
Pliable Index Coding
Siddhartha Brahma

EPFL, Lausanne
siddhartha.brahma@epfl.ch

Christina Fragouli
EPFL, Lausanne

christina.fragouli@epfl.ch

Abstract—We propose a new formulation of the index coding
problem, where instead of demanding a specific message, clients
are “pliable” and are happy to receive any one message they
do not have. We prove that with this relaxation, although some
instances of this problem become simple, in general the problem
remains NP-hard. However, we develop heuristic algorithms
that in our (extensive) experimental evaluation required only a
logarithmic (in the number of messages) number of broadcast
transmissions; this is an exponential improvement over tradi-
tional index coding requirements.

I. INTRODUCTION

In the well-known Index Coding with side-information
problem (ICOD), a server holds m messages, and can broad-
cast over a noiseless channel to a set of receivers or clients.
Each client has as side information some subset of the m
messages, and requests from the server a specific message she
does not have. The objective is to devise an optimal coding
strategy that minimizes the number of broadcast transmissions
the server makes to satisfy the demands of all clients [4]. This
problem has been proven to be NP-hard; infact, it is even hard
to find constant-factor approximations [2], [14], [12].

But what if the clients are “pliable”, and are happy to
receive any one message they do not already have? There are
several applications that motivate this relaxation: for example,
the clients might be doing an internet search, have collected
some information and are interested in receiving with low
delay additional information on the subject they are searching;
they do not care which specific piece of information they do
receive, as long as it is something they do not already have.
We term this formulation pliable index coding (PICOD). In
this paper, we are interested in linear coding solutions for this
problem.

Our first question was, whether removing the specific re-
quirements we can find an optimal linear code in polynomial
time. We hoped that this might be true, since we now have a
significantly larger number of choices in what to transmit to
each receiver. This turns out not to be the case; we prove that
the problem remains NP-hard.

Our second question was, how many transmissions do we
need in this case, i.e., what is the effect on the length of the
code. In traditional index coding, Haviv et.al. [11] show that
the minimum length linear index codes for random instances
(i.e. random side information sets) of the problem is almost
surely Ω(

√
m), where m is the number of messages in the

server. Pliable network coding can only do better, and much
better in some cases. For example, assume that there are m

clients and they do not have any side information; if each
one of them requests a different message, with index coding
we need m transmissions, while if the clients are pliable, we
can simply send any one message. Although we expected
that pliable coding to do better, we were still surprised to
find, through extensive experimental results, that even with
simple heuristic algorithms the number of transmissions grew
as logm as a function of m.

The heuristic algorithms we develop also form a contri-
bution of this paper. They are based on a bipartite graph
representation of the problem, and take advantage of cases
where we have “easy” solutions of the coding problem, as
was the case we described above with no side information.

The paper is organized as follows. In Section III we pre-
cisely define the PICOD problem. In Section IV, we prove
that finding the optimal code for PICOD is NP-Hard. In
Section V we develop efficient polynomial time approximation
algorithms. In Section VI we show through simulations on
random instances of the problem that the algorithms work
very well in practice and the required number of broadcasts
is significantly less than that required in ICOD for similar
settings. The paper concludes with a discussion of open
problems and possible future directions of research.

II. RELATED WORK

Over the past few years, there has been a significant amount
of work on the theory of ICOD, especially for linear codes.
The problem was introduced by Birk et.al. [4] in the context
of an application in satellite communication networks. Bar-
Yossef et.al. [2] presented the first theoretical analysis of the
problem. They showed that the optimal length for a linear
index code is given by a certain graph functional called the
minrk. They conjectured this to be true even for non-linear
codes, which was subsequently disproved by Lubetzky et.al.
[13]. Several new graph parameters were introduced in [1]
showing the strict separation of optimal solutions for different
field sizes.

Building on the work of [12], [10] which investigate the
connections between Index Coding and Network Coding and
using information theoretic linear programs Blasiak et.al [5]
prove some of the best known bounds for the index coding
problem. The work of Blasiak et.al [5], [6] also shows
several separation results between the optimal linear and non-
linear index codes. These results can also be used to come
up with instances in network coding that have large gaps
between linear and non-linear coding rates. The best known

sree

sree
This work was partially supported by the European Research Council grant
NOWIRE ERC-2009-StG-240317

Server has
bits b1, b2, b3

Client 1
Has b2, b3
Requires b1

Client 2
Has b1
Requires b2

Client 3
Has b2
Requires b3

b1 ⊕ b2, b3
2 Broadcasts

(a)

Server has
bits b1, b2, b3

Client 1
Has b2, b3
Requires b1

Client 2
Has b1
Requires b2 or b3

Client 3
Has b2
Requires b1 or b3

b1 ⊕ b2
1 Broadcast

(b)

Fig. 1. (a) ICOD needs 2 broadcasts and (b) PICOD needs just one broadcast

approximation algorithms using semidefinite programming are
due to Chlamtac et. al. [8]. There have been several other
papers dealing with variants of the ICOD problem including
the complementary index coding problem [7], secure index
coding [9] and index coding with outerplanar side information
[3].

III. PROBLEM DEFINITION

We will assume that the messages are bits and encodings are
linear i.e. encoded bits are binary sum of the individual bits
done over the field GF (2). Suppose that the server has m bits
of information b1, · · · , bm and there are n clients c1, · · · , cn.
Each client ci knows a subset of bits bN [i], where N [i] is a
strict subset of [m], as side information. Throughout this paper,
bN [i] will mean the set {bj , j ∈ N [i]}, N [i] is a strict subset
of [m] and [m] = {1, 2, · · · ,m}. Given m, n and the side
information sets N [i], the linear Pliable Index Coding with
Side Information (PICOD) problem is to devise a minimum
length linear code C for {0, 1}m which consists of

1) A linear encoding function E mapping x ∈ {0, 1}m to
E(x) ∈ {0, 1}l, where l is the length of the code.

2) Decoding functions Di, · · · , Dn for the n clients such
that Di(E(x), bN [i]) = bki for some ki ∈ [m] \N [i] =
N [i].

As is standard, it is assumed that the server knows the side
information sets. In contrast to standard ICOD where the bit
requirements ki ∈ N [i] are specified precisely, in PICOD it is
sufficient for each client ci to know any one bit that it does
not know. To illustrate the difference, consider the scenario
shown in Figure 1. In ICOD, at least 2 broadcasts are needed.
Client 1 can decode b1 from b1 ⊕ b2 as it knows b2. Client
2 can decode b2 from b1 ⊕ b2 as well and client 3 gets b3
directly. It is easy to see that one broadcast will not suffice in
this case. On the other hand in PICOD, it is sufficient to send
just b1 ⊕ b2 as clients 1 and 3 can decode b1 = b2 ⊕ (b1 ⊕ b2)
and client 3 can decode b2 = b1⊕ (b1⊕ b2) using it. Note that

in both cases, coding does help as the number of broadcasts
is less than 3.

We also also study a generalized version of PICOD where
each client is interested in exactly k bits that it does not know,
for some k ≥ 1. If the number of bits ci does not know is
less than k, then it is sufficient if it can decode min{k, |N [i]|}
bits. We will call this the k-PICOD problem, which reduces
to the PICOD problem for k = 1.

IV. PICOD IS NP-HARD

For given side information sets, the length of the optimal
pliable index code cannot be worse than the length of the
optimal index code. This is because the index code encodes
for a specific set of required bits, which is just one of the
many configurations allowed in the pliable case. However, as
we show in this section, even for linear codes, PICOD is a
NP-Hard problem. This will be accomplished by reducing the
MONOTONE-1in3-SAT problem to the PICOD problem.

Given a 3SAT instance φ with all literals in non-negated
form, the MONOTONE-1in3-SAT problem asks whether there
is a satisfying assignment such that exactly one literal is True
in each clause of the formula. MONOTONE-1in3-SAT has
been shown to be NP-Hard by Schaefer [15]. Suppose φ is
made up of M literals αi, · · · ,αM and N0 clauses

φ(α1, · · · ,αM) =
N0∧

i=1

(αi,1 ∨ αi,2 ∨ αi,3)

where clause i is a disjunction of the literals αi,1,αi,2,αi,3.
The precise reduction is shown in the following lemma.

Lemma 4.1: Given an instance φ of MONOTONE-1in3-
SAT as defined above, there is an instance Iφ,M,N0 of linear
PICOD such that φ has a satisfying assignment if and only if
Iφ,M,N0 has a code of length 1.

Proof: Given the MONOTONE-1in3-SAT instance φ,
consider an instance Iφ,M,N0 of PICOD defined as follows

1) There are N0 clients ci, i ∈ [N0] corresponding to the
clauses where ci corresponds to clause i.

2) There are M bits bj , j ∈ [M] corresponding to the
literals where bit bj corresponds to literal αj .

3) The side information set for ci consists of all the bits
that do not correspond to the literals in clause i. That is

N [i] = {j, literal αj is not in clause i}

Therefore, |N [i]| = M − 3 and |N [i]| = 3 for all i ∈
[N0].

Suppose there is a linear code of length 1 that is a solution to
Iφ,M,N0 . It is of the following form

S = bj1 ⊕ bj2 · · ·⊕ bjs

for some j1, · · · , js ∈ [M]. Let Js = {j1, · · · , js}. Since
every client ci must be able to decode at least one bit not in
N [i] and there is only one code bit, ∀i ∈ [N0], there exists
jt ∈ Js such that jt ∈ N [i]. Since bji has to be decodable
by ci, there can be at most one such index. Thus, the set Js
has the property that exactly one of its members is present

b1 b2 b1 b2 b3 b1 b2 b3 b4

c1

W = 4 W = 5
W = 4

W Decreases. Stop!(a) (b) (c)

c2 c3 c4 c5 c1 c2 c3 c4 c5 c6 c7 c1 c2 c3 c4 c5 c6 c7 c8

Fig. 2. (a) A subgraph showing the coding scheme (b),(c) Greedy covering of the client vertices by neighboring bit vertices

in each N [i]. Clearly, if we set the corresponding literals
{αjk , 1 ≤ k ≤ s} to True and others to False, we make
sure that all the clauses (which correspond to the clients) are
satisfied and exactly one literal in each clause is True, which
therefore satisfies φ. Thus, a code of length 1 for Iφ,M,N

can be used to generate a satisfying assignment for φ that
has exactly one True literal in each clause. Exactly the same
argument can be reproduced backwards to prove the converse,
which completes the reduction. Finally, it is easy to see that
the reduction can be accomplished in polynomial time.

Since MONOTONE-1in3-SAT is NP-Hard, Lemma 4.1
implies that PICOD is NP-Hard. Therefore, in general we
cannot hope to get polynomial time algorithms for finding the
minimum length code unless P=NP. On the other hand, given
the practical nature of the problem, it will be worthwhile to
devise efficient approximation algorithms that work well in
practice.

V. APPROXIMATION ALGORITHMS

It is not hard to come up with instances where PICOD is
is quite easy to solve. For example, if there exists a bit such
that is not in the side information sets of any client, then it is
sufficient to send just that bit. Further, if the side information
sets of each client covers all the bits except one, then sending
the sum of all the bits solves the problem. Our main idea is
to find subsets of bits and clients that have a combination of
these properties.

It is simpler to visualize an instance of PICOD using a
bipartite graph G with m vertices on one side representing
the bits (termed as “bit vertices”) and n vertices on the other
side representing the clients (termed as “client vertices”). We
will identify the vertices by the bits or clients they represent.
There is an edge from bj to ci if j ∈ N [i]. In Figure 2(a)
shown above, bit b1 is not in the side information sets of
clients c1, c2, c3 and hence is connected to them in G. The set
of client indices connected to bj is denoted by Nb[j] i.e. the
clients cNb[j] are connected to bj .

Consider two bits j1 and j2 and their neighborhoods Nb[j1]
and Nb[j2] in G. We distinguish the vertices in cNb[j1]∪cNb[j2]

into two types depending on the number of bits they are
adjacent to. Consider the client vertices that are adjacent to
exactly one bit vertex. The set of such vertices for a particular
subset B of bit vertices in G is denoted by W (B). In Figure
2(a) for B = {b1, b2}, W (B) = {c1, c2, c4, c5} and are
marked by the double circles. Note that if b1 ⊕ b2 is sent
to these |W (B)| = 4 vertices, they can decode a bit that it
does not have. c1 and c2 can decode b1 = b2 ⊕ (b1 ⊕ b2) as

they know b2. Similarly, c4 and c5 can decode b2 as they know
b1. On the other hand, the set of clients which are adjacent to
more than one bit, {c3} in this case, cannot decode either b1
or b2.

The same logic can be extended to more than 2 bit vertices.
All the |W (B)| vertices in such a configuration will be able to
decode a bit that it does not have from the sum of the bits in
B. Thus, it is enough to broadcast the sum bit to “satisfy” all
the |W (B)| clients. We propose two algorithms based on this
idea by greedily maximizing their number. The third algorithm
is based on a reduction to ICOD.

A. Algorithm GRCOV1
Using the above intuition, we try to find a set of bit vertices

B such that |W (B)| is maximized. Rather than trying to obtain
the maximum such set, we greedily find a maximal such set.
Let B = {bv1 , · · · , bvt} be a set of bit vertices. B is a maximal
set if for any vertex bvt+1 /∈ B, |W (B ∪ {bvt+1})| < |W (B)|.
To find a maximal set, we start with the null set and keep
on adding bit vertices that greedily maximizes |W (B)| in
each step and stop when no further additions are possible
without decreasing |W (B)|. For example Figure 2 represents
a possible sequence of operations where B = {b1, b2, b3} is
a maximal set. When b3 is added, the cardinality of W (B)
increases but further addition of b4 decreases it, in which case
we stop.

Once such a maximal set BM is obtained, the encoded bit
consisting of the sum of all the bits in it is broadcast. The
vertices in BM and W (BM) are removed and the algorithm is
resumed for the remaining graph, until all the client vertices
are covered. Thus the code consists of all the encoded bits
derived from the maximal sets. We call this GRCOV1 (for
greedy cover). A simple implementation of the algorithm has
a running time of O(mn2).

B. Algorithm GRCOV2
GRCOV2 is a slight modification of GRCOV1, where the

bit vertices in the maximal set are not removed. The intuition
is that the bit vertices obtained in one maximal set may be
useful for the remaining client vertices as well. The algorithm
is presented in pseudo-code form below. The running time in
this case is again O(mn2).

C. Algorithm SETCOV
As a comparison, we propose another algorithm that is

based on a reduction to the ICOD problem. In an instance
of PICOD, it is sufficient that ci is able to decode any one

Algorithm 2 GRCOV2
Initialize: G is the bipartite graph corresponding to an in-

stance of PICOD with n client vertices and m bit vertices.
Initialize: UC ← {c1, · · · , cn}, num bits ← 0, C = {}.

while UC += ∅ do
B ← ∅.
while B is not a maximal set do

Find bit vertex bv such that |W (B ∪ {bv})| is maxi-
mized.
B ← B ∪ {bv}.

end while
UC ← UC \W (B).
Remove W (B) and all edges connected to it from G.

C ← C ∪ {
|B|⊕

t=1

bvt , bvt ∈ B}

num bits ← num bits+ 1.
end while
Output C, num bits.

bit in N [i]. We split client ci into
∣∣∣N [i]

∣∣∣ “pseudo-clients”

ci,1, · · · , ci,|N [i]| each with a distinct bit from N [i] as a
requirement and with the same common side information sets.
Therefore, in total we get

∑n
i=1

∣∣∣N [i]
∣∣∣ pseudo-clients with

properly defined side information sets. This is an instance
of the ICOD problem and can be solved using one of the
algorithms proposed in [4]. We use the simplest one based on
greedy clique cover.

Let the set of encoded bits be E. For the greedy clique
cover algorithm, each encoded bit allows for decoding in one
step. In other words, each client can decode its required bit
using just one encoded bit and each encoded bit can satisfy
the requirements of a certain number of pseudo-clients. This
naturally defines a “covering” relationship where an encoded
bit covers a set of pseudo-clients. Also note that each pseudo-
client in fact corresponds to an original client, the one from
which it was created. Therefore, for each encoded bit et ∈ E
we can define the set of original clients that it “covers”

C(et) = {ct,1, · · · , ct,st} ⊆ {c1, · · · , cn}

In fact, the same client can occur in several of these covering
sets. Since we only need a client to be able to decode a single
bit that it does not know, it is sufficient to find a collection of
C(et) that covers all the clients. Further we want to minimize
the size of this collection for the optimal encoding. This is
precisely an instance of the minimum SET-COVER problem
with clients being the elements and the C(et) being the sets.
In our simulations, we use the standard greedy approximation
algorithm to solve it. Thus overall, the algorithm (which we
term SETCOV), works by reducing the PICOD instance to an
ICOD instance by splitting each client and then solving a set
cover problem to minimize the number of encoded bits. The
total running time for a non-optimized implementation of the
algorithm is O(m2n2).

! !"# !"$!"% !"& !"' !"(!") !"* !"+ #
!

$

&

(

*

#!

#$

log(n)

,-./012343-5-.6/7/89:'!!;

<
=>
3?
1/2
@/,
-.A

BCDEFG
HIEFG#
HIEFG$
J4K/,-.A/@21/HIEFG$
LEFM

Fig. 3. Average performance of PICOD algorithms

D. Algorithm k-GRCOV2

To solve the more general k-PICOD problem defined in Sec-
tion III, we propose a natural generalization of the GRCOV2
algorithm presented above. Each client vertex ci maintains a
counter initialized to min{k, |N [i]|}. The algorithm proceeds
as above, except that after finding each maximal set B, we
delete the edges connecting B and W (B) in the graph and
decrement the counter of the vertices in W (B). Only those
client vertices whose counters have become zero are removed
from the graph. The running time of this algorithm, which we
call k-GRCOV2, is O(kmn2).

VI. EXPERIMENTAL RESULTS

In this section, we present results of extensive simulations
on random instances of PICOD and k-PICOD to evaluate
the performance of the algorithms presented in the previous
section. We have chosen both the number of clients and
number of bits to be m = n = 500. The independent random
instances are generated as a function of the bit probability
p - the probability of a client knowing a particular bit. For
the purposes of comparison, we generate the instances in a
manner such that each client requires a distinct bit in the ICOD
problem. For ICOD, we use the simple clique cover algorithm
presented in [4]. The behavior of other algorithms for ICOD
was similar in our range of interest.

In Figure 3, which shows the average performance of the
algorithms over several runs (more than 10,000 for each
value of p), we observe that there is a significant difference
between the performance of the PICOD algorithms and the
ICOD algorithm for the same p. While all the three PICOD
algorithms proposed above take less than 11 bits on an average,
the ICOD solution hovers in this range only for p ≥ 0.95
which is the case when the side information sets are very
dense. In the remaining range of p values, PICOD is much
more efficient in terms of the number of broadcasts. Thus,
unless the side information sets are very dense, the number of
broadcasts needed for PICOD is much less than ICOD.

! $!! &!! (!! *!! #!!! #$!! #&!! #(!! #*!! $!!!
$

%

&

'

(

)

*

log(n)

J4K/,-.A

J-9/,-.A

<=>3?1/2@/E5-?9.A/89;

<
=>
3?
1/2
@/,
-.A

HIEFG$

Fig. 4. Average performance of GRCOV2 for varying n

Among the three algorithms presented above, GRCOV2
performs the best in the entire range closely followed by
GRCOV1. SETCOV shows an interesting trend, being better
than GRCOV2 in the range p ≤ 0.5 but performing worse
after that. This can be partly explained by the fact that for
lower values of p the side information sets are sparse which
makes the bipartite graph dense and hence each client occurs
in several covering sets. This partially compensates for the fact
that we are using a suboptimal set cover algorithm. This is not
true for denser side information sets.

As shown in Figure 3, the maximum number of bits required
by GRCOV2 in our experiments for any PICOD instance is
always below log(500) ≈ 6.22. As further evidence, in Figure
4, we plot the average number of bits required by GRCOV2 for
different values of n (with m = n), instances being generated
uniformly at random. In each case, the maximum number of
bits required for a particular value of n is at most log(n), for
n ≥ 60. We conjecture that in the asymptotic limit of large
n, this is true in general. This would mean an exponential
gap between the number of broadcasts needed for the PICOD
and ICOD problem for random graph instances. Therefore,
in scenarios where PICOD is a more appropriate model, it is
better to apply the algorithms presented above.

Results of the performance of the approximation algorithm
for the k-PICOD problem are presented in Figure 4 for
different values of k. The k-GRCOV2 algorithm performs very
well in practice with less than 17 broadcasts being required
on an average for each one of the 500 clients to decode 5
additional bits.

VII. CONCLUSION

The algorithms presented in the paper show that pliable
index coding can be solved with significantly fewer number of
broadcasts than traditional index coding under similar settings.
This makes it more suitable for use in scenarios where the
clients are not interested in specific messages. Deriving upper
and lower bounds on the number of broadcasts needed in such
scenarios as a function of the number of messages and clients
and suitably defined parameters on the side information sets

! !"# !"$!"% !"& !"' !"(!") !"* !"+ #
!

$

&

(

*

#!

#$

#&

#(

#*

N:#

N:$

N:%

N:&

N:'

,-./012343-5-.6/7/89:'!!;

<
=>
3?
1/2
@/,
-.A

Fig. 5. Average performance of k-GRCOV2 for different values of k

is an open problem. The algorithms proposed in this paper
suggest that the upper bounds may be logarithmic in nature.
Proving approximation ratio bounds on the performance of
algorithm GRCOV2 is another open problem.

REFERENCES

[1] N. Alon, A. Hassidim, E. Lubetzky, U. Stav and A. Weinstein, “Broad-
casting with side information”, Proc. of the 49th Annual IEEE Symposium
on Foundations of Computer Science, pp. 823–832, 2008.

[2] Z. Bar-Yossef, Y. Birk, T. S. Jayram and T. Kol, “Index Coding with Side
Information”, Proc. of 47th Annual IEEE Symposium on Foundations of
Computer Science, pp. 197-206, 2006.

[3] Y. Berliner and M. Langberg, “Index coding with outerplanar side
information”, Proc. of IEEE International Symposium on Information
Theory, pp. 806–810, 2011.

[4] Y. Birk and T. Kol. “Informed-Source Coding-on-Demand (ISCOD) over
Broadcast Channels”, Proc. of INFOCOM, vol. 3, pp. 1257–1264, 1998.

[5] A. Blasiak, R. Kleinberg and E. Lubetzsky, “Index coding via linear
programming”, Available at http://arxiv.org/abs/1004.1379.

[6] A. Blasiak, R. Kleinberg and E. Lubetzsky, “Lexicographic Products and
the Power of Non-Linear Network Coding”, 52nd IEEE Symposium on
Foundations of Computer Science, pp. 609–618, 2011.

[7] M. A. R. Chaudhry, Z. Asad, A. Sprintson and M. Langberg, “On the
Complementary Index Coding Problem”, Proc. of IEEE International
Symposium on Information Theory, pp. 244–248, 2011.

[8] E. Chlamtac and I. Haviv, “Linear Index Coding via Semidefinite Pro-
gramming”, Available at http://arxiv.org/abs/1107.1958.

[9] S. H. Dau, V. Skachek and Y. M. Chee, “On secure Index Coding
with Side Information”, Proc. of IEEE International Symposium on
Information Theory, pp. 983–987, 2011.

[10] S. El Rouayheb, A. Sprintson and C. Georghiades, “On the relation
between the Index Coding and the Network Coding problems”, Proc.
of the IEEE International Symposium on Information Theory, pp. 1823–
1827, 2008.

[11] I. Haviv and M. Langberg, “On Linear Index Coding for Random
Graphs”, Available at http://arxiv.org/abs/1107.0390.

[12] M. Langberg and A. Sprintson, “On the hardness of approximating the
network coding capacity”, Proc. of the IEEE International Symposium on
Information Theory, pp. 315–319, 2008.

[13] E. Lubetzky and U. Stav, “Non-linear Index Coding Outperforming the
Linear Optimum”, Proc. of 48th Annual IEEE Symposium on Foundations
of Computer Science, pp. 161-168, 2007.

[14] R. Peeters,“Orthogonal representations over finite fields and the chro-
matic number of graphs”,Combinatorica, vol. 16, no. 3, pp. 417–431,
1996.

[15] T. J. Schaefer. “The complexity of satisfiability problems”, Proc. of the
10th Annual ACM Symposium on Theory of Computing, pp. 216226, 1978.

