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Abstract—We consider network resource allocation problems
based on convex optimization, and their decentralized solutions
by means of primal, dual, or primal-dual subgradient control.
We show how Krasovskii’s method, that seeks Lyapunov func-
tions which are quadratic forms of the vector field, provides
new global stability proofs for various problems of this kind.
Applications include congestion control, cross-layer congestion
and contention control, and other general network utility
maximization problems. We show more generally how this proof
method applies to concave-convex saddle point problems solved
by subgradient methods.

I. INTRODUCTION

Since the seminal work of Kelly in [4], it has become stan-

dard to study network resource allocation in the following

terms: (i) a global, convex optimization objective, usually

in terms of network utility maximization; (ii) decentralized,

subgradient algorithms for its solution over a network, based

on primal and/or dual decompositions; (iii) global conver-

gence proofs of these algorithms to the optimum, usually

based on Lyapunov techniques. For the congestion control

problem, an excellent summary of many contributions with

the above features is [14]. More recently, generalizations of

this strategy to multiple layers of network protocols have

been pursued, as discussed in the surveys [3], [9].

Finding a Lyapunov function to establish global stability is

sometimes straightforward, when the dynamics are a gradient

law for a single set of variables: this happens for primal con-

gestion control laws [4], where rates follow the gradient of a

modified objective function (utility minus a congestion cost),

for dual laws that follow the gradient of the dual [10], and

also for routing problems that follow the negative gradient

of a congestion cost (see [13]). In these cases, the objective

itself must be monotonic along trajectories. When multiple

sets of variables are simultaneously controlled (primal-dual,

or cross layer problems), finding a Lyapunov function is

less obvious: for instance, primal-dual laws are seeking a

saddle point of the Lagrangian, around which it is not sign

definite; the Lagrangian cannot be a Lyapunov function.

Proofs in these cases use quadratic Lyapunov functions (see

[14]), motivated in some cases by a passivity decomposition

[15]. However, such decompositions become less obvious for

cross-layer problems with multiple optimization variables.

In this paper we pursue another source of Lyapunov proofs

for such problems: Krasovskii’s method [6], [5], that applies

to the system ż = F (z) a Lyapunov function

V (z) = żTQż = F (z)TQF (z).
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If Q > 0 is found such that
(

∂F
∂z

)T
Q+Q

(

∂F
∂z

)

is negative

semidefinite at every point z, then V̇ ≤ 0, which provides the
essential step for a Lyapunov proof, possibly supplemented

by the use of LaSalle’s invariance principle (see [5]).

In Section II we apply this method to give new stability

proofs in primal, dual, and primal-dual congestion control

algorithms. It is in the last case where the method is most

interesting, exploiting a particular symmetry in the equations

to lead to a natural candidate for Q. This motivates in

Section III the generalization to primal-dual methods for

cross-layer problems. One such problem is joint congestion

and contention control for wireless networks, introduced in

[7], [8], where convexity is achieved by a logarithmic change

of variables. [8] proposes primal algorithms for this problem,

and [16] studied a dual version. We are mostly interested in

the primal-dual approach, first studied in [17] with stochastic

models. Here, using fluid models, we embed the primal-dual

case in a class of problems for which Krasovskii’s method

provides a Lyapunov stability proof.

In Section IV, we see that the symmetry principle in

our primal-dual construction appears more generally in any

gradient method for a saddle point problem, as studied

classically in [1]; thus, the Krasovskii method also covers

this situation. Conclusions and future work are discussed in

Section V. The Appendix contains some technical proofs.

II. NETWORK CONGESTION CONTROL

We work here with the standard setup for congestion

control as in [14]. The network is made of a set of sources

S and a set of links L, of cardinality n and m, respectively.

Each source s injects packets into the network at a rate xs,
and has an associated strictly concave utility function Us(xs).
These packets use a subset L(s) ⊆ L of links. On the other

hand, each link l transports traffic of a subset of sources

S(l) ⊆ S, with total rate yl =
∑

s∈S(l) xs. The link capacity

is cl.
We can summarize the relationship between the vectors

of source and link rates through y = Rx, where the routing

matrix R of dimension m× n, is defined by:

Rls =

{

1 if s ∈ S(l),

0 otherwise.

The resource allocation proposed by Kelly [4] is the

solution of the following network utility maximization.

Problem 1: Maximize
∑

s∈S Us(xs), over xs ≥ 0, sub-
ject to the capacity constraints

yl ≤ cl, l ∈ L. (1)
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A. Primal Congestion Control

A primal algorithm for the resource allocation involves

a dynamic law for the source rates xs. In order to enforce

(approximately) the capacity constraints, a price signal λl =
ϕl(yl) is introduced, through an increasing penalty function

ϕl(·) for the constraint yl ≤ cl. The total price per source

qs =
∑

l∈L(s)

λl (2)

acts as a penalty term for the control of the source rates,

ẋs = κs[U
′
s(xs)− qs]

+
xs
. (3)

Here κs > 0, and the positive projection is defined by

[w]+z :=

{

w, if w > 0 or z > 0;
0 otherwise.

(4)

The projection is said to be active if the second case applies.

The above algorithm does not solve Problem 1 exactly, but

rather the barrier approximation

max
x≥0

[

∑

s∈S

Us(xs)−
∑

l∈L

∫ yl

0

ϕl(y)dy

]

. (5)

In fact, ẋ in (3) is a subgradient of the modified objective in

(5), which makes it a natural Lyapunov function for proving

convergence, as indeed was done in [4], [14]. Here, as a first

simple example of the use of Krasovskii’s method, we wish

to consider the alternate function

V (x) =
1

2
ẋTK−1ẋ =

∑

s∈S

ẋ2
s

2κs
, (6)

where K = diag(κs). This function can be discontinuous

at switches of the projection operation; we will show later

how these can be treated. For now, we avoid this issue,

differentiating V at a point with xs > 0 to get

V̇ (x) =
∑

s∈S

ẋsẍs
κs

=
∑

s∈S

ẋs



U ′′s (xs)ẋs −
∑

l∈L(s)

ϕ′l(yl)ẏl





= ẋTdiag{U ′′s (xs)}ẋ− ẋ
TRTdiag{ϕ′l(yl)}Rẋ.

Since Us is strictly concave for all s ∈ S, and ϕl is

non decreasing for all l ∈ L, we see that V̇ (x) ≤ 0.
A LaSalle argument can complete the asymptotic stability

proof, analogous to others covered later in this paper.

B. Dual Congestion Control

Problem 1 can be solved exactly by using duality: let

λ = (λl)l∈L be the Lagrange multipliers associated with

the capacity constraints (1). The Lagrangian is

L(x, λ) =
∑

s∈S

Us(xs)−
∑

l∈L

λl(yl − cl).

Strong duality implies that Problem 1 is equivalent to the

dual optimization minλ≥0D(λ), where the Lagrange dual

function D : R
m
+ → R is

D(λ) = max
x≥0

L(x, λ). (7)

The condition for x to be the maximizer of (7) is

xs = U ′−1
s (qs), or xs = 0 and U ′s(0) < qs, (8)

where qs is defined as in (2), for these new prices λ. The
above condition defines a decreasing “demand curve” xs =
fs(qs); we make the standing assumption

lim
qs→∞

fs(qs) = 0. (9)

We denote by x̂ and λ̂ the primal-dual optimal points, that

satisfy the Karush-Kuhn-Tucker conditions for this problem:

(8) and the complementary slackness condition

λ̂l

{

= 0 ŷl < cl,

≥ 0 ŷl = cl.
(10)

Dual flow control consists of a static update of source rates

following (8), and a dynamic control of the prices,

λ̇l = γl[yl − cl]
+
λl
. (11)

Here γl > 0, and the positive projection is defined as in

(4). The above price dynamics amounts to a subgradient

algorithm for the dual function, indeed

y − c = −
∂D

∂λ
.

This observation makes D(λ) a natural Lyapunov function

for these dynamics, see e.g. [13]. Again, we would like to

look at the alternative of Krasovskii’s method, so consider

the Lyapunov candidate (here Γ = diag(γl))

V (λ) =
1

2
λ̇TΓ−1λ̇ =

∑

l∈L

λ̇2
l

2γl
. (12)

We again ignore initially the projections and compute the

derivative of V at a point λ > 0:

V̇ =
∑

l∈L

λ̇lλ̈l
γl

= λ̇TRẋ = λ̇TR diag {f ′s(qs)} q̇

= q̇Tdiag {f ′s(qs)} q̇ ≤ 0, (13)

since the demand curve fs is decreasing.

We now treat more carefully the projections, that make the

dynamics (11) a hybrid system of the type considered in [2],

[11]. Specifically, let the discrete state σ denote the subset

of links for which the positive projection is active; σ has a

finite set of alternatives. (11) is equivalent to

λ̇l =

{

γl(yl − cl), l 6∈ σ(t);

0 l ∈ σ(t).
(14)

The Lyapunov function (12) takes the form

V (σ, λ) =
∑

l 6∈σ

γl
2
(yl − cl)

2. (15)

For an interval of time in which σ(t) ≡ σ0 constant, the

calculations in (13) are still valid: the saturated links do

not appear since λl ≡ 0 for l ∈ σ0. Therefore V will still
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decrease in this interval. It remains to study the behavior of

V at times when the set σ of active projections changes;

here, V may be discontinuous. Notice, however:

• The set σ will be enlarged if a link l with yl(t
−) ≤ cl

reaches λl(t) = 0. In that case, the sum in (15) loses

a term, and so V (t−) ≥ V (t+). V is discontinuous but

in the decreasing direction.

• Consider now a link l which had an active projection

at t−, and no longer has it at t+. This happens only

if yl − cl went through zero, from negative to positive,

at t. An extra term is added to (15), but this term is

initially at zero. Hence there is no discontinuity of V .

Therefore, V satisfies the monotonicity conditions of a

Lyapunov function. To prove asymptotic stability, a LaSalle

argument is given in the Appendix.

C. Primal-Dual Congestion Control

The primal-dual control scheme uses subgradient dynam-

ics in both primal and dual variables; i.e. , rates are updated

as in (3), where q satisfies (2) with link prices generated by

(11). In other words, we have

ẋ = K

[

∂L

∂x

]+

x

= K[U ′(x) −RTλ]+x , (16)

λ̇ = Γ

[

−
∂L

∂λ

]+

λ

= Γ[Rx− cl]
+
λ . (17)

Here K = diag(κs), Γ = diag(γl) and U
′(x) is the column

vector of U ′s(xs). In this case the Lyapunov choice is less

obvious, since the dynamics seek a saddle point, not an

extremum, of the Lagrangian. The first global stability proof

for this law in the network control literature was the passivity

argument in [15], which results in a quadratic Lyapunov

function not directly related to the primal or dual objectives1.

However, when using Krasovskii’s method, the primal-

dual case is a natural combination of the previous cases.

Superimposing the functions in (6) and (12), introduce the

following Lyapunov function in the state z = (x, λ)T :

V (z) = żTQż, with Q =
1

2

[

K−1 0
0 Γ−1

]

. (18)

Consider a point with x > 0 and λ > 0, so projections are

inactive. The dynamics (16)-(17) have the form ż = F (z),
with the derivative of the vector field F (z) satisfying

Q

(

∂F

∂z

)

=
1

2

[

diag{U ′′s (xs)} −RT

R 0

]

.

The antisymmetric structure of the above matrix has its roots

in the fact that (16)-(17) are derived from gradients of the

same Lagrangian: as we will see later in more generality, we

are exploiting the identity

∂2L

∂xs∂λl
=

∂2L

∂λl∂xs
.

1In Section IV we see that the quadratic Lyapunov proof also follows as
a special case of the classical study [1].

As a consequence of this symmetry we have

(

∂F

∂z

)T

Q+Q

(

∂F

∂z

)

=

[

diag{U ′′s (xs)} 0
0 0

]

,

negative semidefinite; so again we have V̇ ≤ 0, the basis for
a Lyapunov argument. The details of the proof are relayed

to Theorem 1 below, which generalizes primal-dual laws to

a larger class of problems.

III. GENERALIZATIONS AND CROSS-LAYER

OPTIMIZATION

As a natural continuation of the congestion control studies,

recent research has incorporated into the optimization frame-

work other resources to be allocated in networks, involving

other layers of protocols. In particular, many researchers

have tackled the control of routing, medium access control

(MAC), or physical layer control, most prominently for the

case of wireless networks. Recent surveys which cover part

of the substantial literature are [9], [3]. In particular, [3]

advocates the network utility maximization problem (NUM),

and its decompositions, as the unifying paradigm over which

network architectures can be designed and controlled.

We now formulate one such NUM problem, which gener-

alizes Problem 1.

Problem 2: Maximize
∑

s∈S Us(xs), subject to

hl(x) ≤ cl(p), ∀l ∈ L,

where {hl} and {cl} are twice continuously differentiable

convex and concave functions, respectively.

Through the variable p ∈ P ⊆ R
k above, we can represent

the dependence of link capacity on parameters of the lower

layers, e.g. the MAC protocols or physical layer parameters.

Letting x enter the constraint in a possibly nonlinear (convex)

way, provides more generality for the choice of primal

variables, other than link rates themselves. An example is

described in Section III-A.

We introduce the Lagrangian for this problem,

L(x, p, λ) =
∑

s∈S

Us(xs)−
∑

l∈L

λl(hl(x)− cl(p)). (19)

The dual problem will be minλ≥0D(λ), where the Lagrange
dual function can be written as

D(λ) = max
x

{

∑

s∈S

Us(xs)− λ
Th(x)

}

+max
p

λT c(p).

(20)

Note the “dual decomposition” (between variables x and p)
in the solution of (20). Below, we will study two control

algorithms to solve the dual problem, with stability proofs

using the Krasovskii method.

A. Cross-Layer Congestion and Contention Control

In this section we motivate the formulation in Problem 2

through the following application, which originates in [7],

[8]. Consider an ad-hoc wireless network made up of a set

of nodes, which use a random MAC. Each node n accesses

the medium with probability Pn, and when transmitting it
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chooses one of its outgoing links with probability pl. Thus,
we have the following convex constraints (which define the

set P) for every node:

pl ≥ 0,
∑

l∈Lout(n)

pl = Pn, Pn ≤ 1. (21)

The transmission of a link is interfered by another link, if

the receiver of the former is within range of the transmitter

of the latter; when such a collision occurs, we assume no

useful information is transmitted. So the capacity of a link l
depends on the probability of accessing the channel without

presence of the interfering nodes; we write

Cl(p) := clpl
∏

k∈NI (l)

(1− P k),

where NI(l) is the set of nodes that interfere with link l.
Under this additional degree of freedom, we wish to

allocate network resources (rates and transmission proba-

bilities) to optimize an overall network utility. The optimal

congestion and contention control problem is thus

Ξ : maximize
∑

s∈S

Us(xs)

subject to (21) and
∑

s∈S(l)

xs ≤ Cl(p), ∀l. (22)

The difficulty with the above problem is that the last con-

straint is non-convex; nevertheless, a change of variables

was proposed in [7] that helps tackle this problem. Take

the logarithm on both sides of inequality (22), and define

x̃s := log xs, Ũs(x̃s) := Us
(

ex̃s

)

. Then problem Ξ is

equivalent to

Ξ̃ : maximize
∑

s∈S

Ũs(x̃s)

subject to (21) and log





∑

s∈S(l)

ex̃s



 ≤ C̃l(p), ∀l

(23)

where C̃l(p) := log cl + log pl +
∑

k∈NI (l) log(1− P
k).

Note that C̃l is concave in the variables pl, P
k, and the

left hand side of (23) is convex in x̃s. Therefore, the new

formulation falls in the class of Problem 2, provided that the

new objective function is concave in x̃: this happens (see

[7]) for utility functions satisfying

d2Us(xs)

dx2
s

xs +
dUs(xs)

dxs
≤ 0. (24)

The remaining challenge for formulation Ξ̃ is to find a

distributed network solution. In this regard, note that the left

hand side of (23) is not separable between primal variables.

In a dual approach that would solve the problem exactly, the

optimization over x in (20) is not easy to decentralize. [8]

tried for this purpose a primal-based approach, where the

gradient direction of x can be found in a distributed way,

but is forced then to approximate Ξ̃ by a barrier function.

Recently, [16] formulated a dual approach which achieves

decentralization through additional variables per source and

link, not a very scalable proposition. The separability con-

cerns disappear if one uses a primal-dual approach; this was

first studied in [17], where the focus is on stochastic issues

associated with estimation of subgradients; a stability result

was given involving quadratic Lyapunov functions in discrete

time.

In this paper we will obtain, as a special case of Theorem

1 below, a global stability result for primal-dual laws for Ξ̃,
based on deterministic fluid models in continuous time, and

Krasovksii’s method.

B. Primal-Dual control for Problem 2 and its stability:

version with dual update for p.

We discuss here a solution of Problem 2 based on a primal-

dual approach. Lagrange multipliers λ will be dynamically

updated to follow a subgradient of the dual function, and the

primal variables x will also use gradient control laws. The

question arises as to how to deal with the primal variables

p, for which in principle we could use either choice: solve

directly for the optimal p(λ) in (20), or a gradient approach.

In this section we study the former option, attractive for

problems where this calculation can be done in a separable

way, like the one in Section III-A.

Specifically, define ψ(λ) := maxp∈P λ
T c(p), and denote

by p̄(λ) the maximizing p. The function ψ(λ) is convex in

λ (maximum of linear functions).

In the particular case of Section III-A, we have

ψ(λ) =
∑

n∈N





∑

l∈L(n)

λl log p̄l +
∑

k∈LI (n)

λk log(1− P̄
n)



 ,

where p̄l(λ) :=
λl

∑

l∈Lout(n) λl +
∑

l∈LI(n) λl
.

Note that in this case the optimal p̄l(λ) depends only La-

grange multipliers of nodes neighboring link l; for this reason
the calculation is amenable for distributed computation with

message passing between nodes.

Returning now to the general case, define

L̄(x, λ) = max
p
L(x, p, λ)

=
∑

s∈S

Us(xs)−
∑

l∈L

λlhl(x) + ψ(λ).

Our primal-dual computation for Problem 2 will be based on

gradients of this function:

ẋ = K

[

∂L̄

∂x

]+

x

= K

[

U ′(x) −

(

∂h

∂x

)T

λ

]+

x

, (25)

λ̇ = Γ

[

−
∂L̄

∂λ

]+

λ

= Γ
[

h(x)−∇ψT (λ)
]+

λ

= Γ [h(x) − c(p̄(λ))]+λ , (26)

where the second equality in (26) follows from the

Envelope Theorem with p̄(λ) = argmaxp λ
T c(p). We state

the following result.
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Theorem 1: The optimum of Problem 2 is a globally

asymptotically stable equilibrium of the dynamics (25)-(26).

Proof: Consider the Lyapunov function defined in

(18). Operating again initially at a point z > 0 where all

projections are inactive, we have now

Q

(

∂F

∂z

)

=
1

2

[

∂2L
∂x2 −

(

∂h
∂x

)T

(

∂h
∂x

)

−∇2ψ(λ)

]

,

where

∂2L

∂x2
= diag{U ′′s (xs)} −

∑

l∈L

λl∇
2hl(x). (27)

Note from the strict concavity of Us(xs) and the convexity

of hl(x), that ∂2L
∂x2 is negative definite. Also, −∇2ψ(λ)

is negative semidefinite because of the convexity of ψ(λ).
Therefore

(

∂F

∂z

)T

Q+Q

(

∂F

∂z

)

=

[

∂2L
∂x2 0

0 −∇2ψ(λ)

]

≤ 0,

(28)

hence V̇ ≤ 0 along trajectories, as desired. The remainder of

the argument, which considers the projections and LaSalle

invariance, is covered in the Appendix.

C. Primal-Dual control for Problem 2 and its stability:

version with primal update for p.

An alternative primal-dual law for Problem 2 involves

a gradient update of the primal variable p: this could be

suitable for a situation where explicit formulas for p̄(λ) are
not available. Returning to the original Lagrangian (19), the

control law would be

ẋ = K

[

∂L

∂x

]+

x

= K

[

U ′(x)−

(

∂h

∂x

)T

λ

]+

x

, (29)

ṗ = Υ

[

∂L

∂p

]

P

= Υ

[

λT
∂c

∂p

]

P

, (30)

λ̇ = Γ

[

−
∂L

∂λ

]+

λ

= Γ [h(x)− c(p)]+λ , (31)

where Υ = diag{ǫk}, ǫk > 0, and where [·]P denotes the

projection on to P .

Theorem 2: Suppose that c(p) is a strictly concave func-

tion. Then the optimum of Problem 2 is a globally asymp-

totically stable equilibrium of the dynamics (29)-(31).

The proof is omitted due to space limitations; we will

only indicate the relevant Lyapunov function based on

Krasovskii’s method,

V (z) = żTQż, Q =
1

2





K−1 0 0
0 Υ−1 0
0 0 Γ−1



 .

IV. KRASOVSKII’S METHOD AND GRADIENT LAWS FOR

SADDLE POINTS

All primal-dual laws considered have the general form

ẋ = K

[

∂L

∂x

]

, λ̇ = Γ

[

−
∂L

∂λ

]

; (32)

they are thus gradient laws which seek a saddle point (max-

imum in x, minimum in λ), of a certain function L(x, λ).
Here for simplicity we have removed projections.

Such algorithms were studied in the classical work of

Arrow, Hurwicz and Uzawa [1]; here it was proved, using

a quadratic Lyapunov function and in essence an invariance

argument (before LaSalle!), that the saddle is achieved for

L(x, λ) strictly concave in x and convex in λ. It is notewor-
thy that in the congestion control literature, such proofs were

essentially rediscovered based on passivity arguments [15].

In this paper we have found that the Krasovskii method

provides an alternate proof for these problems. Indeed, the

Lyapunov function żTQż in (18) with z = (x, λ)T , satisfies
for the dynamics (32) the condition

Q

(

∂F

∂z

)

=
1

2

[

∂2L
∂x2

∂2L
∂x∂λ

− ∂2L
∂λ∂x

−∂2L
∂λ2

]

.

As before, when computing the Lyapunov derivative, the

terms off the block diagonal will cancel, rendering
[

(

∂F

∂z

)T

Q+Q

(

∂F

∂z

)

]

=

[

∂2L
∂x2 0

0 −∂2L
∂λ2

]

≤ 0,

for L(x, λ) concave in x and convex in λ. Thus V̇ ≤ 0, and
a Lasalle argument follows if there is strict concavity in x.

V. CONCLUSIONS

We studied network optimization problems from conges-

tion control and extensions to cross-layer optimization. We

found a new technique for proving global stability results

in a variety of such problems, invoking Krasovskii’s method

for the choice of Lyapunov functions. This covers primal and

dual algorithms, but is particularly suited for the primal-dual

case, in which a certain symmetry of the gradient equations

allows for a simplification in the Lyapunov derivative. Fur-

thermore, we have seen that the method extends to gradient

dynamics for saddle-point problems as studied classically in

[1]. A natural future question is the applicability of this proof

method to situations where strict concavity is relaxed.

APPENDIX: STABILITY PROOFS BASED ON LASALLE

INVARIANCE IN SWITCHED SYSTEMS

Dual congestion control

We have shown that the function V (σ, λ) in (15) is

decreasing along trajectories of the system. We wish to

invoke Theorem IV.1 in [11], which establishes a LaSalle

invariance principle for switched systems of this kind.

Invoking [11], the dynamics must converge to an invariant

set inside the set of trajectories that at all times satisfy either

(i): σ fixed and d
dt
V (σ, λ(t)) ≡ 0; or (ii): σ switches at time

t between σ− and σ+, but V (σ−, λ(t)) = V (σ+, λ(t)). This
implies V (t) is constant for all time.
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Focusing on case (i), we see from (13) that q̇s ≡ 0 for all s
where f ′s(qs) < 0; this always happens unless the projection
in (8) occurs, in which case xs ≡ 0. In any case the rates xs
are constant while (i) holds, and so are the link rates yl. If
there is a switch as in case (ii), referring to expression (15)

and the discussion after it, we see that the rate yl cannot

change either during this switch. Therefore our invariant

trajectory satisfies yl ≡ yl0, constant for all time.

If yl0 < cl for some l, the corresponding λl must be at zero

with the projection active; otherwise, it would fall linearly

and lead to a discontinuous switch in V , violating (ii) above.

If yl0 > cl, λl would tend to infinity, but this means through

assumption (9) that all sources using this link would have rate

going to zero, contradicting the constancy of yl. Therefore,
the only other option is yl0 = cl for some link with λl ≥ 0.
We see that these are precisely the KKT conditions for the

problem, thus the invariant trajectory is at the optimum.

Proof of Theorem 1

The primal-dual dynamics (25)-(26) have projections in

x and in λ; let these be represented by the discrete state

σ = (σx, σλ). The Lyapunov function from (18) is

V (σ, z) =
∑

s6∈σx

κs
2

[

U ′s(xs)−
∑

l∈L

λl
∂hl
∂xs

]2

+
∑

l 6∈σλ

γl
2
[hl(x) − cl(p̄(λ))]

2

A key observation is that the expression

V̇ = ẋT

(

diag{U ′′s (xs)} −
∑

l∈L

λl∇
2hl(x)

)

ẋ− λ̇T∇2ψλ̇,

implicit in (28), still applies on any interval of constant σ; the
applicable projections in x or λ simply provide zero terms.

Therefore, V is decreasing in this situation.

In the case of a projection switch, an analogous argument

as the one in Section II-B applies: the only discontinuities

that can arise in V are in the decreasing direction, when a

new projection gets activated. Therefore we are still under

the conditions of the LaSalle theory in [11].

It remains to characterize an invariant set within the

conditions (i) or (ii) as discussed in the preceding proof

for the dual. For an interval in case (i) (V̇ ≡ 0 without

switching), the strict concavity assumed in Us(xs), implies

that again we will have that ẋs ≡ 0 for all s /∈ σx,
and trivially for the rest. Since the state variable x has no

discontinuities at switching, x is constant over all time for

the invariant trajectory, x ≡ x̂ = argmaxx L(x, p, λ).
Also, from the second term in V̇ we see that cl(p̄(λ)) =

∂ψ
∂λl

must remain constant as well. So the right-hand side of

λ̇l = γl[hl(x̂)− cl(p̄(λ))]

is constant in time for an invariant trajectory. Again, if it

were negative it would lead to λl saturating at zero after a

finite time, and thus a discontinuous switch in V . So we can

assume hl(x̂)− cl(p̄(λ)) ≥ 0 for all l; it remains to rule out

the case where it is strictly positive. For this, we note that

the trajectory is moving within the optimum of (20),

D(λ(t)) =
∑

s∈S

Us(x̂s)−
∑

l∈L

λl(t)[hl(x̂)− cl(p̄(λ))]. (33)

Hence, if hl(x̂)−cl(p̄(λ)) > 0 for some l, the corresponding
λl grows linearly in time, and D(λ(t)) is strictly decreasing.

To continue we invoke the following lemma proved in [12].

Lemma: Let λ̄ be a vector such that the set Mλ̄ = {λ ≥
0 : D(λ) ≤ D(λ̄)} is nonempty. Then Mλ̄ is bounded.

From the above Lemma we observe that λ(t) ∈ Mλ(0) for

all t ≥ 0. But sinceMλ(0) is a bounded set, this contradicts

the linear growth of λl(t).
Therefore, the invariant set has λ also at an equilibrium

λ̂, which by the previous argument must satisfy the comple-

mentary slackness conditions:

either λl = 0, or hl(x̂)− cl(p̄(λ)) = 0.

Note also that once λ converges to λ̂, p also converges to

p̂(λ̂) = argmaxp λ̂
T c(p). Therefore, the invariant trajectory

is an optimal point of Problem 2.
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