers) and a node's hardware resources. For instance, resource managers don't support separate
modeling of communication resources. Although using hierarchical managers to cross node boundaries helps diminish the
complexity of managing large-scale applications, dynamicTAO presents no abstractions for managing resources on a per-
application or -session basis (as supported by RTARM and ERDOS). In this respect, it provides partial support.

Open ORB

The Open ORB framework32 is a componentized reflective middleware that includes task and resource models.33 The task
model allows high-level analysis and design of the resources subsystem, which we can use to model resource management of
both coarse- and fine-grained interactions. Higher-level tasks can represent an application or group of applications. At the task

8
IEEE Distributed Systems Online July 2004

hierarchy's lowest level, a task can represent the activity of a single object operation.

A close relationship exists between the task and resource models. Tasks have an associated pool of resources defined by the
resource model. More specifically, the resource model lets us model different resource types at multiple levels of abstraction.
An object running one task can invoke another object concerned with a different task. Such a method invocation represents a
task switching point. Thus, a task switching point corresponds to a change in the underlying resource pool to support execution
of the task in play. Figure 3 shows the various levels of resource abstraction in which the user constructs higher-level resources
on top of lower-level resources. Virtual task machines are top-level resource abstractions and can encompass several resource
types (such as CPU, memory, and network resources) allocated to a particular task.

Figure 3. A resource hierarchy in Open ORB.

The resource manager hierarchy complements the resource hierarchy. Open ORB includes operations to traverse both
hierarchies: getHL() retrieves the entity located at a higher abstraction level whereas getLL() provides the entity located at a
lower abstraction level. The user can dynamically change a processing resource's scheduling parameters at any abstraction
level and can modify the amount of resources contained by a passive resource. For instance, it can increment the amount of
memory buffer in an abstract resource. We can dynamically replace a resource manager's resource management policy at any
abstraction level. In case of resource contention, the user can suspend less important tasks on behalf of more important tasks.

Open ORB uses Xelha,34 an architecture description language35 (a formal notation for describing software architectures in
terms of coarse-grained components and connectors), and a resource configuration description language (RCDL)34 to specify
configuration and reconfiguration of the resources system. Xelha is concerned with the high-level design of QoS management
issues. RCDL, in contrast, is a set of aspect languages supporting the low-level specification of the system resources. (Aspect-
oriented programming27 lets us decompose programs into aspects that cross-cut each other.) More specifically, service
description language descriptions give information about the QoS level, task, and object class associated with a service. The
Task Switch Description Language defines task switching points, whereas the Task Description Language describes the
resources assigned to tasks. The Resource Description Language defines the specific resource requirements of a task instance
for a particular deployment platform. The QoS Management Graph Description Language describes the QoS management
structure.

Openness and flexibility. The Open ORB framework provides language support for high-level QoS management specification
and fine-level system resource tuning. It also provides facilities for traversing the resource hierarchy and performing changes at
any abstraction level. Because the framework supports resource representation at multiple abstraction levels, coarse- and fine-
grained resource management are feasible. It thus fully supports resource configuration and reconfiguration.

9
IEEE Distributed Systems Online July 2004

Ease of use. By modeling multiple interactions as a single entity, the task model reduces the complexity of large-scale
applications. Reflection, however, introduces greater flexibility at the expense of some complexity. Because fully reflective
systems are usually difficult to implement, Open ORB achieves partial support in this respect. On the other hand, the
framework fully supports the uniform representation of different resource types.

Table 1 summarizes our evaluation of the reviewed approaches. (F indicates that the approach provides full support, P that the
approach offers partial support, and X that the approach gives little or no support.) None of the revised approaches provides a
complete solution for all evaluation points. However, RTARM, ERDOS, and Open ORB have the most comprehensive
resource frameworks, offering full support in three and partial support in one of the evaluated aspects. CORBA, the main
middleware standard, still requires further support for adaptive resource management. That is, it offers only partial support for
resource configuration and reconfiguration. In addition, it gives no support for the uniform representation of multiple resource
types at different abstraction levels.

Table 1. Evaluation of resource management in middleware platforms. (F indicates full support; P, partial support; and X, little
or no support.)

All the reviewed approaches provide at least partial support for openness and flexibility. Clearly the research community has
acknowledged the need for addressing both issues. Half of the approaches fully support either the configuration or
reconfiguration of resources; only Open ORB fully supports both aspects. Achieving the desirable level of openness will
require further work. Regarding ease of use, nearly half the approaches fully support uniform and consistent representation of
heterogeneous resources. Hence, the community has also acknowledged the importance of dealing with different resource
types. More efforts are still required in this area, however.

Finally, the evaluation results show that most researchers recognize the need for support for dealing with the complexity of
large-scale applications that is, most of the approaches fully support this aspect.

More openness and flexibility also introduce more complexity. For instance, mechanisms should be provided to maintain a
system in a consistent state after reconfigurations are carried out. Further research is needed for managing such a complexity.
Self-managing or automatic systems are possible approaches, which would remove the burden from developers and users.

10
IEEE Distributed Systems Online July 2004

Acknowledgments

We thank the reviewers for their valuable comments, which have notably improved this article's content.

References

1. Common Object Request Broker: Core Specification, Revision 3.0.3 (CORBA v3.0.3), Object Management Group,
2004; www.omg.org/technology/documents/formal/corba_iiop.htm.

2. A.S. Spanias , "Speech Coding: A Tutorial Review,"Proc. IEEE, vol. 82, no. 10, 1994,pp. 1441-1582;
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=326413.

3. A. Spanias , "Speech Coding for Mobile and Multimedia Applications,"Digital Signal Processing Technologies-Critical
Technology Reviews (CR57), P. Papamichalis and R. Kerwin, eds., SPIE Press, 1995,pp. 115 144.

4. V. Kalogeraki , P.M. Melliar-Smith, and L.E. Moser , "Dynamic Scheduling for Soft Real-Time Distributed Object
Systems,"Proc. 3rd IEEE Int'l Symp. Object-Oriented Real-Time Distributed Computing (ISORC 2K), IEEE CS Press,
2000,pp. 114 121; http://csdl.computer.org/comp/proceedings/isorc/2000/0607/00/06070114abs.htm.

5. P. Chandra , et al., "Darwin: Customizable Resource Management for Value-Added Network Services,"IEEE Network,
vol. 15, no. 1, 2001,pp. 22 35.

6. B. Li and K. Nahrstedt , "A Control-Based Middleware Framework for Quality of Service Adaptations,"IEEE J. Selected
Areas in Comm., vol. 17, no. 9, 1999, pp. 1632-1650.

7. I. Foster , A. Roy, and V. Sander , "A Quality of Service Architecture that Combines Resource Reservation and
Application Adaptation,"Proc. 8th Int'l Workshop Quality of Service (IWQOS), IEEE Press, 2000, pp. 181 188.

8. R. Hayton , FlexiNet Open ORB Framework, tech. report, APM Ltd., 1997.
9. D. Engler , M. Kaaashoek, and J. O'Toole , "Exokernel: An Operating System Architecture for Application-Level

Resource Management,"Proc. 15th ACM Symp. Operating System Principles, ACM Press, 1995.
10. S. Floyd , et al., "A Reliable Multicast Framework for Light-Weight Session and Application Level Framing," Proc.

Conf. Applications, Technologies, Architectures, and Protocols for Computer Comm., ACM Press, 1995,pp. 342-356.
11. J. Mischkinsky , ed. "CORBA 3.0 New Components Chapters," CCM FTF Draft ptc/99-10-04, Object Management

Group, 1999; http://CORBAweb.lifl.fr/OpenCCM/docs/ptc_99-10-04.pdf.
12. Notification Service Specification, Version 1.0.1, Object Management Group, 2002;

www.omg.org/technology/documents/formal/notification_service.htm.
13. D.E. Bakken , "Middleware,"Encyclopedia of Distributed Computing, J. Dasgupta, ed., Kluwer Academic Publishers,

2003.
14. Real-time CORBA 1.0, Adopted Specification, ptc/99-06-02, Object Management Group, 1999.
15. Dynamic Scheduling, final adopted specification, ptc/01-08-34, Object Management Group, 2001.
16. UML Profile for Schedulability, Performance, and Time, Version 1.0, Object Management Group, 2002;

www.omg.org/technology/documents/formal/schedulability.htm.
17. B. Selic , "Generic Framework for Modeling Resources with UML,"Computer, vol. 33, no. 6, 2000,pp. 64 69.
18. Reference Model for Open Distributed Processing, Parts 1, 2, 3, ITU-T Rec. X.901 | ISO/IEC 10746-1,2,3, Int'l

Standards Organization/Int'l Electrotechnical Commission, 1995.
19. I. Cardei , et al., "Hierarchical Architecture for Real-Time Adaptive Resource Management,"Proc. IFIP/ACM

Middleware Conf., Springer-Verlag, 2000,pp. 415 434.
20. S. Chatterjee , B. Sabata, and M. Brown , "Adaptive QoS Support for Distributed, Java-Based Applications,"Proc.

IEEE Int'l Symp. Object-Oriented Real-Time Distributed Computing (ISORC 99), IEEE CS Press, 1999,pp. 203 212;
http://csdl.computer.org/comp/proceedings/isorc/1999/0207/00/02070203abs.htm.

21. P. Pal , et al., "Using QDL to Specify QoS-Aware Distributed (QuO) Application Configuration,"Proc. 3rd IEEE Int'l
Symp. Object-Oriented Real-Time Distributed Computing (ISORC 2K), 2000.

22. D.C. Schmidt , D.L. Levine, and S. Mungee , "The Design of the TAO Real-Time Object Request Broker,"Computer
Comm., vol. 21, no. 4, 1998, pp. 294 324.

23. R. Schantz , et al., "Flexible and Adaptive QoS Control for Distributed Real-Time and Embedded Middleware,"Proc.
4th IFIP/ACM/Usenix Int'l Conf. Distributed Systems Platforms, LNCS 2672, Springer-Verlag, 2003,pp. 374 393.

24. R. Braden , D. Clark, and S. Shenker , "Integrated Services in the Internet Architecture: An Overview," Internet Eng.
Task Force tech. report #RFC 1633, 1994; www.ifla.org/documents/rfcs/rfc1633.txt.

25. M. Carson , et al., "An Architecture for Differentiated Services," Internet Eng. Task Force tech. report RFC 2475,

11
IEEE Distributed Systems Online July 2004

1998; www.ietf.org/rfc/rfc2475.txt.
26. TimeSys Linux/RT User's Manual, TimeSys Corp., 2001.
27. G. Kiczales , et al., "Aspect-Oriented Programming,"Proc. 11th European Conf. Object-Oriented Programming

(ECOOP 97), Springer-Verlag, 1997,pp. 220-242.
28. R. Schantz , et al., "Packaging Quality of Service Control Behaviors for Reuse,"Proc. 5th IEEE Int'l Symp. Object-

Oriented Real-Time Distributed Computing (ISORC), IEEE CS Press, 2002;
http://csdl.computer.org/comp/proceedings/isorc/2002/1558/00/15580375abs.htm.

29. F. Kon , et al., "Monitoring, Security, and Dynamic Configuration with the Dynamic TAO Reflective ORB,"Proc. IFIP
Int'l Conf. Distributed Systems Platforms and Open Distributed Processing (Middleware 00), Springer-Verlag, 2000.

30. P. Maes , "Concepts and Experiments in Computational Reflection,"Proc. ACM Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 87), ACM Press, 1987.

31. F. Kon , et al., "Dynamic Resource Management and Automatic Configuration of Distributed Component
Systems,"Proc. 6th Usenix Conf. Object-Oriented Technologies and Systems (COOTS 01), Usenix, 2001.

32. G.S. Blair , et al., "The Design and Implementation of Open ORB version 2," IEEE Distributed Systems Online, vol. 2,
no. 6, 2001; http://csdl.computer.org/comp/mags/ds/2001/06/o6001abs.htm.

33. H.A. Duran-Limon and G.S. Blair , "Reconfiguration of Resources in Middleware,"Proc. 7th IEEE Int'l Workshop
Object-Oriented Real-Time Dependable Systems (WORDS 2002), IEEE CS Press, 2002,pp. 219 226;
http://csdl.computer.org/comp/proceedings/words/2002/1576/00/15760219abs.htm.

34. H.A. Duran-Limon and G.S. Blair , "QoS Management Specification Support for Multimedia Middleware,"J. Systems
and Software, vol. 72, no. 1, 2004,pp. 1 23.

35. N. Medvidovic and R.N. Taylor , "A Classification and Comparison Framework for Software Architecture Description
Languages,"IEEE Trans. Software Eng., vol. 26, no. 1, 2000,pp. 70 93;
http://csdl.computer.org/comp/trans/ts/2000/01/e0070abs.htm.

Hector Duran-Limon is a lecturer in the Department of Computing Science at the Tecnológico de Monterrey. His research
interests include resource management in adaptable middleware platforms and the role of reflection on such platforms. He is
also interested in the use of ADLs and component-oriented techniques for constructing distributed real-time systems. He has a
PhD from Lancaster University. Contact him at the Dept. of Computing Science, Tecnológico de Monterrey, Campus
Guadalajara, Mexico; hduran@itesm.mx. Web: http://academia.gda.itesm.mx/~hduran.

Gordon Blair is a professor of distributed systems at Lancaster University, an adjunct professor at the University of
Tromsø, and a visiting researcher at the Simula Research Laboratory in Oslo. He has a PhD from Strathclyde University.
Contact him at Dept. of Computing, Lancaster Univ., Bailrigg, Lancaster LA1 4YR, UK; gordon@comp.lancs.ac.uk.

12
IEEE Distributed Systems Online July 2004

Geoff Coulson is a reader in distributed computing at Lancaster University. His research interests include middleware
architecture, programmable networks, and network and operating system support for continuous media. He received his PhD in
distributed multimedia systems from Lancaster University. He is a member of the ACM and the British Computer Society.
Contact him at the Dept. of Computing, Lancaster Univ., Bailrigg, Lancaster LA1 4YR, UK; geoff@comp.lancs.ac.uk.

13
IEEE Distributed Systems Online July 2004

