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Abstract

In recent years, the explosion of available online information has brought forth new
data mining applications into the spotlight, such as automated querying about real-
world entities. This requires extraction of identifiers such as names and places from
text. The problem, however, is complicated by the non-uniqueness of identifiers. A
motivating example is the name Chris Anderson, which could either refer to Chris
Anderson, the curator of TED Talks, or Chris Anderson, the former editor-in-chief of
WIRED Magazine. Both individuals work in overlapping fields, and deciding whom
is referred to could be a difficult task, even when considering context. Correctly
identifying and resolving such ambiguous identifiers is crucial for enabling such ap-
plications to advance from the research lab into practical usage.

This master’s thesis presents a novel method for entity disambiguation in anonymized
graphs based on local neighborhood structure. Most existing approaches leverage
node information, which might not be available in several contexts due to privacy
concerns, or information about the sources of the data. We consider this problem
in the supervised setting where we are provided only with a base graph and a set of
nodes labeled as ambiguous or unambiguous. We characterize the similarity between
two nodes based on their local neighborhood structure using graph kernels; and effi-
ciently solve the resulting classification task using a support vector machine (SVM),
a standard machine learning technique.

Leveraging kernels is a powerful method for extending linear SVM classifiers to non-
linear classification tasks. Recently, a number of graph kernels have been proposed
for classifying graph structures. In this thesis, we present extensions of two existing
graphs kernels, namely, the direct product kernel and the shortest-path kernel, with
significant improvements in accuracy. For the direct product kernel, our extension
also provides significant computational benefits.

A key concern today is scalability of algorithms to web-scale datasets. This poses
new challenges for designing new machine learning methods. We use GraphLab, a
framework for distributed computing, to allow our extended kernels to be computed
in parallel. This ensures scalability and allows our method to handle large-size data.

We test our method on two real-world datasets, comparing our approach to a state-
of-the-art method. We show that using less information, our method is significantly
better in terms of either speed or accuracy or both.



Acknowledgments

We would like to express our gratitude towards our supervisor Vinay Jethava and
also Fredrik Johansson for their motivating discussions and inspiring ideas. A word
of thanks goes to Devdatt Dubhashi for providing helpful comments and curiosity
in the work. We would like to thank Recorded Future, a software company, and
their employees for their insight and help and for providing data. We would also
like to thank Bhavishya Goel and Jacob Lidman for helping us with setting up the
experiments on a computer cluster.



Contents

1 Introduction 1
1.1 Purpose and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 GraphLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Gather, Apply, Scatter . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The Subgradient Method . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Pegasos: Primal Estimated sub-GrAdient SOlver for SVM . . . . . . 16

2.4.1 Kernelized Version . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Direct Product Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Graph Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 Direct Product Kernel . . . . . . . . . . . . . . . . . . . . . . 20
2.7.2 Shortest Path Kernel . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.3 Graphlet Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Malin’s Random Walk Method . . . . . . . . . . . . . . . . . . . . . . 21

3 Related Research 26

i



CONTENTS

4 Our Approach 29
4.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Kernel Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Truncated Direct Product Kernel . . . . . . . . . . . . . . . . 32
4.2.2 Binned Shortest Distance Kernel . . . . . . . . . . . . . . . . 35
4.2.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Enabling Fast Computation . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Explicit Knowledge of φ . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Batch Computation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Graph Kernel Implementations . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Truncated Direct Product Kernel . . . . . . . . . . . . . . . . 38
4.4.2 Binned Shortest Distance Kernel . . . . . . . . . . . . . . . . 39

5 Applications 43

6 Experiments 44
6.1 Recorded Future News Data . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Internet Movie Database . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Discussion 54

8 Conclusions and Future Work 56

A Mathematical Notation 58

B Mathematical Proofs 60
B.1 Proof of Equation 2.18, p. 19 . . . . . . . . . . . . . . . . . . . . . . . 60
B.2 Proof of Equation 2.19, p. 19 . . . . . . . . . . . . . . . . . . . . . . . 61
B.3 Derivation of Equation 4.10, p. 35 . . . . . . . . . . . . . . . . . . . . 61
B.4 Derivation of Equation 4.5, p. 33 . . . . . . . . . . . . . . . . . . . . 62

ii



List of Figures

1.1 Local neighborhood example. . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Hyperplane separating two linearly separable classes. . . . . . . . . . 9
2.2 Non-linear kernel map example. . . . . . . . . . . . . . . . . . . . . . 14
2.3 Original graph in Malin’s method. . . . . . . . . . . . . . . . . . . . . 24
2.4 Graph focused on node of interest in Malin’s method. . . . . . . . . . 24

4.1 Local neighborhood example. (Restated) . . . . . . . . . . . . . . . . 30
4.2 Method overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Histogram of edge weights in the RF and IMDb datasets. . . . . . . 52
6.2 Parallel speedup of BSD kernel. . . . . . . . . . . . . . . . . . . . . . 53

iii



List of Tables

6.1 Classification accuracy on experiments. . . . . . . . . . . . . . . . . . 47
6.2 Timing results in experiments. . . . . . . . . . . . . . . . . . . . . . . 48

iv



List of Algorithms

1 The Pegasos algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Kernelized version of Pegasos. . . . . . . . . . . . . . . . . . . . . . . 18
3 Malin’s random walk method. . . . . . . . . . . . . . . . . . . . . . . 22
4 Detect ambiguous nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Calculate the number of random walks. . . . . . . . . . . . . . . . . . 33
6 Detect ambiguous nodes. Fast version. . . . . . . . . . . . . . . . . . 37
7 TDP kernel φ-calculation in GraphLab. . . . . . . . . . . . . . . . . . 39
8 TDP vertex program gather phase. . . . . . . . . . . . . . . . . . . . 39
9 TDP vertex program apply phase. . . . . . . . . . . . . . . . . . . . . 39
10 BSD kernel φ-calculation in GraphLab. . . . . . . . . . . . . . . . . . 41
11 BSD vertex program gather phase. . . . . . . . . . . . . . . . . . . . 41
12 BSD vertex program apply phase. . . . . . . . . . . . . . . . . . . . . 41
13 BSD vertex program scatter phase. . . . . . . . . . . . . . . . . . . . 42

v



1

Introduction

In recent years, the explosion of available online information has brought
forth new data mining applications into the spotlight. In combination with mod-

ern machine learning techniques, this allows for extraction of vast amounts of infor-
mation about real-world entities, such as people, places or companies. For example,
a user might be interested to know which cities Barack Obama is going to visit this
year. A machine is able to answer such a request due to increasingly refined machine
learning methods. Such a system requires automatic extraction of identifiers such
as names and places from text. The problem, however, is complicated further by
the non-uniqueness of identifiers. A motivating example is the name Chris Ander-
son, which could either refer to Chris Anderson, the curator of TED Talks, or Chris
Anderson, the former editor-in-chief of WIRED Magazine. TED Talks is an organi-
zation hosting talks about subjects such as technology, entertainment and design 1.
WIRED Magazine is a magazine covering how new technology affects culture, econ-
omy and politics 2. Thus, both individual Chrises work in overlapping fields, and
deciding whom is referred to could be a difficult task, even when considering context.
Correctly identifying and resolving such ambiguous identifiers is crucial for enabling
such applications to advance from the research lab into practical usage.

Resolving ambiguities in data is a well-studied problem, including methods for entity
resolution [5, 6, 24, 46], entity matching [9, 42] and entity disambiguation [16, 21,

1http://www.ted.com/
2http://www.wired.com/magazine/
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CHAPTER 1. INTRODUCTION

“Chris Anderson” “Chris Anderson”

TED WIRED
Figure 1.1: (Left) Local neighborhood (fictive) of the ambiguous vertex Chris An-
derson. (Right) Correct splitting of the vertex into its two true underlying entities.

22, 39]. These are all aimed towards associating references in text sources with
their correct underlying entities. These methods typically make use of similarities in
names [5, 6], meta-data [9] or source information [39], to decide which entities underly
which references. Relational entity disambiguation makes use of network structure
between entities [3, 4, 5, 39], sometimes together with additional information.

Big data analysis increasingly faces the challenge of how to preserve user anonymity [1].
While a number of privacy preserving mechanisms have been studied [23], the prac-
tical applications are still at a nascent stage [35]. Often, a simple approach to ad-
dress this privacy concern is using anonymization at source, prior to subsequent data
mining, by assigning pseudorandom identifiers to entities. In this setting, existing
techniques [5, 6, 9, 16, 21, 22, 24, 42, 46], building on similarity of entity attributes,
are rendered inapplicable, while the method presented in this thesis is inherently
well-suited. To the best of our knowledge, very little work has been done in this set-
ting. Moreover, our approach learns the nature of ambiguous nodes from the data,
making it suitable for more advanced anonymization techniques such as k-Degree
anonymization [35].

In this thesis, we present a novel method for anonymized relational entity disam-
biguation that leverages graph structure for detecting ambiguous identifiers. In our
setting we have a graph where the entities have been assigned a (possibly ambiguous)
identifier. A node in the graph represents one or several underlying entities, and an
edge symbolizes a connection between identifiers, such as co-occurrence in articles.
It should be noted that in our setting, graph structure and edge weights are the only
data available. We target the scenario where the full original data is unavailable or
expensive to access. Such situations occur when large amounts of data are parsed in
an online fashion, not to be looked at again. We direct our attention to Figure 1.1,

2



CHAPTER 1. INTRODUCTION

illustrating our problem with the above mentioned Chris Anderson. In the figure, the
two individuals have been assigned one common identifier, incorrectly merging them
into a single node in the graph. This error inevitably creates a strong connection
between the communities of TED and WIRED, something that we might not expect
to hold in reality.

In this thesis, we introduce a novel formulation of relational entity disambiguation
as a classification problem in an anonymized graph. The graph contains two classes
of nodes, with some labeled as either ambiguous (several underlying entities) or
unambiguous (only one underlying entity). We seek to detect ambiguous nodes in
such a graph, predicting new nodes to belong to one of the two above classes. Unlike
most other related research, our method works without using meta-data that reveals
node information. Our method works in the anonymized setting, making it suitable
for scenarios where privacy is an issue.

The method in this thesis solves our classification problem by leveraging kernel meth-
ods and a highly scalable support vector machine (SVM) implementation. Given a
graph with some nodes labeled as ambiguous or unambiguous, our method trains an
SVM classifier based on graph kernels, using the local neighborhood of labeled nodes
as input. The method is designed to operate in a distributed setting and is imple-
mented in GraphLab, a framework for doing distributed computation. The usage of
GraphLab allows for web-scale data to be processed.

Additionally, we extend two existing graph kernels, designing a domain-specific adap-
tation of the shortest path kernel [10], and a fast appropriate algorithm for the direct
product kernel [27] for unlabeled graphs. We show both theoretical and empirical ev-
idence of the computational benefits of the extensions, as compared with the original
graph kernels. We evaluate our method on two real-world datasets, comparing the
performance of different graph kernels, showing that our extensions outperform their
original counterparts both in terms of speed and accuracy. Our experimental results
also show that implementing our kernels in GraphLab gives a significant speedup.

We compare our method against a state-of-the-art method [39] at our task of detect-
ing ambiguous nodes. Our experiments on a well-studied public dataset show that
our method is significantly better than the state-of-the-art, either in terms of speed
or accuracy or both. Moreover, our method requires less information as it does not
demand the existence of data sources.

3



CHAPTER 1. INTRODUCTION

1.1 Purpose and Aims

With this thesis we aim to explore relational entity disambiguation in an anonymized
setting using graph kernels. The purpose of this is to create discussion in the field of
entity disambiguation as well as to contribute to current graph kernel research.

Our goals can be summarized by the following three points.

• Apply recent research and implement a scalable method for relational entity
disambiguation.

• Generalize and improve upon the above method.

• Perform experiments on real-world anonymized data.

1.2 Scope

There has been a lot of research in entity disambiguation, but most methods leverage
node information, and are thus not usable in the anonymized setting. Our focus
is not on such models, or the comparison of them. Rather, we limit ourselves to
anonymized relational entity disambiguation in the supervised setting. We wish to
introduce graph kernels into the field of entity disambiguation, and also create a
competitor to other models.

While there exist methods for associating ambiguous identifiers with their correct
underlying entities, we do not pursue them here. We limit ourselves as to only focus
on the problem of detecting ambiguous nodes, leaving the actual association process
as future work.

We limit ourselves to develop our method in the setting where the original source
data is not available. For comparison with the state-of-the-art, we look at a paper
by Malin [39], which to the best of our knowledge, contains the only methods that
are applicable in our setting with limited information. In Malin [39], two methods
applicable to our problem are presented; one based on random walks and one based on
hierarchical clustering. Since the random walk method was reported to give the best
result, we use it as a state-of-the-art comparison for our approach. We denote this
method Malin. As Malin demands knowledge of sources, we make an exception
and allow it usage of sources, as it is our only means of comparison. It should be

4



CHAPTER 1. INTRODUCTION

noted that when doing the comparative experiments, our method will never be able
to see the source data.

We limit our choice of graph kernels for investigation to the shortest path kernel [10],
direct product kernel [27] and graphlet kernel [52] and their extensions. For com-
pleteness, we note that several other graph kernels exist, such as Weisfeiler-Lehman
kernels [51] and fast subtree kernels [50]. We do however not investigate these graph
kernels in this thesis.

1.3 Method

This thesis project has been carried out as a collaboration between Chalmers and
Recorded Future, a web intelligence company, who provided us with one of the
datasets. The authors became interested in the thesis work partly because it was
in close connection with current research at Chalmers, and partly because the topic
concerned a real problem that companies such as Recorded Future experience on a
daily basis.

When starting the project, we began by studying relevant theory. We found Stephen
Boyd’s 3 two online courses Convex Optimization I and Convex Optimization II
particularly helpful for establishing a solid theoretical ground in optimization. For
machine learning and SVMs, we found Tristan Fletcher’s tutorial SVM Explained [25]
very helpful as an initial starting point. We also studied various other sources in order
to be prepared before starting on the central part of the project.

Our method is based on SVMs and the GraphLab framework, making these a natural
starting point for the thesis. We study these concepts in Chapter 2. It is crucial for
us to get a full understanding of these in order to implement our method and to be
able to extend it.

We also need to study various graph kernels in order to be able to implement these
for our method, and also later in the thesis, extend them.

A related topic is the state-of-the-art SVM solver Pegasos [48], which is important for
us to study in order to create a fast and scalable method. We initially set foot towards
creating a parallel implementation of Pegasos in GraphLab, but discovered later that
our graph kernel extensions had properties for making a parallel implementation
unnecessary. More information about this can be found in Chapter 4.

3http://www.stanford.edu/~boyd/
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CHAPTER 1. INTRODUCTION

All graph kernels except the direct product and graphlet kernel were implemented
in GraphLab in C++. The direct product kernel and also Malin was implemented
in Python. For the graphlet kernel, we used MATLAB. This was due to time
constraints.

Finally, we performed a large number of experiments on two real-world datasets,
comparing our different kernels as well as Malin in terms of speed and accuracy.
One of the datasets use Recorded Future data, while the other one was parsed from
raw data by ourselves. At the initial learning stage of the project, we performed
experiments on synthetic datasets, but as we found these results uninteresting, we
decided to only focus on the more challenging real-world datasets for this thesis.

As part of the project, we also wrote a paper, which is to be presented at the ICML
workshop 4 SLG 2013 in Atlanta, USA.

1.4 Thesis Outline

The rest of this thesis is outlined as follows.

In Section 2, we give a detailed account of the theoretical background on which our
approach is based.

Section 3 introduces research related to our problem. We compare other approaches
with ours and explain why some approaches are not applicable in our setting.

In Section 4 we present, in detail, our approach for relational entity disambiguation.

Section 5 presents different applications for our method.

Section 6 presents experimental results, comparing the performance of the different
approaches we investigated.

Section 7 discusses results and the thesis as a whole.

Section 8 draws conclusions based on our work and presents future work.

Finally, the appendices include sections on mathematical notation as well as proofs.

4https://sites.google.com/site/slgworkshop2013/cfp
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2

Background

This chapter contains background knowledge necessary for understanding the
main results of this thesis. Readers already familiar with the concepts in this

chapter may skip them without affecting understanding of the final results of the
thesis.

2.1 GraphLab

GraphLab is a framework for distributing graph algorithms [36, 37]. Programs for
GraphLab are written in in C++. The important part, however, is writing the code
according to the GraphLab framework. This includes calling standard GraphLab
functions and writing the program as a vertex program. The vertex program should
be written according to the GAS layout 1. Programs that follow the GAS layout
need to work in three phases: Gather, Apply and Scatter. The program needs to be
constructed according to these phases. Once this is done this allows GraphLab to
parallelize and scale the algorithm freely. A spin-off of GraphLab, called GraphChi,
is also available [34]. GraphChi utilizes an efficient disk access algorithm in order to
make computing on large graphs feasible on just a normal PC.

1http://graphlab.org/home/abstraction/
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CHAPTER 2. BACKGROUND

2.1.1 Gather, Apply, Scatter

In version 2.0 of GraphLab, a new design methodology for writing distributed pro-
grams was introduced. Programs in GraphLab are vertex-centric, meaning that one
writes code that should be run in parallel on all vertices of a graph. A vertex program
object is created for each vertex, allowing code to store private data in the vertex
program. Public data, which is meant for other vertices to access however, must be
stored in the vertex’s own data. Based on analysis of common patterns in graph-
parallel algorithms, GraphLab programs should be written in this new layout, called
the GAS layout (gather, apply, scatter). The GAS layout consists of the following
phases, which are run sequentially in parallel on each vertex:

Init
Any messages received from adjacent vertices may be processed and saved to
the vertex program. The vertex data may not be modified in this phase.

Gather
Information from either in-, out- or in-and-out edges and their vertices are
collected and summed together. Since a custom summing operator (+=) can
be defined, the user has a lot of freedom in designing what += on certain
information actually should mean in practice. The vertex data may not be
modified in this phase.

Apply
The summed-together data from the gather phase is given, allowing the user
to write code that modifies the vertex’s and/or the vertex program’s data.

Scatter
Opposite of the gather phase, the scatter phase allows the user to write code
that signals (sends messages) to adjacent vertices along in-, out- or in-and-
out edges. If several messages are sent to the same vertex, the messages are
summed together. Similar to the gather phase, the user is given the freedom
to define the practical meaning of += on messages. The vertex data may not
be modified in this phase.

To run GraphLab with the GAS layout, a graph engine is first created. The graph
engine can then signal either all or certain selected vertices so that the vertex program
for those vertices is run, these vertices are said to be activated. The graph engine
will run as long as there exists vertices that have incoming signals. When there is
no active vertex left, the graph engine is said to have converged.

8



CHAPTER 2. BACKGROUND

Figure 2.1: Hyperplane separating two linearly separable classes. w is the normal to
the hyperplane and b

‖w‖ is the perpendicular distance from the origin to the hyperplane.
H1 and H2 are the hyperplanes that the support vectors lie on. Note that the support
vectors lie exactly on the margin boundary. d1 = d2 is the SVM margin.

2.2 Support Vector Machines

A support vector machine (SVM) is a supervised learning model for separating two
classes of input data [17, 25]. Its current form was introduced in 1992 by Boser et
al. [12] and also in a 1995 paper by Cortes and Vapnik [20], where it was shown to
have high generalization ability (i.e. low error rate on test sets).

It is important for a learning machine to have good generalization ability. A classifier
that suffers from overfitting [8], meaning that it remembers the training samples far
too well, is not desirable. Of course, neither is the contrary. As an example, let us
draw a parallel by considering a zoologist trying to classify animals into categories.
Overfitting would be exemplified by the savant zoologist with perfect memory. When

9



CHAPTER 2. BACKGROUND

presenting a giraffe to the savant, he would reject it and says it is not a giraffe, just
because it does not have as many spots on its neck as the other giraffes he has seen.
The other extreme end would be illustrated by the savant’s carefree cousin, saying
that if it has four legs, it is a giraffe. It goes without saying that neither of them are
able to generalize well, most likely resulting in a few number of correctly classified
giraffes.

The SVM will find a hyperplane that separates the two classes of training data
with the largest margin possible, as can be seen in Figure 2.1. The hyperplane
can be described by wTx + b = 0 where w is normal to the hyperplane, b

||w|| is
the perpendicular distance from the hyperplane to the origin, b is a bias and x is
the input pattern. An important concept in SVMs is the so called margin, which
is the minimum distance from the hyperplane to the support vectors from both
classes. Support vectors are the training examples that lie closest to the separating
hyperplane from each class, i.e. the examples lying exactly on the margin boundary.
Given new input data x(t) and the learned parameter w, the SVM predicts which
of the two classes the data belongs to (yt ∈ {±1}) by checking which side of the
separating hyperplane the input is located on by

yt = sgn(wTx(t) + b) (2.1)

where sgn is the signum function.

An SVM is usually trained with pairs (x(i), yi), of a training pattern x(i) and an
associated“truth”yi, by finding the parameter w by solving the SVM primal problem

w = argmin f(w) =
λ||w||2

2
+ `emp(w) (2.2)

where `emp(w) = 1
m

∑m
i=1 `((x

(i), yi); w), m is the number of samples in the training
set and `(·) is a loss function that penalizes misclassified samples. A good choice for
` might be the so called hinge-loss

`((x(i), yi); w) = max(0, 1− yi(wTx(i) + b)) (2.3)

which has been shown to have appealing properties for SVMs [40], such as good
generalization capabilities. In the case where the input data is not linearly separable
(e.g. due to noise), the SVM can be allowed to find a hyperplane that separates
the data as much as possible, while keeping the number of misclassified samples

down. λ is a regularization parameter that scales the regularization term ||w||2
2

and
thus controls how important we think it should be to find an hyperplane with large

10
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margin, versus finding one that separates many training examples correctly. Some
other literature instead use a misclassification parameter C that scales `emp(·). We
can relate these by λ = 1

mC
. [40]

Note that the parameter λ does not depend on the algorithm, but is problem-
dependent. This means that λ has to be set differently depending on the dataset
used. Finding a reasonable value is usually done by cross-validation 2. It might be
instructive to point out that in general, a small λ (large C) causes us to harshly
penalize misclassifications. If we find that a small λ is necessary for good perfor-
mance, it might be an indication of that the problem the dataset models is in itself
difficult [40].

An excellent survey of recent developments in using SVMs for large-scale learning
can be found in [40].

2.2.1 Duality

The primal SVM formulation (2.2) can be transformed into a dual, which can then be
solved efficiently using a quadratic program (QP) solver [13]. This transformation
is done using the Lagrangian duality [13], transforming the convex primal SVM
formulation into the following concave dual formulation of the SVM optimization
problem:

α = argmax f(α) =
m∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj〈x(i),x(j)〉

subject to 0 ≤ αi ≤
1

λm

(2.4)

where α is a dual variable to be optimized. The parameter w can then be recovered
by

w =
m∑
i=1

αix
(i) (2.5)

2The term k-fold cross-validation refers to the practice of leaving out one part of the training
set and then training the model on the remaining k − 1 parts. The error rate is then measured by
testing on the left-out part. When there is a lack of proper test data, this procedure can give a
good estimate of the model’s generalization ability by repeating the above procedure, alternating
the left-out part, and then measuring the average error. [8]
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which is due to the representer theorem [32]. The representer theorem states that the
optimal hyperplane can be expressed as a linear combination of the training samples
of the classifier in some high-dimensional space.

Slater’s Condition The SVM dual is used to solve the SVM primal problem in the
dual space, which is often preferred, as it consists of maximizing a concave function.
This is efficiently done by a QP solver [13]. However, one has to mind the duality
gap, which is the difference between the optimal primal and dual values [13]. If strong
duality holds, then the duality gap is zero and solving the dual problem directly gives
the solution of the primal problem. Slater’s condition conditions a case where the
duality gap is zero, i.e. when we have strong duality. If we have a convex primal
problem on the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(2.6)

where f0 is the objective function to minimize, fi,∀i are convex inequality constraints
and Ax = b are equality constraints that must hold for the optimal x. Slater’s
condition is that there exists a strictly feasible point, i.e. a solution such that

fi(x) ≤ 0, i = 1, . . . , k

fi(x) < 0, i = k + 1, . . . ,m

Ax = b

(2.7)

where the k first fi are affine functions and the rest convex. The condition is then true
if the affine constraints hold with inequality and the convex inequality constraints
hold with strict inequalities. Slater’s theorem then states that strong duality holds if
Slater’s condition holds. Note that this condition is sufficient but not necessary. It
is possible for problems that do not satisfy Slater’s condition (although rare) to still
have zero duality gap [13]. As we can easily find a point satisfying Slater’s condition
for the primal problem (2.2), we have strong duality for the SVM problem.

KKT Conditions The Karush-Kuhn-Tucker (KKT) conditions indicate certain
properties for the solution x that has been found through the dual. The KKT

12
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conditions are the following [13]:

fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

λi ≥ 0, i = 1, . . . ,m

λifi(x) = 0, i = 1, . . . ,m

∇f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) = 0

(2.8)

where f0 is the objective function, fi are convex constraints, hi are affine constraints
and λi, νi are Lagrangian multipliers.

If the primal problem is convex, then any (x,λ,ν) that satisfy the KKT conditions
are optimal. For this reason, many algorithms for solving such problems as above
(include the SVM problem) focus on solving the KKT conditions [13]. Moreover, as
many QP solvers will provides the parameters (x,λ,ν) as part of their solution, one
can also use the KKT conditions as a certificate of that the x returned by a black-box
solver actually is a valid solution.

2.2.2 Kernels

A kernel function can be used to enhance the SVM so that it can solve problems where
the data is not linearly separable [45]. Kernel functions map two inputs to a scalar
value, indicating how similar the inputs are. K(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉 = Kij

denotes a kernel, where φ : X 7→ H is a map from a feature space X into a Hilbert
space H [45]. As a generalization of the Euclidean space, the Hilbert space can be of
possibly infinite dimensionality and is equipped with a dot product. See Figure 2.2
for a simple example of a kernel mapping data into a higher dimensional space, where
the data becomes linearly separable.

Mercer Kernels Mercer kernels [43, 45] are kernels that satisfy the following con-
ditions:

1. They are continuous.

2. They are symmetric, Kij = Kji.
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Figure 2.2: Simple example of how using a kernel with a non-linear map φ can make
data linearly separable in a higher dimensional space. (Left) Linearly inseparable data
in R2. (Right) Using a kernel to re-map the same data to R3, making it linearly
separable.

3. They are positive semi-definite. That is, the m × m kernel matrix K must
satisfy vTKv ≥ 0, ∀v ∈ Rm. This essentially means that all eigenvalues of K
are non-negative.

Common for all Mercer kernels is that they can be represented by an inner product
in some Hilbert space H.

The Kernel Trick The ability for kernels to be representable as an inner product
in the higher dimensional space is an important advantage. Since the SVM dual (2.4)
only contains the input vectors x expressed as dot products, the dual can be rewritten
as [12, 25]

α = argmax f(α) =
m∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(x(i),x(j))

=
m∑
i=1

αi −
1

2
αTHα

subject to 0 ≤ αi ≤
1

λm

(2.9)
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with Hij = yiyjK(x(i),x(j)). This is an important property, as computing the kernel
mapping φ explicitly can sometimes be prohibitively expensive as the mapped vector
φ(x) can be of very high (sometimes infinite!) dimensionality. As a means of reducing
computational cost, the fact that the input vectors only occur as dot products in the
dual is taken advantage of. By only considering dot products, we never have to
explicitly compute φ but still get the correct answer. This kernel trick enables us to
map the input data up into a very high dimensional space without having to worry
about the existence of the mapping φ. For training the SVM, all the work we have
to do before using a QP solver is creating the matrix H. By satisfying the conditions
for Mercer kernels, we know that the kernel is expressible as an inner product in
some space H, which is sufficient for using the kernel in the SVM classifier.

Examples of commonly used kernels include

• The radial basis function (RBF) kernel. Kij = exp
(
−‖x

(i)−x(j)‖2
2σ2

)
• The polynomial kernel. Kij = (〈x(i),x(j)〉+ a)b

• The sigmoid kernel. Kij = tanh(a〈x(i),x(j)〉 − b)

• The linear kernel. Kij = 〈x(i),x(j)〉

where σ, a, b are parameter controlling the behavior of the kernel. These are usually
set using cross-validation.

2.3 The Subgradient Method

The subgradient method [14] can be used for solving minimization problems where
the objective function f : Rn → R is not differentiable. Basically, the method
performs, similar to gradient descent, an update of the current best x as

x(k+1) = x(k) − αkg(k) (2.10)

where g is any subgradient of f(x(k)). Note that in the gradient descent method, g is
always the derivative of f(x(k)). A subgradient of f(x(k)) is any vector g that satisfies
f(y) ≥ f(x) + gT (y − x). That is, g is a global underestimator for f at the point
x. However, the subgradient method is not a descent method, which means that
even though we subtract a multiple of g at each iteration, the value of the objective
function may not actually decrease [14]. In fact, it often increases. It is therefore
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common to keep track of a point with the smallest function value found so far. The
parameter αk is the step size at iteration k. Several different rules for how the step
size changes can be used, but in this thesis we will only focus on step sizes that are
square summable, but not summable. That is, the step sizes αk have the following
properties.

∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞ (2.11)

One example of such a step size is one on the form αk = 1
λ+k

, λ ≥ 0. For such a step
size, it can be shown [14] that the subgradient method converges as k →∞.

While the formulation of the subgradient method is very simple, its drawback is that
is converges slowly. Indeed, for any choice of step size it has a lower suboptimality
bound of Ω( 1√

T
), if the algorithm runs for T iterations [14].

2.4 Pegasos: Primal Estimated sub-GrAdient SOlver

for SVM

Pegasos [47] is a fast state-of-the-art SVM solver 3 that uses the iterative subgradient
method for solving the following optimization problem:

w = argmin f(w) =
λ||w||2

2
+

1

m

m∑
i=1

`((x(i), yi); w) (2.12)

where
`((x(i), yi); w) = max(0, 1− yi(wTx(i))) (2.13)

The algorithm performs T iterations and then stops, so there is no guarantee that
the Pegasos algorithm actually solves (2.12); it is an approximative randomized al-
gorithm. The number of iterations required for obtaining a solution of accuracy ε
is bounded by Õ(ε−1), giving it a superior rate of convergence [47]. As Pegasos is
a randomized algorithm, it in each iterative step selects a random subset At ⊆ S,
where |At| = k and S is the training dataset. The algorithm with k = 1 is stated

3An implementation of the Pegasos algorithm can be found at http://www.cs.huji.ac.il/

~shais/code/pegasos.tgz

16

http://www.cs.huji.ac.il/~shais/code/pegasos.tgz
http://www.cs.huji.ac.il/~shais/code/pegasos.tgz


CHAPTER 2. BACKGROUND

Algorithm 1 The Pegasos algorithm.

Input: S - training set.
Input: λ - regularization parameter.
Input: T - the number of iterations.

Set w(1) = 0
for t = 1,2, . . . ,T do

Choose it ∈ {0, . . . , |S|} uniformly at random.
Set ηt = 1

λt

if yit〈w(t),x(it)〉 < 1 then
Set w(t+1) = (1− ηtλ)w(t) + ηtyitx

(it)

else
Set w(t+1) = (1− ηtλ)w(t)

end if
end for
return w(T+1)

Output: w(T+1) - learned parameters.

in Algorithm 1. The original paper includes a projection step, but as new analysis
indicates that it does not affect results [48], we omit it. Since the algorithm works
on subsets of size k, its time complexity is independent on the size of the training
dataset, which makes Pegasos suitable for huge datasets. Given the updated analysis
in the journal version of the paper [48], k = 1 seems to be an appropriate choice,
which is the choice of k that we will use in this thesis.

Regarding large-scale learning, one particular interesting aspect of Pegasos, as stated
in the surprising discovery of [49], is that the training time of Pegasos should in fact
decrease as the size of the training set increases. This astonishing fact utilizes the
properties of SVM solvers based on stochastic gradient descent and that such solvers
only process a random example at a time, thus making them independent of the
training data size. A summary of this discovery, along with a general overview of the
current state-of-the-art, can be found in [40].

2.4.1 Kernelized Version

The standard version of the Pegasos algorithm does not work with kernels [48].
However, the algorithm can be modified to enable this usage. We take a look at
Algorithm 2, the kernelized version of the Pegasos algorithm, as stated in [48]. Here,
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Algorithm 2 Kernelized version of Pegasos.

Input: S - training set.
Input: λ - regularization parameter.
Input: T - the number of iterations.

Set α(1) = 0
for t = 1,2, . . . ,T do

Choose it ∈ {0, . . . , |S|} uniformly at random.

For all j 6= it, set α
(t+1)
j = α

(t)
j

if yit
1
λt

∑m
j=1 α

(t)
j yjK(x(it),x(j)) < 1 then

Set α
(t+1)
j = α

(t)
j + 1

else
Set α

(t+1)
j = α

(t)
j

end if
end for
return α(T+1)

Output: α(T+1) - learned parameters.

α
(t+1)
j counts how many times element x(j) ∈ S has been selected and had non-zero

loss for the last t iterations [48]. It is defined as:

α
(t+1)
j = |{t′ ≤ t : it′ = j ∧ yj〈w(t′), φ(x(j))〉 < 1}| (2.14)

where φ is a map into a Hilbert space H. Further, we recover the parameter w using

w(t+1) =
1

λt

m∑
j=1

α
(t+1)
j yjφ(x(j)) (2.15)

It should be noted that, unlike the standard version, the kernelized version of Pegasos
has a direct dependence on the number of training samples m.

2.5 Kronecker Product

The Kronecker product (⊗) on a p× q matrix A and an r× s matrix B is defined to
create a block matrix as follows.
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A⊗B =

A11B · · · A1qB
...

. . .
...

Ap1B · · · ApqB

 (2.16)

Kronecker products have the following property ([41], pp. 60):

(A⊗B)(C⊗D) = AC⊗BD⇒
(A⊗B)(A⊗B) = AA⊗BB⇔

(A⊗B)2 = A2 ⊗B2

(2.17)

From this, a property for matrix powers of Kronecker products can be derived:

(A⊗B)n = An ⊗Bn (2.18)

See Appendix B.1 for the proof.

For the sum of the Kronecker product, we have the following:∑
i,j

[A⊗B]ij = eTAeeTBe (2.19)

See Appendix B.2 for the proof.

2.6 Direct Product Graph

The direct product graph G× = (V×, E×) of two graphs G(1) = (V (1),E(1)) and
G(2) = (V (2),E(2)) is defined so that an edge exists between two nodes in G× iff there
exists a similar edge in both G(1) and G(2), and the nodes on that edge are similarly
labeled in both G(1) and G(2). More formally, it is defined as [10, 27]:

V×(G(1) ×G(2)) = {(v1,w1) ∈ V (1) × V (2) :

label(v1) = label(w1)}
E×(G(1) ×G(2)) = {((v1,w1),(v2,w2)) ∈ V 2

×(G(1) ×G(2)) :

(v1, v2) ∈ E(1) ∧ (w1, w2) ∈ E(2)

∧ label(v1, v2) = label(w1, w2)}

(2.20)
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It should be noted that using product graphs might be quite costly, as they may
contain |V (1)| × |V (2)| nodes.

2.7 Graph Kernels

Graph kernels are kernels defined on the input space of all graphs G. A graph kernel
K : G × G 7→ R takes two graphs as input and produce a scalar output value,
indicating the similarity of the graphs. There are several existing graph kernels (see
Chapter 3). In this thesis, however, we focus on the following three.

2.7.1 Direct Product Kernel

The direct product (DP) kernel compares two graphs based on the number of walks
they have in common [27]. The common walks are computed by creating the direct
product graph [27] G× = (V×, E×) of two graphs G(1) = (V (1),E(1)) and G(2) =
(V (2),E(2)), The kernel value is computed using

KDP (G(1), G(2)) =

|V×|∑
i,j=1

[
∞∑
n=0

λnA(G×)n

]
ij

(2.21)

where λ < ∆(G×)−1 ∈ R+ is a decay factor for making the sum converge.

2.7.2 Shortest Path Kernel

The shortest path (SP) kernel compares graphs based on the similarity of their short-
est paths [10]. All the shortest paths in a graph can be obtained in O(n3) time using
the Floyd-Warshall algorithm [26]. We let SGij denote the shortest distance between
nodes vi and vj in graph G. For unweighted graphs, the shortest distance between vi
and vj is the number of steps on the shortest vi → vj path, and for weighted graphs
it is the sum of all weights on the minimum weight vi → vj path. The shortest-path
kernel is defined as:

KSP (G(1), G(2)) =
∑
i,j,p,q

k
(1)
walk(S

G(1)

ij , SG
(2)

pq ) (2.22)

where k
(1)
walk is a positive definite kernel on edge walks of length 1.
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2.7.3 Graphlet Kernel

The graphlet (GL) kernel compares graphs through their distributions of graphlets
of size 3 − 5 [52], i.e. induced subgraphs of k ∈ L = {3,4,5} nodes. As exhaustive
enumeration of all graphlets is infeasible, the graphlet distribution is approximated
using sampling, and by considering a finite number of values of k. Shervashidze et
al. [52] show that for δ > 0, ε > 0,

n =

⌈
2(log 2 · |L|+ log(1

δ
))

ε2

⌉
(2.23)

samples suffice to ensure that P{‖D−D̂n‖1 ≥ ε} ≤ δ, whereD is the true distribution
and D̂n is the approximate distribution using n samples. The distribution of graphlets
for a graph G(i) is then denoted by d(G(i)). The graphlet kernel is then defined as
follows:

KGL(G(1), G(2)) = d(G(1))
T
d(G(2)) (2.24)

2.8 Malin’s Random Walk Method

Malin [39] has presented two methods that are applicable to our problem, one based
on random walks and one based on hierarchical clustering. Since the random walk
method was reported to give the best result, we use it as a state-of-the-art comparison
for anonymized relational entity disambiguation. We denote this method Malin. In
this section, we will give a detailed description of the method, as understanding of
Malin is crucial for the outcome of our experimental results in Section 6.

Malin is a random walk method that aims to group all references of an identifier
of interest into clusters, where each cluster represents one underlying entity. Thus
the resulting number of clusters is the predicted number of underlying entities. The
method can be seen in Algorithm 3. A graph G = (V,E) is first created, where
references to same identifier have been merged into a single vertex. An edge is
placed between two vertices if they co-occur in a source. For example, a source could
refer to a news article, in which two persons are mentioned together.

Next, for each node of interest vi, i.e. a node that we want to disambiguate, put all
references to the identifier of vi in a set D(i). Then create a graph G(i) = (V (i),E(i))
that is identical to G, except that vi has been removed and been replaced with
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Algorithm 3 Malin’s random walk method.

Input: S = {S1 = {s1, s2, . . . }, S2, . . .} - sources.
Input: T - the maximum number of steps per walk.
Input: N - the number of walks to make per node of interest.
Input: τ - similarity threshold.

Let vi = si ⇔ Ident(vi) = Ident(si)
Set V = {vi : vi = si ∧ si ∈ Si ∈ S}
Set E = {(vi,vj) : (vi, vj) ∈ V × V ∧ vi = si ∧ vj = sj ∧ ∃Sk ∈ S (si, sj ∈ Sk)}
Set G = (V,E)
for vi ∈ V do

Set D(i) = {vSk
: Ident(vSk

) = Ident(Sk) ∧ ∃sk (vi = sk ∧ sk ∈ Sk ∈ S)}
Set V (i) = {vj : vj 6= vi ∧ vj ∈ V } ∪D(i)

Set E(i) = {(vp,vq) : (vp, vq) ∈ V (i) × V (i) ∧ vp = sp ∧ (vq = sq∧
∃Sk ∈ S (sp, sq ∈ Sk)) ∨ (∃Sk ∈ S (Ident(vq) = Ident(Sk) ∧ sp ∈ Sk)))}

Set wpq as in (2.25).
Set G(i) = (V (i),E(i))
for vSk

∈ D(i) do
Do N random walks with step probability as in (2.26) until reaching a node

vSl
6= vSk

, vSl
∈ D(i) or for maximum T steps.

Calculate P (vSk
⇒ vSl

), ∀k,l
Set simkl as in (2.27).

end for
Set V

(i)
d = {vSk

: vSk
∈ D(i)}

Set E
(i)
d = {(vSk

,vSl
) : (vSk

,vSl
) ∈ V (i)

d × V
(i)
d ∧ simkl ≥ τ}

Set G
(i)
d = (V

(i)
d ,E

(i)
d )

Let Comp(vSk
) denote the set of vertices in the same component as vSk

∈ V (i)
d

Set C(i) = {Comp(vSk
) : vSk

∈ V (i)
d }

end for
return {C(1), . . .}

Output: {C(1), . . .} - clusters for each node of interest.
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one vertex for each reference in D(i). Edge weights correspond to a normalized co-
occurrence count. The weight between two vertices, p and q, is defined as

wpq =
∑
Sk∈S

θpqk
|Sk|

(2.25)

where S is the set of all sources, and θpqk is an indicator variable which is 1 if the
identifiers p and q are both in source Sk and 0 otherwise.

In graph G(i), do random walks from each vertex in D(i) with the probability of
walking from vertex p to the neighboring vertex q as

P (p→ q|p) =
wpq∑
r wpr

(2.26)

A walk stops once it reaches a vertex in D(i), different from the one the walk started
in, or when a maximum number of steps has been reached. When the walks are
done, the posterior probability P (vSk

⇒ vSl
) for a walk from vSk

reaching vSl
can

be estimated for all vertices in D(i). Then, we define the similarity measure between
two vertices as the average of their posterior probabilities:

simkl =
P (vSk

⇒ vSl
) + P (vSl

⇒ vSk
)

2
(2.27)

Finally, we create a graph G
(i)
d = (V

(i)
d ,E

(i)
d ) that contains only the vertices in D(i),

with edges defined between nodes only if the similarity measure is higher than the
specified threshold τ . If the similarity measure is higher than the threshold, then
these vertices are deemed to refer to the same entity, and will belong to the same
component inG

(i)
d . The references in the same component are then clustered together,

and put in a set C(i). Each element of C(i) is then a clustering of references to a
single underlying entity.

When using Malin for comparison, we predict any identifier vertex vi with |C(i)| = 1
as unambiguous (−), and ambiguous (+) otherwise.

Example Consider the following small example as a way of understanding Malin.
In the example, let us have S, the set of all sources, contain the sources S1, S2, S3,
with

S1 = {s1, s3}
S2 = {s1, s2}
S3 = {s1, s3}

(2.28)

23



CHAPTER 2. BACKGROUND

Figure 2.3: The original graph G in Malin, where each vertex refers to one (possibly
ambiguous) identifier. Vertices are connected through co-occurrence in sources.

Figure 2.4: Graph with v1 as the focused node of interest in Malin. v1 has thus
been split into three different source vertices, vS1 ,vS2 ,vS3 . Edge weights represent the
walk probabilities that have been calculated using (2.26).

where si is an identifier to vertex vi. Using the terminology of Algorithm 3, the
original graph G would look like Figure 2.3. If we consider letting the vertex of
interest be v1, the first step is to split v1 into one vertex for each of its sources.
These new vertices get the identifiers vS1 , vS2 and vS3 , named after the sources they
occurred in. These are put in the set D(1) = {vS1 , vS2 , vS3}. Let us call the vertices
in this set source vertices. The walk probabilities for all vertices are then calculated
and the final graph is shown in Figure 2.4, where the edge weights represents the
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walk probabilities. The walk probability for any vertex is calculated using (2.26).

Once the graph is complete, a series of random walks are started from each vertex
in D(1), either until reaching another vertex in D(1), or until the walk has reached
a maximum number of steps. The algorithm keeps track of how many walks that
started in a certain source vertex, that reached another source vertex. As can be
seen in Figure 2.4, the walks starting from vS1 have a high probability of reaching
vS3 . Likewise, walks starting in vS3 have a high probability of reaching vS1 . However,
walks starting in vS2 will never reach another vertex in D(1), since any walk will
simply walk back and forth between vS2 and v2 until the maximum number of steps
is reached.

For the sake of the example, consider the likely case that 100% of the walks that
started in vS1 reached vS3 , no walk starting in vS2 ever reached another source vertex
and 100% of the walks starting in vS3 reached vS1 . Thus, the posterior probabilities
become

P (vS1 ⇒ vS2) = 0.0

P (vS1 ⇒ vS3) = 1.0

P (vS2 ⇒ vS1) = 0.0

P (vS2 ⇒ vS3) = 0.0

P (vS3 ⇒ vS1) = 1.0

P (vS3 ⇒ vS2) = 0.0

(2.29)

Given these results, the symmetric similarity measures then become

sim12 = sim21 = 0.0

sim13 = sim31 = 1.0

sim23 = sim32 = 0.0

(2.30)

The final step of Malin is then to decide which of the vertices vS1 , vS2 , vS3 refer to
the same entity. This is done using a simple threshold, where all vertices that have a
similarity measure that is greater than the threshold are considered to be the same
entity. In our example, any threshold lower than 1.0 would mean that the vertices
vS1 and vS3 are predicted to refer to the same entity. No matter what threshold we
choose, however, it is impossible to predict that vS2 is referring to the same entity as
any other source vertex. Choosing a threshold below 1.0 will then cause Malin to
output two clusters, i.e. |C(1)| = 2 and C(1) = {{vS1 , vS3}, {vS2}}. The threshold is
usually chosen with cross-validation.
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Related Research

The problem of entity disambiguation has been investigated in several re-
lated works, although not quite in the fashion that we formulate the problem

in this thesis. Bhattacharya and Getoor solve the problem of entity resolution by
deciding if two separate graphs actually represent the same entity. Their method
uses string kernels and edge- and neighborhood similarity measures in graphs [5].
They also present an unsupervised approach in [6], based on latent Dirichlet alloca-
tion (LDA) and Gibbs sampling. Chen et al. consider a similar problem in context
of database cleaning, often referred to as object consolidation [19]. The problem has
also been referred to as reference disambiguation [30], record deduplication [7, 18] or
record linkage [4, 29]. Kalashnikov et al. [30] look at reference disambiguation, which
is the problem of correctly associating references to the correct entities. While their
work seems similar to our, their problem is fundamentally different, as they are try-
ing to find the entities (e.g. nodes in a graph) associated with a particular entity. In
contrast, our problem in this thesis is that of deciding whether one identifier actually
has more than one underlying entity.

Entity Resolution A large family of techniques are devoted to entity resolution,
the process in which references are matched with their underlying entities. This prob-
lem has two difficulties, 1) the same identifier may be used for several entities (e.g.
Chris Anderson (TED) and Chris Anderson (WIRED)), and 2) the same entity may
be referred to using several identifiers (e.g. Chris Anderson, Mr. Anderson). Bhat-
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tacharya and Getoor approach the problem using a probabilistic graphical model [6]
and hierarchical clustering [5]. In both methods, similarity between identifiers is
used, which makes them unusable in the anonymized setting. This notion can be
generalized to include methods using any set of entity attributes in the resolution
process [9, 16, 21, 22, 24, 42, 46]. In this thesis, entities are anonymized and have no
such attributes. Further, we approach only the first difficulty stated above, rendering
the above methods unsuitable for direct comparison.

Relational Entity Disambiguation A specialized problem, related to entity res-
olution, is relational entity disambiguation. Here, various kinds of network structure
between entities are exploited. Bekkerman and McCallum [3] use link structure of
personal web pages to disambiguate people in social networks. Bhattacharya and
Getoor [5] use author lists of research papers, forming a network, and name similar-
ity, to disambiguate authors. Both of these methods however, leverage information
that is not available in our setting.

Malin [39] approaches the problem of disambiguating entities based on network struc-
ture alone. In his setting, entities are related through a set of sources. His canonical
example is that of entities being actors and sources being movies. Two actors are
deemed connected if they appear in the same movie. Malin makes two attempts to
solve the problem, one using hierarchical clustering, and one based on random walks.
Since Malin’s random walk method performed the best in his experiments, and that
to the best of our knowledge no other methods than those presented in Malin [39] are
applicable to our problem, we use Malin’s random walk method for a state-of-the-art
comparison in our experiments.

Graph Classification This work attempts to classify nodes in a network as am-
biguous or unambiguous. Building a classifier on nodes demands for a way of com-
paring them. While there are kernels for straight-forward node comparison in graphs,
such as the diffusion kernel [33], these are defined on the full entity graph and conse-
quently prohibitively computationally expensive for real-world graphs. Instead, we
may compare the neighborhood structure of nodes, resulting in a graph classification
(rather than node classification) problem.

Common graph kernels include shortest path kernels [10], direct product kernels [27]
and graphlet kernels [52]. We evaluate the performance of all of them for the en-
tity disambiguation task in our experiments. Moreover, we make extensions to the
shortest-path and direct product kernels and evaluate them in terms of computation
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speed and classification accuracy. While graph kernels have been used for e.g. protein
structure prediction [11] or character recognition [2], to the best of our knowledge, no
existing work uses this approach for the problem of relational entity disambiguation.
Gärtner et al. [27] have also shown some hardness results, indicating that the com-
putation of graph kernels that cover the full information in the graph is NP-hard,
whereas graph kernels based on walks can be computed in polynomial time.
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4

Our Approach

In this chapter we develop a novel formulation of relational entity disam-
biguation as a graph classification problem, suitable for anonymized data with

a network structure. We also present our method for training our SVM for doing the
classification.

We let the term entity refer to a person or a company etc. while an identifier is a name
or a label. If several entities have the same identifier, we say that the identifier is
ambiguous. While a single entity may have several identifiers, we do not address this
here; we focus only on ambiguities. In our setting, entities have hidden relationships
which are observed through co-occurring identifiers such as names mentioned in news
articles. We let an identifier graph be the graph with one node for each identifier
and an edge between every pair of co-occurring identifiers. Edges are weighted by
the significance of the relationships, such as number of co-occurrences.

This setting leads us to the definition of anonymized relational entity disambiguation
as the following classification problem.

Problem Definition 1. Given an undirected identifier graph G = (V,E) with edge
weights wij ∈ R+ and training data S = {(vi, yi) : 1 ≤ i ≤ m, vi ∈ V, yi ∈ {±1}} that
labels certain nodes as ambiguous (+) or unambiguous (−), classify new nodes as +1
or −1. Each node of G may refer to a single entity or several underlying entities.
The weight of an edge signifies the importance of the connection between two nodes.
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“Chris Anderson” “Chris Anderson”

TED WIRED
Figure 4.1: (Left) Local neighborhood (fictive) of the ambiguous vertex Chris An-
derson. (Right) Correct splitting of the vertex into its two true underlying entities.

We now explain, in detail, an example of the problem we are solving. Our problem is
illustrated by the example of Chris Anderson, stated in the introduction and further
explained by Figure 4.1, re-shown in this section for reader convenience. In the
figure, two individuals called Chris Anderson have been assigned only one, common
identifier and thus one common node in the graph. This error creates a strong
connection between the two communities, TED and WIRED, something we would
not expect in reality. It is exactly this type of unexpected property of the network
that we aim to capture with our classifier. Although this example involves only
people, we would like to emphasize that nodes can represent any type of entity; an
equally troublesome example would be that of the two cities Paris, France and Paris,
Texas.

4.1 Method Overview

We approach the problem of identifying ambiguous nodes with the intuition that the
neighborhoods of ambiguous nodes have structure different from those of unambigu-
ous nodes. While Figure 4.1 is only an example, it illustrates the concept of two
communities having fused around an ambiguous node. This motivates us to build a
classifier using features of the neighborhood structure. In a graph G = (V,E), we

define the neighborhood N (i)
G of a node vi ∈ V to be the subgraph of G induced by

set of nodes connected to vi through an edge. This notion can easily be extended
to larger neighborhoods by considering neighbors of neighbors. In general, we define
the κ-neighborhood N (i)

G,κ of vi ∈ V as the subgraph induced by the set of nodes
{vj} ⊆ V for which there exists a path from vi to vj with s(vi,vj) ≤ κ edges. Leaving
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G1

G2v1v2

K(G1,G2)

G

Figure 4.2: Method overview. In a three-step process, our approach considers a
partially labeled co-occurrence graph (left), extracts local neighborhoods of nodes of
interest (middle) and computes the kernel values of these nodes (right). The kernel
values are then used for classification. In the figure, only labeled nodes are selected,
as would be the case when training the classifier.

out the subscript G for convenience, we have,

V (i)
κ = {vi} ∪ {vj ∈ V : s(vi, vj) ≤ κ}
E(i)
κ = {(vp, vq) : (vp, vq) ∈ E ∧ vp,vq ∈ V (i)

κ }
N (i)
κ = (V (i)

κ , E(i)
κ ) (4.1)

With κ = 1 we recover the common neighborhood consisting of the distinguished
node and its immediate neighbors.

Our method consists of three steps, illustrated in Figure 4.2. First, an identifier graph
G = (V,E) is constructed from the raw data. Each node represents one identifier
that may correspond to one or several underlying entities. Some of the nodes are
labeled + (ambiguous) or − (unambiguous) respectively. An edge between two nodes
is present if the two corresponding identifiers are related in some way, and the edge
weight represents the strength of the relation. For example, two identifiers may be
related by co-occurring in the same article. The number of such co-occurrences is
the weight of the edge. Note that we do not assume to have access to information
about in which articles two identifiers co-occurred, only that they co-occurred in some
articles. In the second stage, we extract the local neighborhoods of the nodes that we
want to classify. For these local neighborhoods we then compute one of several graph
kernels K in order to measure similarity between nodes. New nodes are labeled using
a standard classifier. The overall approach is summarized in Algorithm 4.
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Algorithm 4 Detect ambiguous nodes.

Input: G = (V,E)
Input: κ - Neighborhood size.
for vi ∈ V do

Set G(i) = N (i)
κ according to (4.1)

end for
Compute graph kernel matrix K = [Kij], ∀G(i),G(j)

Train an SVM with K and labels {yi : yi ∈ {±1}}.
Output: SVM classifier.

4.2 Kernel Extensions

In this section, we design simple extensions of the DP and SP kernels, introduced
in Sections 2.7.1 and 2.7.2, which we show can be computed quickly by explicitly
knowing the kernel mapping φ.

4.2.1 Truncated Direct Product Kernel

As the product graph G× of two graphs G(1) = (V (1), E(1)) and G(2) = (V (2), E(2))
might contain up to |V (1)| × |V (2)| vertices, taking powers A(G×)n might be very
costly, as even for a sparse graph, taking powers might make the adjacency matrix
full [10]. In order to speed up computation, we utilize the mathematical properties
of the Kronecker product in order to avoid actually computing the product graph,
but still get the correct result. For unlabeled graphs, the DP kernel (2.21) can be
decomposed into components that can be calculated independently for each graph.
For our proof, we need first to note that [53]

A(G×) = A(G(1))⊗ A(G(2)) (4.2)

Kronecker product powers have the property that [15](p.775)

(A⊗B)n = An ⊗Bn (4.3)

From the definition of the Kronecker product we get∑
i,j

[A⊗B]ij = eTAeeTBe (4.4)
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Algorithm 5 Calculate the number of random walks.

Input: G = (V,E)
Input: K - Maximum walk length.
Initialize t

(0)
i = 1, ∀i : vi ∈ V ; u0 = |V |

for n ∈ {1, . . . , K} do

Set t
(n)
i =

∑
j:(vj ,vi)∈E t

(n−1)
j , ∀i : vi ∈ V

Set un =
∑

i:vi∈V t
(n)
i , ∀i : vi ∈ V

end for
Output: u - Random walk counts.

Now, we can derive a useful representation of the DP kernel as follows:

KDP (G(1), G(2)) =

|V×|∑
i,j=1

[
∞∑
n=0

λnA(G×)n

]
ij

=
∞∑
n=0

(λ
n
2 u(1)n )(λ

n
2 u(2)n )

(4.5)

where u
(i)
n = eTA(G(i))

n
e. For the full derivation, please see Appendix B.4. The last

expression of (4.5) can be written as an inner product 〈φ(G(1)), φ(G(2))〉, making it a
valid kernel [45]. We approximate (4.5) by only considering walks up to a finite length
K, setting the kernel value of all longer paths to zero. This makes the dimension of
the feature vectors φ finite, and trivially, the kernel is still valid. We call this the
truncated direct product (TDP) kernel. For clarity, the kernel is defined as:

KTDP (G(1), G(2)) =
K∑
n=0

(λ
n
2 u(1)n )(λ

n
2 u(2)n ) (4.6)

The vector u(i) = [u
(i)
0 , . . . , u

(i)
K ]T for graph G(i) can be calculated using Algorithm 5.

Note that making the sum in (4.5) finite allows us to set λ > ∆(G×)−1, making the
TDP kernel defined where the DP kernel is not. As the average degree of a graph is
2 |E||V | , the time complexity for calculating the TDP kernel becomes O(K|E|).

For general graphs, exact approaches take O(|V |6) [27] and O(|V |3) [53] time to cal-
culate the DP kernel for exact solutions. If the graph is sparse, i.e. has O(|V |) edges,
then the calculation can be done in O(|V |2) [53] time. For an approximate solution
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in the general case, the kernel can be calculated in O(|V |2) [31] time. Therefore, our
approach is advantageous if K � |V | and the graph is sparse.

Long walks (large K) tend to result in a phenomenon known as tottering in which
the walks of the DP kernel will go back and forth along the same nodes, over and
over. Tottering reduces the expressivity of the kernel as the same cycles of nodes will
be visited repeatedly [38]. This suggests that for good generalization performance,
as suggested empirically by Borgwardt and Kriegel [10], K should be small.

Distinguished Vertex The TDP kernel can be modified further to suit to our
specific classification problem. We note that the graphs we are comparing are in
fact pointed graphs, in that they are the neighborhood of one distinguished vertex.
Instead of counting the number of random walks from all vertices, we can choose
to only count walks from the distinguished vertex in the middle of the local neigh-
borhood graph (i.e. the vertex “Chris Anderson” in Figure 4.1). This enables us
to collect more specific information concerning only the local neighborhood of the
vertex of interest. Thus, we create a distinguished vertex modification of the TDP
kernel as follows:

KTDPd
(G(1), G(2)) =

K∑
n=0

(λ
n
2 u(1)n )(λ

n
2 u(2)n ) (4.7)

where u
(i)
n = eTdA(G(i))

n
e if the distinguished vertex is that of index d. Essentially,

only the definition of the vector u has changed. Algorithm 5 can be easily modified
to account for walks only from the distinguished vertex by setting t

(0)
i = 1 only for

the distinguished vertex in the initialization step of the algorithm, and 0 for all other
vertices.

We make a note that this definition is a special case of the alternative definition of
the DP kernel in Vishwanathan et al. [53]. They incorporate starting and stopping
probabilities p× and q× for the random walks, giving the following graph kernel:

K(G(1), G(2)) =
∞∑
n=0

µ(n)qT×Wn
×p× (4.8)

where µ is a discrete measure and W× is the weight matrix associated with A(G×).
By ignoring edge weights and setting µ(n) = λn, p× = e and q× = ed, we recover
(4.7) with K =∞.
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4.2.2 Binned Shortest Distance Kernel

We seek to construct a computationally efficient version of the SP kernel for weighted
graphs. Consider using the indicator function for k

(1)
walk in the shortest-path kernel as

in Borgwardt and Kriegel [10]. Inserting this into (2.22) leaves us with,

KSPI(G
(1), G(2)) =

∑
i,j,p,q

1
[
SG

(1)

ij = SG
(2)

pq

]
(4.9)

For unweighted or integer weighted graphs, Sij are integers, making the indicator
function a reasonable choice of kernel. However, for real weighted graphs, this for-
mulation is less sensible as it involves comparing real numbers for equality. Therefore,
we design a simple heuristic extension of (4.9) for general weighted graphs with the
idea of comparing rounded-off values of the real-valued weights. Formally, we define
a function h : R+ 7→ {1, 2, . . . ,M} that maps distance values to a finite set of M
bins. This gives us the definition of the binned shortest distance (BSD) kernel as:

KBSD(G(1), G(2)) =
M∑
k=1

∑
i,j

θG
(1)

ijk

∑
p,q

θG
(2)

pqk (4.10)

where θGijk = 1[h(SGij ) = k]. For the full derivation, please see Appendix B.3. This
definition can be thought of as a relaxation of (4.9) in which the indicator has value
1 if the compared values are similar enough. Equation (4.10) can easily be written
as the inner product 〈φ(G(1), φ(G(2))〉, showing that it is a valid kernel [45].

Binning By applying different types of binning (choosing the function h), the
kernel can be made to consider similar distances to be equal, as opposed to the
indicator version of the SP kernel (4.9). We believe this is advantageous in weighted
graphs, as we will show empirically in our experiments. A simple binning function is
the linear binning defined by

h(Sij) =

⌊
MSij

Smax + ε

⌋
+ 1 (4.11)

where Smax = maxG,i,j S
G
ij is the maximum shortest distance SGij encountered in the

dataset and ε ∈ R+ is a small constant.
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4.2.3 Normalization

We can make the TDP and BSD kernels less sensitive to the graph size by normalizing
the feature vectors, giving the kernels the form,

Kij =
φ(G(i))Tφ(G(j))

‖ φ(G(i))‖‖ φ(G(j))‖
(4.12)

This definition of the TDP and BSD kernels is equivalent to the cosine similarity
measure [44]. We show in our experiments that normalization indeed helps increase
classification performance.

4.3 Enabling Fast Computation

In this section we present a few tricks for speeding up our method.

4.3.1 Explicit Knowledge of φ

Since the kernel mappings φ are explicitly known for the TDP and BSD kernels,
we avoid expensive computation of the kernel values Kij for each pair of graphs.
In fact, we do not need to compute the Gram matrix K at all, since explicitly
knowing φ allows us to use a fast linear SVM solver, making our graph kernel-based
approach usable in O(mT ) time. This procedure is shown in Algorithm 6. We use
Pegasos [48], a state-of-the-art iterative subgradient method for training the SVM
classifier. Pegasos has the property of being independent of the training set size
m when using linear kernels, which is to our advantage, as previously described.
Note that this independence only holds when φ is known, as the Pegasos algorithm
becomes directly dependent on m when using kernels in the general case [48].

We make the computation of φ scalable by using GraphLab [36], a library for doing
distributed computation. By following the restrictions of the GraphLab framework,
scalable computation on graphs can be easily achieved. Since we explicitly know the
mapping φ, we can easily design algorithms that fit the GraphLab framework for
computing φ for each graph in an efficient manner.
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Algorithm 6 Detect ambiguous nodes. Fast version.

Input: G = (V,E)
Input: κ - Neighborhood size.
for vi ∈ V do

Set G(i) = N (i)
κ according to (4.1)

end for
Compute feature mappings φ(G(i)), ∀G(i)

Train a linear SVM with labels {yi : yi ∈ {±1}}.
Output: SVM classifier.

4.3.2 Batch Computation

We here mention a trick to speed up the parallel computation the graph kernels
for all samples in the training set when using GraphLab. Suppose that we want to
compute the graph kernels for m graphs. A näıve way would be to, in a for loop,
compute each of the m graph kernels. In case the graphs are of relatively small size,
the actual iterative step in each graph kernel algorithm mentioned above might take
less time than the GraphLab communication overhead. In order to circumvent this,
we create a supergraph S, containing each input graph G ∈ G, |G| = m as subgraphs.
We say that each graph G is a subgraph in S. We then run one of the above graph
kernel algorithms just one single time on S. When computing the vectors φ(G(i)),
we instead create one per subgraph, efficiently computing the graph kernels for the
whole training set in one go. We have seen empirically that this method is faster
than the naive one, which seems reasonable, as GraphLab will be able to schedule
idle machines to work on several G ∈ G at once, something that would not have been
possible using a serial implementation. Results of this batch computation mode can
be seen in Section 6.4. Note that with this trick, we parallelize both over the training
set and over each individual graph.

4.4 Graph Kernel Implementations

In this section we show how we have implemented the calculation of the mapping
φ for the TDP and BSD kernels in GraphLab. As we know the mapping explicitly
for both kernels, this is all we need to do in order to efficiently calculate the kernel
values.
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4.4.1 Truncated Direct Product Kernel

Following the ideas in (4.6), the mapping φ of the TDP kernel is implemented in
GraphLab using the GAS layout as follows.

Gather phase
Gather on in-edges, summing together the data of each adjacent vertex.

Apply phase
Set the data of the vertex to the above calculated sum.

Scatter phase
Not used.

The vertex program works by the idea that the initial number of random walks of
length 0 to a node is 1, as a zero-length walk can only go to the node itself. Then,
the number of walks of length 1 can be found by summing the number of random
walks of length 0 of all adjacent vertices connected by in-edges to this vertex. More
formally, the random walk algorithm can be expressed as

t
(k+1)
i =

∑
vj∈V, s.t. (vj ,vi)∈E

t
(k)
j

t
(0)
i =1

(4.13)

where t
(k)
i is number of random walks of length k to vertex i. This recurrence is

exactly what taking the matrix power of the adjacency matrix does; a standard way
of calculating the number of random walks of certain lengths from the adjacency
matrix of a graph [28, 53]. This vertex program is then wrapped around an external
loop that runs the vertex program of each vertex one step, whereafter it collects the
number of random walks. The algorithm will trivially converge after logλ ε = K
steps. The correctness of the algorithm follows directly from that (4.13) is equivalent
to calculating random walks using powers of the graph adjacency matrix. Pseudocode
can be seen in Algorithms 7, 8 and 9.

The time complexity becomes O( 1
k
K|V |∆in) , where ∆in is the maximum in-degree

of the vertices and k the number of machines. This can be simplified to O( 1
k
K|E|), as

the average degree of a graph isO( |E||V |). The memory complexity becomesO(K+|V |),
as we need to store only one value per iteration, and a value for each vertex.
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Algorithm 7 TDP kernel φ-calculation in GraphLab.

Input: G = (V,E) - graph to compute φ for.
Input: λ - decay parameter.
Input: ε = 1

100000
- stopping parameter.

Set v.data = 1, ∀v ∈ V ;
Set n = logλ ε;
for i ∈ {0, . . . , n} do

Set ui =
√
λi
∑

v∈V v.data;
Signal all vertices using the GraphLab engine;
Start the GraphLab engine with Algorithms 8 and 9 on G, run one step;

end for
return u;

Output: u - the vector φ(G).

Algorithm 8 TDP vertex program gather phase.

Input: v - This vertex.
Input: e = (vadj,v) - In-edge. . Gather only on in-edges.

return vadj.data;
Output: Data of vadj: a scalar.

4.4.2 Binned Shortest Distance Kernel

Before we begin, we will in the next paragraph briefly describe a data type called a
Shortest Path Map.

Shortest Path Map A Shortest Path Map is similar to a normal map data struc-
ture, with the extra functionality that it implements the += operator. This operator,
when applied on two maps, will add the keys and values of the second map to the
first one. When conflicting keys are present, the value is set to the minimum of the

Algorithm 9 TDP vertex program apply phase.

Input: v - This vertex.
Input: total - The summed-together value from the gather phase.

Set v.data = total;
Output: Nothing.
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two. Then, for each pair (key,val) in the map, key represents a vertex id, from which
we know that of all paths we have tried so far, there was a locally shortest path of
length val.

Now, we describe the implementation of the φ-calculation for the BSD kernel. Using
the idea in (4.10), it was implemented in GraphLab using the GAS layout as follows.

Gather phase
Add the length of the edge to the adjacent vertex’s Shortest Path Map and
return a copy of it. Due to the definition of the += operator for Shortest
Path Maps, the resulting summed-together Shortest Path Map presented in
the apply phase will only contain the shortest paths from each key (vertex id)
to this vertex. In this sense, when the vertex receives a new Shortest Path
Map, we know that the map contains the shortest path to this vertex found
so far by asking the neighboring vertices. However, we might already know a
shorter path that was stored previously in this vertices’s Shortest Path Map.

Apply phase
Only update the shortest path in the vertex’s own map if the newly found map
actually contained a shorter path. If we found one, we indicate that this vertex
was updated and that it thus has gotten some new information.

Scatter phase
Signal adjacent vertices only if we actually learned something new during the
apply phase. The idea is that a vertex will spread the latest gossip about a
new shortest path, but it will not talk to its neighbors about old news.

Following this thought, the algorithm will converge when no new shortest path has
been found for any vertex, indicating that the final Shortest Path Map in each vertex
then actually is optimal. Pseudocode can be seen in Algorithms 10, 11, 12 and 13.

The time complexity then becomes O( 1
k
|V |2(∆in + |V |)), as each Shortest Path Map

has to propagate to each vertex from each vertex, where each vertex program needs
to run the gather and scatter phase (each taking O(∆in) time) and the apply phase
(taking O(|V |) time). ∆in denotes the maximum in-degree of the vertices. Since we
parallelize over vertices, using k machines, we can express the average work done
per machine by diving by k. This can be reduced to simply to O( 1

k
|V |3). Since

each vertex holds a Shortest Path Map that at the termination of the algorithm will
hold |V | entries, we get a memory complexity of O( 1

k
|V |2), as the distributed graph

representation of GraphLab will divide the vertices upon the k machines.
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Algorithm 10 BSD kernel φ-calculation in GraphLab.

Input: G = (V,E) - graph to compute φ for.
Input: M - the number of histogram bins.

Signal all vertices using the GraphLab engine;
Start the GraphLab engine with Algorithms 11, 12 and 13 on G, run until conver-
gence;
Compute a histogram with M bins in u of shortest paths, ∀v ∈ V ;
return u;

Output: u - the vector φ(G).

Algorithm 11 BSD vertex program gather phase.

Input: v - This vertex.
Input: e = (vadj,v) - In-edge. . Gather only on in-edges.

return A copy of vadj’s Shortest Path Map with the length of edge e added;
Output: Shortest Path Map with the length of edge e added.

Algorithm 12 BSD vertex program apply phase.

Input: v - This vertex.
Input: spmnew - The summed-together Shortest Path Map from the gather phase.

Let spmv be the Shortest Path Map contained in the vertex program of vertex v.
if spmv does not contain an entry for the trivial path from v to v then

Add the pair (idv, 0) to spmv;
end if
for each pair (idfrom, distnew) ∈ spmnew do

if (idfrom,distold) 6∈ spmv then
Add the pair (idfrom, distnew) to spmv;
Indicate that v has changed during this phase;

else if (idfrom,distold) ∈ spmv ∧ distnew < distold then
Replace distold with distnew for key idfrom in spmv;
Indicate that v has changed during this phase;

end if
end for

Output: Nothing.
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Algorithm 13 BSD vertex program scatter phase.

Input: v - This vertex.
Input: e = (v, vadj) - Out-edge. . Scatter only on out-edges.

if v changed during the apply phase then
Signal vadj;

end if
Output: Nothing.
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Applications

The graph kernels described in this thesis can be applied to Recorded Future’s
data for entity disambiguation, a real problem which is looked at by the com-

pany. The method presented in this thesis can of course also be applied to datasets
of similar structure describing a different scenario, such as the IMDb dataset. Since
our method requires very minimal information, it is applicable to many different
types of datasets.

One particularly nice feature of our graph kernel-based approach, is that it works in
a fully anonymized setting, in which we know nothing about the names of any of the
related persons, places etc. This means that our approach can be used in situations
where information such as the names of people are sensitive and cannot be released.
This makes our approach applicable in many settings where previous methods cannot
be applied.

Since we have parallelized the computation of the graph kernels in GraphLab, our
method will be able to scale on large datasets where other methods might take a
long time to compute. In fact, as is shown in Section 6, some of our graph kernels
are faster than the state-of-the-art by a significant factor.
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Experiments

We evaluate our approach by comparing it, using a large selection of graph
kernels, to the random walk method of Malin [39], denoted Malin. We address

two questions, 1) how well have our extensions improved existing graph kernels, 2)
how well does our method fair against a state-of-the-art method. The experiments
are conducted on two real-world datasets, one of which is readily available.

6.1 Recorded Future News Data

We investigate a proprietary dataset (RF) from Recorded Future 1, a company spe-
cializing in web intelligence and predictive analytics. The data has been gathered
using automatic processing of articles from news and social media. When an entity,
e.g. a person, place or company, was found in an article, it was assigned a (possibly
ambiguous) canonical identifier.

The RF dataset contains information from around 10 million articles. The identifier
graph of the set has a node for each identifier in the set of articles and an edge (vi,vj)
if identifiers vi and vj have co-occurred in an article. Each edge is associated with
a weight wij equal to the number of times i and j have co-occurred. The graph
contains 2,155,893 nodes and 13,935,815 edges and has 91 nodes that have been

1http://www.recordedfuture.com/
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manually labeled as either ambiguous (+1) or unambiguous (−1). The average size
for each local neighborhood graph of the labeled nodes was 267 nodes and 5,830
edges. 39.6% of the labeled nodes have a positive label. Note that in this dataset we
do not have access to the actual articles that is the cause of the relations, only the
fact that certain names co-occurred in a number of articles, making Malin’s random
walk method inapplicable to this dataset.

6.2 Internet Movie Database

The Internet Movie Database 2 (IMDb) is an online database gathering information
about the televised entertainment industry, including movies, actors and production
personnel.

Following Malin [39], we artificially introduced ambiguities by treating all actors with
the same last name as one, merging them into a single node corresponding to a single
identifier e.g. “Smith”. An edge was added between two nodes if the corresponding
identifiers were part of the same cast list in a movie. Edges were weighted by the total
number of times a pair of nodes starred in movies together. Additionally, we only
included movies with more than one actor, thus ensuring that every node is adjacent
to at least one other node. Actors who had not starred together with any other actor
were removed from the dataset. Just like in Malin [39], we only considered movies
between 1994-2003. It is important to note that our dataset is not the exact same as
the one used in Malin [39]. This is due to the fact that the IMDb database has been
updated since. The dataset used in by Malin [39] had ∼37,000 movies and ∼180,000
distinct entities, while our dataset consists of 52,004 movies and 2,272,504 distinct
entities.

When all actors with the same last name had been merged, the resulting graph
contained 150,072 nodes, corresponding to the distinct last names, and 9,283,233
edges. In Malin [39] they reported ∼85,000 distinct last names. We created a training
set by randomly selecting 100 identifiers, such that half of them were ambiguous. The
average size for each local neighborhood graph of the labeled nodes was 156 nodes
and 12,028 edges. We denote this dataset IMDb1.

In IMDb1 there exists several identifiers that appear in one movie only. In fact,
out of the 100 identifiers chosen, 38 was part of only one source. Out of these
38 identifiers, 36 were non-ambiguous, while 2 were ambiguous. Consistent with

2http://www.imdb.com/interfaces
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intuition, it is very unlikely that an actor appearing in only one movie is ambiguous.
This, perhaps undesired, property of the dataset led us to create a second set based
on the IMDb data. This dataset contains the same data, the only difference being
that the 100 identifiers, chosen for evaluation, are required to be a part of more than
one movie. In the resulting set, the average number of nodes and edges in each local
neighborhood were 279 and 24,550 respectively. We denote this alternative dataset
IMDb2.

6.3 Experimental Setup

We evaluate the performance of five different graph kernels (GL, DP, SP, TDP,
BSD), including extensions, within our approach using 10-fold cross validation with
the Pegasos SVM solver [48]. For all kernels we use only the 1-neighborhood (κ = 1)
for comparing nodes. This reduces computation time, but is also motivated from the
intuition that the larger the neighborhood included, the less specific it is to the node
of interest.

We transform all edge weights wij with a function τ : R+ 7→ R+, τ ′ < 0 so that strong
connections (many co-occurrences) become small weights, in the belief that shortest
paths should go along strong connections. In our experiments, we try logarithmic and
inverse edge transforms, defined as: τlog(wij) = lnwmax − lnwij and τinv(wij) = w−1ij ,
where wmax is the maximum edge weight in the graph. Note that the transformations
are applied prior to the computation of the distances SGij with the Floyd-Warshall
algorithm. The transforms only affect the BSD and SP kernels, as the other kernels
do not consider edge weights. For the BSD kernel, we use only linear binning, as
defined in (4.11).

We believe that using linear binning is sufficient, since the edge transform τ already
preprocesses the edges in a non-linear manner. The logarithmic edge transform allows
our kernel to capture the intuition that there exist many weak connections and few
very strong connections. Achieving good binning resolution in both cases motivates
the use of the logarithm. Figure 6.1, depicting the weight distribution of the two
real-world datasets, supports this intuition.

For the TDP kernel, we perform a grid search over the parameters, setting λ ∈
{0.2, 0.4, 0.6, 0.8} and K = blnλ 10−5c, giving K ∈ {7, 12, 22, 51}. For the BSD
kernel, we try setting the number of bins M ∈ {5, 10, 25, 50}. As both the above
kernels can be normalized, we try enabling and disabling normalization for these.
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Kernel RF IMDb1 IMDb2

GL 81.0 84.0 71.0

SP 73.0 77.0 60.0

BSDn 82.0 82.0 61.0

BSD 78.0 78.0 61.0

DP 54.9 37.0 -

TDPn 75.0 74.0 62.0

TDP 75.0 65.0 62.0

TDPdn 76.0 77.0 65.0

TDPd 72.0 76.0 55.0

Malin 86.0 64.0

Table 6.1: Classification accuracy (%) on 10-fold cross-validation. The subscript n
stands for normalization and d for the distinguished vertex version of the TDP kernel.
The DP kernel on IMDb2 did not finish within in 48 hours and was left out. Note
that Malin is not applicable to the RF dataset as explained in Section 6.1.

For the GL kernel, we used ε = δ = 0.05. The parameter λ of the DP kernel was set
for each dataset so that λ < ∆(G×)−1, giving λ = 0.00067 for RF and λ = 0.00098
for IMDb1. The DP kernel on IMDb2 did not finish within 48 hours and was left
out because of this. For all kernels, we optimize the Pegasos SVM parameters using
cross-validation.

For Malin, we started 100 and 1000 random walks from each source of the node
being classified, and for each walk we did 50 steps. Early tests showed that increasing
the number of steps did not increase performance. Note that in Malin [39], only 100
walks were used, albeit on a different dataset. On IMDb1 and IMDb2, however,
more walks could be needed, as they are of larger size. We then tested for the best
threshold from the set {0.00, 0.01, . . . ,1.00}.

6.4 Results

The best results of our experiments, in terms of classification accuracy on the three
datasets, are shown in Table 6.1. The GL, SP and DP kernels are the original

47



CHAPTER 6. EXPERIMENTS

Kernel† RF IMDb1 IMDb2

GL 424 1254 1221

SP 1010 5247 14151

BSDn 1721 6706 19325

BSD 1690 8274 12143

DP 14980 131329 -

TDPn 3 9 25

TDP 3 9 24

TDPdn 8 9 19

TDPd 8 9 25

Malin 2787 49362

Table 6.2: Wall clock time for detecting ambiguities for all training examples, mea-
sured in seconds 3. The subscript n stands for normalization and d for the distinguished
vertex version of the TDP kernel. † The GL kernel was implemented in MATLAB,
and Malin and DP in Python. All others were run in C++ using GraphLab. The DP
kernel on IMDb2 did not finish within in 48 hours and was left out. Note that Malin
is not applicable to the RF dataset as explained in Section 6.1.

kernels as described in Section 2. The DP kernel was computed using the Sylvester
equation method of Vishwanathan et al. [53] and the SP kernel used the indicator
function as in (4.9). The BSD and TDP kernels are the extensions of the SP and
DP kernels respectively, proposed in Section 4. In Table 6.2, the wall-clock times
needed for detecting ambiguities using the various methods are presented.

Preliminary results indicated that the performance did not improve with κ > 1.
Further experiments with κ > 1 were not performed because of this fact and the
intuition that the larger the size of the extracted neighborhoods, the less they will
describe the specific characteristics of the central vertex. When using larger neigh-
borhoods, the graph sizes increase rapidly, reaching close to the size of the original
identifier graph already for κ = 2. It was thus infeasible to run these experiments
within reasonable time.

We proceed to compare the results of our method with Malin based on the results

38 threads on a cluster with 5 computation nodes and 8 Intel Xeon 2.4 GHz cores per node was
used.
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in Table 6.1. In the RF dataset, there is no source information available, making it
is impossible to run experiments for Malin on this dataset.

We now summarize the parameters giving the best performance during experiments.
The TDP kernel performed best with λ = 0.2 for the RF dataset, λ = 0.8 on the
IMDb1 dataset and λ = 0.6 on the IMDb2 dataset. The SP kernel performed best
with inverse edge transform on the RF dataset and logarithmic edge transform on
the IMDb1 and IMDb2 datasets. The BSD kernel with logarithmic edge transform
on the RF dataset gave the best result, using 10 linear bins. On the IMDb1 and
IMDb2 datasets, the BSD kernel with logarithmic edge transform and 25 and 5
linear bins, respectively, gave the best result.

For Malin, on IMDb1, the best number of walks was 100, and the best threshold
0.00. On IMDb2, Malin got the best accuracy with 1000 walks and the threshold
being 0.17.

Our approach (GL, BSD) gets comparable results to Malin on IMDb1, while
being significantly faster (GL), see Table 6.2. Our approach outperforms Malin by
a wide margin on IMDb2. IMDb1 contains identifiers that only appeared in one
movie, which in our setting means that we have very little information to base the
classification on. Also, Malin predicts all single-source nodes to be non-ambiguous
by default. Since most of these nodes actually are non-ambiguous, this means that
Malin works quite well on the IMDb1 dataset.

In fact, any classifier that has access to the sources would be able to get a very good
result on IMDb1 by classifying all nodes with more than one source as ambiguous and
the rest as non-ambiguous. Our method however does not have access to the sources
and still gives similar performance, with many of our kernels taking significantly
smaller amount of time. This simple classification method, for classifiers that have
access to the sources, is however not very useful on the more challenging dataset
IMDb2, and thus Malin gets a worse result on that dataset.

We also note that Malin takes significantly longer time to run on the IMDb2
dataset, compared to IMDb1. This is because of the fact that IMDb2 contains
more sources per node on average, increasing the number of walks performed by
Malin. Also, Malin got the best result with 1000 walks per source node, instead
of 100 like on IMDb1, this also increased the running time significantly. With 100
walks Malin got only 56% accuracy and took 3,957 seconds to run.

In our graph kernel-based approach, the time complexity for training the classifier
is independent of the number of sources the data contained. Although the compu-
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tation time will increase if the number of edges increases, increasing the number of
sources will not increase the computation time unless it introduces new edges into
the graph. New edges will be added if a source introduces a new pair of identifiers
not previously encountered together in a source. New sources without any new pairs
of identifiers will then only increase the weight of edges and therefore not affect the
computation time of our method. This behavior is in contrast to Malin, which in-
creases linearly in computation time with the number of sources. Since the number
of sources potentially can be very big in real world datasets, this time dependence
on the number of sources could in some cases be a problem. If we assume a scenario
where we have access to a very large amount of sources, then as long as a new source
does not introduce a new edge, including that source in the dataset will not increase
the computation time of our graph kernel approach, giving us a significant advantage
over Malin in this setting. When it comes to running time, the GL and TDP kernels
finished faster than Malin on both datasets, with the TDP kernel being particularly
noteworthy.

On a final note, given the speed of our method, it could be used as a potential
preprocessing step, whereafter a clustering method such as Malin could be run on
the filtered smaller selection of nodes, dividing them into their correct underlying
entities. This, of course, assumes a scenario where the sources are observed. It
would not work on the RF dataset, for which further investigation needs to be done.

Evaluation of Kernel Extensions In terms of accuracy, the BSD and GL kernels
outperform the other kernels when it comes to the RF dataset. On the IMDb1
dataset GL performs the best of the kernels, with the normalized BSD kernel close
behind. On the more challenging dataset IMDb2, the GL kernel performed the best.

We note that both of our extended kernels outperformed their original counterparts.
For the DP kernel, this is especially noteworthy due to the timing results of Ta-
ble 6.2. The TDP kernel variations all perform significantly better to a fraction of
the computational cost. A possible reason for why the TDP kernel would perform
better than the DP kernel is tottering, as described in Section 2.21. Since calculating
the DP kernel is the same as calculating all walks of length up to infinity, tottering
actually outweighs the relevant walks, making the DP kernel perform worse than a
kernel that only calculates walks up to a certain length, i.e. the TDP kernel.

Using normalization helped the BSD and TDP kernels get better or equal accuracy
on all datasets, indicating that the normalization might help the kernels become
less sensitive to graph size. We also note that the BSD kernel outperforms the SP
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kernel on both datasets, indicating that binning seems to help the kernel get a better
classification accuracy on weighted graphs.

The experiments with the distinguished node for the TDP kernel (TDPdn), gave
a slight increase in performance, but not enough to say that the TDPdn kernel is
better than the TDPn kernel.

The experiments indicate that the edge transform τlog generally performs better than
τinv. The only exceptions to this was the BSD kernel on the IMDb2 dataset and the
SP kernel on the RF dataset.

Speedup of BSD Kernel Using Parallel Implementation As the BSD and
TDP kernels can be calculated algorithmically an order of magnitude faster than
näıve pairwise kernel computation, it is uninteresting to compare this increase in
computation speed. Indeed, the TDP kernel runs much faster than any of the other
approaches in our experiments. However, with a running time of a few seconds, in-
vestigating the scalability of the TDP kernel would require a larger dataset. Rather,
we focus on investigating how well the computation of shortest distances for the
BSD kernel scales when using GraphLab. The experiments were carried out on the
RF dataset. A cluster with 5 computation nodes with 8 Intel Xeon 2.4 GHz cores
and 23.5 GB RAM per node was used. Figure 6.2 shows a comparison with linear
speedup. Speedup was defined as t1

tk
, where tk is the time required to precompute

the graph kernels using k CPUs. In the figure, serial means running GraphLab on
each local neighborhood graph separately, whereas batch denotes putting all local
neighborhoods in one big graph, on which GraphLab is run just once. Spread de-
notes running the threads evenly divided on several physical machines, whereas tight
denotes running as many threads per machine as there are CPU cores. We see that
the batch-tight computation mode gets the best speedup, increasing almost linearly
up until 8 CPUs.
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Figure 6.1: Histogram of edge weights in the RF (top) and IMDb (bottom) datasets,
with the number of edges on the y-axis and edge weight magnitude on the x-axis. Note
that the y-axis is on a logarithmic scale.
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Figure 6.2: Parallel speedup of BSD kernel precomputation as the number of CPUs
increase on the RF dataset. Linear speedup is shown by the solid line. Speedup is
defined as t1

tk
, where tk is the time required to precompute the graph kernels using

k CPUs. We let serial denote running GraphLab on each local neighborhood graph
separately, whereas batch denotes putting all local neighborhoods in one big graph, on
which GraphLab is run just once. Spread denotes running the threads evenly divided on
several physical machines, whereas tight denotes running as many threads per machine
as there are CPU cores.
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Discussion

In this thesis we have designed extensions to the DP and SP kernels, creating
the TDP and the BSD kernels. During our experiments in Section 6, we showed

that these kernels perform similarly or better in terms of speed, accuracy or both,
compared to their original versions. The run-time decrease of the TDP kernel was
particularly noteworthy. On the RF dataset, the running time of the DP kernel was
over 4 hours, while the running time of the TDP kernel was a mere 3 seconds. The
TDP kernel also outperformed the DP kernel in terms of accuracy, most likely due
to the problem of tottering. The BSD kernel also performed very well compared to
its original version, the SP kernel. The BSD kernel had better accuracy than the SP
kernel on all datasets. While having a longer running time than the SP kernel in
the experiments, the increase was not significant enough to say that the BSD kernel
is always slower. The difference in running time could be due to differentiating
loads on the server used for the experiments. Normalizing the kernels helped them
become less sensitive to graph size and gave increased performance. In some cases, the
performance increase was quite significant. The version of the TDP kernel which only
considers the random walks of the distinguished node, the TDPdn kernel, showed a
slight increase in accuracy, but the increase was not judged to be enough for drawing
the conclusion that the TDPdn kernel is better than the TDPn kernel.

When comparing our kernel-based approach to Malin, we can note that we out-
perform Malin by a wide margin on the IMDb2 dataset. For reasons described in
Section 6, it is very difficult for a method that does not use source information, such
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as our kernel-based method, to beat any method which considers the sources, be that
Malin or any other source-aware method. Despite this, we perform very similar in
terms of accuracy, compared to Malin, and several of the kernels are able to run in
a fraction of the time used by Malin.

We have also presented a way for significantly reducing the running time of our
approach, by explicitly knowing the mapping φ. Given φ, we are able to calculate
the time-consuming part of the kernel for each single graph, instead of for each pair
of graphs, reducing the running time by an order of magnitude. Since the most
computationally demanding part of our approach is calculating the kernel values
— not solving the SVM optimization problem — this was something which greatly
helped decrease the running time of our approach.

During our work we also looked into parallelizing the Pegasos algorithm, but the
parallelized algorithm, implemented in GraphLab, actually took longer time to run
than the original Pegasos algorithm. This because of the fact that the overhead
incurred from GraphLab was bigger than the time saved by calculating the different
steps in parallel.

During all of the experiments, the GL kernel performed very well in terms of accuracy.
This despite the fact that the GL kernel does not consider the weight of edges. The
GL kernel is also competitive in terms of running-time, beaten only by the TDP
kernel. This makes the GL kernel very interesting for more detailed studies and
designing extensions for it. This was however not done in this thesis due to time
constraints.
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Conclusions and Future Work

In this thesis we have developed a novel formulation of anonymized relational
entity disambiguation as a graph classification problem. We have devised a

method for detecting ambiguities in graph data based on local neighborhoods using
graph kernels. Our approach was compared to a state-of-the-art method, showing
significantly better performance in terms of either accuracy or speed or both.

We have shown how to enable fast computation of the direct product (DP) kernel
by extending it to a truncated direct product (TDP) kernel that outperformed the
DP kernel in our experiments. We have also presented a simple extension of the
shortest path kernel (SP), creating the binned shortest distance (BSD) kernel, as
a way of measuring similarity between general weighted graphs. The BSD kernel
was shown to give good classification results, outperforming the base SP kernel on
weighted graphs, which motivates the need for binning. Normalization of the TDP
and BSD kernels also helped boost performance. We show a significant speedup in
the computation of the kernels when using GraphLab and by explicitly knowing the
kernel mapping φ.

Future research should examine the possibility of applying our method in a semi-
supervised setting, by considering unlabeled samples. Other aspects to be looked
into is the problem of actually associating ambiguous identifiers with their underlying
entities. It should be noted that our method can be used as a fast indicator of
which identifiers to examine more closely for ambiguity. Larger datasets should
be examined, in order to further investigate the scalability of our method. Given
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the good performance of the GL kernel in our experiments, it is of great interest
to attempt at designing an extension to the GL kernel, which considers weighted
graphs.

57



A

Mathematical Notation

This appendix lists the usage of mathematical notation, including variables, con-
ventions and assumptions used in this thesis. The reader is advised to get fa-

miliar with this section before indulging their curiosity about the technical parts of
the thesis.

We use lower-case bold letters a = [a1, . . . , an]T to denote vectors and ai denotes the
i-th element of the vector.

We use bold upper-case letters A,B,C, . . . to denote matrices with Aij referring to
the element at the i-th row and j-th column of a p× q matrix:

A =

A11 · · · A1q
...

. . .
...

Ap1 · · · Apq

 (A.1)

Let An denote the n-th power of A. Let a(n) denote the n-th vector in a set of
vectors.

The Euclidean norm of a is denoted by ‖a‖.
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Let 1(·) denote the indicator function such that

1(x) =

1 if the expression x is true

0 otherwise

Let b·c and d·e denote the floor and ceiling functions, respectively.

[m] denotes the set with integer elements {1, 2, . . . ,m}.

We use e = [1, . . . , 1]T to denote a vector of all 1’s of the appropriate size.

We let ei = [0, . . . , 1, . . . , 0]T denote a vector with the i-th element set to 1 and all
other elements zero.

We let A⊗B = C (of size mp× nq) denote the Kronecker product [15] of matrices
A (of size m× n) and B (of size p× q).

We let G = (V,E) denote a graph with vertex set V = {v1, . . . , vn} and edge set
E = {ek : ek = (vi, vj)⇔ vi ∼ vj, vi,vi ∈ V }, and A(G) the adjacency matrix of G

∆(G) denotes the maximum degree of G.

Let V (i) × V (j) denote the Cartesian product of vertex sets V (i) and V (j).

We let S
(G)
ij denote the shortest path from node i to j in graph G.

K(G(i), G(j)) = 〈φ(G(i)), φ(G(j))〉 = Kij denotes a kernel [45] on graphs G(i), G(j),
where φ : X 7→ H is a map into a Hilbert space H [45]. Whenever clear from context,
we will omit G.
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Mathematical Proofs

This appendix contains detailed proofs and derivations for some of the equations
stated in this thesis.

B.1 Proof of Equation 2.18, p. 19

Proof.

(From (2.17) ) Base case: (A⊗B)2 = A2 ⊗B2

Induction step: (A⊗B)n+1 = (A⊗B)n(A⊗B) =

(An ⊗Bn)(A⊗B) = An+1 ⊗Bn+1
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B.2 Proof of Equation 2.19, p. 19

Proof.

∑
i,j

[A⊗B]ij = eT (A⊗B)e = eT

A11B · · · A1qB
...

. . .
...

Ap1B · · · ApqB

 e =

eT (A11 + · · ·+ A1q + · · ·+ Ap1 + · · ·+ Apq)Be =

eT (eTAe)Be = eTAeeTBe

B.3 Derivation of Equation 4.10, p. 35

Proof.

KSP (G(1), G(2)) =
∑
i,j,p,q

1
[
SG

(1)

ij = SG
(2)

pq

]
=
∑
i,j,p,q

M∑
k=1

1
[
SG

(1)

ij = k
]
1
[
SG

(2)

pq = k
]

=
M∑
k=1

∑
i,j,p,q

1
[
SG

(1)

ij = k
]
1
[
SG

(2)

pq = k
]

=
M∑
k=1

∑
i,j

1
[
SG

(1)

ij = k
]∑
p,q

1
[
SG

(2)

pq = k
]

Replacing 1
[
SG

(1)

ij = k
]

with θG
(1)

ijk gives us the BSD kernel:

KBSD(G(1), G(2)) =
M∑
k=1

∑
i,j

θG
(1)

ijk

∑
p,q

θG
(2)

pqk
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B.4 Derivation of Equation 4.5, p. 33

Proof. For convenience, we denote A(G(i)) with A(i).

K×(G(1), G(2)) =

|V×|∑
i,j=1

[
∞∑
n=0

λnA(G×)n

]
ij

=

∞∑
n=0

λn
|V×|∑
i,j=1

[A(G×)n]ij =
∞∑
n=0

λn
|V×|∑
i,j=1

[
(A(1) ⊗A(2))n

]
ij

=

∞∑
n=0

λn
|V×|∑
i,j=1

[
A(1)n ⊗A(2)n

]
ij

=
∞∑
n=0

λneTA(1)n ⊗A(2)ne =

∞∑
n=0

λneT (eTA(1)ne)A(2)ne =
∞∑
n=0

λn(eTA(1)ne)(eTA(2)ne)
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