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Direction of Arrival Estimation Based on Phase
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Abstract—A new high-resolution direction of arrival (DOA) es-
timation technique using a neural fuzzy network based on phase
difference (PD) is proposed in this paper. The conventional DOA
estimation method such as MUSIC and MLE, are computation-
ally intensive and difficult to implement in real time. To attach
these problems, neural networks have become popular for DOA
estimation in recent years. However, the normal neural networks
such as multilayer perceptron (MLP) and radial basis function net-
work (RBFN) usually produce the extra problems of low conver-
gence speed and/or large network size (i.e., the number of net-
work parameters is large). Also, the way to decide the network
structure is heuristic. To overcome these defects and take use of
neural learning ability, a powerful self-constructing neural fuzzy
inference network (SONFIN) is used to develop a new DOA esti-
mation algorithm in this paper. By feeding the PD’s of received
radar-array signals, the trained SONFIN can give high-resolution
DOA estimation. The proposed scheme is thus called PD-SONFIN.
This new algorithm avoids the need of empirically determining the
network size and parameters in normal neural networks due to
the powerful on-line structure and parameter learning ability of
SONFIN. The PD-SONFIN can always find itself an economical
network size in fast learning process. Our simulation results show
that the performance of the new algorithm is superior to the RBFN
in terms of convergence accuracy, estimation accuracy, sensitivity
to noise, and network size.

Index Terms—Adaptive array, direction of arrival, fuzzy rule,
membership function, multilayer perceptron network, neural
fuzzy network, phase difference, radial basis function network,
supervised learning.

I. INTRODUCTION

T HE problem of estimation is encountered in many areas
such as radar, sonar, communication, and electronic

surveillance. High-resolution direction-of-arrival (DOA) es-
timation at antenna arrays has been an extremely significant
electronics support (ES) activity in both electronic warfare
(EW) system and mobile communication systems for a long
time. In EW application, since the DOA is obtained from the
location of the input signal, this is the only parameter a hostile
emitter cannot change easily [1]. Thus, the DOA becomes
the most reliable and powerful sorting parameter. Nowadays,
advanced radar intentionally irregularly varies radio frequency
(RF), pulse repetition interval (PRI), and pulse width (PW),
which can be controlled by a computer such that the radar
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signal is not easily intercepted and interfered. It is obvious that
in highly dense signal environments, using electronic parame-
ters such as RF, PRI, and PW to de-interleave is not a proper
method. In mobile communication, once the direction of the
users is detected, this information can be used in conjunction
with any adaptive array technique so that the radiation pattern
of the array is adapted to allocate the main beam toward the
mobiles of interest while other sources of jamming in the same
frequency slot are nulled and the communication system is able
to track these mobiles in real time. Therefore, the accuracy
of DOA manifests very important electronic parameter in
interception of signal classification.

To handle the DOA estimation problem, some methods
are proposed in [2], [3] such as autoregressive/moving av-
erage (AR/MA) and maximum entropy (ME); however, these
methods have certain underlying limitations (either inability to
resolve closely located sources or bias and sensitivity in param-
eter estimates) in light of using an inadequate model (e.g., AR
rather than special ARMA model) [4]. High-resolution methods
such as Pisarenko’s and multiple signal classification (MUSIC)
[5], [6] provide a reasonable approximation solution, but they
are highly sensitive to the structure of the covariance matrix
and require excessively large computation effort based on
eigen-decomposition of data covariance matrix and as a result
they are difficult to implement in real time. The ESPRIT [7], [8]
method offers advantages over MUSIC algorithm by avoiding
the orthogonality search and reducing the effect of sensor
variability on the performance of the algorithm. However, this
is achieved at the expense of increased number of sensors
in the arrays [9]. This requirement generates production and
maintenance costs that are increasingly prohibitive for many
practical military applications. These abovementioned methods
need to model signal and noise, so they are very sensitive to
imperfections.

Neural networks have recently drawn a great deal of atten-
tion in many practical signal processing problems [9], [10] for
the sake of their massive parallelism and global connectivity.
The problem of DOA estimation is viewed as a potential appli-
cation of neural networks, where such a problem is mapped onto
the quadratic energy function for the Hopfield network to obtain
the optimum estimate [9]. The DOA estimation problem can be
also considered as a mapping from the space of DOAto the
space of comparison system outputs (true phase differences)
as in . Then the DOA can be obtained via the inverse
of this mapping directly, i.e., . Park and
Sanderberg proved the radial basis function network (RBFN)
with one hidden layer was capable of universal approximation
[11]. Thus, a RBFN was proposed to approximate the unknown
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Fig. 1. Structure of the RBFN.

mapping function such that whenever the available phase dif-
ferences were fed into the network, the estimated DOA could be
obtained from the output of the network [12]. In [13], a RBFN
was used to handle the computational problem of the DOA es-
timation and the spatial correlation matrix was used as network
input. In the RBFN, the input data undergo a nonlinear transfor-
mation through the basis functions in the network hidden layer.
Then, the responses of basis functions are linearly combined to
give the network output. Fig. 1 is a schematic diagram of the
RBFN. Hence, the overall input–output transfer function of the
RBFN has the form

(1)

(2)

where
output activation function;
threshold value;
input vector;

and mean (an -dimensional vector) and variance of
the th Gaussian function;
network adjustable weights connecting network
hidden nodes with network output;
th hidden node which has normalized Gaussian

activation function.
Generally, is an identity function (i.e., the output node is
a linear unit) and . Methods of training the RBFN are
beyond the scope of this paper; however, a detailed description
of RBFN training methods can be found in [14].

It has been shown that the RBFN with node-growing capa-
bility requires many hidden units (neurons) to achieve the con-
vergence accuracy within an acceptable error margin for a mas-
sive number of input data in a high-dimensional space. Although
the RBFN can overcome the large computation and high-cost
problems in the conventional DOA estimation methods, it has a

fundamental limitation; a large number of parameters (network
weights) need to be tuned in order to reach good performance
of estimation because all of input variables are fully connected
to its hidden nodes.

To cope with the drawbacks encountered in the RBFNs,
while still keeping their advantages, a new DOA estimation
algorithm with a neural fuzzy network is proposed in this
paper. This neural fuzzy network is called SONFIN (self-con-
structing neural fuzzy inference network) that we proposed
previously in [15]. The SONFIN is a feedforward multilayer
network that integrates the basic elements and functions of a
traditional fuzzy system into a connectionist structure. In this
connectionist structure, the input nodes represent the corrupted
signal process and output nodes represent the desired signal
process and, in the hidden layers, there are nodes functioning
as membership functions (activation functions) and fuzzy logic
rules (connection types). The proposed algorithm can find
the proper fuzzy logic rules dynamically on the fly. Also the
SONFIN can always find itself an economical network size
in high learning speed and, therefore, can avoid the need of
empirically determining the number of hidden layers and nodes
in ordinary neural networks. Since the structure of the SONFIN
is constructed from fuzzy IF-THEN rules, expert knowledge
can be put into the network asa priori knowledge, which can
usually increase its learning speed and estimation accuracy
[16], [17]. These properties make SONFIN an attractive
candidate for constructing an inverse mapping.

The SONFIN is applied to approximate the functional rela-
tionship between phase differences (PDs) and DOA in this paper
and, thus, the proposed scheme is called the PD-SONFIN algo-
rithm. Studies have shown that the received radar signal ampli-
tude is not always a strong indicator of DOA; on the other hand,
there is a strong relationship between relative sensor phases
(phase differences) and DOA [10]. The absolute phase of the
received signal at each sensor also contains nonessential infor-
mation. However, these phase differences contain artificial dis-
continuities caused by phase transitions in received phase data
which are measured from radians to radians. Disconti-
nuities make it difficult for the neural network to learn the map-
ping from a small discrete set of training points. To deal with this
difficulty, we take the sine and cosine transform of the phase
differences as input vectors which are fed into the SONFIN
to perform training and estimating tasks. Continuous data can
be obtained from this preprocess. Simulation results show that
the proposed scheme achieves higher accuracy by using much
fewer network parameters than the RBFN on the DOA estima-
tion problem.

The rest of this paper is organized as follows. Section II states
the problem formulation, where the preprocessing of input data
is also described. In Section III, the basic structure and func-
tion of the SONFIN is briefly introduced and then the PD-based
SONFIN is proposed. Section IV describes the performance of
DOA estimation either with or without additive phase errors for
both SONFIN and RBFN. Conclusions are summarized in Sec-
tion V.

II. PROBLEM FORMULATION

This section briefly describes the DOA estimation problem
and provides a scheme to handle the artificial discontin-
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Fig. 2. Block diagram of the four-sensor comparison system.

uous problem caused by the measured phase transition.
Many approaches have been proposed to measure input data
corresponding to DOA information, where only amplitude
comparison and phase comparison are the two most common
approaches in EW applications. Amplitude-comparison ap-
proach is simple because the amplitude of an incident signal
is relatively easy to measure over a wide frequency band. In
contrast, phase-comparison approach is more accurate than
amplitude-comparison approach. To enhance the estimation ac-
curacy, our simulation results were achieved using the available
phase differences only as input patterns of the DOA estimator
in this paper. Naval Research Laboratory’s report [18] indicates
that the cascaded end-phase configurations of four-element
sensors is optimum from the consideration of efficiency of
hardware usage and probability of ambiguity. Hence, we select
a four-element cascaded end-phase left configuration as the
phase comparison system in our simulations. Goodwin in [18]
describes that a four-element cascaded end-phase left interfer-
ometer can be characterized by four antenna/receiver channels,
so three available channel-pair phase differences are necessary
and sufficient to extract all the DOA-dependent electrical
phase information. Fig. 2 shows the schematic diagram of this
system; the channel at the far left side is the phase reference.
We assume that a plane wave is coming in at incident angle

from the boresight. Then the phase differences between a
signal in the reference sensor and signals in the other sensors
with additive phase errors can be well expressed by

(3)

(4)

where
• and are the phase difference and phase error

(noise) between the first sensor and theth sensor, respec-
tively;

• is the normalized physical spacing between the first
sensor and theth sensor, where the normalization is made
with respect to the wavelength at the operating frequency;

• The adjacent sensor spacings (normalized to half-wave-
lengths at the operating frequency) are between sen-
sors 1 and 2, between sensors 2 and 3, andbetween
sensors 3 and 4;

• is direction of arrival.
According to the (3), once the phase differences are measured,
the DOA can be determined through the complex hardware
circuits with DOA processing algorithm. In conventional
DOA estimation methods, the sensor spacing must be chosen
optimally to achieve both low probability of ambiguity and
high accurate estimates of DOA. As the phased-array sensors
(antenna) become larger and more highly integrated into
physical structures, this uniformity requirement generates pro-
duction and maintenance costs that are increasingly prohibitive
for many military and commercial applications. Because the
conventional methods are cost consuming, a new approach is
needed.

From a different point of view, the DOA estimation problem
can be considered as a mapping from the space of DOA
to the space of phase difference as . Then the
DOA can be obtained via the inverse of this mapping directly,
i.e., . An exactly closed-form formula for

cannot be obtained due to the high complexity of this map-
ping. Note that neural networks don’t require any input cal-
ibration to correct the phase offset or sensor (antenna) mis-
match. Thus, a RBFN was used to approximate the unknown
mapping function in [10], [12], and [13]. Once the available
phase differences are fed into the network, the DOA estimate
can be obtained from the network output directly. This is be-
cause the relationship between the input signal incident angle
and the measured phase differences is generally a continuous
function with small changes in angle yielding small changes in
received measurements. The RBFN can solve the high costs (in-
cluding production and maintenance costs) and computational
complexity problems described above. However, in the RBFN
used for DOA estimation, a large number of network parame-
ters must be tuned to achieve high-estimation accuracy due to
its structure. To solve this RBFNs defect and keep its advan-
tages, we use a neural fuzzy network (SONFIN) to approxi-
mate the inverse mapping functionfor DOA estimation in this
paper. Hence, the input/output relationship of the DOA estima-
tion problem can be denoted by

(5)

where
estimated DOA;
estimate of ;
input data [i.e., phase differences s in (3)].

Considering the multi-input single-output case for clarity, we
assume that the number of the measured phase differences is

[i.e., input data ],
and the number of the estimation output is one. In general,
the neural networks operate in two phases: training phase and
testing phase. In the training phase, the training data pairs

are generated from (3) with , where is
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the function to be approximated. The objective of learning is
to minimize the error function

(6)

where is the network output (desired output) and is
the actual output (estimated DOA). The total number of training
pairs is 181 in our simulations. In the testing phase, another
set of data (301 patterns in our simulations) are derived from
different signal conditions (either with or without additive phase
errors) according to (3) and are used for testing. These testing
data are fed into the trained network. Then the DOA can be
estimated via this inverse mapping network directly.

In our simulations, we find that the input phase differences
( ) contain artificial discontinuities due to
the fact that each member of the ensemble of phase comparator
outputs can only be known as modulo. The discontinuous
training patterns make both the SONFIN and RBFN difficult
to perform the learning task successfully. To eliminate the
irrelevant artificial discontinuities, we adopt thein-phaseand
the so-calledquadrature representation of input signals by
using the sine and cosine transform of phase differences as
network inputs. According to this representation, the original
input vector containing phase differences
are transformed into the following enlarged vector:

(7)

where
;

,
;

.
Our simulation results showed that if we used these processed
data as the inputs of neural networks (either RBFN or SONFIN)
directly, we obtained satisfactory convergent accuracy.

III. ESTIMATION OF DOA USING A NEURAL FUZZY NETWORK

In this section, we shall introduce a neural fuzzy network and
then propose a high-resolution DOA estimation scheme based
on this network with the phase differences as input patterns.

A. Self-Constructing Neural Fuzzy Inference Network
(SONFIN)

The neural fuzzy network that we used for DOA estimation
is the so-called SONFIN that we proposed previously in [15].
The SONFIN is a general connectionist model of a fuzzy logic
system, which can find its optimal structure and parameters au-
tomatically. There are no rules initially in the SONFIN. They
are created and adapted as on-line learning proceeds via simul-
taneous structure and parameter learning, so the SONFIN can
be used for normal operation at any time as learning proceeds
without any assignment of fuzzy rules in advance. A novel net-
work construction method for solving the dilemma between the
number of rules and the number of consequent terms is devel-
oped. The number of generated rules and membership functions
is small even for modeling a sophisticated system. The SONFIN
always produces an economical networks size and the learning
speed and modeling ability are superior to ordinary neural net-
works.

Fig. 3. Structure of the SONFIN.

A key feature of the SONFIN structure is that a high-di-
mensional fuzzy system is implemented with small number of
rules and fuzzy terms. This is achieved first by partitioning the
input and output spaces into clusters efficiently through learning
proper fuzzy terms for each input/output variable, and then by
constructing fuzzy rules optimally through finding proper map-
ping between input and output clusters in the SONFIN. In addi-
tion, due to the physical meaning of fuzzy IF-THEN rule, each
input node in the SONFIN is only connected to its related rule
nodes through its term nodes, instead of being connected toall
the rule nodes in Layer 3 of the SONFIN. This results in a small
number of weights to be tuned in the SONFIN. In contrast, each
input node in the RBFN is fully connected to hidden nodes,
whose number is usually large as compared to the number of
rule nodes learned in the SONFIN in order to reach good per-
formance of estimation. This usually leads to a large number of
weights to be tuned in the RBFN.

The structure of the SONFIN is shown in Fig. 3. This six-
layered network realizes a fuzzy model of the following form:

Rule IF is and and is

THEN is

where
fuzzy set of theth linguistic term of input variable ;
center of a symmetric membership function on;
consequent parameter.

It is noted that unlike the traditional Takagi–Sugeno–Kang
(TSK) model where all the input variables are used in the
output linear equation, only the significant ones are used in the
SONFIN; i.e., some s in the above fuzzy rules are zero. We
shall next describe the functions of the nodes in each of the six
layers of the SONFIN.
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The SONFIN consists of nodes, each of which has some fi-
nite fan-in of connections represented by weight values from
other nodes and fan-out of connections to other nodes. Asso-
ciated with the fan-in of a node is an integration function
which serves to combine information, activation, or evidence
from other nodes. This function provides the net input for this
node

where are inputs to this node, and
are the associated link weights. The su-

perscript in the above equation indicates the layer number.
This notation will also be used in the following equations. A
second action of each node is to output an activation value as
a function of its

where denotes the output of theth node in the layer ,
and denotes the activation function. We shall describe the
functions of the nodes in each of the six layers of the SONFIN
as follows.

Layer 1: No computation is done in this layer. Each node in
this layer, which corresponds to one input variable, only trans-
mits input values to the next layer directly. That is

and (8)

From the above equation, the link weight in layer one is
unity.

Layer 2: Each node in this layer corresponds to one lin-
guistic label (small, large, etc.) of one of the input variables in
Layer 1. In other words, the membership value, which speci-
fies the degree to which an input value belongs to a fuzzy set is
calculated in Layer 2. With the choice of Gaussian membership
function, the operation performed in this layer is

and (9)

where and are, respectively, the center (or mean) and
the width (or variance) of the Gaussian membership function of
the th partition for the th input variable . Hence, the link
weight in this layer can be interpreted as .

Layer 3: A node in this layer represents one fuzzy logic rule
and performs precondition matching of a rule. Here, we use the
following AND operation for each Layer-3 node:

and (10)

where
number of Layer-2 nodes participating in the IF part of
the rule;
diag ;

.
The weights of the links in Layer 3 have the value of one.
The output of a Layer-3 node represents the firing strength of
the corresponding fuzzy rule.

Layer 4: The number of nodes in this layer is equal to that in
Layer 3 and the firing strength calculated in Layer 3 is normal-
ized in this layer by

and (11)

where is the number of rule nodes in Layer 3. Like Layer 3,
the link weight in this layer is unity, too.

Layer 5: This layer is called the consequent layer. Two types
of nodes are used in this layer and they are denoted as blank
and shaded circles in Fig. 3, respectively. The node denoted by
a blank circle (blank node) is the essential node representing a
fuzzy set (described by a Gaussian membership function) of the
output variable. Only the center of each Gaussian membership
function is delivered to the next layer for the LMOM (local mean
of maximum) defuzzification operation and the width is used
for output clustering only. Different nodes in Layer 4 may be
connected to a same blank node in Layer 5, meaning that the
same consequent fuzzy set is specified for different rules. The
function of the blank node is

and (12)

where is the number of nodes in Layer 4 and is
the center of a Gaussian membership function. As to the shaded
node, it is generated only when necessary. Each node in Layer
4 has its own corresponding shaded node in Layer 5. One of
the inputs to a shaded node is the output delivered from Layer
4 and the other possible inputs (terms) are the input variables
from Layer 1. The shaded node function is

and (13)

where the summation is over the significant terms connected to
the shaded node only and is the corresponding parameter.
Combining these two types of nodes in Layer 5, we obtain the
whole function performed by this layer as

(14)

Layer 6: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layer 5 and acts as a defuzzifier with

and (15)

where is the number of nodes in Layer 5.
Two types of learning (structure and parameter learning)

are used concurrently for constructing the SONFIN. The
structure learning includes both the precondition and conse-
quent structure identification of a fuzzy IF-THEN rule. Here
the precondition structure identification corresponds to the
input-space partitioning and can be formulated as a combina-
tional optimization problem with the following two objectives:
to minimize the number of rules generated and to minimize
the number of fuzzy sets on the universe of discourse of each
input variable. As to the consequent structure identification,
the main task is to decide when to generate a new membership
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Fig. 4. Flow chart of DOA estimation using the SONFIN.

Fig. 5. Convergence curves of the SONFIN and RBFN.

function for the output variable and which significant terms
(input variables) should be added to the consequent part (a
linear equation) when necessary. For the parameter learning,
based upon supervised learning algorithms, the parameters of
the linear equations in the consequent parts are adjusted by
either least mean squares (LMS) or recursive least squares
(RLS) algorithms, and the parameters in the precondition part
are adjusted by the backpropagation algorithm to minimize a
given cost function. The SONFIN can be used for normal oper-
ation at any time during the learning process without repeated
training on the input/output patterns when on-line operation
is required. There are no rules (i.e., no nodes in the network
except the input/output nodes) in the SONFIN initially. They
are created dynamically as learning proceeds upon receiving
on-line incoming training data by performing the following
learning processes simultaneously: A) input/output space
partition; B) construction of fuzzy rules; C) optimal consequent
structure identification; D) parameter identification. In the
above, processes A, B, and C belong to the structure learning
phase and process D belongs to the parameter learning phase.

In the structure identification of the precondition part of
the SONFIN, the input space is partitioned in a flexible way
according to an aligned clustering-based algorithm. As to the
structure identification of the consequent part, only a singleton
value selected by a clustering method is assigned to each rule
initially. Afterwards, some additional significant terms (input
variables) selected via projected-based correlation measure

Fig. 6. Structure-growing curve indicating the increasing of parameter number
of the SONFIN during its learning process.

Fig. 7. Effect of the number of hidden nodes in the RBFN on rms error.

for each rule will be added to the consequent part (forming a
linear equation of input variables). The combined precondition
and consequent structure identification scheme can set up an
economical and dynamically growing network automatically.
This makes the SONFIN can grow its rule nodes, term nodes,
and link weights upon necessary on the fly and, thus, own
the so-calledself-constructioncapability. The details of the
learning processes for SONFIN are described in [15].
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Fig. 8. (a) Testing results of the trained SONFIN estimator, where the desired output is shown by solid line “–,” and the actual network output by circle“o.” (b),
(c), and (d) Testing results of the trained RBFN estimatorN = 79; 99; 119, where the desired output is shown by solid line “–,” and the actual network output
by circle “o.”

B. PD-SONFIN for DOA Estimation

Fig. 4 shows the flow chart of DOA estimation using SONFIN
based on channel-pair phase differences. The configuration of
the proposed DOA estimation scheme is composed of the fol-
lowing units.

1) Phase comparison unit(interferometer), which is used to
measure the phase differences.

2) Preprocessing unit(functional model), which is used to
eliminate the artificial discontinuities caused by phase
transitions as mentioned Section II.

3) Neural fuzzy network prediction unit(SONFIN), which is
to estimate the DOA from the preprocessed phase differ-
ences.

The operation takes place as follows. First, we assume an
( )-element sensor system. From the phase comparison
unit, we can obtain -dimensional phase difference vectors,

, which are preprocessed to eliminate artifi-
cial discontinuities. After preprocessing, it will generate 2-di-
mensional enlarged vectors, , which
are the real inputs to the DOA estimation network, SONFIN.
Before entering the SONFIN, a normalization process is used
to rescale each enlarged 2-dimensional vector in
to a 2 -dimensional vector in . Due to the property of
SONFIN, all the training and testing vectors need to be normal-
ized to the range of [0, 1]. The normalized vectors are put into
the SONFIN for training. In the training phase, the SONFIN is

trained by the input/output pairs . Then the trained
SONFIN is ready for DOA estimation. Once each input vector
(corresponding to a DOA value) is given, the output node in
Layer 6 of the SONFIN indicates directly a DOA estimate. In the
testing phase, all the testing data are processed through the same
preprocessing and normalization procedures. After feeding the
processed data into the trained SONFIN, we can obtain the es-
timated DOA values from the output node of SONFIN.

IV. SIMULATION RESULTS

This section illustrates the performance of the proposed DOA
estimator either with or without additive phase errors. The sim-
ulations are conducted by emulating the physical antenna (cov-
erage 2 GHz 4 GHz) deployed in our real system. In our
system, a four-element cascaded end-phase left interferometer
is used to generate three phase differences. We take sine and
cosine transformation of three phase differences as network in-
puts. The system performance is verified for input signal with
frequency 2.702 GHz. The optimal sensor spacing for high DOA
estimation accuracy was chosen based on the theoretical anal-
ysis given in [18]. Our previous verification results showed that
the physical antenna deployed was realizable and the DOA es-
timation accuracy reached the highest value when the sensor
spacing was chosen as , , and times
of half wavelengths at reference frequency 4 GHz. This pre-
vious study was performed by using conventional DOA esti-
mation technique through complex hardware with digital signal
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Fig. 9. (a) DOA estimation error comparison between the RBFN (withN =

99) and SONFIN. (b) DOA estimation error comparison between the RBFN
(with N = 119) and SONFIN.

processing program. We thus adopt the above parameters in the
simulations of this paper.

A. Performance of DOA Estimation Without Phase Errors

In the absence of additive phase errors, (3) and (4) can be
written as

(16)

(17)

By empirical information, the DOA estimates at intervals from
45 to 45 are sufficient in the real scenario. Hence, the

training data are generated as follows. We divide the range of
DOA values, 45 to 45, equally into 180 intervals, with each
interval being 0.5. As a result, we have 181 DOA values in
the set . In Fig. 2, the inter-
ferometer receives a single source. Then we calculate the three
phase-difference values, , corresponding to each
of these DOA values from (16) and (17). Through the prepro-
cessing and normalization units, each three-element phase-dif-
ference vector is transformed into a six-element vector. The pair

TABLE I
PERFORMANCECOMPARISON OF THESONFINAND RBFN ESTIMATORS ON

THE DOA ESTIMATION PROBLEM

of a six-element vector and the corresponding DOA value form
a training pattern in the form of (input, desired output). Hence,
as a total, we have 181 training patterns. With the same proce-
dure, we can obtain 301 (input, desired output) pairs as testing
patterns by dividing the range of DOA values,45 to 45, into
0.3 intervals. In our simulations, the same training and testing
data sets are fed into the SONFIN and RBFN for DOA estima-
tion.

In the training phase, after 150 epochs of learning, the con-
verged root mean squared (rms) error of the SONFIN is below
10 , but that of the RBFN is only below one. Fig. 5 shows
the convergence curves of the RBFN and SONFIN, respectively.
The convergence rate of the SONFIN is much higher than that
of the RBFN. The structure-growing curve of the SONFIN is
given in Fig. 6, which indicates the on-line self-construction ca-
pability of the SONFIN as learning proceeds. The rms error in
DOA of the RBFN with respect to the number of hidden nodes
(Nr) is shown in Fig. 7. To further reduce the rms error, we must
increase the number of hidden nodes.

In the testing phase, the DOAs obtained from the SONFIN
and those from the RBFN with different hidden node numbers
(Nr , Nr , or Nr ) are shown in Fig. 8. The
testing results show that the SONFIN successfully produced ac-
tual output “o” very close to the desired DOA “–,” For compar-
ison, the errors in DOA estimation obtained from the SONFIN
and those from the RBFN are plotted in Fig. 9. For this example
case, the simulation results show that the required number of
tunable parameters in the SONFIN is about 1/37 time of that in
the RBFN under the same rms error condition. A detailed per-
formance comparisons are listed in Table I.

B. Performance of DOA Estimation with Phase Errors

In this simulation, the training was performed with 181 data
sets derived from (16) and (17) (assuming the absence of phase
errors), whereas the testing was performed with 301 data sets
contaminated with uniformly distributed phase errors derived



SHIEH AND LIN: ARRIVAL ESTIMATION USING NEURAL FUZZY NETWORK 1123

Fig. 10. RMS error in DOA of the SONFIN and RBFN (N = 119) under
the additive phase error conditions with different SNRs.

from (3) and (4) to simulate real measurements. In (3), the ad-
ditive phase error (noise) term is given by

(18)

(19)

where signal-to-noise ratio (SNR) is in terms of power. The
above additive phase error (noise) term is given by references
[1], [18] . For comparison, the errors in DOA estimation ob-
tained from the SONFIN and those from the RBFN with additive
phase errors at different signal-to-noise ratio values are plotted
in Fig. 10. The simulation results show that the SONFIN out-
performs the RBFN by yielding smaller rms errors in noisy en-
vironments. In conclusion, the SONFIN appears relatively more
insensitive to noise than the RBFN.

V. CONCLUSION

In this paper, we have proposed a neural fuzzy scheme for es-
timating the direction of arrival of moving targets based on the
phase differences from an interferometer. In addition, to avoid
the discontinuities caused by the input phase transition, we use
the quadrature representation of the phase differences. Unlike
conventional eigen-based DOA estimator, the proposed scheme
requires no large amount of computations and does not need
to model signal. The main advantage of the proposed network
(SONFIN) is that it always produces an economical networks
size and the learning speed and modeling ability are superior
to ordinary neural networks. Hence, the trained SONFIN auto-
matically estimates DOA for different phase differences so that
neither numerical methods nor graphical methods need to be
used. We use two networks, RBFN and SONFIN, to estimate
DOA at different SNR values (from 5 to 25 dB). Simulation
results show that the SONFIN always produces actual output
very close to the desired DOA values, and the required number

of parameters in the SONFIN is about 1/37 time of that in the
RBFN under the same rms error in DOA. Notice that this re-
sult of parameters reduction is based on the specific example
presented in this paper, and is not a general conclusion that
applies to all SONFIN/RBFN comparisons. With these results
achieved in this paper, the proposed neural fuzzy scheme could
be widely applied to military applications (such as reconnais-
sance and threat reaction) for achieving high accurate DOAs for
certain electronics support measures. Especially, the proposed
method can be applied to the problem of moving target tracking.
As the targets move, their motion is tracked through a SONFIN
which uses the data provided by the most recent output of the
sensor array to update the existing estimate of target angles.
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