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Abstract: The paper presents a computationally efficient approach for solving a robust optimization 

problem in the presence of parametric uncertainties, where the uncertainty description is obtained using the 

Bayes' Theorem. The approach is based on Polynomial Chaos Expansions (PCE) that are used to propagate 

the uncertainty into the objective function for each function evaluation, resulting in significant reduction in 

the computational time when compared to Monte Carlo sampling. A fed-batch process for penicillin 

production is used as a case study to illustrate the strength of the methodology both in terms of 

computational efficiency as well as in terms of accuracy when compared to results obtained with more 

simplistic (e.g. normal) representations of parametric uncertainty. 

 
 

1. INTRODUCTION 

Model-based optimization methodologies rely, primarily, on 

the accuracy of the model used to predict outputs over the 

entire space of operating conditions. Uncertainty in the 

model, if not accounted for, may result in non-optimal 

operating policies, which may lead to significant loss in the 

economic objectives, or even result in violations of 

environmental and safety constraints. However, due to either 

measurement noise or model structure error, the model 

parameters are always uncertain. In that case, it becomes very 

important to quantify the effect of the associated parametric 

uncertainty on the optimization objectives and if this effect is 

significant, it is necessary to either reduce the uncertainty in 

parameters or search for an optimum that is robust to these 

uncertainties.  

The current study is focused on finding an optimal solution 

that is robust to parametric uncertainties assuming that 

measurements, beyond a limited set of initially available 

measurements, are either very difficult to obtain or not 

available to further reduce the uncertainty.  As such, it is 

expected that the proposed methodology could also be 

applied, in the future, in other areas of process systems 

engineering where the effect of uncertainty needs to be 

considered such as Robust Nonlinear Model Predictive 

Control. 

In contrast to nominal optimization, where the objective 

function calculated at the nominal values of parameters is 

minimized, in robust optimization, some statistical metrics of 

the objective function calculated over the entire parameter 

space is minimized instead (Beyer et al., 2007; Diwekar et al, 

1996; Samsatli et al., 1998; Nagy et al., 2004). A common 

formulation involves minimization of a weighted sum of both 

the expected value of the cost and its variance due to 

uncertainty, thus providing a trade-off between maximum 

performance and robustness as follows: min�  � = �	 ∗ ����, �, ��� + �� ∗ ����, �, ��� 

                               �. �.   ���, �, �� ≤ �                               (1) 

Where, � is a vector of uncertain model parameters, u is a 

vector of decision variables, x is a vector of states, f is an 

objective function, g is a vector of equalities or inequalities 

which include the model equations and additional process 

limits, E is the expected value of the objective function f, V is 

the variability in the objective function f and W1 and W2 are 

weights that are problem specific. 

The calculation of any statistical metrics, to be performed in 

the robust optimization framework, involves integrals related 

to the calculation of the functions E and V in equation (1) 

which generally do not have analytical solutions. The most 

common approach is to approximate the objective function f 

in (1) by either a first order or second order Taylor Series 

Expansion around the nominal parameter values (Darlington 

et al., 1999; Nagy et al., 2004). Although these 

approximations work well when the uncertainty in the 

parameters is not too large and the objective function is 

nearly linear or quadratic, for most nonlinear processes, these 

assumptions are not valid. For general nonlinear cases, an 

alternative is to use a Monte Carlo approach where the 

parameter values are randomly selected from the joint 

probability distribution and then the corresponding objective 

function is calculated (Diwekar et al, 1996; Beyer et al., 

2007). However, in this approach, a large number of samples 

are required for obtaining an accurate estimate of the above 

integrals. Thus, when using Monte Carlo techniques, the need 

for extensive sampling combined with the fact that the cost 

function in (1) has to be computed at each function 
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evaluation during an iterative search for an optimum, results 

in a large computational burden. Another major limitation in 

most of the previous studies is that the parameters are 

estimated using either least squares or maximum likelihood 

method and the uncertainty description is obtained by 

assuming the model output to be linear around the nominal 

parameter values. However, for nonlinear systems, this 

assumption is generally inaccurate. Instead, a more accurate 

description of the uncertainty may be obtained from the 

Bayes' Theorem which gives a probability distribution instead 

of a point estimate. In a Bayesian approach, the posterior 

distribution of the parameters is proportional to a likelihood 

which is a function of measurements and a prior probability 

which represents any available information about the 

parameters before collecting data. If the model is highly 

nonlinear, the posterior distribution can potentially be of non 

standard form with no analytical expression. In that case, the 

propagation of the parametric uncertainty into the optimum is 

not trivial and it must be obtained, using Monte Carlo 

sampling methods which are computationally expensive as 

explained above. 

In recent years, uncertainty propagation using Polynomial 

Chaos Expansions (PCE) has been studied by several authors 

from different areas (Najm, 2009; Knio et al., 2006; Nagy et 

al., 2007; Xiu et al., 2002, 2003; Ghanem et al., 1991) and 

has been shown to be much efficient and accurate when 

compared to Monte Carlo sampling approaches. The two 

major advantages of the PCEs are that they can be used to 

propagate any complex probability distribution into the 

desired output and that the mean, variance and any other 

higher order moments can be calculated analytically. 

Although few studies have also implemented the PCE in the 

robust optimization (Molina-Cristobal et al., 2006; Xiong et 

al., 2011), in all these earlier studies very simplistic 

descriptions of uncertainty, e.g. normal or exponential 

distributions, were used. 

The current study proposes a systematic methodology to 

propagate the more accurate representation of the uncertainty 

in parameters, obtained using a Bayesian approach, into the 

optimum. The results are compared with those obtained when 

normal representation of uncertainty is used. Furthermore, the 

methodology also addresses the presence of correlation in 

model parameters and its effect on the PCE approximation. 

The paper is organized as follows. Section 2 presents the PCE 

based methodology. Section 3 illustrates the proposed method 

for a penicillin manufacturing process followed by Section 4 

with summary and conclusions. 

 

  2. METHODOLOGY 

A brief description of PCE, necessary for explaining the 

proposed method is presented first. If �� �!�" #	∞  is a set of 

independent random variables with a standard probability 

density function (e.g. normal or uniform), then the PC 

representation of any random variable, X, with a finite 

variance is given as: 

$�!� = %&Γ( + ) % *Γ	�� *�+
 *#	 + ) ) % * ,Γ��� * , � ,� *

 ,#	
+

 *#	
+ ) ) ) % * , -Γ.�� * , � , , � -� ,

 -#	
 *

 ,#	
+

 *#	 + ⋯  
          (2) 

Where, Γ0 is the PC of order p, ! is the random event and %�.� 
is the deterministic coefficient. The above expansion can 

further be rewritten in a simpler form (Ghanem et al., 1991) 

as: 

 $�!� = ) %1232��	, ��, �., … �+
2#&  (3) 

Where, there is a one-to-one correspondence between the 

functions and the coefficients of the two representations 

shown in (2) and (3). For computation feasibility, the 

expansion has to be considered in a truncated form. An 

underlying property of a PC expansion is that all basis 

functions or polynomials involved in the expansion are 

orthogonal. Thus the coefficients in the expansion can be 

calculated by projecting the expansion on a particular basis 

function and then taking its inner product. The resulting 

expression for the k
th

 coefficient is given as: 

 %12 = 5 $ 32  6�7� 875 32� 6�7�  87  (4) 

Where, 9 is the vector of independent random variables. The 

type of the orthogonal basis functions depends on the type of 

independent random variables to be used in the expansion, 

e.g. Hermite polynomials for normal random variables, 

Langrage polynomials for uniform random variables and so 

on.  

In the current study, the idea is to use the PCE to propagate 

uncertainty in the model parameters θ, obtained using a 

Bayesian approach, into the objective function f. According 

to the Bayes' Theorem, the posterior probability of the 

parameters based on an initially available set of 

measurements is given by: 

 6��|;� = <��|;� 6���5 <��|;� 6���8� 
(5) 

where, <�. � is the likelihood of the parameters given the 

measurements, 6��� is the prior probability of the parameters 

and D represents the desired output based on the given 

measurements. Assuming the errors between predictions and 

measurement are independent and normally distributed, the 

likelihood function is equal to the product of the normal 

distributions of these errors. 

Since the posterior distribution of the model parameters θ 

may be very different from a standard distribution (e.g. 

normal) as required for the input random variables 9 in 

PCE’s, 9 cannot be replaced with θ directly in equation (3). 

Instead, the first step is to transform the model parameters θ 
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into a set of independent random variables 9. For the one 

parameter case, the transformation can be obtained by: 

 � = =>	 ?@ 6�A�8AB
& C (6) 

where, =>	 is the inverse of the cumulative density function 

for the independent random variable � and 6�A� is the 

probability of the model parameter A. 

For more than one parameter, if the parameters are 

uncorrelated, the transformations will be straightforward 

where each model parameter can be transformed into a 

separate independent variable according to equation (6). 

However, for the case of correlated parameters, the 

transformation is obtained using the concepts of marginal and 

conditional probabilities. For example, for two correlated 

parameters, the transformations will be as follows: 

 �	 = =>	 ?@ 6�A	�8A	B*
& C (7) 

 �� = =>	 ?@ 6�A�|A	� 8A�B,
& C (8) 

where, 6�A	� is the marginal probability of parameter A	and 6�A�|A	� is the probability of parameter A� conditional on 

parameter A	 

After a mapping is obtained between the parameters θ and the 

independent random variables 9 using (6-8), the next step is 

to develop a mapping between the objective function f in 

problem (1) and the set of independent random variables 9. 

One option could be to select random values for parameters θ 

and then calculate for them, the corresponding objective 

function f by solving the model equations and the values for 

the set of independent random variables 9 using the 

transformations (6-8). However, for solving the integrals in 

(4) using quadrature rules, the values of the objective 

function f should be available at specific values of  9, also 

known as collocation points and the above method may result 

in the values of 9 that are not the required ones. An alternate 

approach is to first formulate a PCE of the parameters θ as a 

function of the variables 9 using transformations (6-8); then, 

select values of independent random variables 9 at the 

required collocation points, calculate the corresponding 

values of model parameters θ from the formulated PCE’s and 

finally calculate the objective function f by solving the model 

equations for each combination of model parameters. 

For the one parameter case, after a mapping between model 

parameter A and independent random variable � is obtained 

from equation (6), the generated pairs of corresponding A and � are used to formulate the following PCE, 

 A = ) A ΨD���E
  (9) 

For the case of two parameters, first the mapping between 

model parameter A	and the corresponding independent 

random variable �	, given by equation (7) is used to 

formulate the PCE for A	based on its marginal probability as 

follows: 

 A	 = ) A	FΨD��	�E
  (10) 

Similarly, the mapping given by equation (8) is used to 

formulate the PCE for A�as follows: 

 A�|A	 = ) A�FΨD����E
  (11) 

Here, it should be noted that the PCE for A� in (11) is 

conditional on a particular value of A	 and in the general case 

of correlated parameters, different values for coefficients A�F 
corresponding to different values of A	 have to be obtained 

resulting in different PCEs. In order to explicitly incorporate 

the effect of A	in the PCE in (11), the coefficients A�F are 

further expanded in terms of the independent random variable �	 as follows: 

 A�F = ) A�FGΨH��	�I
2  (12) 

Substitution of (12) into (11) results in one PCE for A�which 

depends on both random variables �	and ��as follows:  

 A� = ) J) A�FGΨH��	�I
2  KΨD����E

  (13) 

Using the map between f and 9, the coefficients for the PCE 

of objective function f are calculated using equation 4 and 

finally the expected value and the variance are calculated 

using standard PCE formulae: 

 ��� = %1& 
(14) 

 ��� = ) %12� < 32� > I
2#	  (15) 

where, <∙> represents the inner product. The calculated 

expected value and variance of the objective function f are 

then substituted in the cost function of the problem (1) and 

the search for the optimum is performed using the fmincon 

function in the MATLAB Optimization toolbox. The overall 

methodology, to be executed at each function evaluation in 

the search for the optimum in problem (1), has been 

summarized for clarity in a stepwise procedure as follows: 

1. Calculate the posterior distribution of the model 

parameters θ from the given data using Bayesian 

Inference 

2. Transform the model parameters θ into a set of 

independent random variables 9 using (6-8) and 

formulate their PCEs, as given by (9-13) 

3. Select values of independent random variables 9 at 

collocation points of the orthogonal polynomials 
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4. Calculate for these 9, the corresponding values of 

parameters θ using PCE’s 9-13 

5. Calculate the values of objective function f for the θ 

obtained in the previous step using model equations  

6. Formulate a PCE for the objective function f and 

calculate the expected value and the variance using 

(14-15) 

3. CASE STUDY: PENICILLIN PRODUCTION PROCESS 

The proposed methodology is applied to a penicillin 

production process. The simulated data for identifying the 

parameters and the parametric uncertainty are obtained using 

the model based on the process simulator, proposed by Birol 

et al. (2002). For simplicity, it is assumed that there are no 

changes in pH and temperature and that oxygen is available 

in excess. Therefore, the effect of these three variables is 

removed from the governing equations and only a reduced set 

of equations, as given by equations 16-19, is used as follows: 

 8$8� = O PQ ∗ R ∗ $SQ ∗ $ + RT − $� ∗ 8�8�  (16) 

 
8V8� = W PI ∗ R ∗ $SI + R + R�SX

Y − SZ ∗ V − V� ∗ 8�8�  (17) 

 

8R8� = − J 1\Q ]^ ∗ PQ ∗ R ∗ $SQ ∗ $ + RK
− W 1\I ]^ ∗ PI ∗ R ∗ $SI + R + R�SX

Y
− _Q ∗ $ + = ∗ �̀� − R� ∗ 8�8�  

(18) 

 8�8� = = − � ∗ 6.226 ∗ 10>d (19) 

where, X is the concentration of biomass, PQ is the specific 

growth rate, SQ and SIare saturation constants, R is the 

concentration of substrate, � is the volume of the culture 

medium, V is the concentration of penicillin, PI is the 

specific rate of penicillin production, SX  is an inhibition 

constant, \Q ]⁄  is the yield of biomass per unit mass of 

substrate, \I ]⁄  is the yield of penicillin per unit mass of 

substrate, _Q is the maintenance constant, F is the amount of 

feed and �̀  is the concentration of substrate in the feed.  

The initial concentrations and the inlet feed profile used to 

obtain the simulated is given in Table 1. 

 

 

Table 1: Initial concentrations and input feed profile for the 

simulated data 

Biomass Conc. (X0) 0.1 (g/l) 

Substrate Conc. (S0) 1 (g/l) 

Product Conc. (P0) 0 (g/l) 

Initial Culture Volume (V0) 100 (L) 

Input Feed (F) 0.04 (L/hr) 

 

To introduce the effect of model structure error, the term 

representing the consumption of penicillin by hydrolysis in 

(17) is neglected and as a result, the rate of change of 

penicillin is now given by: 

 
8V8� = W PI ∗ R ∗ $SI + R + R�SX

Y − V� ∗ 8�8�  (20) 

In addition, uncertainty in the data is introduced by assuming 

that the culture volume cannot be measured and that the 

measurements of the remaining three states are corrupted 

with Gaussian noise. 

In a preliminary study, nominal values for all the parameters 

in the uncertain model (equations 16,18, 19 and 20) were 

estimated using a standard least squares' method and their 

variance-covariance matrix was obtained assuming the model 

outputs are linear around these estimates (Bard, 1974). To 

illustrate the methodology, the examples in this study 

consider only a subset of these parameters to be uncertain. 

The three parameters with the largest associated uncertainty, 

as found in the preliminary study mentioned above are SQ, SX  
and SI. The effect of uncertainty in these parameters was 

studied individually in three examples and the combined 

effect of uncertainty in SQ and SX  was studied in a fourth 

example. A key point of the current work was to compare the 

effect of the actual uncertainty description with the one 

obtained using standard linear approximation, on the robust 

optimization problem given in (1). With that goal, in all the 

examples, the uncertainty description for the respective 

parameters was obtained using both the Bayesian approach, 

resulting in an accurate and realistic description, and the 

linearization approach which for the normally distributed 

errors, results in the normal description of the parametric 

uncertainty.  

Although the Bayesian based distributions are different than 

their normal counterparts in each example, as can be seen 

from their means and variances listed in Table 2, the 

differences are most significant for parameter SX  and the joint 

distribution of SQ and SX . 
 

Table 2: List of means and variances, comparing Bayesian and Normal distributions for each example 

� SQ SI SX  SQ & SX  
 

Normal Bayesian Normal Bayesian Normal Bayesian Normal Bayesian 

E(�) 0.2892 0.3253 0.9986 1.2076 0.036 0.0589 [0.2892 0.036] [0.2498 0.0955] 

V(�) 0.0107 0.0098 0.0807 0.1605 0.000263 0.0012 [0.0122 0.0003] [0.0089 0.004] 
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(c) 

Figure 1: (a) Comparison of Bayesian and Normal 

uncertainty for SX; (b) 2-D representation of joint Bayesian 

uncertainty for SQ and SX  (c) 2-D representation of joint 

normal uncertainty for SQ and SX  
 

For SX , as can be seen in Figure 1a, the Bayesian uncertainty 

results in lower probability for values ranging between 0 to 

0.01, whereas values higher than ~0.075 are more probable 

when compared to the normal distribution. For the joint 

distribution of SQ and SX , the Bayesian uncertainty (Figure 

1b) shows very strong correlation between the two 

parameters, with the region of SX  ranging from 0.075-0.25 

and SQ ranging from 0.15-0.25 having higher probability 

when compared to the normal distribution (Figure 1c) for 

which this region has very low probability.  

In the next step, it is investigated how the differences in the 

uncertainty descriptions in each example, i.e. Bayesian based 

versus Normal, affect the corresponding optimal solution. 

The objective of the optimization problem, in this study, was 

to maximize the amount of penicillin produced at a 

preselected final batch time with minimum variability and the 

volume of culture medium not exceeding 120 L. The initial 

substrate concentration (X0) and the inlet feed rate (F) were 

selected as decision variables and a worst case scenario was 

considered by setting the cost function in (1) to be equal to 

the expectation of f minus its variance. Accordingly, the 

weights for the robust optimization problem posed in (1) 

were selected to be: �	 = −1 and �� = 1. To ensure the 

global optimality of solution, the search was conducted using 

multiple initial guesses for the decision variables. The mean 

and variance information of the optimum objective function f 

is summarized in Table 3. Examination of these results 

clearly shows that the robust optimal solution obtained using 

the Bayesian representation of the parametric uncertainty 

differs significantly from the one corresponds to the normal 

representation, especially for the two parameters’ case where 

the Bayesian description of uncertainty differs significantly 

from the normal, as shown in Figure 1b and 1c. The 

distribution of f at the optimum based on joint uncertainty in SQ sand SX  is shown in Figure 2a and 2b. 

 

Table 3: List of means and variances of the objective function 

f at the optimum, based on Bayesian and Normal description 

of uncertainty 

� 6��� X0 F E(f) V(f) 

      SQ Normal  12.54 0.078 53.011 28.834 

 
Bayesian 38.04 0.150 75.953 13.756 

      SI Normal  31.74 0.277 86.58 11.801 

 
Bayesian 29.38 0.277 80.589 12.118 

      SX  Normal  26.35 0.0797 30.546 14.087 

 
Bayesian 22.91 0.0799 46.933 22.135 

      SQ & SX  Normal  26.87 0.0734 17.654 12.58 

 
Bayesian 29.16 0.1009 52.749 32.726 

 

 

Since the intention is, in the future, to extend the proposed 

methodology to on-line schemes, it is important to assess its 

computational efficiency. The simulation time to propagate 

the Bayesian uncertainty using PCE was compared to the 

widely used Monte Carlo method.  
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(a) 

 

(b) 

Figure 2: Probability distribution of objective function f at the 

optimum, based on the (a) Bayesian uncertainty and (b) 

Normal uncertainty 

 

Using PCE, the calculation of the objective function posed in 

(1) for one function evaluation was completed in 2-3 seconds 

on average on quad-core 3 GHz Core-i7 workstation and the 

search for the optimum was completed after approximately 

50-60 function evaluations which results in an overall 

simulation time of 3-4 min. On the other hand, using Monte 

Carlo methods, 1 hr of computation time was needed to 

calculate the objective function in (1). Thus 50-60 function 

evaluations, needed for finding the optimum would take 50-

60 hours, significantly higher as compared to the proposed 

PCE based method 

 

6. CONCLUSIONS 

A PCE-based methodology is used to propagate uncertainty 

in model parameters into the objective function of a robust 

optimization problem. Significant differences in the optimum 

are obtained when realistic descriptions of parametric 

uncertainty are used instead of simplistic ones.  The proposed 

methodology proved to be significantly more efficient than 

Monte Carlo based method thus making it attractive for 

future application in on-line problems. The proposed 

methodology, as such, can be applied for more complex cases 

where more than two or even all parameters are uncertain and 

will be studied in future work. 
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