

American Journal of Software Engineering and Applications
2014; 3(6): 74-82

Published online December 16, 2014 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20140306.12

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Survey of software components to emulate OpenFlow
protocol as an SDN implementation

Mohammed Basheer Al-Somaidai, Estabrak Bassam Yahya

Dept. of Electrical Engineering, Mosul University, Mosul, Iraq

Email address:
mohammedbasheerabdullah@uomosul.edu.iq (M. B. Al-Somaidai), eng_est_1990@yahoo.com (E. B. Yahya)

To cite this article:
Mohammed Basheer Al-Somaidai, Estabrak Bassam Yahya. Survey of Software Components to Emulate OpenFlow Protocol as an SDN

Implementation. American Journal of Software Engineering and Applications. Vol. 3, No. 6, 2014, pp. 74-82.

doi: 10.11648/j.ajsea.20140306.12

Abstract: Software Defined Networks (SDN) is the next wave in networking evolution. It may be considered as a

revolution rather than an evolution since; many concepts of conventional network protocols are reshaped. OpenFlow protocol

is the most widely deployed protocol in SDN. Emulation of OpenFlow based network projects facilitates the implementation

of new ideas and driving the development of the protocol. In this paper, a summary of many software components related to

OpenFlow is presented. Most of these software components were tested by the researchers in order to simplify the choice for

other researchers considering the implementation of OpenFlow projects. These tests showed that there are differences in

performance for the controllers that support OpenFlow 1.0 and OpenFlow 1.3. Furthermore, the tested controllers differs in

the applications they support.

Keywords: Software Defined Network, OpenFlow, Emulation, Mininet

1. Introduction

A new paradigm in the field of networking is the software

defined networks a promising architecture, which is gaining

rapid attention of researchers and vendors as well [1-3]. This

is so because; the unlimited development of network

applications and the extensive demands of an explosive

growth in network users are driving conventional network

devices to their limits. SDN introduces a new way to handle

the vast amount of packets traversing the network. Many

packets belong to a single flow; thus, handling that flow and

distributing the actions to be taken to all its packets would

numerously speed up their forwarding. This is only one of

many other benefits of a centralized control of the network.

The most widely deployed SDN architecture is the OpenFlow

protocol. Many gigantic Internet vendors including Google

are considering the application of OpenFlow protocol in their

data centers [4]. A gradual implementation of SDN and

OpenFlow suggests the co-existence of OpenFlow networks

with conventional networks. This requires extensive studies

and projects to investigate the limitations and possibilities of

these protocols.

Simulation and emulation of network projects provide a

solid base to determine their pros and cons. Emulation is

more realistic than simulation since, it must be carried out in

real time and could provide a way to some real devices

running real operating systems to interact with some

simulated devices [5].

B. Lantz, et. al. [6] analyzed the performance of Mininet

emulator to develop, interact with, and customize the SDN

concept with OpenFlow protocol. This study showed

Mininet ease of use, scalability, and limitations.

S. Wang, et. al. [5] introduced the EstiNet OpenFlow

network simulator and emulator, and studied its performance

to design SDN networks. They compared EstiNet behavior,

capabilities and scalability with Mininet and ns-3 platforms.

A. Shalimov, et. al. [7] proposed a method to test and

compare popular open source SDN/OpenFlow controller.

They analyzed throughput, latency, scalability and security

by developing new framework called Hcprobe based on

Cbench framework.

B. Nunes, et.al. [8] provided historic review about

programmable network idea from its beginning time down

to the SDN revolution. The study presented the architecture

of SDN and discussed OpenFlow features, application and

related software to deploy and develop SDN networks based

on OpenFlow.

A. Lara, et. al. [9] discussed the architecture of OpenFlow

75 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Survey of Software Components to Emulate OpenFlow

Protocol as an SDN Implementation

network to understand SDN, and centralized control concept

by using different controllers' platform. In addition, studies

have measured the performance of OpenFlow networks

through modeling and experimentation. The researchers

clarify the challenges facing the large-scale OpenFlow

networks and applications.

The rest of this paper is structured as follows: in section 2

we briefly discuss software defined network architecture.

Section 3 introduces an overview of OpenFlow protocol, its

fundamental concepts and messages. Some SDN and

OpenFlow platforms are presented and compared in section

4; while, sections 5 and 6 give a survey of OpenFlow

software controllers and switches respectively. Any

OpenFlow project could make use of some tools that are

presented in section 7. Finally, section 8 contains some

concluding remarks and future work suggestions.

2. Software Defined Networks (SDN)

The adaptation of packet switching in networking made

each network device such as gateway, router, or switch a

standalone device. These devices manage themselves

independently even if this management was according to a

certain routing protocol or administration policy. Each data

packet undergoes the same parsing and processing efforts at

each network node even if it belongs to the same flow. This

conventional architecture of networks may fail to support

the dramatically increase in users' requirements and the fast

deployments of new network applications.

Segregating the control plane and the management plane

from the data forwarding plane in network devices is what

software defined network (SDN) about [10,11]. In such a

paradigm, a central controller is responsible for managing

many forwarding devices that lay under its supervision. Such

configuration would results in efficient, faster innovative, and

more scalable networks that meet users' demands. Software

defined network is managed through a network operating

system implemented at the controller to make all the

subsequent switches work in harmony and more flexibility.

These switches need not be in the same geographical area;

the management of many planet wise distributed data

centers that belong to a cloud service provider is an example

of this diverse distribution of forwarding devices [2]. Fig. 1,

shows the architecture of a software defined network. It is

worth to mention that SDN is not a protocol; but it is an

operational and programming architecture. Albeit, SDN

uses certain protocols for making the network

programmable. These could be OpenFlow [12], I2RS,

PCE-P, BGP-LS, NetConf/Yong, and OMI [11]. In this paper,

we are focusing on the widely deployed OpenFlow protocol.

3. Open Flow

OpenFlow started at Stanford University in 2008 [13].

The aim of the project was to give researchers a tool to

implement their experimental protocols in networks.

OpenFlow network consists of three major components: a

controller, an OpenFlow switch, and the OpenFlow protocol.

The Open Networking Foundation (ONF) a non-profit

Fig 1. Architecture of a software defined network.

organization was created in 2011 by a group of vendors [14].

It is dedicated to coordinating the development of SDN

standards and solutions in order to accelerate the delivery of

SDN products, services, and applications. Since then ONF

had published each new version of OpenFlow standard. Up to

the date of writing this paper (March 2014) the last version of

OpenFlow switch specification is 1.4 and it was published in

October 2013 [12]. According to this specification, the

architecture of an OpenFlow switch should contain the blocks

shown in Fig. 2, each OpenFlow switch contains one or more

flow tables processed in pipeline, a single group table, a single

meter table; and a various types of ports. Each table and port

in the OpenFlow switch is associated with many counters that

could gather various statistics describing the events that the

switch is subjected to. The controller creates all the tables and

their entries; the data packets that traverse the OpenFlow

switch update the counters.

The corner stone in the OpenFlow protocol is the flow

table, which has 256 entries. Each entry in the flow table

contains six sections as shown in Fig. 3.

Fig 2. Architecture of an OpenFlow switch

American Journal of Software Engineering and Applications 2014; 3(6): 74-82 76

Fig 3. OpenFlow switch flow table entry fields.

The matching fields section is used to match the packet

with the entry according to various packet header fields.

When more than one entry match a packet the priority field

determines the flow table entry that will be executed and the

per flow table entry counters are updated.

The instructions section contains among other things the

actions that will be acted upon the matched packet. The

timeouts field specifies the maximum amount of hard time

and idle time before the flow table entry expires. A zero

value in any of them disable the corresponding timer. The

hard timeout determines the maximum amount of time in

seconds before the flow table entry expires; while the idle

time out causes the expiration of the entry if it has matched

no packet in the given number of seconds. The cookie field

is used by the controller to filter flow statistics, flow

modification, and flow deletion. Each flow table must

support a table-miss flow entry clarifying the action that

should be taken upon the unmatched packet either sending it

to the controller, dropping it, or directing it to the subsequent

flow table in the pipeline [12].

OpenFlow protocol has three types of messages to

communicate between the controller and the OpenFlow

switch over a secure channel or over a TCP channel as

shown in Fig.4. They are classified according to the initiator

of the message into controller to switch messages,

asynchronous (switch to controller) messages, and

symmetric messages. The controller to switch messages are

used to assert its control upon the switch, reading the switch

status, and modifying the switch states which includes

editing the switch flow tables.

The switch to controller messages are used to inform the

controller about a new incoming flow, a change in a switch

state; or a request for modifying a flow table entry. Either the

controller or the switch could initiate the symmetric

messages. They include hello messages, echo messages,

error messages, and experimenter message that identify the

vendor of the controller or the switch [12]. Table 1. shows a

summary of OpenFlow switch standards specification

properties. It can be observed that almost every year there is

a new version in the 1.x numbering of the standard, and

although OpenFlow protocol is still in its 1.x version, there

is huge development every year.

4. SDN Development Platforms

There are many platforms that could be used by

researchers to emulate and/or simulate their SDN projects.

Researchers use these tools to perform experiments, study

the behavior of the network, and develop new methods to

support different applications. In this section, a description

of these currently available SDN platforms is presented

emphasizing on the rapidly developed and deployed Mininet

platform. Table 2. gives an overview of some properties of

these platforms.

Fig 4. OpenFlow protocol messages.

Table 1. OpenFlow switch standards properties.

1.4 1.3 1.2 1.1 1.0 Version / Property

Oct. 15, 2013 Jun. 25, 2012 Dec. 5, 2011 Feb. 28, 2011 Dec. 31, 2009 Publication date

No No No No Yes Widely deployed

multiple multiple multiple multiple single Flow table

Yes Yes Yes Yes No Group table

Yes Yes No No No Meter table

Yes Yes Yes Yes No VLAN and MPLS Tag

Stand alone /

secure mode

Stand alone /

secure mode

Stand alone / secure

mode

Stand alone /

secure mode

Emerg-ency

mode
Controller connection failer

Yes Yes Yes No No IPv6 support

Yes Yes Yes No No Multiple controller

Yes No No No No Eviction /Vacancy/Synchronization

Yes No No No No Optical ports

77 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Survey of Software Components to Emulate OpenFlow

Protocol as an SDN Implementation

Table 2. Properties of SDN platforms

Platform Mininet EstiNet ns-3 Trema

Last version 2.1.0+ 8.0 3.19 0.4.6

Vendor
Stanford University,

ON. Lab
EstiNet Technologies Inc. ns-3 Project NEC Corporation

Web site www.mininet. org www.estinet. com
.www.nsnam

org
Trema.github. io/trema/

Operating system Ubuntu, Fedora
Linux

Fedora (14,17)

GNU/Linux,

Windows, FreeBSD, Mac,

OSX

GNU/ Debian, Ubuntu,

Fedora

OpenFlow versions 1.0 – 1.3 1.0, 1.1, 1.3, 1.3.2 0.89 1.0, 1.3, 1.3.1

GUI VND*, Miniedit EstiNet GUI VND* VND*

Emulation mode Yes Yes No Yes

Simulation mode No Yes Yes No

Free / Proprietary Free Proprietary Free Free

*VND: Visual Network Description, to be mentioned in section 7

4.1. Mininet

Mininet is a network emulation platform that supports

rapid development in SDN using OpenFlow protocol. It is

the most popular SDN platform used by SDN researchers

due to its simplicity, availability, and flexibility. Furthermore,

Mininet is entirely devoted to OpenFlow architecture [6].

Mininet uses Linux kernels along with Python language

scripts to construct a virtual network of large number of

hosts network, OpenFlow switches, and controllers in any

network topology the researcher employs over a single

desktop or laptop station.

Mininet could use its built-in software tools to develop

such networks through Command Line Interface (CLI), or

adapts to a third-party software tools that implement other

controllers or Graphic User Interface (GUI) engines [15, 16].

It has the flexibility of adding many controller types that will

be mentioned in section 5.

4.2. EstiNet

EstiNet is an emulation and simulation platform of many

network protocols; one of them is OpenFlow protocol. It

also supports some of the controllers of section V. EstiNet is

a proprietary software tool and it uses the company servers

to run the simulation or the emulation projects. This cloud

service is referred to as Simulation as a Service [17].

EstiNet has good simulation properties among them are

accurate and repeatable result with a graphical user interface

and packet animation along with good presentation of the

simulation statistics as a graph for each node in the network [5].

4.3. ns-3

ns-3 is a well established network simulator usually

compared to OPNET for providing simulation environment

to a wide range of network protocols. ns-3 supports

OpenFlow protocol and its switches in simulator

environment but it cannot readily run a real OpenFlow

controller such as NOX, POX, or Floodlight without

modifications. This is why ns-3 has implemented its own

OpenFlow controller as a C++ module with a different

performance from the above real controllers.

Another drawback of using ns-3 is that it until now

supports version 0.89 of OpenFlow protocol only, this limits

the researchers' ability to test and develop projects that are

compatible with the new versions of OpenFlow protocol [5].

It could be used to introduce the concepts of SDN and

OpenFlow to beginners who are used to ns-3.

4.4. Trema

Trema is an OpenFlow framework that includes

everything the researcher needs to conduct an OpenFlow

project. The source tree includes basic libraries and

functional modules that work as an interface to OpenFlow

switches. Several examples of sample applications are also

provided.

It has an integrated testing and debugging environment

that manage, monitor, and diagnose the entire system with a

network emulator and a diagnostic tool chain (Trema shark,

Wireshark plug-in) [18]. The lack of a graphical user

interface and the use of the programming languages C and

Ruby may limit the popularity of this platform.

5. Controller Software

A block diagram of the controller; which is the brain of

any software defined network is shown in Fig. 5. The

controller communicates with the forwarding devices

through an SDN protocol such as OpenFlow. This link is

also called the southbound Application Programming

Interface (API). From the other side the controller uses a

northbound API to deal with various applications. If we

made an analogy for the network as an orchestra then the

controller plays the role of the maestro. In fact, some SDN

implementations use these designations to refer to SDN and

the controller [11, 19].

As the basic concept of SDN is to decouple the control

American Journal of Software Engineering and Applications 2014; 3(6): 74-82 78

plane and the management plane from the data-forwarding

plane then the controller has to bear all the burden of

controlling and managing all the data forwarding devices. It

should maintain and update through the rule-placement

algorithm information about all the forwarding devices that

are under direct responsibility of the controller including

their flow tables, links, and states. The routing policy is

another task of the controller any change in any forwarding

device state causes the controller to reshape the routing path

of all flows traverse that device resulting in updates to a

large number of switches' flow tables. Security strategies

along with end devices policy are also, placed in the

controller.

Fig 5. Block diagram of the controller.

As mentioned above the controller plays a vital role in the

OpenFlow network; therefore multi controllers could

establish communication with a forwarding device (switch)

provided that only one of them has the master role upon the

switch and the others should be in the slave role. Having

multiple controllers improves reliability, as the switch can

continue to operate in OpenFlow mode if one controller or

controller connection fails. The hand-over between

controllers is entirely managed by the controllers themselves,

which enable fast recovery from failure and controllers load

balancing [12]. Many software implementations of the

controller are summarized in Table 3.

5.1. NOX

NOX controller was the original controller of OpenFlow.

It is written in C++ language and its first version provided an

API for Python scripts, but last version of NOX has dropped

this API and supported C++ only. NOX provides a

high-level programmable interface upon forwarding devices

and applications. It is designed to support both small

networks of a few hosts and large enterprise networks of

hundreds of switches and hosts.

NOX's core has features of fast, asynchronous I/O,

topology discovery, host tracking possibility, and learning

switch feature [20]. NOX combined with Mininet provides

a platform for academic research in networking [21]. It

supports now many features of OpenFlow protocol

specification 1.3, but the researchers when implement this

version discovered the Iperf command which determine the

bandwidth utilization does not work properly.

5.2. POX

POX controller is another SDN control platform and it is

considered an active development tool. POX was derived

from NOX controller platform with the main difference is

using Python programming language instead of C++

platform. POX uses Python API (version 2.7) to support

network virtualization, SDN debugging, and different

application such as layer-2 switch, bridge, hub, etc [22].

NOX and POX controllers support the same GUI and

visualization tools to setup, configure controllers, and flow

tables. POX still does not support OpenFlow 1.3, which

many other controllers support now.

5.3. Floodlight

Floodlight is a very popular SDN controller. It is a

contribution from Big Switch Networks and it uses Java

based platform (API) thus it runs within a Java Virtual

Machine (JVM) and it is considered suitable with

continuous increase in number of network devices (switches)

that deal with OpenFlow concept [11,23].

Floodlight controller realizes a set of common

functionalities to control and inquire an OpenFlow network.

The controller has features of simple to extend and enhance,

easy to setup with minimal dependencies, support for Open

Stack Quantum cloud, topology management, and it deals

with mixed OpenFlow and non-OpenFlow network.

Floodlight supports applications that include a learning

switch, hub application, firewall, and static flow push

applications [21]. Floodlight as POX does not support

OpenFlow 1.3.

5.4. OpenDaylight

OpenDaylight is an OpenFlow controller. It has open and

reference framework for programmability and control

through open source SDN, it uses JVM so it can be used with

any platform or operating system that supports Java 1.7+. It

is a modular, extensible, scalable and multi-protocol

controller infrastructure built for SDN deployment on

modern heterogeneous multi-vendor networks [21, 24].

OpenDaylight enables users to reduce operational

complexity, extend the lifetime of their testing network

infrastructure, and enable new services and capabilities. In

our test of OpenDaylight, it proved to have an excellent GUI,

but Iperf command undergo the same problems that we

faced with NOX when dealing with controller.

79 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Survey of Software Components to Emulate OpenFlow

Protocol as an SDN Implementation

Table 3. Controller software implementations.

Name Vendor
Progra-mming

language
OpenFlow versions GUI Operating system

NOX Nicira C ++ 1.0, 1.3 NOX GUI Linux

POX Nicira Python 1.0 NOX GUI
Linux, Windows,

Mac

Floodlight Big Switch Networks Java 1.0
Flood-

light web UI, Avior
Linux, Mac

OpenDaylight
Linux Foundation

Collaborative Project
Java 1.0, 1.3

Open-

Daylight web UI
Linux, Windows

Ryu
Nippon Telegraph and

Telephone Corporation
Python

1.0, 1.2, 1.3 and

Nicira extension
VND Linux

Mul kulcloud C 1.0, 1.3.1 VND Linux

Beacon Stanford University Java 1.0 VND
Windows, Linux,

OSX

5.5. Ryu

Ryu is a component-based, open source framework

implemented entirely in Python. Nevertheless, the Ryu

messaging service does support components developed in

other languages [25].

The goal of Ryu is to develop an operating system for

SDN that has high quality enough for use in large networks.

Ryu controller includes event management, in-memory

state management, application management, and series of

reusable libraries (e.g NetCOONF library, sFlow/NetFlow

library and OF-Config library). Additionally, it supports

applications such as OpenStack Quantum, layer-2 switch,

Generic Routing Encapsulation tunnel interface (GRE), and

tunnel abstractions. As well, as services about topology and

statistics [11].

5.6. Mul

Mul is an OpenFlow SDN controller and it uses C based

multi-threaded infrastructure at its core and it is designed to

provide good services and ensure reliability through the

network [26]. Mul supports OpenFlow 1.3.1and did not

work in our test with OpenFlow 1.3 switches such as Open

vSwitch.

5.7. Beacon

Beacon is an OpenFlow SDN controller and it uses Java

based API. Beacon has features of rapid development, fast

and dynamic performance in order to code bundle features

[27].

5.8. Special Purpose Controllers

There is a type of controllers; that operates with general

purpose controllers such as FlowVisor, and RouteFlow [21].

FlowVisor acts as a proxy between an OpenFlow switch and

multi controllers. So that it directs the first packet of a new

flow to the appropriate controller according to application,

port, MAC, or IP address. This would results in the

separation of the network or applications into slices where

each slice is controlled by a different controller [28]. It does

not support OpenFlow 1.3 yet.

RouteFlow can be considered as a network application on

top of general OpenFlow controllers. The major objective of

RouteFlow is to build up an open source framework for

virtual IP routing solution over product hardware

implementing the OpenFlow API [29].

6. Switch Software

OpenFlow switch is an important component of software

defined network, switch connects with controller and when a

packet arrives to the switch; the switch performs a number of

processes, compares the packet header with flow entries, and

identifies the actions to be implemented as illustrated in

prior sections. Mininet can support different type of switches

such as:

6.1. Open vSwitch (OVS)

Open vSwitch is a production quality open source

software switch designed to be used as a virtual switch in

large scale virtualized environments. Open vSwitch supports

many flavors of Linux operating systems such as Debian,

Ubuntu, and Fedora. Furthermore, it supports Windows and

FreeBSD operating systems [30].

Open vSwitch uses OpenFlow protocol to support the

efficient management, virtual switch configuration, and QoS

policies need to be applied across a large number of hosts.

Open vSwitch supports OpenFlow versions 1.0, 1.1, 1.2, 1.3.

As well, it supports other standard management protocols

such as SNMP or NETCONF. Additionally, Open vSwitch

provides interfaces to monitoring protocols such as sFlow

and NetFlow [31]. Open vSwitch is commonly used with

Mininet emulator for testing networks that use OpenFlow

protocol [21].

6.2. OFSoftSwitch13

OFSoftSwitch13 is an OpenFlow 1.3 compatible

user-space software switch implementation. This project is

American Journal of Software Engineering and Applications 2014; 3(6): 74-82 80

supported by Evicsson Innovation center/Brazil [21].

Mininet users can install the switch software, NOX

controller that supports OpenFlow version 1.3, and

download useful documentation to run and configure

OFSoftSwitch13 from public Github web site [32].

6.3. LINC

LINC is an open source project that supports OpenFlow

protocol versions 1.2, and 1.3. LINC is architected to use

generally available commodity, x86 hardware and runs in

various operating systems such as Linux, Windows, Mac,

etc [21]. Mininet user can install this switch software from

Github web site [33].

6.4. Indigo Virtual Switch (IVS)

Indigo project is an open source project, which supports

OpenFlow protocol on physical and hypervisor switches. It

is designed for high performance and minimal

administration and it uses the hardware feature of

Application Specific Integrated Circuit (ASICs) of Ethernet

switch to run OpenFlow at line speed [21].

Indigo Virtual Switch is a lightweight high performance

virtual switch support OpenFlow version 1.0 only. It is

designed to enable virtualization in big networks

applications as it is used with floodlight controller [34].

7. Tools

Mininet emulator can be integrated with a number of open

source tools to meet and implement the different needs of

Mininet users, such as: editors, GUI, and benchmarks, ..etc.

7.1. Editors

Mininet user can use one of the Integrated Development

Environment (IDE) supported by Mininet environment such

as Python IDLE version 2.7, Python IDLE version 3.2, GNU

Emacs editor, and Nano editor as a text editor for writing

code to build and configure the network topology.

7.2. Graphic User Interface (GUI)

There are a number of GUIs that are used to configure

network elements (controller, switches, and hosts) and

display network topology. They include many component

such as:

7.2.1. Miniedit

Miniedit is a simple Python script presented with Mininet

examples. It is used as GUI to construct network topology

and emulate it.

Miniedit was developed to add new features and

capabilities for the purpose of forming a networks, such as

the use of the remote controller and multi controllers, select

properties of the links, controller, switches, and hosts,

provide command line interface terminals for each node, use

monitoring protocols (sFlow, NetFlow), and export python

script for network topology [15].

7.2.2. Visual Network Description (VND)

Visual Network Description-SDN version is an online

GUI used to form network topology and configure node

properties, link type and properties, setup switches flow

table entries, and export network topology and its

configuration as a Python script to Mininet emulator and

OpenFlow controllers or as a C++ script to ns-3 simulator

[16].

7.2.3. Avior

Avior is a GUI used with floodlight controller. It provides

features of eliminating dependency on using Python script

and API in order to manipulate network and monitoring its

behavior [35].

Avior has flow manager tools and could give a summery

about controllers, switches, and hosts. Controllers summery

provides information about host names, JVM memory bloat

and other controllers information. Switches summery

provides information about port, counters, match header

fields, and switch flow entries (add/ delete). On the other hand,

host summery provides information about the attached switch

Data Path ID (DPID) and the switch port connect to it [21].

7.2.4. Web User Interface (UI)

It is one of the GUI used with some controllers such as

Floodlight, and OpenDaylight. It is an online GUI; where user

can access it after installing and running the controller using

the URL address (http://localhost:8080). Web UI displays

topology of network run in Mininet, network node (switches,

hosts) information such as IP, MAC, and DPID, flows outline

and add/remove switches flow tables entries,..etc.

7.3. Benchmarks

In order to test network performance, many benchmarks

could be used. The following are examples for benchmarks.

7.3.1. OFtest

It is a framework and collection of testes for validating

OpenFlow switches. OFtest provides a connection as a

controller to the OpenFlow switch and send messages to test

OpenFlow basic functionalities. It supports OpenFlow

specification versions (1.0-1.3) [21].

OFtest uses Python and Scapy as a pre-requisites, where

Scapy is a powerful interactive packet manipulation

program; used to decode packets, match requests with

replies. It also can handle tasks like scanning, and trace

routing [36].

7.3.2. OFlops

It is an OpenFlow testing platform used to focus on

OpenFlow protocol behavior by implementing basic

measurement tests that allow developers to specify and

study the capabilities of OpenFlow devices [37].

OFlops tests are used to assess performance of OpenFlow

switches in network by utilizing multi-threading parallelism

[21]. OFlops has features of modularity, low overhead with

minimum delay in processing to support parallelism, and

heterogeneity by being compatible with a number of packet

81 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Survey of Software Components to Emulate OpenFlow

Protocol as an SDN Implementation

generation and capturing tools such as Cbench and

Wireshark.

7.3.3. Cbench

It is a program for testing OpenFlow controllers by

generating packet-in messages and waits for flow-mods

messages to receive. Cbench has two emulated modes:

latency mode and throughput mode. Cbench can be used to

measure controller performance by changing its arguments

such as number of switches, number of MACs per switch

(hosts), number of tests and time of test [7]. Cbench

supports OpenFlow 1.0 only, but the Mul controller vender

Kulcloud introduced a modified version of Cbench that

supports OpenFlow 1.3 and is called Kcbench, albeit, it

worked with Mul controller only in our test.

7.4. Linux Kernel Programs

Because Mininet emulator uses Linux kernels, it supports

a number of Linux programs and commands such as Dump,

Ping, Pingall, Iperf, and plot programs like Gnuplot

program; which supports many types of plots in 2D and 3D.

The Dump command illustrates network nodes with their

interfaces connections. Ping and Pingall test network

connectivity and latency. Iperf determines bandwidth

utilization and retransmission of packets in TCP

applications. It also measures loss and jitter for UDP

applications.

7.5. Frenetic

Frenetic is a domain-specific language used to program

software defined networks [38]. It has features of high-level

abstractions. Therefore, it is useful to replace the low-level

interfaces available today. Frenetic offers a suite of

information about network state, identity, forwarding

policies, and updating policies [39].

7.6. Wireshark

Mininet supports Wireshark packet analyzer and uses it to

capture packets traverse the network nodes and analyze

these packets to study performance of the network and

obtain statistical measurements about its behavior [40].

OpenFlow messages could be displayed and studied using

Wireshark. Wireshark version 1.11 and above supports a

new filter for OpenFlow 1.3 packets.

8. Conclusions and Future Works

Many SDN protocols are available now, but employing the

OpenFlow protocol is highly recommended due to its open

source nature, rapid development, and wide deployment.

The proper use of emulation software components in

developing OpenFlow and SDN projects would save a lot of

time and money compared to practical testbeds since real

hardware devices are still expensive and support primitive

versions of OpenFlow standard only.

In this paper, we examined many software components

related to OpenFlow protocol. Most of them were

downloaded, installed, and operated successfully.

OpenDaylight, Floodlight, and OFSoftSwitch13 proved to

have good properties like good documentation and flexibility.

Observing the rapid development of OpenFlow standards

predicts that a major breakthrough is expected in version 2.0,

but for the time being the use of software components that

supports version 1.3 like NOX, OpenDaylight, and Mul is

recommended since no software component supports the new

1.4 version yet.

Most of the tested software components are standalone

components. The need for a frame that gather the installation

and operation of switches and controllers into a single

platform with a certain GUI and benchmark would facilitate

the development of OpenFlow projects. EstiNet is a good

example of such a platform. An emulation projects to test the

compatibility of OpenFlow protocol with WLAN and IPv6

deployment is under consideration by the researchers.

References

[1] M. Mendonca, B. Nunes, K. Obraczka, and T. Turletti,
"Software defined networking for heterogeneous networks,"
IEEE COMSOC MMTC E-Letter United States, vol. 8, no. 3,
pp. 36-39, May 2013.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle,
S. Stuart and A. Vahdat, "B4: experience with a
globally-deployed software defined WAN," SIGCOMM’13
Hong Kong, China, pp. 3-14, August 2013.

[3] D. Drutskoy, E. Keller, and J. Rexford, "Scalable network
virtualization in software-defined networks," IEEE Internet
Computing, vol.17, pp. 20 – 27, March-April 2013.

[4] Migration Working Group, "Migration use cases and
methods," Open Networking Foundation (ONF), February
2014.

[5] S. Wang, C. Chou, and C.Yang, " EstiNet OpenFlow network
simulator and emulator," IEEE Communications Magazine,
vol. 51, pp. 110-117, September 2013.

[6] B. Lantz, B. Heller, and N. McKeown, "A network in a
lap-top: rapid prototyping for software-defined networks," In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks New York,2010.

[7] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R.
Smeliansky, "Advanced study of SDN/OpenFlow
controllers,"CEE-SECR'13 Proceedings of the 9th Central &
Eastern European Software Engineering Conference in
Russia, November 2013.

[8] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T.
Turletti, "A survey of software-defined networking: past,
present, and future of programmable networks," IEEE
Communications Surveys & Tutorials, in press, January
2014.

[9] A. Lara, A. Kolasani, and B. Ramamurthy, "Network
innovation using OpenFlow: a survey," IEEE
Communications Surveys & Tutorials, vol. 16, pp. 493 – 512,
February 2014.

American Journal of Software Engineering and Applications 2014; 3(6): 74-82 82

[10] Open Network Foundation (ONF), "Software-defined
networking: the new norm for networks," April 2012.
Available at:
https://www.opennetworking.org/images/stories/downloads/
openflow/wp-sdn-newnorm.pdf, accessed on 23/3/2014.

[11] T. Nadeau and K. Gray, SDN: Software Defined Networks,
1st ed., O’Reilly Media, Inc., August 2013.

[12] Open Network Foundation (ONF), "OpenFlow switch
specification, version 1.4.0 (wire protocol 0x05)," October
2013. Available at:

[13] https://www.opennetworking.org/images/stories/downloads/
sdnrsources/onf-specifications/openflow/openflow-spec-v1.
4.0.pdf, accessed on 23/3/2014.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, "Openflow:
enabling innovation in campus networks," SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, March
2008.

[15] Open Networking Foundation (ONF),"Open networking
foundation," Available at https://www.opennetworking.org
/images/stories/downloads/about/onf-what-why.pdf.

[16] Tech and Trains, available at:
http://gregorygee.wordpress.com/category/miniedit/.

[17] Visual Network Description (VND), available at:
http://www.ramonfontes.com/visual-network-description/.

[18] EstiNet Technologies Inc., "The GUI user Manual for the
EstiNet 8.0 Network Simulator and Emulator", January 2013.

[19] T. Dietz, "Trema tutorial," NEC Corporation, March 2012.
Available at:
http://www.fp7-ofelia.eu/assets/Uploads/201203xx-TremaT
utorial.pdf, accessed on 23/3/2014.

[20] Z. Cai, A. Cox, T. Eugene Ng, "Maestro: balancing fairness,
latency and throughput in the OpenFlow control plane," Rice
University Technical Report TR11-07, 2011.

[21] NOX, http://www.noxrepo.org/nox/about-nox/.

[22] S. Azodolmolky, Software Defined Networking with
OpenFlow, Packt Publishing, 1st ed., October 2013.

[23] POX, http://www.noxrepo.org/pox/about-pox/.

[24] Floodlight, http://www.projectfloodlight.org/floodlight/.

[25] OpenDaylight, http://www.opendaylight.org/software/.

[26] Ryu, http://osrg.github.io/ryu/.

[27] Mul, http://sourceforge.net/projects/mul/.

[28] Beacon,
https://openflow.stanford.edu/display/Beacon/Home.

[29] FlowvisorExecise, https://github.com/onstutorial/onstutorial/
wiki/Flowvisor-Exercise.

[30] RouteFlow, https://sites.google.com/site/routeflow/.

[31] Open vSwitch, http://openvswitch.org/.

[32] A. Clemm, and R. Wolter, "network-embedded management
and applications understanding programmable networking
infrastructure," Springer New York, 2013.

[33] OpenFlow 1.3 Tutorial, available at:
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-
1.3Tutorial.

[34] LINC, https://github.com/FlowForwarding/LINC-Switch.

[35] Indigo, https://github.com/floodlight/indigo.

[36] Avior, https://github.com/Sovietaced/Avior.

[37] Scapy, http://www.secdev.org/projects/scapy/.

[38] OFLops: user manual, available at:
http://archive.openflow.org/wk/images/3/3e/Manual.pdf.

[39] Frenetic, http://www.frenetic-lang.org/overview.php.

[40] N. Foster, M. Freedman, A. Guha, R. Harrison, N. Katta, C.
Monsanto, J. Reich, M. Reitblatt, J. Rexford, C. Schlesinger,
A. Story, D. Walker, "Languages for software-defined
networks," IEEE Communications Magazine, vol. 51, pp.
128 – 134, February 2013.

[41] R. Shimonski, Analyzing and Troubleshooting Network
Traffic, Elsevier Inc., 1st ed., 2013.

