
Cooperative Caching in Mobile Ad Hoc Networks Through Clustering

NAROTTAM CHAND AND NAVEEN CHAUHAN

Department of Computer Science & Engineering

National Institute of Technology

Hamirpur (HP) – 177 005

INDIA

{nar.chand, naveenchauhan.nith}@gmail.com

Abstract: - Constrained communication environment in mobile ad hoc networks (MANETs) due to insufficient

wireless bandwidth and limited battery energy makes data retrieval a challenging problem. Due to frequent network

disconnections in MANETs data availability is lower than traditional wired networks. Caching of frequently accessed

data in such environment is a potential technique that can improve the data access performance and availability.

Cooperative caching, which allows the sharing and coordination of cached data among clients, can further explore the

potential of caching techniques. In this paper, we present a scheme, called global cluster cooperation (GCC) for

caching in mobile ad hoc networks. In this scheme network topology is partitioned into non-overlapping clusters based

on the physical network proximity. This approach fully exploits the pull mechanism to facilitate cache sharing in a

MANET. Simulation experiments show that GCC mechanism achieves significant improvements in cache hit ratio and

average query latency in comparison with other caching strategies.

Key-Words: - MANETs, cluster, cooperative caching, cache state node, global cache state, hit ratio

1 Introduction
Recent explosive growth in computer and wireless

communication technologies has led to an increasing

interest in mobile ad hoc networks (MANETs) which are

constructed only from mobile nodes. The interest in

developing mobile wireless ad hoc networking solutions

has been due to their flexibility, ease of deployment and

potential applications such as battlefield, disaster

recovery, outdoor assemblies, etc. In MANETs, every

mobile node (MN) plays the role of a router for

communication with other mobile nodes. Even though

there is no dearth of storage space in present scenario, it

is always better to utilize the resources optimally. With

caching, the data access delay is reduced since data

access requests can be served from the local cache,

thereby obviating the need for data transmission over the

scarce wireless links. However, caching techniques used

in one hop mobile environment may not be applicable to

multihop ad hoc environment since the data or request

may need to go through multiple hops. Variable data

size, frequent data updates, limited client resources,

insufficient wireless bandwidth and clients’ mobility

make cache management a challenging task in mobile ad

hoc networks. As mobile nodes in ad hoc networks may

have similar tasks and share common interest,

cooperative caching, which allows the sharing and

coordination of cached data among multiple nodes, can

be used to reduce the bandwidth and power

consumption.

 Most of the previous researches in ad hoc networks

focus on the development of dynamic routing protocols

that can improve the connectivity among mobile nodes.

Although routing is an important issue in ad hoc

networks, other issues such as data access are also very

important since the ultimate goal of using such networks

is to provide information access to mobile nodes [1, 5, 8,

9]. One of the most attractive techniques that improves

data availability is caching.To date there are some works

in literature on cooperative caching in ad hoc networks,

such as consistency [1, 2, 3] and placement [4]. In this

paper, we investigate the data retrieval challenge of

mobile ad hoc networks and propose a novel scheme,

called global cluster cooperation (GCC) for caching. The

goal of GCC is to reduce the cache discovery overhead

and provide better cooperative caching performance.

GCC partitions the whole MANET into equal size

clusters based on the geographical network proximity as

shown in Fig. 1. To enhance the system performance,

within a cluster, individual caches interact with each

other and combined result is a larger cumulative cache.

In each cluster, GCC dynamically chooses a “super”

node as cache state node (CSN), to maintain the global

cache state (GCS) information of different nodes within

the network. The GCS for a client is the list of cached

items along with their time to live (TTL) field.

Simulation experiments are performed to evaluate the

proposed GCC caching scheme and compare it with

existing strategies in the MANETs.

 The rest of the paper is organized as follows. Section

2 describes the system model. Clustering strategy

employed in GCC is presented in Section 3. Section 4

describes the proposed GCC caching scheme for data

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 78

retrieval. Section 5 is devoted to performance

evaluation. Section 6 concludes the paper.

2 System Model
We consider a MANET environment where mobile

nodes access the data items stored by other nodes. A

mobile node that holds the original copy of a data item is

called data center. A data request initiated by a node is

forwarded hop-by-hop along the routing path until it

reaches the data center and then it sends back the

requested data. Mobile nodes frequently access the data,

and cache some data locally to reduce network traffic

and data access delay. We assume that weak cache

consistency is required and time to live (TTL) based

consistency model is used [7]. As mobile nodes may not

have sufficient cache storage e.g. in case of multimedia

data, caching strategy is to be devised efficiently.We

make the following assumptions and introduce some

common definitions.

Assumptions

• The network is divided into several non-overlapping

clusters where in each cluster; a node could be in one

of two roles: cache state node (CSN) or ordinary

node. CSN is a node that maintains global cache state

(GCS) information of different clusters, whereas

ordinary node maintains cluster cache state (CCS)

information corresponding to all the nodes in its

cluster. The ordinary node also maintains local cache

as per its requirement.

• Unique host identifier is assigned to each mobile

node in the system. The system has total of M hosts

and MHi (1≤ i≤ M) is a host identifier. The set of one

hop neighbors of a host MHi is denoted by 1

iMH .

• Nodes can physically move, so there is no guarantee

that a neighbor at time t will remain in the cluster at

time t+τ. The devices might be turned off or on at

any time, so the set of active nodes varies with time

and has no fixed size.

• The set of data items is denoted by D = {d1, d2, ……

dn}, where N is the total number of data items and dj

(1≤ j≤N) is a data identifier. Di denotes the actual

data for id di. Size of data item di is si. The original of

each data item is the data source/center.

• Each mobile node has a cache space of C bytes.

• Each data item is periodically updated at source.

After a data item is updated, its cached copy

(maintained on one or more hosts) may become

invalid.

Definitions

Grids. The mobile ad hoc network topology is divided

into equal size parts called grids. Grids are formed to

cluster the ad hoc network. Grid size is such that two

nodes located in adjacent grids (horizontally, vertically

& diagonally) are at a distance of one hop. A grid

consists of a cache state node (CSN) and a number of

ordinary nodes, and each node belongs to only one grid.

CSN. In each cluster area, a super node is selected to act

as the cache state node (CSN), which is responsible for

recording the global cache state (GCS) of all clusters in

the network area. When a node in any cluster

stores/deletes some data item into/from its cache, it

sends the information to its CSN so that the

corresponding GCS can be updated. Since a CSN

handles additional load of GCS maintenance, it must be

relatively stable and capable to support this

responsibility. In order to ascertain such qualification of

a node, we assign to each node a candidacy factor to

qualify as CSN, which is a function of node staying

period in the cluster, available battery power and

memory space. A node with the highest candidacy factor

is elected as CSN.

CCS. Cluster cache state (CCS) for a node is the list of

cached items along with time to live (TTL) field. When

cache content at a node changes, it broadcasts the

information to all the nodes within its cluster. CCS is

maintained at each node of the cluster.

GCS. Global cache state (GCS) for a network is the list

of cached items maintained at different clusters along

with their time to live (TTL) field. When cache content

changes, it sends the information to the CSN and the

CSN updates the corresponding GCS of the cluster. The

information at other CSN is updated periodically after

certain time period.

3 Cluster Handling
The clustering algorithm divides the network topology

into predefined equal sized geographical grids called

clusters. The problem of finding an optimal clustering is

out of the scope of this paper. For the sake of simplicity,

we assume that clustering phase gives a partition of the

network into grids. However, any clustering algorithm

can be used as our GCC caching scheme is compatible

with any non-overlapping clustering strategy. Grid size

captures the maximum distance between two nodes in

adjacent clusters (horizontally, vertically & diagonally).

It is ensured that the coordinators in adjacent grids are

within the transmission range of each other. Network

area is assumed to be virtually extended such that

boundary clusters also have same size as other clusters.

Beginning with the lower left cluster, the clusters are

named as 1, 2, ..., in a column-wise fashion. In each

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 79

cluster area a “super” node is selected to act as CSN,

which is responsible for maintaining the global cache

state (GCS) information of different clusters within the

network. GCS for a network is the list of data items

along with their TTL stored in its cache. When a node

caches/replaces a data item, its GCS is updated at the

CSN.

Fig. 1. Partitioning of MANET into clusters

 It may be noted that CSN is quite different from

conventional “clusterhead” that is used to forward

requests for a group of nodes. In each cluster of such a

clusterhead networked system, all the requests from/to a

client are forwarded by the clusterhead, which tends to

make it a bottleneck and/or a point of failure when the

system has high network density. Unlike this, CSN

works only as GCS holder to save the information about

the cached items by different clients belonging to the

entire network partitioned into clusters, and provides

additional service during cache discovery, admission

control and replacement. Compared to clusterhead, CSN

deals with much less workload and does not have to as

powerful as a clusterhead. In the proposed clustering

method, grid side g is a key factor to the clustering. A

node in one cluster can communicate with a node in

adjacent cluster (horizontally, vertically & diagonally),

if the required side g is derived as follows. The

maximum distance l between two hosts MHi and MHj is

given as: ggg 8)2(2 22 =+ . To ensure one hop

communication among the hosts within a cluster, l

should be less than or equal to transmission range (r),

i.e. rg ≤8 . Hence for
8

rg ≤ , all MNs in a cluster can

connect to one another in one hop communication.

4 GCC Caching
This section describes our global cluster cooperation

(GCC) caching scheme that exploits the above described

clustering mechanism for data retrieval in MANETs.

The design rationale of GCC is that, for a mobile client,

all other mobile clients within its cluster domain form a

cooperative cache system for the client since local

caches of the clients virtually form a cumulative cache.

In GCC, when a client suffers from a cache miss (called

local cache miss), the client will look up the required

data item from the cluster members. Only when the

client cannot find the data item in the cluster members’

caches (called cluster cache miss), it will request the

CSN which keeps the global cache state (GCS) and

maintains the information about the node in the network

which has copy of desired data item. If a cluster other

than requesting node’s cluster has the requested data

(called remote cache hit), then it can serve the request

without forwarding it further towards the server.

Otherwise, the request will be satisfied by the server.

For each request, one of the following four cases holds:

Case 1: Local hit. When a node requires a data and finds

it in the local cache.

Case 2: Cluster hit. When a node requires the data, it

checks its local cache, in case of local miss, node

consults its CCS which is maintained by this node only,

to check whether data is available in one of the

neighboring nodes within the cluster.

Case 3: Remote hit. When the requested data item is not

stored by a client within the cluster of the requester. The

requester checks with CSN which is maintaining GCS

and then returns the address of the client that has cached

the data item.

Case 4: Global hit. When the data is not found even

remotely data is retrieved from data center.

 Based on the above idea, we propose a cache

discovery algorithm to determine the data access path to

a node having the requested cached data or to the data

source. In Fig. 2, let us assume MHi sends a request for a

data item dx and MHk is located along the path through

which the request travels to the data source MHs, where

k∈{a, c, d}. The discovery algorithm is described as

follows:

When MHi needs dx, it first checks its own cache. If the

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 80

data item is not available in its local cache, it checks

with CCS which is maintained by MHi to see whether

any of neighboring node in the cluster has a copy of

desired data. If it is not available at cluster level, it sends

a lookup packet to the CSN MHj in its cluster. Upon

receiving the lookup message, the CSN searches in the

GCS for the requested data item. If the item is found, the

CSN replies with an ack packet containing id of the

client who has cached the item. MHi sends a request

packet to the client whose id is returned by MHj and the

client responds with reply packet that contains the

requested data item. When a node/MHs receives a

request packet, it sends the reply packet to the requester.

The reply packet containing item id dx, actual data Dx

and TTLx, is forwarded hop-by-hop along the routing

path until it reaches the original requester. Once a node

receives the requested data, it triggers the cache

admission control procedure to determine whether it

should cache the data item.

Fig. 2. Request packet from client MHi to server

 Cache admission control decides whether a data item

should be brought into cache. Inserting a data item might

not always be favorable because incorrect decision can

lower the probability of cache hits. For example,

replacing a data item that will be accessed soon with an

item that will be accessed in near future degrades

performance. In GCC, the cache admission control

allows a client to cache a data item based on the location

of data source or other client that has the requested data.

If the origin of the data resides in the same cluster of the

requesting client, then the item is not cached, because it

is unnecessary to replicate data item in the same cluster

since cached data can be used by closely located hosts.

In general, same data items are cached in different

clusters without replication.

 The GCC caching uses a simple weak consistency

model based on time to live (TTL), in which a client

considers a cached copy up-to-date if its TTL has not

expired. The client removes the cached data when the

TTL expires. A client refreshes a cached data item and

its TTL if a fresh copy of the same data passes by.

5 Performance Evaluation
In this section, we evaluate the performance of GCC

through simulation. The simulation area is assumed of

size 1500m x 1500m. The clients move according to the

random waypoint model [6]. The time interval between

two consecutive queries generated from each client

follows an exponential distribution with mean Tq. Each

client generates accesses to the data items following Zipf

distribution with a skewness parameter θ. There are N

data items at the server. Data item sizes vary from smin to

smax such that size si of item di is,

 )1().(minmaxmin +−+= ssrandomssi , i = 1, 2,... N,

where random() is a random function uniformly

distributed between 0 and 1. The simulation parameters

are listed in Table 1. For performance comparison with

GCC, two other schemes non-cooperative (NC) caching

and CacheData [1, 3] are also simulated. In NC, received

data are cached only at query node and locally missed

data items are always fetched from the origin server. In

our experiments, the same data access pattern and

mobility model are applied to all the three schemes. All

the schemes use LRU algorithm for cache replacement.

We evaluate two performance metrics:

Average query latency (Tavg). The query latency is the

time elapsed between the query is sent and the data is

transmitted back to the requester, and average query

latency (Tavg) is the query latency averaged over all the

queries.

Byte hit ratio (B). Byte hit ratio is defined as the ratio of

the number of data bytes retrieved from the cache to the

total number of requested data bytes. Here byte hit ratio

(B) includes local byte hit (Blocal), cluster byte hit

(Bcluster) and remote byte hit (Bremote). If nlocal, ncluster and

nremote denote the number of local byte hits, cluster byte

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 81

hits and remote byte hits respectively out of total ntotal

requested bytes, then

 Blocal = nlocal/ntotal × 100%, Bclutser = ncluster/ntotal × 100%,
and Bremote = nremote/ntotal × 100%

Table 1. Simulation parameters
Parameter Default

Value

Range

Database size (N) 1000 items

smin 10 KB

smax 100 KB

Number of clients (M) 70 50~100

Client cache size (C) 800 KB 200~1400 KB

Client speed (vmin~vmax) 2 m/s 2~20 m/s

Bandwidth (b) 2 Mbps

TTL 5000 sec 200~10000 sec

Pause time 300 sec

Mean query generate

time (Tq)

5 sec 2~100 sec

Transmission range (r) 25 m 25~250 m

Skewness parameter (θ) 0.8 0~1

Effects of cache size
Fig. 3 shows the effects of cache size on byte hit ratio

and average query latency by varying the cache size

from 200 KB to 1400 KB. Fig. 3(a) and 3(b) show that

all schemes exhibit better byte hit and average query

latency with increasing cache size. This is because more

required data items can be found in local cache as the

cache gets larger. From Fig. 3(b), we can see that the

GCC scheme performs much better than NC scheme.

Because of the high byte hit ratio due to cluster

cooperation, the proposed scheme also performs better

than CacheData. When the cache size is small, more

required data could be found in local+cluster+global

cache for GCC as compared to CacheData which utilizes

only the local cache. Because the hop count of cluster

data hit is one and is less than the average hop count of

remote data hit, GCC scheme achieves lower average

query latency. As the cache size is large enough, the

nodes can access most of the required data items from

local and cluster cache, so reducing the query latency. It

is worth noting that GCC reaches its best performance

when the cache size is 800 KB. This demonstrates its

low cache space requirement.

Effects of mobility
Fig. 4 shows the comparison of caching strategies,

where each node is moving with a speed uniformly

distributed between 0 and a given value along x-axis.

We vary the maximum speed of nodes from 2, 4, 8, 12,

16, to 20 m/sec. From Fig. 4(a), we can see that local

byte hit ratio in NC is not affected due to client mobility.

The local byte hit ratio of CacheData and GCC

decreases slightly as the mobility speed increases

because some of the invalid data items may not be

refreshed before their TTL expires. The remote byte hit

ratio of CacheData decreases with an increase in

mobility speed. The cluster and remote byte hit ratio

decreases in GCC with increasing speed. This is

because, when every node is moving with very high

speed, the GCC recorded for each node with its CSN

does not help much in the near future, since the nodes

are moving arbitrarily.

 From Fig. 4(b), we see that performance of all the

caching strategies degrades with increasing mobility.

This is due to overheads caused by mobility induced

route failures and route re-computations. If mobility

increases, the frequency of nodes with different data

affinity leaving/joining a cluster increases thus

degrading the GCC caching performance in terms of

average query latency.

Cache size (KB)

200 400 600 800 1000 1200 1400

B
y
te

 h
it

 r
at

io

0.0

0.2

0.4

0.6

0.8

1.0

Remote hit

Cluster hit

Local hit

(a)

Cache size (KB)

200 400 600 800 1000 1200 1400

A
v

er
ag

e
q
u

er
y

 l
at

en
cy

 (
se

c)

0.10

0.15

0.20

0.25

0.30

0.35

NC scheme

CacheData scheme

GCC scheme

(b)

Fig. 3. Effects of cache size on (a) byte hit ratio, and (b)

average query latency

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 82

Mobility speed (m/sec)

2 4 8 12 16 202 4 8 12 16 202 4 8 12 16 20

B
y

te
 h

it
 r

at
io

0.0

0.2

0.4

0.6

0.8

1.0

Remote hit

Cluster hit

Local hit

(a)

Mobility speed (m/sec)

2 4 8 12 16 20

A
v

er
ag

e
q
u

er
y

 l
at

en
cy

 (
se

c)

0.10

0.15

0.20

0.25

0.30

0.35

NC scheme

CacheData scheme

GCC scheme

(b)

Fig. 4. Effects of mobility on (a) byte hit ratio, and (b)

average query latency

6 Conclusions
This paper presents a cooperative caching strategy

named GCC for MANETs. This strategy is unique that

in a cluster, the information about what data all other

nodes in different clusters are storing is maintained. All

this is possible due to the emergence of powerful mobile

nodes along with advances in wireless communication

technology. As there is no dearth of storage and

computing capabilities in mobile nodes, GCC fits best in

present scenario. Simulation results show that the

proposed scheme reduces the message overheads and

enhances the data accessibility as compared to other

strategies. We hope that our work will stimulate further

research on cooperative cache based data access by

considering various issues such as cooperative cache

replacement, strong cache consistency, prefetching, etc.

References:

[1] Yin L. and Cao G.. Supporting Cooperative

Caching in Ad Hoc Networks. IEEE Transactions

on Mobile Computing, Vol. 5, No. 1, 2006, pp. 77-

89.

[2] Chand N., Joshi R.C. and Misra, M. A Zone Co-

operation Approach for Efficient Caching in

Mobile Ad Hoc Networks. International Journal of

Communication Systems, Vol. 19, No. 9, 2006, pp.

1009-1028.

[3] Chiu G.M. and Young, C.R. Exploiting In-Zone

Broadcast for Cache Sharing in Mobile Ad Hoc

Networks. IEEE Transactions on Mobile

Computing, Vol. 8, No. 3, 2009, pp. 384-397.

[4] Tang B., Gupta H. and Das S.R. Benefit Based

Data Caching in Ad hoc Networks, IEEE

Transactions on Mobile Computing, 2009, pp. 289-

303.

[5] Hara T. and Madria S. K. Data Replication for

Improving Data Accessibility in Ad Hoc Networks.

IEEE Transactions on Mobile Computing, Vol. 7,

No. 3, 2008, pp. 289-304.

[6] Bettstetter C., Resta G. and Santi P. The Node

Distribution of the Random Waypoint Mobility

Model for Wireless Ad Hoc Networks. IEEE

Transaction on Mobile Computing, Vol. 2, No. 3,

2003, 257-269.

[7] Chow C.Y., Leong H.V. and Chan A. Peer-to-Peer

Cooperative Caching in Mobile Environments.

Proceedings of the 24th International Conference

on Distributed Computing Systems, 2004, pp. 528-

533.

[8] Lim S., Lee W.C., Cao G. and Das C.R. A Novel

Caching Scheme for Improving Internet Based

Mobile Ad Hoc Networks Performance. Elsevier

Journal of Ad Hoc Networks, Vol. 4, No. 2, 2006,

pp. 225-239.

[9] Lim S., Lee W.C., Cao G. and Das, C.R. (2004).

Performance Comparison of Cache Invalidation

Strategies for Internet Based Mobile Ad Hoc

Networks. Proceedings of IEEE International

Conference on Mobile Ad Hoc and Sensor Systems,

2004, pp. 104-113.

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 83

