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Over the last couple of years, video service distribution among smart phones and other mobile video devices is becoming
increasingly popular in sensor networks. However, the huge energy consumption caused by video encoding and transmitting and
the slowly evolving battery technologies become the major bottlenecks that hinder the development of video streaming services.
Hence energy efficient video coding and transmitting solutions are required to be investigated. Yet, energy consumption reduction
of mobile video devices will be accompanied with Quality of Experience (QoE) degradation of video applications. Such diverse
tendency makes it difficult to encode and transmit video streams with less energy as well as better QoE. This paper analyzes the
major energy consuming factors in mobile video devices. A specific energy consumption model concerning encoding bitrates and
transmitting power level is built. Further, a noninvasive QoE perceptive model is adopted so that the energy efficiency problem
becomes a cross-layer optimization problem. Chaos particle swarm optimization is used to solve this cross-layer optimization
problem with fast convergence. By this method, energy consumption of mobile video device is minimized with acceptable QoE for
video users. At last, Pareto front of energy and QoE is analyzed to certify the performance of our method.

1. Introduction

By the end of 2019, mobile data traffic is expected to grow
at a Compound Average Growth Rate (CAGR) of around
45 percent [1]. This will result in an increase of around 10
times by the end of 2019. Users are consuming more data
traffic per subscription, mainly driven by video services.
Video streaming services, such as Netflix, HBO, and Vimeo,
have shown very strong uptake in mobile devices. New video
technologies such as High Dynamic Range (HDR) [2] and
ultra-high definition (UHD) [3] videos will become more
common. With providing truly immersive QoE to the users,
they will bring about more bitrate to wireless networks and
more energy consumption for video devices. In addition,
operators are increasingly making their own TV services
available as streaming services on mobile networks. This is
facilitated by the higher network speeds that come with High
Speed Packet Access (HSPA) and Long TermEvolution (LTE)
development. It is increasingly common to share video clips
over mobile networks and smart mobile devices make up an

increasing capacity of video capture, processing, and viewing.
This has contributed to the growth in mobile data traffic.
Cisco Forecast [4] shows that, until 2017, 70 percent of mobile
data traffic will be video traffic. Video applications must be
the primary service in wireless sensor networks. However,
there are two challenges confronted by the development of
video applications in mobile devices.

Firstly, huge energy consumption of encoding and decod-
ing and big data rate in radio interface for video streaming
bring great challenges for energy saving of mobile video
devices. In future, with the development of HDR and UHD,
video devices may require more energy consumption. How-
ever, battery is usually adopted as the energy source ofmobile
video devices. In spite of several decades’ development,
unfortunately, the capacity of battery is still the bottleneck
of the development of pocket devices, while the hardware
of mobile devices is frequently updated. In addition, for
mobile video devices, high complexity of video processing
algorithms and large bitrate of video streaming data will
considerably cut down the life of batteries. Energy efficient
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method should be proposed to reduce the energy consump-
tion of video streaming and extend the lifetime of battery
significantly. Therefore, as there is no significant advance
in battery technology, energy efficient mechanism for video
encoding and transmitting becomes a crucial issue to be
investigated.

Secondly, wireless multimedia sensor networks deeply
change the interactive mode between cyber space and
physical space, which have been applied in areas such as
military, health care, traffic control, and disaster resistance.
Multimedia sensors such as video sensors and image sensors
are engaged in perception, processing, and transmission not
only for simple data information but also for multimedia
information. However, dynamic and unpredicted interfer-
ence in wireless sensor networks will make a big dent in
quality of video services. In addition, video service is a kind
of service with strong content correlation; QoS metrics, such
as throughput, delay, and jitter, cannot fully reflect the user
perceived quality of video service. QoE, which depicts the
approximate subjective experience of services in wireless
sensor networks by terminal users, is increasingly adopted as
the metric for video quality. With regard to video services in
wireless sensor networks, how to dynamically accommodate
video encoding scheme and manage radio resources so that
QoE of mobile video services could be assured is an issue that
urgently needs to be addressed.

Therefore, in wireless sensor networks, video devices
need not only to assure the QoE for video applications, but
also to deal with the huge energy consumption generated by
high data rate of video streaming. Appropriate strategy profile
should be picked out to guarantee the QoE of video applica-
tions, while minimizing the energy consumption of mobile
video devices. However, there are conflicts between these two
objectives. Reducing energy consumption of video streaming
is always in the price of degradation of transmitting power
level, which will lead to degradation of the QoE for video ser-
vices. Meanwhile, enhancement of QoE is always in the price
of enhancement of transmitting power level, which will lead
to extra energy consumption of video services. Therefore, it
is necessary to find an appropriate tradeoff between energy
saving and QoE, so as to reduce the energy consumption
caused by video streaming with assurance of QoE.

In this paper, as shown in Figure 1, we propose a QoE
perceptive cross-layer energy efficient (QP-CEE) method for
mobile video devices, to dispose of the energy efficiency
problem and QoE assurance problem together. Energy con-
sumption of mobile devices is reduced, and QoE of video
applications in mobile video device is enhanced through
dynamic regulation of transmitting power level, modulation
and coding scheme (MCS), and encoding bitrate of video
streaming. By elaborative analysis of the encoding and
transmitting process ofmobile video device, a comprehensive
energy consumption model for video encoding and trans-
mitting is established. A noninvasive QoE perception model
is adopted in terms of the mean opinion score (MOS). The
proposed QoE perception model is significant in its own
right as the optimization of QoE is crucial for mobile video
services. Energy efficiency problem ismodeled as a joint opti-
mization problem including optimization of QoE and energy
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Figure 1: Framework of QoE perceptive cross-layer energy effi-
ciency method for video devices.

consumption. Then chaos particle swarm optimization algo-
rithm is adopted to search for optimal power level and video
encoding rate in parallel, so that the energy consumption is
minimized and QoE of video applications is ensured. Finally,
Pareto front of energy and QoE is analyzed to certify the
performance of the proposed method. There are three main
contributions in this paper. Firstly, encoding bitrate, modu-
lation and coding scheme, and transmitting power level are
investigated simultaneously, by which multilayer (including
application layer and physical layer) performance gain is
achieved. Secondly, an energy efficient method based onQoE
perception is proposed, and both requirements ofmobile user
for video quality and minimization of energy consumption
formobile devices are achieved.Thirdly, chaos particle swarm
optimization is adopted to solve the optimization problem. In
one aspect the search process is not apt to converge to local
optimum solution. In the other aspect time delay for solving
the cross-layer optimization problem can be shortened by
parallel process, which can meet the real-time requirements
for video services such as video live and video conference.

The rest of this paper is arranged as follows. In Section 2,
state-of-the-art research about QoE perception method,
energy saving strategy, tradeoff method of QoE, and energy
saving is surveyed and summarized, and the open questions
and possible research directions are analyzed. In Section 3,
the uplink energy efficient scenario for mobile video devices
is described. The energy consumption model for mobile
video devices is proposed in Section 4. In Section 5 joint
optimization problem of QoE and energy consumption is
investigated, and chaos particle swarm optimization method
is adopted to find optimum encoding bitrate and power
level. Evaluation and analysis for our work are carried out in
Section 6. In Section 7 we conclude our work in this paper.

2. Related Work

Various energy efficient methods have been proposed to
improve the energy efficiency of wireless networks. Spe-
cially, for video streaming with growing popularity, the large
energy consumption generated by encoding and transmitting
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constantly drives researchers to investigate energy efficient
techniques. A lot of work has been done on software and
hardware of mobile devices to extend the battery lifetime.
For example, low complexity encoding strategies [5–7], low
power embedded video coding algorithm [8], adaptive power
control strategies [9–11], and joint encoding and hardware
adaptive method [12] are proposed as the possible solutions.
However, performance enhancement resulting from these
researches cannotmeet the increasing requirements of energy
saving by users.

Recently, researchers believe that cross-layer design plays
an important role in energy efficiency methods for multi-
media systems [13, 14]. Joint video encoding and wireless
transmission control [14, 15] is proposed to implement the
cross-layer design for mobile video stream applications.
For mobile video devices, energy consumption is primarily
caused by encoding and transmission. However, in [5–15],
the authors propose energy efficiency method, while there is
no system level energy consumption model to support their
methods. Power-rate-distortion model [16, 17] is proposed
to analyze the energy consumption of video applications, by
extending traditional R-D analyzed model. Researchers from
Simon Fraser University propose a novel energy efficient
method [18–20] through choosing the most suitable number
of encoding layers. Unfortunately, QoE is not considered as
an optimization target for these energy efficient methods.

Actually, to ensure QoE of emerging video applications
for users, QoE perception and prediction model have been
deeply investigated recently. Amounts of objective video
quality assessment methods are proposed to perceive the
quality for video applications [21–23]. However, these distor-
tion based methods always calculate video quality through
measuring the distortion between source video and received
video and then mapping this distortion to MOS or other
QoE metrics. The MOVIE model presented in [24] is a
full reference model developed from the spatial-temporal
features of the video. Full reference video quality prediction
models are difficult to implement for real-time monitoring
due to their complexity. In order to estimate user experienced
video quality, methods with no reference are also employed.
Many existing quality metrics usually use bit-error rate that
has low correlation with user perceived video quality. The no
reference video quality estimation method proposed in [25]
estimates video quality degradation with respect to human
perception that is measured as video quality metric scores,
which require too much processing power that cannot be
obtained in handled mobile devices. The model presented
in [26] combines video content features with the distortions
caused by the encoder. The work in [27] introduces a
“relative quality” metric (rPSNR) over IP networks from
network distortions only by developing an approach that is
capable of mapping network statistics, for example, packet
losses, available from simple measurements, to the quality of
video sequences reconstructed by receivers. Some researches
[28, 29] prove that video quality is affected by parameters
associated with the encoder (e.g., source bitrate) and the
network condition (e.g., packet loss). Khan et al. [30] propose
a QoE perception model based on video streaming, by
comprehensive analysis of video content, encoding bitrate,

and transmitting power level. However, for mobile video
devices, it is not practical to merely enhance QoE for video
applications without any care for huge energy consumption
caused by video encoding and transmitting.

There are few researches on joint optimization of QoE
and energy. Current researches on tradeoff between QoE and
energy consumption in wireless networks focus on theoreti-
cal analysis, which always have high complexity, and cannot
be used in practical scenario. Liberal et al. propose [31] a low
encoding complexity and transmitting power consumption
method, by dynamic heuristic programming other than joint
optimization. In [32], the authors propose a new metric EE-
QoE, which denotes QoE improvements per unit power.This
metric is applied into wireless cellular networks with interfer-
ence limit. However, these methods lead to high complexity.
Therefore, for mobile video devices with limited computa-
tional capacity, a novel practical joint QoE and energy effi-
cient method with low complexity is urgent to be proposed.

In this paper, a QoE perceptive cross-layer energy effi-
ciency method for mobile video devices is proposed to
jointly optimize the energy consumption andQoE formobile
video services. Comprehensive optimization model of QoE
and energy consumption is investigated and rapid cross-
layer optimization method based on chaos particle swarm
optimization (CPSO) algorithm is adopted to make the
video device learn appropriate encoding and transmitting
parameters in real time.

3. Energy Efficient Scenario for
Mobile Video Devices

3.1. Transmission Scenario of Video Services. To focus on the
energy efficiency problem caused by video services onmobile
devices, we assume that there are only real-time video ser-
vices, such as gaming, video live, and video conference, run-
ning on the mobile video devices for simplicity.This assump-
tion is reasonable as in all kinds of mobile services video ser-
vices are the main source of energy consumption. One obvi-
ous characteristic of these services is the requirement of real-
time processing. Hence mobile devices need to encode and
decode video streaming in real time. In this paper, appropri-
ate resource portfolio in radio uplink is investigated, bywhich
not only QoE assurance of video users but also minimization
of mobile device’s energy consumption could be achieved.
Figure 2 shows a typical scenario for real-time video services.

3.2. Major Energy Consuming Factors. Previous studies have
shown that [33] there are many impact factors for energy
consumption of video devices, including service type, mobile
network, transmitting power level of mobile device, screen,
Bluetooth,wireless local network, andGPS. Since energy con-
sumption of factors such as screen, GPS, and Bluetooth could
be optimized from operation level rather than algorithm
level, in this paper we primarily investigate the two factors,
encoding bitrate and transmitting power level of mobile
devices, which have specific impact on energy consumption
on mobile devices. To explore the relationship in qualitative
level of these two factors and two objectives associated with
energy efficiency problem such as energy consumption and
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Table 1: Samples of encoding bitrate and normalized transmitting
power level.

Test sample 1 2 3 4 5 6
Encoding bitrate
(kbps) 50 70 90 110 130 150

Normalized
transmitting
power level

0.33 0.47 0.60 0.73 0.87 1.0

Video se
quen

ce

Capture Encode Transmit

Figure 2: Scenario for real-time video services.

QoE, an experimental test is implemented. Two different
types of mobile devices, HTC One and HUAWEI Honor,
are selected as the test devices. Test video clips that come
from LIVE database [34] with a QCIF resolution are used
in this experiment. As shown in Table 1, a set of samples of
encoding bitrate and normalized transmitting power level
are selected as the input arguments, and the corresponding
normalized transmitting power consumption is measured.
We assess the MOS value of video clips through subjective
marking by users according to ITU’s specification [35] for
video quality assessment. Then the relationships are figured
out by artificial neural network toolbox in MATLAB. Finally,
energy consumption and QoE (measured by MOS) curves of
encoding bitrate and transmitting power level are drawn up,
respectively.

3.2.1. Encoding Bitrate. To study how the encoding bitrate
influences the energy consumption andQoE of video services
in UMTS, we change the bitrate from 50 kbps to 150 kbps.
Power level of mobile devices is 20 dBm, video stream is
encoding by H.264, and Bluetooth and GPS are both turned
off. The relationship of QoE and energy consumption to
encoding bitrate is depicted in Figure 3.

Energy consumption of video devices can be divided
into encoding energy consumption and transmitting energy
consumption. With the growth of encoding bitrate, less
encoding energy consumption is required for the same video
sequence. As the encoding energy consumption decreases,
the encoder will generate more encoded video data, which
impliesmore energy consumption is required for video trans-
mission in wireless channels. When the growth rate of video
transmitting energy consumption exceeds the decent rate of
video encoding energy consumption, the whole energy con-
sumption will decline with the growth of encoding bitrate. As
illustrated in Figure 3, energy consumption of video devices
is first decreasing with the improvement of video encoding
bitrate due to the decrease of encoding energy consumption
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Figure 3: Impact on energy consumption and QoE by video bitrate
(the power level of mobile devices is 20 dBm).
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Figure 4: Impact on energy consumption and QoE by transmitting
power level (the encoding bitrate of video stream is fixed on
100 kbps).

and then increasing with the growth of transmitting energy
consumption, while QoE of video applications is increasing
all the time.

3.2.2. Transmitting Power Level. To study the impact on
energy consumption and QoE by transmitting power level,
we change the transmitting power of mobile video devices.
Bluetooth and GPS are turned off, and the encoding bitrate
of video stream is fixed on 100 kbps. The relationships of
QoE and energy consumption to transmitting power level are
depicted in Figure 4. It shows that energy consumption of
mobile video devices is increasing with the improvement of
transmitting power level, as well as the QoE of video services.

Consequently, both the video encoding bitrate and trans-
mitting power lever have a close relationship with QoE and
energy consumption of video services. By the above quali-
tative analysis, it is easy to conclude that, through dynamic
adjustment of transmitting power level and encoding bitrate,
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appropriate energy consumption and QoE tradeoff could be
achieved. In the following section, we will investigate the
specific quantitative relationship of these two configurable
factors to energy consumption and QoE of video services.

4. Energy Consumption Model for
Mobile Video Devices

For mobile video devices, energy consumption model de-
notes the energy consumed by encoding and transmitting for
video streaming. As video traffic is delivered throughwireless
channels, encoding bitrate is constrained by the channel
capacity, which is dependent on the transmitting power of
mobile devices.

4.1. Energy Consumption Model for Video Devices. Energy
consumption in video devices can be divided into two parts,
power consumption caused by video encoding and power
consumption caused by video transmitting. Let 𝑃 denote the
total power consumption ofmobile device.Define𝑃

𝑠
and𝑃
𝑡
as

the encoding power and transmitting power, respectively. As
only video services run on the mobile video devices, energy
consumption can be calculated by

𝑃 = 𝑃
𝑠
+ 𝑃
𝑡
. (1)

Obviously, 𝑃
𝑠
is in correlation with the complexity of

encoding process, which is mainly dependent on encoding
bitrate of video streaming. The relationship among encoding
power, distortion, and encoding bitrate can be expressed as
[17]

𝐷(SBR, 𝑃
𝑠
) = 𝜎
2

2
−𝜆SBR⋅𝑔(𝑃

𝑠
)

, 0 ≤ 𝑃 ≤ 1, (2)

where 𝜎2 is the variance of encoded frame. 𝜆 is a parameter
denoting the resource utilization of video encoding. 𝑔(𝑃

𝑠
)

is the inverse function of normalized energy consumption
function and 𝑔(0) = 0, 𝑔(1) = 1, and

𝑔 (𝑃
𝑠
) = 𝑃
1/𝛾

𝑠
. (3)

For diverse microprocessor with dynamic voltage regula-
tion ability, the range of 𝛾 is 1 ≤ 𝛾 ≤ 3.

Generally, two different video encoding schemes are
involved. One scheme is that video sequence is considered
to be steady, and the optimal encoding power level is deter-
mined through statistical averaging method [36]. All video
frames are encoded with this constant encoding power level.
The other scheme is that encoder divides video sequence into
different video segments [17], and then resource allocation
strategy is optimized in terms of video segments to minimize
the overall power consumption. As its adaptive characteristic,
for the same video sequence, the second scheme consumes
less energy than the first one. Define 𝑆 as the input video
sequence, which is divided into several video segments {𝑠

𝑖
|

1 ≤ 𝑖 ≤ 𝐼}. For a certain segment 𝑆
𝑖
, suppose that average

variance and model parameter are 𝜎2
𝑖
and 𝜆

𝑖
, respectively,

SBR
𝑖
and 𝑝

𝑖
denote the encoding bitrate and encoding power

consumption, respectively, and 𝐷
𝑖
denotes the distortion,

which is predicted in accordance with different encoding
bitrates. On the basis of formula (2), the encoding power of
𝑆
𝑖
can be expressed by

𝑝
𝑖
= (

1

𝜆
𝑖
⋅ SBR
𝑖

log
2

𝜎
2

𝑖

𝐷
𝑖

)

𝛾

. (4)

For video sequence 𝑆:

𝑃
𝑠
= ∑

𝑖

𝑝
𝑖
= ∑

𝑖

(
1

𝜆
𝑖
⋅ SBR
𝑖

log
2

𝜎
2

𝑖

𝐷
𝑖

)

𝛾

. (5)

Therefore, energy consumption of mobile video device
can be calculated by

𝑃 = 𝑃
𝑠
+ 𝑃
𝑡
= ∑

𝑖

𝑝
𝑖
+ 𝑃
𝑡

= ∑

𝑖

(
1

𝜆
𝑖
⋅ SBR
𝑖

log
2

𝜎
2

𝑖

𝐷
𝑖

)

𝛾

+ 𝑃
𝑡
.

(6)

4.2. Encoding Bitrate Constraint Based on Automatic Modula-
tion and Coding. The available transmitting bitrate for video
streaming depends on the bit-error rate (BER), which can be
expressed by

SBRlimit = 𝑅
𝑐
⋅ (1 − BER (𝛾

𝑛
))
𝐿

, (7)

where 𝐿 is the number of bits involved in video packet.
𝛾
𝑛
denotes Signal to Interference plus Noise Ratio (SINR)

of radio link. 𝑅
𝑐
denotes the transmitting rate of wireless

channel in ideal condition.
Automatic modulation and coding (AMC) has different

alternative of constellations of modulation and rates of error-
control codes based on the time-varying channel quality,
which can effectively enhance the throughput of wireless
communication systems [37]; with AMC, the bit-error rate
can be depicted by

BER (𝛾
𝑛
) =

𝑎
𝑚

𝑒𝛾𝑛×𝑏𝑚
, (8)

where 𝑚 denotes the mode index of modulation and coding
scheme. Mobile devices are capable of dynamically choosing
the modulation and coding schemes and adjusting the trans-
mission rates according to the measured channel condition
indicated by BER. Given a particular modulation scheme,
BER is uniquely determined by the SINR experienced by the
receiver of the link. Coefficients 𝑎

𝑚
and 𝑏

𝑚
are shown in

Table 2. In addition, SINR 𝛾
𝑛
is dependent on video trans-

mitting power level 𝑝
𝑡
:

𝛾
𝑛
=
𝑝
𝑡
⋅
ℎ𝑛



2

𝑁
0
𝐵/𝑁

, (9)

where ℎ
𝑛
is the channel gain of channel 𝑛. 𝑁

0
is the spectral

density of white Gaussian noise. 𝐵 is overall bandwidth. 𝑁
is the available number of channels. According to the above



6 International Journal of Distributed Sensor Networks

Table 2: Modulation mapping model.

AMC mode (𝑚) 𝑚 = 1 𝑚 = 2 𝑚 = 3 𝑚 = 4 𝑚 = 5 𝑚 = 6

Modulation BPSK QPSK QPSK 16-QAM 16-QAM 64-QAM
Coding rate (𝑐

𝑚
) 1/2 1/2 3/4 9/16 3/4 3/4

𝑅
𝑚
(bits/sym.) 0.50 1.00 1.50 2.25 3.00 4.50

𝑎
𝑚

1.1369 0.3351 0.2197 0.2081 0.1936 0.1887
𝑏
𝑚

7.5556 3.2543 1.5244 0.6250 0.3484 0.0871

formulas, available transmission rate sustained by wireless
channel can be expressed by

SBRlimit = 𝑅
𝑐
⋅ (1 − BER (𝛾

𝑛
))
𝐿

= 𝑅
𝑐
⋅ (1 −

𝑎
𝑚

𝑒𝛾𝑛×𝑏𝑚
)

𝐿

= 𝑅
𝑐
⋅ (1 − 𝑎

𝑚
⋅ 𝑒
((−𝑃
𝑡
⋅|ℎ
𝑛
|
2

)/(𝑁
0
𝐵/𝑁))×𝑏

𝑚)

𝐿

.

(10)

Source bitrate of video streaming should satisfy the
following constraint:

SBR
𝑖
≤ SBRlimit. (11)

That is,

SBR
𝑖
≤ 𝑅
𝑐
⋅ (1 − 𝑎

𝑚
⋅ 𝑒
((−𝑃
𝑡
⋅|ℎ
𝑛
|
2

)/(𝑁
0
𝐵/𝑁))×𝑏

𝑚)

𝐿

. (12)

5. QoE Perceptive Cross-Layer Energy
Efficient Method

To ensure QoE of video services in mobile devices, a non-
invasive video QoE perception model based on parameters
associated with encoder and wireless channel is adopted
to perceive video quality. Through combining this QoE
perception model and the energy consumption model for
mobile video devices, a QoE perceptive cross-layer energy
efficient model can be established. Finally, CPSO algorithm
is adopted to solve this cross-layer optimization problem.

5.1. Noninvasive QoE Perception Model for Video Streaming.
For mobile video services, mean opinion score (MOS) is
usually used as metric for QoE measurement. The MOS
values range from 1 to 5, representing video quality from
“bad” to “excellent.” MOS is a subjective evaluation from the
perspective of user experience, which can be approximated
by some objective perception models. In order to restrain the
high complexity of traditional distortion based QoE percep-
tion models, a content-based, noninvasive QoE perception
model [30] for video services is presented, which can be
expressed by

MOS =
𝛼 + 𝛽 ∗ ln (SBR) + CT ∗ (𝛾 + 𝛿 ∗ ln (SBR))

1 + 𝜂 ∗ (BER) + 𝜎 (BER)2 ∗MBL
. (13)

Here, CT represents the specific content type of video
streaming, which depends on the spatial complexity and
the temporal activity of the depicted visual signal, and can
determine the efficiency of the coding procedure. Cluster

Table 3: Coefficients of QoE perception model.

𝛼 𝛽 𝛾 𝛿 𝜂 𝜎

3.9560 0.0919 −5.8497 0.9844 0.1028 −0.0236

analysis tools based on multivariate statistics are adopted to
extract a combination of temporal and spatial features of
video sequences, by which video content is classified into
different groups. MBL denotes mean burst length of video
sequence, which depends on BER. For random uniform error
channel model, MBL is equal to 1. Values of other coefficients
of the model are listed in Table 3. Then, the QoE perception
model is established.

The basic idea in this model is to move away from the
use of individual network parameters, such as packet loss
probability or delay, towards perceptual-based approach, in
order to achieve the best possible perceived video quality.
This model takes into account quality degradation caused
by the wireless channel and the encoder, by combination
of parameters associated with the encoder and the wireless
channel for different types of content.

5.2. Cross-Layer Energy Efficiency Problem. On the basis of
the proposed energy consumption model in Section 4, to
minimize the system power consumption as well as ensuring
video user’s perceived quality, the optimization problem can
be formulated by

min 𝑃 = min𝑓 (SBR, 𝑃
𝑡
,MCS)

= min(∑
𝑖

(
1

𝜆
𝑖
⋅ SBR
𝑖

log
2

𝜎
2

𝑖

𝐷
𝑖

)

𝛾

+ 𝑃
𝑡
)

s.t. SBR
𝑖
≤ 𝑅
𝑐
⋅ (1 − 𝑎

𝑚
⋅ 𝑒
((−𝑃
𝑡
⋅|ℎ
𝑛
|
2

)/(𝑁
0
𝐵/𝑁))×𝑏

𝑚)

𝐿

MOS ≥ MOSth,

(14)

where 𝑃 is the total power consumption for a certain mobile
video device. MOS is user perceived quality of the video
services, and MOSth denotes the acceptable video quality
threshold. MCS is modulation and coding scheme. The
objective function requires a joint optimization of QoE and
energy consumption. According to test in Section 3, there
are conflicts between QoE of video services and energy con-
sumption of mobile video devices. The target is to establish
the objective function and find the optimum solution to
equalize the QoE and power consumption. In this paper,
as video bitrate is a parameter in application layer, while
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Figure 5: QoE perceptive cross-layer energy efficiency framework.

modulation and coding scheme and transmitting power lever
are parameters in physical layer, a cross-layer optimization
problem could be established.

Figure 5 shows the QoE perceptive cross-layer energy
efficiency framework. In this framework, these cross-layer
parameters are adaptively regulated to figure out the opti-
mum strategy profile, so as to minimize the power consump-
tion of mobile video devices and ensure the quality of video
services. As a result, energy consumption is reduced and the
operational lifetime of the device is lengthened.

5.3. Chaos Particle Swarm Optimization Algorithm. Particle
swarm optimization method was originally presented by
Eberhart and Kennedy in 1995 [38], inspired by social
behavior of bird flocking in the process of migration and
clustering. Particle swarm optimization method does not
require a centralized control node and each individual has
only limited intelligence. Through a number of information
interactions of individuals, swarm can put up strong intel-
ligence. However, due to the inherent inertness of particles,
optimization process is often prone to converging to local
optimal solution. Value of parameters and convergence of
optimization are the key factors influencing the performance
and efficiency of algorithms. In order to guarantee the global
convergence of particle swarm optimization, chaos theory is
introduced in this paper.

Chaos refers to irregular or chaotic motion generated
by some nonlinear systems, and the kinetics law of these
systems can determine the unique evolution of the system
status over time from previous experience system. The basic
idea of chaotic particle swarm optimization algorithmmainly
embodies that the chaotic sequence is used to improve the
diversity of population and ergodicity of particle searches,
without changing the randomness nature of original particle
swarm optimization. Many neighborhood points of local
optimal solution by chaotic sequence in the iterative process,
which can help inert particles escape from local extremepoint
and search for the global optimal solution as soon as possible.

In this chaotic particle swarm optimization algorithm,
according to formula (14), a constrained optimization prob-
lem is formulated. In order to find a feasible optimal

solution for this constrained cross-layer optimization prob-
lem, modification [39] of the objective function is imple-
mented to convert the original constrained optimization
problem to an unconstrained problem. Firstly, the constraint
condition is replaced by the following two inequalities:

SBR
𝑖
− 𝑅
𝑐
⋅ (1 − 𝑎

𝑚
⋅ 𝑒
((−𝑃
𝑡
⋅|ℎ
𝑛
|
2

)/(𝑁
0
𝐵/𝑁))×𝑏

𝑚)

𝐿

≤ 0,

MOSth −MOS ≤ 0.

(15)

Then define

ℎ (SBR, 𝑃
𝑡
,MCS) = max (SBR

𝑖
− 𝑅
𝑐

⋅ (1 − 𝑎
𝑚
⋅ 𝑒
((−𝑃
𝑡
⋅|ℎ
𝑛
|
2

)/(𝑁
0
𝐵/𝑁))×𝑏

𝑚)

𝐿

,MOSth

−MOS) .

(16)

Finally the cross-layer optimization problem without con-
straint can be represented as

𝑓 (SBR, 𝑃
𝑡
,MCS) = ℎ (SBR, 𝑃

𝑡
,MCS)

ℎ (SBR, 𝑃
𝑡
,MCS) > 0,

𝑓 (SBR, 𝑃
𝑡
,MCS) = 𝑎 tan [𝑓 (SBR, 𝑃

𝑡
,MCS)] − 𝜋

2

others.

(17)

Therefore, chaotic particle swarm optimization algorithm
could be used to solve this unconstrained cross-layer energy
efficiency problem, and the power consumptions of encoding
and transmitting areminimized under condition of satisfying
the MOS requirements for each video segment.

The objective function 𝑓(SBR, 𝑃
𝑡
,MCS) is defined as

fitness function and optimized with respect to the vector𝑋 =

(SBR, 𝑃
𝑡
,MCS). Hence the abovementioned optimization

problems can be mathematically formulated by

min
𝑋

𝑓 (SBR, 𝑃
𝑡
,MCS) , 𝑋 ∈ 𝐷 ⊆ 𝑅

3

, (18)

where𝐷 denotes a 3-dimensional search space.
We consider a swarm consisting of 𝑚 particles: 𝑥

1
, 𝑥
2
,

. . . , 𝑥
𝑚
. As optimummodulation and coding scheme could be

achieved by automatic modulation and coding methodology,
each particle 𝑥

𝑖
is in fact a 2-dimensional vector:

𝑥
𝑖
= [SBR, 𝑃

𝑡
] ∈ 𝑅
2

, (19)

where 𝑖 ∈ [1, 2, . . . , 𝑚]. In order to avoid premature con-
vergence to local optima, Logistic map is used to generate
chaotic sequence:

𝑧
𝑗+1

= 𝜇𝑧
𝑗
(1 − 𝑧

𝑗
) , 𝑗 = 1, 2, . . . , 𝑠, (20)

where 𝜇 is the control parameter. The chaotic sequence is
distributed in [0, 1]. The iterative Logistic map can generate
a chaotic sequence 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑠
through assigning an initial
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value 𝑧
1
. Assume that the solution space is [Γlower, Γupper],

where these two vectors are depicted by

Γ
lower

= [SBRlower
, 𝑃

lower
𝑡

] ,

Γ
upper

= [SBRupper
, 𝑃

upper
𝑡

] ,

(21)

so that the sequence is mapped to the solution space by the
following formula:

𝑥
𝑖
= Γ

lower
+ (Γ

upper
− Γ

lower
) ⋅ 𝑧
𝑖
, 𝑖 = 1, 2, . . . 𝑚. (22)

Then, in order to find an optimal solution, each particle 𝑥
𝑖

evolves in the search space𝐷 based on the following position
updating algorithm:

𝑥
𝑘+1

𝑖
= 𝑥
𝑘

𝑖
+ V𝑘+1
𝑖

V𝑘+1
𝑖

= 𝑤V𝑘
𝑖
+ 𝑐
1
𝜉
𝑘

𝑖
(𝑝𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥
𝑘

𝑖
)

+ 𝑐
2
𝜁
𝑘

𝑖
(𝑔𝑏𝑒𝑠𝑡

𝑘

swarm − 𝑥
𝑘

𝑖
) ,

(23)

where 𝑐
1
is the cognitive scaling factor, 𝑐

2
is the social scaling

factor, and 𝑤 is a positive parameter called inertia weight,
which is introduced to ensure convergence of the particles’
search process:

𝑤 = 𝑤min +
𝑤max − 𝑤min

𝑘
, (24)

where𝑤min and𝑤max are the upper limit and lower limit of𝑤.
When𝑤 is dramatically attenuated, the convergence of search
process will accelerate. The random numbers 𝜉𝑘

𝑖
and 𝜁

𝑘

𝑖
are

uniformly distributed in [0, 1] and represent the stochastic
behaviors of the CPSO. 𝑝𝑏𝑒𝑠𝑡𝑘

𝑖
, which denotes the previously

obtained position of the 𝑖th particle, is defined as

𝑝𝑏𝑒𝑠𝑡
𝑘

𝑖
= argmin

𝑥
𝑗

𝑖

{𝑓 (𝑥
𝑗

𝑖
) , 0 ≤ 𝑗 ≤ 𝑘} . (25)

On the other hand, 𝑔𝑏𝑒𝑠𝑡𝑘swarm, which denotes the best
position in the entire search space at the current iteration 𝑘,
is defined as

𝑔𝑏𝑒𝑠𝑡
𝑘

swarm = argmin
𝑥
𝑘

𝑖

{𝑓 (𝑥
𝑘

𝑖
) , ∀𝑖} . (26)

Hence, the term 𝑐
1
𝜉
𝑘

𝑖
(𝑝𝑏𝑒𝑠𝑡

𝑘

𝑖
−𝑥
𝑘

𝑖
) is associatedwith cognition,

since it takes into account only the best position of the par-
ticle’s own experience, while 𝑐

2
𝜁
𝑘

𝑖
(𝑔𝑏𝑒𝑠𝑡

𝑘

swarm − 𝑥
𝑘

𝑖
) represents

the social interaction of all particles.
Particles will search iteratively in terms of fitness in the

search space, until the user-defined termination criterions
are satisfied. Initial particles may be selected from chaotic
sequences, and initial velocity could be randomly generated.
The CPSO method is presented in Algorithm 1.

Algorithm 1 (CPSO algorithm).

(1) Set 𝑘 = 1, and set maximum iterations 𝑘max, 𝑤 =

𝑤max.

(2) Initialize particle 𝑥1
𝑖
and its corresponding updating

velocity V1
𝑖
(𝑖 = 1, 2, . . . , 𝑚), and randomly generate a

2-dimensional vector [𝑧
11
, 𝑧
12
] in the range of [0, 1].

According to formula (20), 𝑠 chaotic vectors could be
obtained and map these vectors to the solution space
[Γ

lower
, Γ

upper
] by formula (22). Then select 𝑚 vectors

with better fitness.
(3) Consider 𝑝𝑏𝑒𝑠𝑡

1

𝑖
= 𝑥

1

𝑖
, 𝑔𝑏𝑒𝑠𝑡

1

swarm =

argmin
𝑥
1

𝑖

{𝑓(𝑥
1

𝑖
), ∀𝑖}.

(4) While (𝑘 ≤ 𝑘max).
(5) Update velocity of particle

V𝑘+1
𝑖

= 𝑤V𝑘
𝑖
+ 𝑐
1
𝜉
𝑘

𝑖
(𝑝𝑏𝑒𝑠𝑡

𝑘

𝑖
− 𝑥
𝑘

𝑖
)

+ 𝑐
2
𝜁
𝑘

𝑖
(𝑔𝑏𝑒𝑠𝑡

𝑘

swarm − 𝑥
𝑘

𝑖
) .

(27)

(6) Update position of particle 𝑥𝑘+1
𝑖

= 𝑥
𝑘

𝑖
+ V𝑘+1
𝑖

.

(7) Calculate the fitness value 𝑓(𝑥
𝑖
).

(8) Consider 𝑘 = 𝑘 + 1, 𝑤 = 𝑤min + (𝑤max − 𝑤min)/𝑘.

(9) Consider 𝑝𝑏𝑒𝑠𝑡𝑘
𝑖
= argmin

𝑥
𝑗

𝑖

{𝑓(𝑥
𝑗

𝑖
), 0 ≤ 𝑗 ≤ 𝑘}.

(10) Consider 𝑔𝑏𝑒𝑠𝑡𝑘swarm = argmin
𝑥
𝑘

𝑖

{𝑓(𝑥
𝑘

𝑖
), ∀𝑖}.

(11) Optimize the global position by chaotic sequence.
Generate chaotic vector sequence 𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑠
in

[0, 1], and map it to the solution space [Γlower, Γupper].

(12) Consider 𝑔𝑏𝑒𝑠𝑡𝑘
𝑗
= 𝑔𝑏𝑒𝑠𝑡

𝑘

swarm + 𝑟(𝑔
𝑗
− 0.5), 𝑗 =

1, 2, . . . , 𝑠, 𝑟 being the search radius.

(13) If (𝑓(𝑔𝑏𝑒𝑠𝑡𝑘
𝑗
) < 𝑓(𝑔𝑏𝑒𝑠𝑡

𝑘

swarm), 𝑗 = 1, 2, . . . , 𝑠), update
the best position 𝑔𝑏𝑒𝑠𝑡𝑘swarm = 𝑔𝑏𝑒𝑠𝑡

𝑘

𝑗
.

(14) End if.
(15) End while.

6. Simulation Results and Analysis

In this section, we evaluate the performance through MAT-
LAB. In order to conveniently validate the proposed opti-
mization algorithm, three video sequences (Suzie, carphone,
and football) that come fromLIVE database [34] with aQCIF
(176 × 144) frame size are chosen, and the algorithm also
applies to other high-resolution videos. Let video encoding
rate range from 50 kbps to 150 kbps, with a 2 kbps step. The
wireless channel is set as the frequency selective multipath
channel that consists of six independent Rayleigh paths,
with an exponentially fading profile. In addition, the video
stream is transmitted over UDP to guarantee the real time.
In the following, the performance of the proposed QP-CEE
method, the tradeoff of QoE and energy consumption, and
the quantitative convergence are analyzed.

6.1. Performance Analysis of QP-CEE Method. According to
the ITU-T criteria [40],MOS are divided into five grades.The
higher value denotes the better perceptive video quality. In
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Figure 6: Energy consumption under different energy efficient methods.

this paper, we adopt 3.5 as the threshold of acceptable video
quality for users, which is

MOSth = 3.5. (28)

Therefore, the QoE constraint for QP-CEE method could
be denoted by

MOS ≥ MOSth = 3.5. (29)

To demonstrate the performance of the proposed QP-
CEE method, we compare it with two traditional distortion
based energy efficientmethods, max SBRmethod andmax Pt
method.Max SBRmethod adoptsmaximumencoding bitrate
and adaptive transmitting power level, while max Pt method
employs maximum transmitting power level and adaptive
encoding bitrate.

The normalized energy consumption and MOS of test
video sequences using differentmethods are shown in Figures
6 and 7, respectively. As the alternative energy consumption
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Figure 7: MOS value under different energy efficient methods.

levels and encoding bitrate are discrete values rather than
continuous values, the suboptimal video encoding bitrate and
transmitting power level could be figured out by our proposed
QoE perceptive cross-layer energy efficiency method.

Figure 6 shows the minimum energy consumption of
video frames. Here, the energy consumption is normalized
by the maximum energy consumption. In Figure 6, we
compared the energy consumption by different strategies.
Through calculating the minimum energy consumption of
video encoding and transmitting in mobile video devices,

the proposed QP-CEE method can effectively reduce energy
consumption and extend the battery lifetime.

Figure 7 depicts the MOS values of video frames using
different methods. As Figure 7 shows, on the basis of non-
invasive QoE perception model of video streaming, the
proposed cross-layer energy efficient method guarantees the
QoE of mobile video services.

The average energy consumption andMOSofThree video
clips are shown in Table 4. As different test video clips vary
in video content and structure, the average values of energy
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Table 4: Average energy consumption and MOS.

Video 𝑝 mos
Suzie 0.652 3.89
Carphone 0.771 3.71
Football 0.551 3.53

consumption and MOS achieved by energy efficient method
are distinct from each other. Obviously, our proposed QP-
CEE method reduces the energy consumption of mobile
video devices while maintaining the perceptive quality of
video applications surpassing the threshold.

6.2. The QoE-Energy Consumption Tradeoff. We have eval-
uated the performance of the proposed method with a
given MOS value through the above analysis. In order to
analyze the global performance with dynamic MOS values
of our proposed cross-layer energy efficient method, tradeoff
between energy consumption and QoE in mobile video
devices is studied in this subsection. Based on the proposed
energy consumption model and QoE perception model,
Pareto fronts of energy consumption andQoE are figured out:

(𝑃,MOS)|optimal

s.t. SBR
𝑖
≤ 𝑅
𝑐
⋅ (1 − 𝑎

𝑚
⋅ 𝑒
((−𝑃
𝑡
⋅|ℎ
𝑛
|
2

)/(𝑁
0
𝐵/𝑁))×𝑏

𝑚)

𝐿

.

(30)

Figure 8 depicts the Pareto front curve of QoE and energy
consumption of three video sequences, respectively. It shows
that, with the increase of energy consumption, MOS value
increases as well. For videos with different content type, the
same power consumption results in different MOS values.
Since more complex scene and motion lead to more energy
consumption in encoding and transmitting, to obtain the
same perceptive quality, video sequences with more complex
scene and motion will consume more energy. Hence, for
the same energy consumption, video sequence with complex
scene and increased movement in content will show less
MOS.

We compared theMOS-energy tradeoff curves of the pro-
posed QP-CEE method with power-rate-distortion (P-R-D)
[17] method in Figure 9. P-R-D method is an energy efficient
method developed on the basis of P-R-Dmodel, which is reg-
ularly used as the video energy efficient methods. In Figure 9,
average energy consumption and MOS of these three video
sequences are calculated to depict the tradeoff curves. It is not
hard to learn that, for the same energy consumption, theMOS
value of the proposed QP-CEE method is higher than P-R-D
method. For the same MOS value, the energy consumption
of the proposed QP-CEE method is less than P-R-D method.
Therefore, Figure 9 shows that the energy efficient methods
from the viewpoint of QoE lead to better performance gains
in mobile video devices compared with those methods from
the viewpoint of video distortion. Meanwhile, these two
curves are increasing closer with the increase of energy
consumption. It means that when the target MOS values
gradually reach the available upper limit, the possible energy
efficient gains of QP-CEE method are diminishing.
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Figure 8: Pareto front of QoE and energy consumption for Suzie,
carphone, and football.
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6.3. Quantitative Convergence Analysis. Since our proposed
QP-CEEmethod is designed to operate onmobile devices for
real-time video streaming, requirements for convergence rate
are very strict. Hence, the search process of particles should
steadily converge to a suboptimal solution rapidly.

Chaotic particle swarmoptimization algorithmhas excel-
lent convergence properties. Figure 10 shows the convergence
of CPSO in our evaluation, and for various types of test
video sequences, it can steadily converge to a suboptimal
solution after about 48–58 times iteration, with small vari-
ance. As nowadays mobile video devices are increasingly
smart and intelligent, these iteration calculations could be
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Figure 10: Convergence of chaotic particle swarm optimization
algorithm.

accomplished quickly. Therefore, the real-time requirements
could be achieved.

7. Conclusion

We proposed a QoE perceptive cross-layer energy efficient
method formobile video devices in wireless sensor networks.
Influences on energy consumption andQoE of video services
by video encoding bitrate and transmitting power level are
analyzed, respectively. The energy consumption model and
QoE perceptivemodel formobile video devices are proposed,
by which a cross-layer optimization problem is formulated,
and chaos particle swarm optimization is adopted to solve
this optimization problem with fast convergence property.
In addition, the energy consumption minimization problem
restrained by QoE and the tradeoff problem between QoE
and energy consumption are evaluated and analyzed in this
paper, which demonstrates the performance of the proposed
energy efficient method. By the proposed QP-CEE method,
appropriate tradeoff between QoE and energy consumption
is figured out, and the search process of particles steadily
converges to a suboptimal solution rapidly, which can satisfy
the requirements of real-time video applications.

We propose a joint optimization framework including
model construction and optimization problem solving in this
paper, which can be applied to different types of networks
and different resolutions of video services more than UMTS
and QCIF. Hence, in future work, QoE perception models
corresponding to other network types such as 4G/5G and
video resolutions such as CIF/VGA/WVGA/UHD may be
applied to this framework.
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