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A b s t r a c t - - T h e  finite Radon transform was introduced by Bolker around 1976. Since then, many 
variations of the discrete Radon transform have been proposed. In this paper, we first propose a 
variation of the discrete Radon transform which is based on a binary relation. Then, we generalize this 
variation to weighted Radon transformation based on a weighted relation. Under such generalization, 
we show that discrete convolution is a special case of weighted Radon transformation. To further 
generalize Radon transformation to be defined on lattice-valued functions, we propose two nonlinear 
variations of Radon transformation. These two nonlinear variations have very close relations with 
morphological operations. Finally, we generalize Matheron's representation theorem to represent 
translation-invariant operations on functions from an abelian group to a complete lattice. 

g e y w o r d s - - D i s c r e t e  Radon transform, Discrete convolution, Nonlinear Radon transforms, Galois 
connection, Mathematical morphology. 

1. I N T R O D U C T I O N  

The  Radon  t r ans fo rmat ion  is a very powerful ma themat ica l  tool in computed  tomography  (CT).  

The  problem in C T  is the de te rmina t ion  of some proper ty  of the in terna l  s t ruc ture  of an  object  

wi thou t  having to cut  the object.  The  object  is acted on by a probe, such as X-rays,  nuclear  

magnet ic  resonance signals, or u l t rasound waves, which can be detected to produce a projected 

d i s t r ibu t ion  or profile. 

Let f (x ,y)  represent  the in ternal  proper ty  of an object  on R 2. For any  line L, the Radon 
transform of f ,  wr i t t en  as 7¢f, is given by 

n f(L) = / 5  F(x, y) ds, 

where ds is an increment  of length along L. If the un i t  normal  vector of and the  dis tance from 

the origin to L is p, then  the Radon t ransform of f can also be wr i t t en  as 

/? ~ f(p, ¢) = f(p cos ¢ - s sin ¢, p sin + s  cos ¢) ds. 

For each (x, y), let 

1 ~02~r F(x,y ,q)= ~ n f ( x c o s ¢ + y s i n ¢ + q , ¢ ) d ¢ .  
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If  f(x, y) satisfies some "regularity conditions," Radon [3], then f(x, y) can be reconstructed by 

1 dF(x, y,q) 

Jo f ( x , y )= ~ q 

In Radon's  original paper  [1] (see [2] for an English translation), the Radon transformation is 
defined on functions from R 2 or R 3 to R. I t  is generalized to functions from l~ n to R by Ludwig [3] 

and Deans [4]. Further generalized Radon transformation can be found in [5]. 
A very interesting variation of Radon transformation is its discrete version. Let X be a finite 

set and C be a family of subsets of X. If f is a function from X to C, then the finite Radon 
transform of f ,  also written as T~ f ,  is a function from C to C defined by 

n f(Y) = Z f(x), VY E C. 
z E Y  

For each x E X,  denote Gx = {Y c C I x E Y}. Then the dual Radon transform of a function F 
from C to C, writ ten as TgdF, is defined by 

ndF(x) = ~ F(Y). 
YcG~ 

The finite Radon transformation is introduced by Bolker [6] and has 'been employed by Kung [7] 
to find matchings and to prove rank and covering inequalities in finite lattices. 

Another variation of Radon transformation is to define it as an operation. For instance, in [8], 
the Radon transformation on a finite abelian group (A, + , - , 0 )  is defined as a linear operation 
on the space of functions from A to C. Let B be a subset of A. For every function f from A 

to C, the Radon transform of f with respect to B, written as 7~B f ,  is a function from A to C 
given by 

nB f(a) = ~ f(a + b). 
bcB 

In this paper,  we will consider a more general variation of the Radon transformation tha t  will 
unify most variations of the finite Radon transformation. The basic idea of our approach is to 
define transformations based on binary relations between two sets. If  a given binary relation is 

weighted, a weighted Radon transformation can be defined. We will show tha t  weighted Radon 
transformations can be reduced to convolutions if particularly specified weighted binary relations 
are provided. The details will be given in Section 2. A characterization theorem for weighted 
Radon transformation to be translation-invariant will be given in Section 3. 

Convolutions play essential roles in linear signal and image processing. An n-dimensional signal 
is usually defined as a function from R n to R, while an n-dimensional image is usually defined 
as a function from R n to R + = {a E R I a > 0}. To be suitable for computer  manipulation, a 
signal or an image must be digitized. For instance, an n-dimensional digital image is considered 
as a function from Z n to the set {0, 1 , . . . , l  - 1}, where 1 is a positive integer. Most linear 
transformations on digital images map digital images to real- or complex-valued functions. In 

other words, most linear transformations on digital images are not operations on digital images. 
For instance, the output  of a mean filter on digital images is a function with values from the 
interval [0, l - 1]; the Fourier transform of a digital image is a complex-valued function. In 
Section 4, we will propose two nonlinear variations of Radon transformation on lattice-valued 
functions by employing the two lattice operations v (join) and A (meet). When applied to digital 
images, these two nonlinear transformations can be used as operations on digital images. In 
Section 5, we will show tha t  all morphological operations [9-11] on T'(Rn), the power set of lRn~ 
can be derived from these two nonlinear transformations if suitable binary relations are provided. 

A very fundamental theorem in mathematical  morphology related to translation-invariant 
t ransformations is Matheron's  representation theorem, which represents any isotone translation- 
invariant operation on T~(R n) in terms of erosions or, dually, dilations. Matheron's  theorem has 
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been recently generalized for translation-invariant operations, which are not necessarily isotone, 

by Banon and Barrera  [12]. In Section 6, we will further generalize Barton and Barrera 's  result 

for translation-invariant operations on functions from an abelian group to a complete lattice. 
Conclusions and some remarks will be given in Section 7. 

2.  T R A N S F O R M S  B A S E D  O N  B I N A R Y  R E L A T I O N S  

Let X and Y be two arbi trary sets. A binary relation ~ between X and Y is a subset of 
the Cartesian product  X x Y -- {(x,y) I x E X , y  E Y}. For any x E X and y E Y, a 
conventional notation for (x, y) E 0 is xQy. Then, consider the following variation of finite Radon 

transformation.  

DEFINITION 2.1. Let ~ be a binary relation between two sets X and Y .  For any function f 
from X to • or C, the Radon transform of f with respect to ~, written as T~J,  if  it exists, is a 

function from Y to I~ or C defined by 

T%f(y)  = ~ f (x ) .  
x o y  

If  Y = C is a class of subsets of X,  and xQS means (for every x E X and S E C, then 

Definition 2.1 reduces to Bolker's definition for Radon transforms. If  X -- Y -- A, (A, +)  is a 
finite abelian group, and aQb means a + b E B for a given subset B, then Definition 2.1 reduces 
to the definition of Radon transforms on abelian group given by Frankl and Graham. Moreover, 

if X -- Y -- Z~, S is a subset of Z~, and ~Q~ means ~ E S~ -- {~' + ~7 [ 27 E S} for all ~, ~ E Zp, 
then the t ransform 7~Qf of a function f from Zp to C is called the Radon transform of f based 

on translates of S by Fill [13]. 
Next, we consider transforms based on weighted binary relations. 

DEFINITION 2.2. A weighted relation w between two sets X and Y is a function from X x Y 

to R or C. 

Note tha t  an unweighted binary relation Q between X and Y can be considered as a weighted 

relation w defined by 
1, if xoy, 

w(x,  y) = O, otherwise. 

Then, the Radon transform "R.of can be written as 

:(y) = Z f(x) = Z :(x) y). 
xQy x E X  

This leads us to the following definition. 

DEFINITION 2.3. Let w be a weighted relation between X and Y. Then the weighted Radon 
transform of a function f from X to R or C, written as T~wf , i f  it exists, is defined by 

T~wf(y ) = ~ f ( x )  w(x,  y). 
x E X  

EXAMPLE 2.4. Let X = Y = Z n. Let F ( Z  n ---* R) denote the set of all real-valued functions 
on Z ~. For a neighborhood N of the origin 6, define a weighted relation w on Z ~ by 

w(~, g) = ~-~, if e E N~, 

O, otherwise, 
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where IN I denotes the cardinality of N and N# is the translate of N by ~. Then, the weighted 
Radon transform T ~ f  of a function f E F ( Z  ~ -* R) is given by 

1 
Tgwf(Y) = ~ z n  f ( x ) w ( x , y )  = IN, ~ N  f(X). 

Y 

This is known as the local averaging of f with respect to the "window" N. 

EXAMPLE 2.5. Let ~ ( Z  ~ -+ C) denote the set of all complex-valued functions on Z n. For any 
function g E ~-(Z n --* C), define a weighted relation w on Z n by w(Z,y-) = g ( g -  ~). Then, the 
weighted Radon transform 7¢~f, given by 

T~wf(~ ) =- ~ f(:g) g(Y - ~), 

is known as the discrete convolution of f and g. 

EXAMPLE 2.6. Let X = Y = {0, 1 , . . . ,  m - 1} x {0, 1 , . . . ,  n - 1}. Define a weighted relation w 
on X by 

w((x,y) ,  (u,v))  = 1 e_j2.(~,x/m+vu/n), 
m n  

where j = v/-2-f. Then the weighted Radon transform ~ w f  of any f E 5r(X --* C), given by 

rn-ln-1 
n w f ( u , v )  = 1 

mn 
x=O y=O 

is indeed the discrete Fourier transform of f .  

3. T R A N S L A T I O N  I N V A R I A N T  T R A N S F O R M A T I O N S  

In this section, we will consider the case when X = Y = A, where (A, + , - ,  0) is an abelian 

group. For any a, b E A, the element a + b is sometimes called the translation of a by b. 

DEFINITION 3.1. Let w be a weighted relation on A. Then w is called translation-invariant i f  
w(x  + a, y + a) = w(x, y) for all a, x, y E A. In particular, a binary relation 0 on A is called 
translation-invariant if  xoy implies (x + a)o(y + a) for ali a, x , y  E A. 

EXAMPLE 3.2. Consider the weighted relation w defined in Example 2.5. Since 

w ( ~ + g , ~ +  g) = g ( ~ + g -  ( ~ + ~ ) )  

= g ( ~ -  ~) = ~(~,  ~), 

the weighted relation w is translation-invariant. 

Now, consider the group action of A on the set ~ ( a  -~ K)  of functions from A to K,  where 
K = R or C. For each f E ~ ' (a  --+ K)  and a E A, there is a function f~ E $ ' (A --+ K)  defined by 

I~(z) = I ( x  - a), Vz E A. 

The function fa is usually called the translation of f by a. Obviously, we have f0 = f and 
(f~)b = f~+b for all a, b E A. 

DEFINITION 3.3. Let q2 be a unary operation on J:(A --* K).  Then, ~ is called translation- 
invariant i[ ~ (f~) = (q2 f )  a for all f E J:(A --* K)  and for a11 a E A. 

The following result gives a necessary and sufficient condition for weighted Radon transforma- 
tions to be translation-invariant. 
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THEOREM 3.4. A weighted Radon transformation 7~w on J:(A -* K)  is translation invariant ff 
and only ff  the weighted relation w is translation-invariant. 

PROOF. Suppose 7~w is translation-invariant. That  is, suppose 7~wfa = ( T ~ f )  a, for all f E 
~ ( A  --* K)  and for all a E A. Let ~ be the unit sample function defined by 

J" 1, if x = 0 ,  
5(x) 

0, otherwise. 

Then observe that  
n ~ x ( y )  = ~ ~(z - x) w(z, y) = w(x, y) 

zEA 

and 
(T~w5)x (Y) = (nwS)x+a-~ (Y) = (nw5)x+a (Y + a) = w(x  + a, y + a). 

Since 7 ~  is translation-invariant, we have w(x + a, y + a) = w(x,  y). Thus, w is translation- 

invariant. 
Conversely, suppose w is translation-invariant. Then 

(Ttwf)a (Y) = Z f ( x )  w(x,  y - a) 
xEA 

= f ( z  - a )  - a ,  y - a )  = f ( z  - a)  y )  = n A(y). 
z-aEA zEA 

Thus, T~o is translation-invariant. I 

EXAMPLE 3.5. Consider the local averaging operation with respect to a window N discussed in 
Example 2.4. Since Z c Ng is equivalent to Z~- 5 c Ny+g for all d E Z n, the weighted relation w 
is translation-invariant. By Theorem 3.4, the local averaging operation with respect to N is 

tr  anslation-invariant. 

EXAMPLE 3.6. Consider the discrete convolution discussed in Example 2.5. As shown in Exam- 
ple 3.2, the weighted relation w defined by w(x,  y) -= g(y - x) is translation-invariant. Thus, the 
discrete convolution T~w is also translation-invariant. 

The unit sample function ~ employed in the proof of Theorem 3.4 has significant importance 
in representation theorem for linear translation-invariant operations. Let O be an operation on 
~ ( A  -* K) ,  where (A, + , - ,  0) is a finite abelian group. The function h = O6 is usually called 
the impulse response of O. If O is linear and translation-invariant, then a very fundamental 
theorem in digital signal and image processing says that  O f  can be represented as the discrete 
convolution of f with the impulse response h, for any function f in ~'(A --~ K).  In terms of 
weighted Radon transforms, we can rephrase the above result as a theorem. 

THEOREM 3.7. Let O be a linear translation-invariant operation on Jr(A --* K),  where (A, +, 
- ,  O) is a finite abelian group and K = R or C. Then, 

O f  = T i f f ,  

for all f 6 5C(A ~ K) ,  where the weighted relation w is given by w(x,  y) = O6(y - x). 

4.  N O N L I N E A R  R A D O N  T R A N S F O R M A T I O N S  

Now consider the generalization of Radon transformation to lattice-valued functions such as 
digital images. As mentioned before, a digital image is usually considered as a function from Z n 
to the set {0, 1 , . . .  ,1 - 1}, where a typical value for l is 256. Since addition is an inadequate 
operation on digital images, a reasonable substitution for summation used in discrete Radon 
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transforms might be one of the two lattice operations V (join) or A (meet). This motivates us to 
the following definition. 

DEFINITION 4.1. Let Q be a binary relation between two sets X and Y,  and (L, V, A) be a 
complete lattice. For each function f : X --~ L, the supremum Radon transform o f f  with respect 
to ~, written as 7~Qf , is a function from Y to L defined by 

7~of(Y) = V f (x) .  
xQy 

The infimum Radon transform of f with respect to Q, written as f4af , is a function from Y to L 
defined by 

re.f  (y) = A f(z). 
xoy 

In the following, we will discuss the properties of these two nonlinear transformations from 
lattice theoretical point of view. 

Let (P, <) and (P', <') be two posets. A pair (f, g) of functions, f : P --~ P ' ,  g : P '  --* P is 
called a Galois connection [14,15] between P and P~ if 

(GC1) f and g are isotone, i.e., f (x )  < / f ( y )  if x _< y and g(u) < g(v) if u _<' v; 
(GC2) x <_ g( f (x) )  for all x e P and f (g(y))  <' y for all y c P' .  

Given two sets X, Y and a complete lattice (L, V, A), denote the set of functions from X 
to L as 9r'(X --~ L) and the set of functions from Y to L as 9r(Y --* L). It is well-known 
that  (gr(X --~ L), V, A) and (~'(Y --~ L), V, A) are complete lattices, where f l  _< f2 in 9v(X -* L) 
means f l (x)  <_ f2(x) for all x in X. In the following, we will establish Galois connections between 
9r(X --* L) and 5r(Y --* n). 

Note that  for any binary relation ~ between X and Y the inverse relation Q-1 is a binary relation 
between Y and X. Thus, the transformations 7~-1 and 7~- ,  are functions from 9r(Y --~ L) to 
9r(X ~ L). 

THEOREM 4.2. Suppose ~ is a binary relation between X and Y. Then, the pair (f~o, 7~-~ ) is a 

Galois connection between J:(X --. L) and J:(Y --* L). Similarly, the pair (7~Q-~, 7~) is a Galois 
connection between ,~(Y --~ L) and Jc(X --* L). 

PROOF. It is easy to see that  all Radon transformations are isotone. Thus, to show (7~0, 7~o-1 
is a Galois connection, it remains for us to show that 7~Q-~7~ef > f and 7~eT~e-~g < g, for all 
f e ~'(Y ---* L) and ~-(X --+ L). For all x E X, since 

y Q - l x  zQy y Q - l x  

we have 7 ~ - 1 7 ~ f  >_ f ,  for all f c 5r(X --~ L). Similarly, we have 7~7~Q-lg < g, for all 
g E 5r(Y -* L). Thus, (7~, 7~e-~) is a Galois connection between ~'(X --* L) and 5r(Y --* L). 

That  the pair (7~e-~, 7~) is a Galois connection between ~'(Y --* L) and 5r(X ~ L) follows easily 
by interchanging the roles of X and Y. | 

COROLLARY 4.3. For any binary relation Q between X and Y,  we have 7~of~o-~7~ef = f~of, for 
all f e Jz(X --* L) and f 4 e - , f ~ e - , g  = f4~-ig, for all g E 3r(Y ~ L). Dually, 7~J~e-~f~ef = 
f~of for all ~ ' (Y --* L) and f~o- ,7~f~-~g  = 7~-~g, for all g e ~r(y ~ L). 

PROOF. Since 7~e-~7~ef >_ f and 7~e is isotone, we have 7 ~ - , 7 ~ f  _> 7 ~ f ,  for all / E 5r(X 
L). On the other hand, since 7~q7~e-~g < g, for all g e 5r(Y --* L), we have 7~ef~o-,f~of < 7~of, 
for all f e 9r(X --* L). Thus, 7~of4e-~f4of = 7~ef, for all f e 9r(Y -~ L). Other equalities follow 
similarly. | 
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Let (P, <) be a poset. An operation - : x ~ 5: on P is called a closure operation [14,15] on P 
if 

(CL1) x < 5: (Extensive); 
(CL2) x _< y ~ ~ _<: ?7 (Isotone); 
(CL3) ~ = 5: (Idempotent). 

THEOREM 4.4. Suppose O is a binary relation between X and Y.  Then, the operation f~o-1 ~o is 

a closure operation on ~ ( X  --~ L) and the operation f~j~o-1 is a closure operation on ~ ( Y  --~ L). 

PROOF. It suffices to show that  the two operations 7~o-17~ o and 7~o7~o-~ are idempotent. By 

Corollary 4.3, we have 7~o7~o-~7~ 0 = ~o  and, hence, 7~o-17~o~o-~7~ o = 7~o_~7~ o. That  is, 
7~o-~7~ o is idempotent. By interchanging X and Y, it is obvious that  the operation is also 
idempotent.  | 

The dual notion of closure operation is coclosure operation [14] (or kernel operation [15]). Let 
(P, <) be a poset. An operation - : x H 5: on P is called a coclosure operation on P if 

(CCL1) ~ < x (Extensive); 
(CL2) x _< y ==~ 5: < ~ (Isotone); 
(CL3) ~ -- ~ (Idempotent). 

The following result is the dual of Theorem 4.4. We omit its proof. 

THEOREM 4.5. Suppose ~ is a binary relation between X and Y.  Then, the operation 7~o-~7~ o 

is a coclosure operation on Jr(X --~ L) and the operation 7~of~e-~ is a coclosure operation on 
.7"(Y ~ L). 

DEFINITION 4.6. Let O be a binary relation between X and Y,  and (L, V, A) a complete lattice. 
A function f E Jr(Y --* L) is called O-closed if f~o-~f~of = f .  Dually, f is called O-open if 

f'~o-lf~of : f .  

The following theorem is essentially due to Serra [10]. 

THEOREM 4.7. Let f E :7:(X -~ L). Then f is o-closed if and only if  f : 7~o-1g, for some 
g ~ ~ ( Y  --* L). Similarly, f is O-open if and only i f f  = 7~o-~g , for some g E .T'(Y --, L). 

PROOF. Suppose f is 0-closed. Let g = 7~of. Since f : f~o-~7~of, we have f : 7~o-lg. 

Conversely, suppose f : 7~o-~g, for some g E 9v(Y --~ L). Then, 7~o-17~of : f~o-17~of~o-~g = 
7~o-~g : f ,  by Corollary 4.3. Thus, f is 0-closed. The dual statement can be proved similarly. | 

5.  R E L A T I O N  T O  M O R P H O L O G I C A L  O P E R A T I O N S  

Consider the special case when L = {0, 1}. It is well-known that  every function f ~ 5r(A 
{0, 1}) can be characterized by its support Supp(f)  : {a ~ A [ f (a)  : 1}, which is a subset 
of A. Conversely, given any subset B of A, the characteristic function XB of B is a function in 
~-(A ---* {0, 1}) with support B. Thus, we can make the following definition. 

DEFINITION 5.1. Let O be a binary relation on A. For any subset B of A, the supremum and 
infimum Radon transforms of B, respectively written as 7~oB and f~oB, are defined by 

and 

REMARK 5.2. Note that  7~ e and 7~ e are operations on 7~(A), the power set of A. 

Let A be an abelian group and S a fixed subset of A. Define a binary relation 0 on A by cob 
if and only if a E Sb = {s + b [ s ~ S}. Then it is easy to see that  0 is a translation-invariant 
relation on A. Write 7~s for 7~ o and 7Zs for 7~ o if cob means a e Sb. By Theorem 3.4, the two 
operations 7~s and 7~s are translation-invariant. Observe that  

7~SXB(b)= V x s ( a ) =  { 1, i f S b N B ¢ ¢ ,  
aes~ 0, otherwise. 
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In other words, 
b E ~ s B ,  if and only if Sb N B # O. 

Thus, we have 
~ s B  = {b c A I Sb ['q B ~ 0}. 

Similarly, by observing that  

~SXB(b) = A XB(a) = { 1, if S b C B, 
aeSb 0, otherwise, 

we then have 

~ s B  = {b e A ] Sb C B}. 

In the literature of mathematical morphology, ~ s B  is called the dilation of B by S, ~ s B  
is called the erosion of B by S, and S is called a structuring element. Moreover, the closure 
operation ~ - s l Z s ,  where - S  = { - s  I s c S}, is called a closing and the coclosure operation 
~ - s l ~ s  is called an opening. Details on the theory and applications of mathematical morphology 
can be found in [9-11,16-24]. 

As mentioned in the first section, a very interesting result in mathematical morphology related 
to translation-invariant operations is Matheron's [9]'s representation theorem. Let qz be a unary 
operation on tO(A). The kernel of @, written ms/C(@), is given by 

/C(~) = {B e i°(A) 10 • @(B)}. 

THEOREM 5.3. [9] Let qJ be an isotone translation-invariant operation on "P(A). Then 

qJS = U ~ s B ,  for all S • "P(A). 
set:(¢) 

PROOF. Let b • @B. Since @ is translation-invariant, we have 0 • (@B)-b = @(B-b). Thus, 
B-b •/C(@). Then 

b • 7Z._bB c U 7Z B 

Thus, tPB C Usetz(¢)~sB. Conversely, let b • Use~(¢)7~sB. Then b • ~ s B ,  for some S • 
/C(~). This means that  Sb C B or, equivalently, S C B-b. Since qJ is isotone and S •/C(q2), we 
have 

o • ¢s c ¢(B_b) = ( ¢ B ) _ b .  

Thus, b • tl, B. This shows that Usepc(¢)7~sB C kOB. We then conclude that kOB = Usepc(,i, ) 

x ~sB.  1 

For any operation • on T'(A), the dual operation of ~, written as kI/d, is defined by 

• dB = (~BC) c, for all B C A, 

where B c denotes the complement of B in A. Observe that  for any B C A, 

s B =  TCsB ¢ = { b l S b C B ~ }  c, 

= {b I Sb N B # 0} = 7~sB. 

Thus, (7~s) d = ~ s  for any S C A. 
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THEOREM 5.4. [9] Let k~ be an isotone translation-invariant operation on P(A). Then 

gtB = n f~sS, for a11B P(A). E 
H 

s6~:(~) 

PROOF. Since g2aB c = Use~(~)f~sB c by Theorem 5.3, we have 

• B = (~'~B~) ~ = U # ' Y  = N ¢Z~B. 
se~(~  ,~) se~(,,, d) 

Matheron's representation theorem has been recently extended to represent all translation- 
invariant operations on 7P(A) by Banon and Barrera [12]. For any B, C C A, denote [B, C] = 
{S C A I B c S C C}. Then consider the ternary operation T(S, B, C) on 7P(A) defined by 

T(S, B, C) = {a J S E [Ba, Ca]}. 

Since "S E [Ba, Ca]" is equivalent to "Ba C S and C c C S c'', we have 

T(S, B, C) = ~ B S  n CCc~S ~. 

THEOREM 5.5. [12] Let gt be a translation-invariant operation on P(A). Then/or all S C A, 

• S--'- U (~BSn~'~c~SC) " 
[B,C]C~:(~) 

PROOF. Let a E g/S. Then, 0 6 (g/S)-a = ~(s -a) ,  S-a 6 K:(g2), and [S-a,S-a]  C ]C(g/). 
Obviously, S E [(S-a)a, (S-a)a] and, hence, a E f~s_,,SNf~ssoS c c U[B,c]c~:(v)(f~Bsnf~coSC). 

Conversely, suppose a E U[B,C]cK:(~)(7~BS N f~ccSC). Then a E 7~bS n f~ccS c for some [B, C] C 
/C(~). This means that  Ba C S C Ca for some [B, C] C K:(g/). Thus, S-a  E/C(g2) and, hence, 

a e ~ S .  I 

REMARK 5.6. If ~ is also isotone, then Theorem 5.5 reduces to Theorem 5.3. Indeed, then it 
is easy to show that  B 6 K:(~) if and only if [B, C] c ~ ( ~ )  for all C with C D B, and thus 
Theorem 5.5 asserts 

• U 
B61C(~) CDB 

Be~(~) CDB 

= U 
BelC(~) 

= U 

= U ~ s ,  
Be.~.(,~) 

which is the assertion of Theorem 5.3. 
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6. R E P R E S E N T A T I O N  T H E O R E M  F O R  

T R A N S L A T I O N - I N V A R I A N T  O P E R A T I O N S  

Representation theorems discussed in previous section are developed primarily for translation- 
invariant operations on P(A). In the following, we will generalize the alluded representation 
theorems to represent translation-invariant operations on 5r(A ~ L) for arbitrary complete lattice 
(L, V, A). 

Before generalizing Theorem 5.3 and Theorem 5.5, we first note that  any function in 9V(A --~ 
{0, 1}) is of the form f = )is, where S = Supp(f) C A. Thus, the ternary operation T on 7)(A) 
can be easily redefined as a ternary operation on J~(A --~ {0, 1}) by 

1, if B x  C S C C~, 
T ()lS,XB,XC) (x) = O, otherwise, 

for all Xs, XB,XC E •(A --* {0, 1}) and for all x E A. An analogous ternary operation on 
f ' ( a  --* L), also written as T, can then be defined by 

T, i f g x < _ f < h x ,  
T ( f , g , h ) ( x ) =  A_, otherwise, 

for all x E A, where T and A_ are the greatest and least elements of L, respectively. Next, we 
introduce the threshold operations on L. For any a E L, let e a  be the operation on L defined by 

-T-, if a _</3, 

0~13= _L, otherwise. 

The operation ea  is known as the a-level threshold operation. Complementarily, we can define e~ 
to be an operation on L by 

S T, if/3_<a, 
e~/3 / A_, otherwise. 

Then for any g E ~ ( A  --~ L) ,a  E L, define a relation • on A by x0y, if and only if gy(X) > a, 
for all x, y E A and write 7~g>~ and 7~g_>~, for 7~ e and 7~Q, respectively. Similarly, we will write 
7~g<a and 7~g_<a for 7~  and Re, respectively, if xoy means gu(x) <_ a, for all x, y E A. 

REMARK 6.1. If L = {0,1} with 0 < 1 and f E 5r(A ~ L) with Supp(g) = S. Then, it is easy 
to see that  the definition gy(x) _> 1 of x0y is the same as that  for S in Section 5 and, hence, that  

7~g>1 = 7~s and 7~g_>1 = 7~s. 

Likewise, 

7~g_<0 = 7~s~ and 7~g<0 = ~so- 

Moreover, 

"]~9_>0 = ~'~g<l = ~'~A (which maps 0 to itself and everything else to A), 

and 
'~g_>0 = ~9_<1 = ~ A  (which maps A to itself and everything else to 0). 

LEMMA 6.2. For any f , g , h  E .~(A --* L), we have 

aEL 
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PROOF. Suppose T ( f , g , h ) ( y )  = T. Then gy < f <_ hy. Thus, for all a • L, if gy(x) > a then 
f ( x )  >_ a and Oaf(X) = T. Similarly, if hy(x) < a then f ( z )  <_ a and O~f(x)  = T. Therefore, 

aEL 

Conversely, if A~s(1~9>~O~f(y))  A (~h<~O~f(y)) = T, then for all a • L, we have 

 9> Oaf(Y) = T and  h<oO f(y) = T. 

Thus, f ( x )  >_ a, for all x with gy(x) >_ a and f ( x )  <_ a, for all x with hy(x) <_ a. In other words, 

we have gy ~ f ~ hy. Thus, T( f ,  g, h)(y) = T. | 

REMARK 6.3. If L = {0, 1}, then Lemma 6.2 asserts 

T (Xs, XB, XC) = ~BXS A ~C  c Xsc, 

which is equivalent to the one right above Theorem 5.5. 

DEFINITION 6.4. Let fig be a unary operation on 2:(A --~ L), where (A, + , - ,  0) is an abelian 
group and (L, V, A) is ~ complete lattice. Then for all a E L, the a-level kernel of ~,  written as 
1Ca(k~ ), is defined by 

Ka(~) = { f  • 2:(A--* f )  l ~f(O ) >_ a}. 

REMARK 6.5. If L = {0, 1} and we identify sets with their characteristic functions, then K:I = K: 
as defined in Section 5 and/Co = ~(A) .  

THEOREM 6.6. Let • be a translation-invariant operation on Jr(A --* L). Then 

PROOF. Let ~ f ( Y )  = % Then ~f_y(O) = ? and then f_y • ~-~(~). Since [ f_y, f_y]  and 

f_~)~ _< f _< (f_y)y,  we have 

[g,h]c~ (~) 

and 

V V _ ) 
act [g,h]c/C~ (~) 

Conversely, if 

aeL [g,h]c/C~(O) 

then there exists a subset M of L such that  
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for all a E M. Note that  VaeM a -- % This means that for each a E M, there exists g and h 

such that  [g,h] C /Ca(@) and Af~ei(7~g>_aOaf(y)) A (7~h<_aO~f(y)) = T. By Lemma 6.2, we 

have gy <_ f <_ hy, i.e., g <_ f _ y  <_ h. Thus, f _ y  E ~a(q2), and hence, ~ f_u (0 )  > a for all 
a E M. Since @ is translation-invariant, we then have k~ f ( y )  >_ a for all a E M. Therefore, 

k9 f ( y )  ~_ VaeMa = ~/. I 
REMARK 6.7. If L = {0, 1}, Theorem 6.6 reduces easily to Theorem 5.5. 

In particular, i f ~  is isotone, then g E/Ca[k0] implies f E /C[ff]] for all g _< f.  Thus, the following 

corollary is an easy consequence of Theorem 6.6. 

COROLLARY 6.8. I f  IW is an isotone translation-inyariant operation on ~ ( A  --* L),  then  

~ =  V ( a A  V ( ~ A i ( ~ g > - ~ O Z f ) ) )  ' 
aEL gEK:~ (q2) 

REMARK 6.9. In the used fashion, Corollary 6.8 generalizes Theorem 5.3. 

7. C O N C L U S I O N  

The proposed weighted Radon transformations based on weighted relations unify many linear 

transformations commonly used in signal and image processing. In [25], many applications of 

discrete Radon transforms to signal processing have been discussed. Moreover, Theorem 3.4 is 

an interesting result on characterizing translation-invariant weighted Radon transformations. 

Mathematical morphology is recently very vital in the area of image processing. Most new 

published textbooks on digital image processing [26-29] have included mathematical morphology 

as one of their topics. The proposed nonlinear Radon transformations can be considered as 

generalizations of morphological operations. 
It should be noted that  if X = Y = V(G) ,  where V ( G )  is the vertex set of a simple graph G, 

and if Q is a binary relation on V(G) ,  then the Radon transforms 7 ~ B  and 7~B,  where B is any 

subset of V ( G ) ,  are generalizations of dilation and erosion of B in graph morphology. Interested 

readers can be referred to [30,31] for details. 
It should also be noted that  Theorem 6.6 is developed for representing translation-invariant 

operations on $ '(A -~ L), where L is the underlying set of a complete lattice. Since neither R 
nor C form a complete lattice, Theorem 6.6 cannot be applied directly to translation-invariant 

operations discussed in Section 3. 
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