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Abstract— We apply mean field asymptotic analysis to explain
the emergence of global behavior in large scale networks. The
underlying motivating application is epidemics like computer
virus spreading, for example, in wide campus local networks.
We consider multiple classes of viruses, each type bearing
their own statistical characterization – exogenous contamina-
tion, contagious propagation, and healing. The network state
(distribution of nodes infected by each class in the network)
is a jump Markov process, not necessarily reversible, making
it a challenge to obtain its invariant distribution. By suitable
renormalization, in the limit of a large network (number of
nodes,) the macroscopic behavior of the network is described
by the solution of a set of deterministic nonlinear differential
equations (Riccati type.) We show that, under the heavy
traffic assumption, the relevant underlying dynamics induces
a coherent nontrivial metastable behavior in a macroscopic
space-time scale: a slight imbalance on the effective spreading
rate of one class over the others determines a significantly
greater steady state predominance of this class over the others,
regardless of the initial distribution.

I. INTRODUCTION

This paper considers the emergence of global behaviors
in large scale networks from the microscopic interactions
of the networked agents. The global behavior corresponds
to the asymptotic state of their network derived by a mean
field analysis in the limit of a large number of agents. This
behavior is described as the solution of a nonlinear ordinary
vector differential equation of the logistic type (or of the
Riccati type.) The equilibria of this nonlinear equation is
highly sensitive to values of the parameters that govern the
interactions among agents. To be concrete, we consider ap-
plications in epidemics of multiple types of viruses infecting
a closely knitted population, for example, multiple classes of
virus contaminating the computers and servers in a campus
local area network. We describe the evolution of the fractions
of infected nodes of each class on the network. We assume
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José M. F. Moura is with the Department of Electrical and Computer En-
gineering, Carnegie Mellon University, USA. moura@ece.cmu.edu,
ph: (412)268-6341

that the viruses enter the network according to a Poisson
process with rate λi (indexed by the type of virus.) The
epidemic then spreads via contamination among the nodes.
The nodes may heal after some random time. We assume
exponential distributions for the contamination and healing
times with rates γi and µi, respectively. Within this model,
our state process is described by a Markov jump process
(see [10].) We analyze its asymptotic behavior when the
number of nodes N goes to infinity. Namely, we prove in
section IV-C that, in the limit of N large, the Markov process
converges to the solution of a (deterministic) ordinary vector
differential equation d

dt y(t) = F(y(t)) for t ≥ 0, where the
vector field F(·) depends on the dynamics of the viruses. We
show through numerical simulations that small perturbations
on the statistics of the different types of viruses may lead
to completely different steady-state configurations, namely,
a small advantage on the effective transmission rate τi =

γi
µi

of
a particular virus may be key for its class to go from a state of
almost extinction to a possibly overwhelming dominance of
the network. In section IV, we detail our model and construct
the Markov jump process by characterizing its rate transition
matrix QN . We write down the underlying stochastic integral
equation and prove its mean field property. In section V, we
study the qualitative behavior of (y(t)) to show metastability,
and in section VI, we present numerical simulations that
illustrate our analysis. In section VII, we conclude the paper.

II. BRIEF REVIEW OF THE LITERATURE

Our underlying application is the diffusion of viruses in
networks, though the resulting model may describe epi-
demiological phenomena in general, as well as diffusion of
information, e-mail spam, spread of gossip, etc. Our model
resembles the susceptible-infected-susceptible (SIS) model
(refer to Bailey [6]) where a node must be in one of two
possible states: infected or not infected, but susceptible to
infections. Beyond SIS, there are external infections, and we
allow for different types of infections (details in section IV.)
Another standard model is the SIR model (see [8]) whose
main difference from SIS is that a node either heals from
an infection and becomes immune and non-susceptible or
it dies. A reference discussing the above applications and
diffusion models is, for example, [7]. Reference [4] studies
the influence of network topology on the spread of a single
class of virus. It proposes the N-intertwined mean field
model to tie the dynamics of the probabilities of infection
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of each node to topology features. It shows an epidemic
threshold τc = 1/λmax(A) where λmax(A) represents the
maximum eigenvalue associated to the adjacency matrix A
of the network. When γ

µ
> τc the virus is perpetuated in the

network, whereas for γ

µ
< τc it exponentially dies out, where

γ and µ are the rate of contamination (per link in [4]) and
healing, respectively. Our own studies, in the special case of
no external arrivals extend and modify the result for multiple
virus infection. Letting γi and µi be the contamination and
healing rates, respectively, for virus class i, we show that if
τi = γi

µi
< 1 then virus type i will die out and if τi = γi

µi
> 1

then it survives only if τi≥ τ j for all j 6= i. A main difference
between ours and these previous approaches is that we
assume multiple classes of virus spreading homogeneously
across the network (an infected node contaminates any other
healthy one chosen uniformly at random.) Our work is
related to reference [1] that also considers multiclass flow of
packets over a complete network with finite capacity sites.
The state Markov vector process

(
YN(t)

)
(fraction of pack-

ets for the different classes in the network) does not model
a diffusion process but rather walks of finite size packets.
Reference [1] proves that in the limit (as the number of nodes
N goes to infinity)

(
YN(t)

)
converges to the solution of a

deterministic differential vector equation that admits, under
appropriate conditions on the size and statistical dynamics
of the packets, two stable equilibrium points and a saddle
point. This reference calls this configuration as metastable
in the sense that the system stays a long period of time
in one of the stable equilibrium states and then, due to
(rare) perturbations on

(
YN(t)

)
, the system drifts via the

saddle point towards the stronger equilibrium. Our concept
of metastability differs from [1] (or [4]). Metastability in this
paper stands for sharp changes on the equilibrium state due to
perturbations on the statistical parameters rather than on the
process

(
YN(t)

)
itself. Reference [3] considers the problem

of multiclass diffusion in a sparse connected network of
densely connected supernodes. Reference [13] presents an
overview over contact networks epidemiology.

III. NOTATION

We summarize in this section the relevant notation used
throughout this paper. For the most part, we adopt the
notation in [1]. Reference [11] provides background on
Markov and diffusion processes.
• 1m ∈ Rm: vector with all entries equal to one. We will

omit the subscript m whenever clear from the context.
• N = {0,1,2, . . .}: set of natural numbers.
• Z = {. . . ,−2,−1,0,1,2, . . .}: set of integers.
• Rn

++: positive orthant.
•
◦
A⊂ Rn: interior of set A.
• ei: canonical vector with all entries equal to zero but the

i-th entry.
• 1{A}: the characteristic function for set A. 1{A}(x) =

1{x∈A} = 1 if x ∈ A and 0 otherwise.
• T ∼ Exp(υ): T is a random variable exponentially

distributed with parameter υ .

• i-infected node: node contaminated with virus type i.
•
(
Y N

i (t)
)
: the Markov jump process accounting for the

number of i-infected nodes in a complete network with
N nodes. Also,

(
Y N

i (t)
)

a≤t≤b represents the restriction of(
Y N

i (t)
)

to the interval [a,b].
• Y N

i (t): number of i-infected nodes in a complete network
with N nodes at time t.
• YN(t) =

[
Y N

1 (t) Y N
2 (t) . . .Y N

K (t)
]> ∈ RK : vector stacking

the number of infected nodes for the different classes.(
YN(t)

)
represents its associated stochastic process.

• χ =
{

(n1, . . . ,nK) ∈ NK : ∑
K
j=1 n j ≤ N

}
: phase or state

space of
(
YN(t)

)
. The state (n1,n2, . . . ,nK) represents the

number of nodes n1 up to nK infected by each virus from
class 1 to class K.
•
(

Y N
i (t)

)
: the Markov jump process associated to the

fraction of i-infected nodes in a complete network with N
nodes at time t. It is defined as Y N

i (t) = Y N
i (t)
N .

• ∆ =
{

y ∈ RK : y>1≤ 1, y≥ 0
}

: simplex defining the
phase space of

(
YN(t)

)
. Each point y ∈ ∆ represents the

empirical distribution of the fraction of infected nodes over
the different classes of virus.
• QN : rate transition matrix associated to the Markov

process
(
YN(t)

)
. It is defined as:

QN(u,v) = lim
t→0

P
(
YN(t) = v|YN(0) = u

)
t

for u, v ∈ χ and u 6= v. And

QN(u,u) =− ∑
v∈χ,v6=u

QN(u,v).

• (Ω,F ,P): probability space underlying the arrival, con-
tamination and healing processes: Ω is the sample space, F
the σ -algebra, and P is the probability measure.

IV. STOCHASTIC MODEL

A stream of arrivals of K different classes of viruses
launches an epidemic over a closely knitted population of
N individuals. For the sake of simplicity, we define the
individuals as nodes (or sites) in a complete network. Each
infected node can transmit the virus to any of the non-
infected remaining N−1 ones. We assume that a node can
either be healthy or infected by only a single type of virus.
Although simplistic, the model is rich enough to illustrate
the applicability of our method and some of the relevant
phenomena that arise. We summarize the relevant processes
and parameters.
• Arrival in the network: The process that counts the

number of type i virions1 entering a node is a Poisson
point process with rate λi. This is equivalent to assuming
that virus type i arrives at the network with rate λiN and
lands uniformly randomly at any node. If the node is already
infected, the new arrival has no effect.
• Healing: An i-infected node takes time T ∼ Exp(µi) to

heal.

1Virus particle.
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• Contamination: Once a node is i-infected, it takes time
T ∼ Exp(γi) to contaminate one (randomly chosen) of the
remaining nodes in the network. There is no effect if the
chosen node is already infected.
• Single infection: If a node is infected, it cannot be re-

infected by any other virus, before it heals.
We start by characterizing the process

(
Y N

i (t)
)

that rep-
resents the number of i-infected nodes in a network with
N nodes over time t ≥ 0, for i ≥ 1. We define (Y N

0 (t)) as
the process accounting for the number of healthy nodes, i.e.,
Y N

0 (t) = N−∑
K
i=1 Y N

i (t) for all t ≥ 0. Due to the memoryless
nature of the stochastic processes involved (arrivals, contam-
ination, and healing,)

(
Y N

i (t)
)

is a Markov process.

A. Dynamics of Stochastic Systems
For a deterministic dynamical system we recall:
• Phase space: Set of all reachable states S .
• Evolution law: Family of maps φt : S → S , where

φt(s0) represents the state of the system after time t ≥ 0
provided it started at s0 ∈S . In general (φt(s0))t≥0 is the
solution of a differential equation over S .

For stochastic systems, the evolution law Φt : P(S )→
P(S ) is stochastic, where P(S ) is the set of probability
measures over (a σ -algebra defined on) S . Now, Φt(µ0) rep-
resents the probability distribution of the state of the system
after time t provided the initial distribution is µ0 ∈P(S ). In
general, (Φt(µ0))t≥0 is the solution of a differential equation
over P(S ).

In our problem, the system is stochastic and the (finite)
phase space is S = χ . Its state is given by the stochastic pro-
cess

(
YN(t)

)
. Characterizing its dynamics means specifying

the differential equation governing its probability distribution
over time. For a general Markov process (Y(t)) on a finite
phase space χ = {x1, . . . ,xM}, it can be shown that the
stochastic evolution law is given by Φt(p0) = p>0 eQt , where
the matrix Q = (qi j) ∈ RK×K is the rate transition matrix
defined in section III. Q summarizes the dynamics of the
Markov process of interest. For details, refer to chapter 3
of [11]. Next, we compute the rate transition matrix Q
and derive the integral equation satisfied by

(
YN(t)

)
. This

integral equation is then applied to prove the mean field
property.

B. QN-Matrix Characterization
We now characterize the stochastic evolution law of the

Markov process
(
YN(t)

)
by specifying its rate transition

matrix Q. Since the arrivals, transmissions, and healing
induce independent Poisson simple processes, jumps greater
than one happen with probability zero (refer to [10].) In
words, two or more events cannot happen at the same time,
where by event we mean either a node healing or becoming
infected. When Y N

i (t) = ui, that is, there are ui i-infected
nodes present in the network, the first healing time T h is the
minimum of ui independent exponentially distributed random
variables with parameter µi

T h = min{T1,T2, . . .Tui} ∼ Exp(µi + µi + . . .+ µi︸ ︷︷ ︸
ui times

).

Therefore, QN(YN(t),YN(t) − ei) = µiYN
i (t)1{YN(t)−ei∈χ}.

Each infected node transmits a virus to a healthy one with
probability p(t) = Y N

0 (t)/(N − 1). Remark that a virion is
transmitted to a random neighbor after a time T ∼ Exp(γi),
but if a neighbor is already infected (which happens with
probability q(t) = 1− p(t),) then the state remains the same.
Therefore, with rate γi p(t) the population of i-infected nodes
will be incremented by one due to the presence of 1 infected
node. Since we have at time t, Y N

i (t) i-infected nodes, the
final rate due to transmission is given by γiY N

i (t)p(t). The
arrival rate is justified in a similar way to be λiN p̃(t) =
λi(N−1>YN(t)), where p̃(t) is the probability that a virion
entering the network lands at a healthy node. In summary,
for YN(t) ∈ χ , we have

QN(YN(t),YN(t)− ei) = µiY N
i (t)1{YN(t)−ei∈χ}

QN(YN(t),YN(t)+ ei) = γiY N
i (t)Y N

0 (t)
N−1 +

+λiY N
0 (t)1{YN(t)+ei∈χ}

. (1)

Now, we show that the indicator functions in the transition
rates of equation (1) are redundant, that is, if YN(0,ω) ∈ χ

for all ω ∈ Ω, then YN(t,ω) ∈ χ for all t > 0 and ω ∈ Ω,
regardless of the presence of these constraints. In this case,
QN can be simplified to

QN
(
YN(t),YN(t)− ei

)
= µiY N

i (t)

QN
(
YN(t),YN(t)+ ei

)
= γiY N

i (t)N−1>YN(t)
N−1 +

+λi(N−1>YN(t))
QN
(
YN(t),YN(t)+v

)
= 0, if v 6= 0,v 6=±ei

. (2)

Indeed, let Y N
i (t) = 0. Equation (2) yields{

QN
(
YN(t),YN(t)− ei

)
= QN

i (0,−1) = 0

QN
(
YN(t),YN(t)+ ei

)
= λi

(
N−∑ j Y N

j (t)
)

,

where QN
i is the rate transition matrix associated to

(
Y N

i (t)
)
.

Note that when Y N
i (t) = 0,

(
Y N

i (t)
)

cannot decrease from 0 to
−1 as conveyed in equation (2). In this case and if Y N

0 (t) > 0,
the process

(
Y N

i (t)
)

can only increase due to external arrivals
since there are no i-infected nodes in the network to spread
the virus. Also, if Y N

i (t) = N−∑ j 6=i Y N
j (t) then, there is no

more room for infections, and equation (2) yields{
QN
(
YN(t),YN(t)+ ei

)
= 0

QN
(
YN(t),YN(t)− ei

)
= µiY N

i (t) .

Otherwise, 1{YN(t)−ei∈χ} = 1 and 1{YN(t)+ei∈χ} = 1 and we
conclude that in any of the cases, equation (1) boils down
to (2).

C. Mean Field

We can now invoke Dynkin’s formula (refer to section
III.10 of Rogers and Williams [11]) and the characterization
of QN developed in the previous section to deduce the
stochastic integral equation underlying the infection dynam-
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ics. Since
(
Y N

i (t)
)

is a Markov process,

MN
i (t) = Y N

i (t)−Y N
i (0)

−
∫ t

0
∑

p∈χ−{YN(s)}
Q
(
YN(s),p

)(
pi−Y N

i (s)
)

ds

= Y N
i (t)−Y N

i (0)

−
∫ t

0
Q
(
YN(s),YN(s)+ ei

)
ds

+
∫ t

0
Q
(
YN(s),YN(s)− ei

)
ds (3)

defines a martingale with respect to the natural filtration
induced by the Poisson point processes associated to the ar-
rivals, contamination, and healing processes. From equations
(3) and (2), we have

Y N
i (t) = MN

i (t)+Y N
i (0)+

∫ t

0
λi

(
N−1>YN(s)

)
ds

+
∫ t

0
γiY N

i (s)
(

N−1>YN(s)
)

/(N−1)ds

−
∫ t

0
µiY N

i (s)ds. (4)

Equation (4) defines a pathwise integral equation. That
is, for a fixed ω ∈ Ω,

(
Y N

i (t,ω)
)

t≥0 satisfies the

integral equation (4). Remark that Y N
i (t) = Y N

i (t)
N is

the fraction of i-infected nodes at time instant t
with YN(t) =

[
Y N

1 (t) Y N
2 (t) . . . Y N

K(t)
]>
∈ ∆, where ∆ ={

y ∈ RK : y≥ 0,y>1≤ 1
}

. As N goes to infinity, the ran-
domness underlying

(
YN(t)

)
dies out, and it converges

to the solution of a differential equation as stated in the
following theorem.

Theorem 1. If YN(0) = z ∈ ∆, then the sequence YN(t)
converges in the Skorokhod topology to the solution (y(t))
of the differential equation

d
dt

yi(t) = (λi + γiyi(t))
(

1−1>y(t)
)
−µiyi(t)︸ ︷︷ ︸

Fi(y(t))

(5)

for i = 1,2, . . . ,K.

Proof: For reasons similar to reference [2],
(

MN
i (t)

)
is

a square integrable martingale and
(

MN
i (t)

)
converges a.s. to

0 uniformly on compact sets. Similarly to Hunt and Kurtz [5],
it is easy to check that

(
Y N

i (t)
)

is asymptotically Lipschitz,
and therefore it defines a relatively compact sequence (see
also Ethier and Kurtz [9],) that is, there exists a subsequence(

Y Np
i (t)

)
converging weakly to a limiting process

(
Ỹi(t)

)
.

Provided that the martingale converges to zero and resorting
to equation (4), the limiting process

(
Ỹi(t)

)
satisfies

Ỹi(t) = Ỹi(0)+
∫ t

0
λi

(
1−1>ỸN(s)

)
ds

+
∫ t

0
γiỸ N

i (s)
(

1−1>ỸN(s)
)

ds

−
∫ t

0
µiỸ N

i (s)ds

in a pathwise sense. Also, F (as defined in equation (5))
is globally Lipschitz over the simplex ∆, which implies that
the initial value solution is unique (refer to V.I. Arnold [12],)
and therefore

(
YN(t)

)
converges weakly (endowing the tra-

jectories space with the Skorokhod topology) to the solution
(y(t)), since the weak limit of any convergent subsequence(

Y Np
i (t)

)
is (y(t)).

V. TWO DIMENSIONAL QUALITATIVE ANALYSIS

In this section, we analyze the qualitative behavior of
the dynamical system (y(t)) in theorem 1. The following
discussion is similar (but not the same) to section 4.11 of [14]
about the principle of competitive exclusion. We restrict
ourselves to two classes of virus (for the sake of simplicity,)
assuming λi = 0, µi > 0 and γi > 0 for i = 1,2, that is,
there are no arrivals and the viral epidemic is driven purely
through contamination from an initial infected population.
The analysis as well as the conclusions presented in this
section can be naturally extended to the general case of
K classes of viruses. Our aim is to back up analytically
the observed metastable behavior presented (via numerical
simulations) in section VI. We start by identifying the
singular (or equilibrium) points and specifying their stability
nature – whether it is stable, saddle, center, etc. Clearly, the
resulting singular points depend on the parameters µi and
γi. An equilibrium point y ∈ ∆ is such that F(y) = 0, where
F(y) = [F1(y) F2(y)]> is defined in equation (5). Defining
y0(t) = 1−y1(t)−y2(t) as the fraction of healthy nodes, the
Jacobian of the map F is given by

DF(y) =

 γ1

(
y0− y1− µ1

γ1

)
−γ1y1

−γ2y2 γ2

(
y0− y2− µ2

γ2

)  . (6)

The equilibrium states are sensitive to the ratios τi = γi
µi

. We
now identify and classify the equilibrium points for different
values of the effective transmission rates τ1 and τ2.
• τ2 ≤ τ1 < 1: The equation F(y) = 0 leads to

yiy0−
1
τi

yi = 0⇔ yi

(
y0−

1
τi

)
= 0.

If τi < 1 (rate of healing greater than the rate of contami-
nation for virus i) then, yi = 0 since 0 ≤ y0 ≤ 1. Therefore,
if τ2 ≤ τ1 < 1, then the only equilibrium point is the origin
y = 0. From the Jacobian (6) we conclude that y = 0 is a
stable equilibrium point since all the eigenvalues of DF(0)
are strictly negative real numbers. In words, the solution
(y(t)) converges to y = 0 as t goes to infinity for an initial
condition close enough to the origin. Moreover, the vector
field F(y) < 0 for all y ∈

◦
∆, where we defined x > 0 if

x ∈ Rn
++. This indicates that solutions (y(t)) are indeed

attracted towards y = 0 for any initial condition y(0) ∈
◦
∆,

that is, if τ1 < 1 and τ2 < 1 then, the viruses will eventually
die out.
• τ2 < 1 < τ1: It follows from the previous analysis that,

if y ∈ ∆ is an equilibrium point, then y2 = 0. Also

y1

(
y0−

1
τ1

)
= 0 ⇔ y1 = 0 or y1 = 1− 1

τ1
.
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Therefore, we have two possible equilibrium states y(0) = 0

and y(1) =
[
1− 1

τ1
0
]>

with y(0) = 0 being a saddle point

since
(

1− 1
τ1

)
> 0 and

(
1− 1

τ2

)
< 0. That is, the solution

expands in the direction e2 about 0 and contracts in the
direction e1 by future iterates. Moreover, since the Jacobian
at y(1) is a triangular matrix, its eigenvalues are given by the
diagonal elements γ1

(
1
τ1
−1
)

and γ2

(
1
τ1
− 1

τ2

)
. Hence, the

point y(1) is a stable point and the solutions will converge to
the equilibrium y(1). Therefore, virus type 2 eventually dies
and virus 1 survives.
• 1 < τ2 < τ1: Through similar arguments, we can con-

clude that in this case y1 = 0 or y1 = 1− 1
τ1

, y2 = 0 or
y2 = 1− 1

τ2
. The point y = [1− 1

τ1
1− 1

τ2
] > 0 cannot be

an equilibrium point. Indeed, in this case we would have
y0 = 1

τ1
= 1

τ2
which cannot hold true. The equilibrium points

y(0) = 0, y(1) =
[
1− 1

τ1
0
]>

and y(2) =
[
0 1− 1

τ2

]>
are unsta-

ble, stable, and saddle, respectively. We analyze if the basin
of attraction associated to the stable point y(1) comprises
the whole set

◦
∆, that is, limt→∞ y(t) = y(1) independently of

the initial condition y(0) ∈
◦
∆. In words, at most one type of

virus survives (the one with greatest effective spreading rate)
and the network is eventually stripped from the remaining
species. We draw the vector field F for different regions
of ∆. We can summarize in table I the phase portrait of
the vector field F. {Si}i=1,...,5 as defined in table I form

Region F
S1 =

{
y ∈ ∆ : 1− y1− y2 > 1

τ2

}
F > 0

S2 =
{

y ∈ ∆ : 1
τ2

> 1− y1− y2 > 1
τ1

}
F1 > 0, F2 < 0

S3 =
{

y ∈ ∆ : 1
τ1

> 1− y1− y2

}
F < 0

S4 =
{

y ∈ ∆ : 1− y1− y2 = 1
τ1

}
F1=0, F2 < 0

S5 =
{

y ∈ ∆ : 1− y1− y2 = 1
τ2

}
F1 > 0, F2=0

TABLE I
SIGN OF VECTOR FIELD F OVER {Si}.

a partition for ∆. Figure 1 depicts in the plane the vector
field F. It also illustrates the partition {Si} of ∆. Set S1 lies
in the region between the dashed line and the axis. Set S2
comprises the region between the dashed and dotted straight
lines. Set S3 is above the dotted straight line. Sets S4 and S5
represent the dotted and dashed straight lines, respectively.
It suggests that any solution starting at S1 ∪ S3 ∪ S4 ∪ S5 is
attracted towards S2 (region between the dashed and dotted
lines) and once it lies within the closure of S2 it will remain
there for all t ≥ 0. Moreover, our dynamical system drifts
within this region towards y(1) =

[
1− 1

τ1
0
]
. The following

simulation backs up our qualitative analysis. In figure 2 we
present a numerical solution for different initial conditions.
We included the straight lines S4 and S5 in figure 2 to
stress that, in fact, all integral curves accumulate in S2 and
are further attracted towards y(1) = [0 0.75]. Also, Figure 2

Fig. 1. Sketch of the vector field F.
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Fig. 2. Phase portrait of F (solid line). Parameters were set to γ1 = 4,
γ2 = 3 and µ1 = µ2 = 1.

suggests that the basin of attraction with respect to y(1) is
given by the whole set ∆. In light of this and assuming
τi � 1, we observe an underlying non-trivial metastable
behavior: a slight dominance of virus type 1 on the effective
spreading rate guarantees that the system drifts towards a
highly unbalanced steady-state with y1 = 1− 1

τ1
≈ 1 and y2 =

0, independently of the initial conditions. Namely, it means
that this system is quite sensitive to small perturbations on
the space of parameters. In the next section we explore
this behavior through numerical simulations. The strict case
τi = 1 for some i bears no interest since it is lost under small
perturbations.

VI. SIMULATION RESULTS

In this section we present numerical results that explicitly
reveal the metastable behavior underlying the dynamical
system (y(t)). The system is much less sensitive regarding
perturbations on the exogenous arrival rates λi as F depends
linearly on this parameter. We assume that the epidemic
spreads over the network due to intra-network contamination
and exogenous infection. As we have seen, the equilibrium
points depend on the statistical parameters through ratios and
not exactly on the particular values of each parameter

F(y) = 0 ⇔ λi

µi

(
1−1>y

)
+

γi

µi
y1

(
1−1>y

)
− y1 = 0, ∀i.

Therefore, we fix the healing and arrival rates to λi = 0.1,
µi = 1 for all i = 1,2, . . . ,K, and vary the transmission γi rate.
In what follows, we consider 3 classes of viruses and draw
the solution (y(t)) of our mean field differential equation for
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different values of γi. Figure 3 shows a sharp difference in
the steady-state for the different classes. A small arrival λ3
rate is enough to guarantee that virus 3 enters the network
(since y3(0) = 0) and infects a substantial fraction of the
network. Figures 3 and 4 depict the evolution over time of
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Fig. 3. Evolution of (y1(t)), (y2(t)) and (y3(t)) for t ≥ 0 with y1(0) = 0.8,
y2(0) = 0.1 and y3(0) = 0. We set γ1 = 4, γ2 = 5, γ3 = 6 and λi = 0.1 for
all i = 1,2,3.

the fractions (y1(t)) (dash-dotted line,) (y2(t)) (dashed line),
and (y3(t)) (solid line). For figure 3, we set γ1 = 4, γ2 = 5
and γ3 = 6 whereas for figure 4 we increase the parameters to
γ1 = 240, γ2 = 250 and γ3 = 260. All figures present critical
behavior and they illustrate that as τi increases and τi� 1 this
metastable behavior becomes even more significant. To sum
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Fig. 4. Evolution of (y1(t)), (y2(t)) and (y3(t)) for t ≥ 0 with y1(0) = 0.8,
y2(0) = 0.1 and y3(0) = 0. We set γ1 = 240, γ2 = 250, γ3 = 260 and λi = 0.1
for all i = 1,2,3.

up, we observe that, for larger ratios τi = γi
µi

(heavy-traffic),
the system is more sensitive to small perturbations on the
effective contamination rate τi. A small dominance of one
of these parameters τi may be crucial for the contamination
of a large fraction of the network with the dominant virus.
Moreover, the system admits only one stable equilibrium
point independent on initial conditions.

VII. CONCLUSION

We presented a microscopic model to study the dynamics
of a multiple virus infection on a complete large network.
The model tracks the evolution of the global state process(

Y N
i (t)

)
: the fraction of i-infected nodes in the complete

large network. We explored the mean field property of
the system, namely, we proved that the stochastic process

(
YN(t)

)
converges to the solution of a system of determin-

istic differential equations as the number of nodes N goes
to infinity. In words, for a large network, the randomness on(

YN(t)
)

becomes arbitrarily negligible as N grows large.
In the heavy-traffic environment, the asymptotic behavior of
the system (y(t)) is quite sensitive to perturbations in the
parameter space, more precisely on the effective spreading
rate τi =

γi
µi

that underlies the speed of propagation of virus i.
This means that a virus can suddenly occupy a large fraction
of the network once it has a small advantage on the ratio τi
over the other classes of viruses, even if it lags behind in
population or it is close to extinction. The next natural step
is to study virus propagation over networks with nontrivial
topology, for instance, regular networks.
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