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1. Introduction

The fast user growth in wireless communications has created significant demands for new
wireless services in both the licensed and unlicensed frequency spectra1. Recent studies
show that a fixed spectrum assignment policy cannot achieve good spectrum utilization (FCC,
2005) . To address this problem, cognitive radio (CR) has been developed as a technology to
facilitate the utilization of temporally idle frequency bands (commonly known as white space
or spectrum holes) to increase the spectral efficiency.

A key component of cognitive radio is spectrum sensing. The basic tasks of spectrum
sensing are to detect the PUs and to identify available spectrum bands. Spectrum sensing
is responsible for a CR system to satisfy two fundamental requirements. First, a CR system
should be able to identify white spaces or spectrum holes to satisfy the throughput and quality
of service requests of SUs. Second, the CR system needs to ensure that any SU will not cause
harmful interference to the other users’ frequency bands.

Currently, shadowing, multi-path fading, and receiver uncertainty problems (Cabric et al.,
2004; Ghasemi & Sousa, 2005) at receivers decreased significantly the performance of spectrum
sensing. However, partial diversity of CR locations can potentially improve the accuracy of
spectrum sensing. SUs at different locations can observe different portions of the wireless
spectrum, if SUs can cooperate and share the sensing results, the collaborative decision from
the collected observations can be better than the local decision at each SU. This is why
cooperative spectrum sensing is an attractive and effective approach to overcome different
fading, shadowing, and receiver uncertainty problems (Mishra et al., 2006).

The primary idea of cooperative spectrum sensing is to improve the sensing performance by
using observations from diversely located SUs. Not only that SUs can improve their decisions
through collaboration, the sensing time can also be reduced by cooperation among SUs and
this allows each SU to have more time for data transmission over white spaces. Furthermore,
with cooperative spectrum sensing, the hardware requirement to maintain the same accurate
sensing can be reduced.

1 In the literature, the users of licensed and unlicensed frequency spectra are known as Primary User
(PU) and Secondary User (SU) respectively.
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The cooperative sensing for finding the spectrum holes starts with individual or local sensing
performed by each SU, which needs to determine the presence (H1) and absence (H0) of PU
in one frequency band. According to different hypothesis, the received signal at SU x(t) can
be modeled by (Akyildiz et al., 2009)

x(t) =

{

n(t) ,H0

h(t)× s(t) + n(t) ,H1
(1)

where h(t) denotes the channel gain of sensing channel, s(t) is the transmitted signal of PU,
and n(t) is zero mean additive white Gaussian noise. In addition, we denote the probability
of presence (H1) and absence (H0) of PU as P(H0) and P(H1) respectively. We will use three
common metrics to measure the performance of a spectrum sensing algorithm: the probability
of detection Pd, the probability of false alarm Pf , and the probability of missed detection Pf ,
which are defined by

Pd = Pr{decision = H1|H1} = Pr{Y > λ|H1},
Pf = Pr{decision = H1|H0} = Pr{Y > λ|H0},

Pm = Pr{decision = H0|H1} = 1 − Pd,

(2)

where Y is the decision statistic and λ is the decision threshold.

One important concern for the cooperative spectrum sensing design is the overhead for
exchange sensing results. This overhead directly depends on the structure of the SUs’
cooperation which can be divided into three categories: “centralized” (Unnikrishnan &
Veeravalli, 2008), “distributed” (Li et al., 2010) and “relay-assisted” (Zhang & Letaief, 2008).
In the centralized structure, the fusion center (FC) or base station (BS), which is an identified
SU to manage the communication and decision making, selects one of the channels and asks
the other SUs to send their local sensing results through the selected channel (known as the
common control channel). Then, the FC receives the SUs’ sensing results via a reporting
channel. Lastly, the FC combines the SUs’ information2 and determine the existence of a PU.

Unlike centralized approach, we do not have a FC in the distributed spectrum sensing. All
SUs communicate among themselves and make decisions by a distributed algorithm. The
distributed algorithm is applied iteratively until all SUs converge to a decision. For example,
one particular SU senses and sends its information to others. Then, the SU combines its data
with received data of others and makes a decision. If its decision does not satisfy the local
criterion, the SU must perform the following three steps iteratively until converge to a decision
that satisfies the criterion. The first step is to send combined data through the report channel.
The second step is to combine the received data with the local sensing data. And the last step
is to make a decision and validate it with the local criterion. Also, in a distributed structure,
for evaluation and comparison of the spectrum sensing algorithms, the rate and speed of
convergence and convergence guarantee are the essential metrics.

2 Based on received data of SUs, the FC can combine the information in three ways such as “soft
combining”, “quantized soft combining” and “hard combining”. If SU sends complete local sensing
data, the fusion process is classified as soft combining. If SU quantizes the local sensing information,
before sending to the FC, the fusion process is classified as quantized soft combining. For hard
combining fusion, a SU makes decision after sensing and sends one bit as its decision to the FC.
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The third type of cooperative spectrum sensing is relay-assisted. As we mentioned before,
the channels are not perfect, especially the report channel and the sensing channel. The
relay-assisted schema can improve the performance. For example, a SU can find out that
its report channel is weak and its sensing channel is strong; yet another SU can have a strong
report channel and a weak sensing channel. These two SU can complement and cooperate
with each other in a relay-assisted schema. This structure can be used in distributed or
centralized schema. Here, a SU with a strong reporting channels will help carry the sensing
information of a SU that has a weak reporting channel. In the literature, the centralized
and distributed schema are considered as one-hop cooperative sensing and relay-assisted
approach is considered as multi-hop cooperative sensing.

In this chapter, we review the recent studies about cooperative spectrum sensing in cognitive
radio. In addition, the open research challenges will be identified. The chapter goes through
the theoretical studies of the performance bounds and limits of cooperative spectrum sensing
in Section (2). In this section, we will review and compare the research for optimizing
the parameters which affect the throughput of cooperative spectrum sensing such as frame
size, sensing time, fusion rules and etc. Also, a brief review of the sensing scheduling
techniques is included in Section (2). Section (3) addresses the game theoretical approaches in
cooperative cognitive radio. In this section, two main categories of game theory applications
are described. The first category is coalitional games for formation of cooperative sets,
which are used to reduce the overhead of communication in distributed cooperative spectrum
sensing. The second category of game theoretical approach is evolutionary games which
are useful for analyzing and managing the behavior of SUs. Also, the strategy selection
for large networks will be described. Section (4) reviews the compressed sensing studies for
cooperative cognitive radio. This section contains a brief introduction about basic concepts in
the area of compressed sensing, then the usage of compressed sensing in cognitive radio will
be described. Section (5) explores the evaluation studies of cooperative sensing performance
in various types of wireless environments such as Radar, UAV, VANET, WiFi Networks.
Finally, the chapter is concluded in section (6).

2. Theoretical bounds and limits

In cognitive radio networks, the opportunities for transmission are limited. All SUs would like
to increase their chances for data transmission and save more power without causing harmful
interference. Theoretical studies for optimizing the cooperation spectrum sensing parameters,
which affect the data transmission opportunities, will help SU to improve their throughput
and decrease the energy consumption. Also, to efficiently find spectrum holes, one needs
to model the PU behavior, carefully distribute sensing tasks among SUs, and optimize the
sensing time for each SU. In following Section (2.1), the trade-off between sensing time and
throughput of system will be described. Then, in Section (2.2), dynamic spectrum sensing will
be reviewed.

2.1 Sensing vs throughput Trade-off

In the literature, a frame-based structure (or periodic) spectrum sensing is broadly studied for
cognitive radios (Fan & Jiang, 2009; Jiang et al., 2009; Liang et al., 2008; Lifeng et al., 2011).
We refer to a frame as the duration of time composed of spectrum sensing slot and data

99Collaborative Spectrum Sensing for Cognitive Radio Networks

www.intechopen.com
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transmission slot. During the spectrum sensing slot, SUs sense the spectrum to check for the
peresence of any PU using the spectrum or not. Then, during the following transmission slot,
they will initiate communication if no PU is detected. In general, the duration of sensing slot
affects the accuracy of spectrum sensing. A longer sensing slot leads to a higher probability
of detection Pd and lower probability of false alarm Pf . However, it reduces the time available
for data transmission and thus decrease the throughput of SUs. The optimal trade-off between
sensing time and the other parameters such as resource allocation3 (Fan et al., 2011), fusion
center properties (Peh et al., 2009) and cooperation time (Zhang et al., 2010) is still under
investigation.

The optimal trade-off between sensing and throughput is formulated by (Liang et al., 2008)
to maximize a SU’s throughput without affecting the quality of service (QoS) of PU. (Liang
et al., 2008) considered two scenarios. The first scenario is when SU detects an idle slot and
indeed there is no PU using the channel. In this case, the SU throughput is C0 = log2(1 +

Ps
Pn
),

where Ps and Pn are the received SU power and the noise power, respectively. The second
scenario happens when there is a detection error that a SU thinks that the slot is idle but
is actually occupied by an undetected active PU. The throughput in this case will be C1 =
log2(1 + Ps

Pp+Pn
), where Pp is the interference power due to the undetected PU. Then, they

combined the throughput of each scenario and obtained the average throughput of the SU as

R(τ, ε) = C0
T − τ

T

(

1 − Pf (τ, ε)
)

P(H0) + C1
T − τ

T

(

1 − Pd(τ, ε)
)

P(H1)

� R0(τ, ε) + R1(τ, ε),
(3)

where T, τ and ε are the frame duration and the sensing slot duration and threshold for
energy detectors, respectively. The goal of (Liang et al., 2008) is then to maximize the expected
throughput without sacrificing the QoS of PUs through varying the sensing slot duration τ.
That is,

max
τ

R(τ, ε) = R0(τ, ε) + R1(τ, ε) s.t. Pd(τ, ε) ≥ P̄d (4)

where P̄d is the target probability of detection for sufficient protection of PUs. With
assumption C0 > C1, the value of R0(τ, ε) would dominate the value of R1(τ, ε) and the
problem (4) is solved in simplified form where

max
τ

R̃(τ, ε) = R0(τ, ε) s.t. Pd(τ, ε) ≥ P̄d. (5)

The simulation result confirmed the accuracy of formulation and estimated solution. The
work of (Liang et al., 2008) was the foundation of later research on sensing throughput
trade-off.

Beside the studies about the effect of sensing time on the throughput of cognitive radio
networks, the k value of “k out o f N” fusion rule (Peh et al., 2009) and the frame size (Zhang
et al., 2008) are other important parameters in cognitive radio networks that can affect the
throughput. In (Peh et al., 2009), they extended equations (3) and (4) for general case with N

3 In resource allocation, each secondary user is assigned one channel or a portion of channel at a certain
transmission power.
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nodes4 and formulated the sensing-throughput trade-off problem to determine the optimal k
and sensing time subject to sufficient protection of PU. They achieve this by rewriting (3) as

R(τ, k, ε) = R0(τ, k, ε) + R1(τ, k, ε) (6)

= C0
T − τ

T

(

1 − P f (τ, ε)
)

P(H0) + C1
T − τ

T

(

1 − Pd(τ, ε)
)

P(H1) (7)

where

Pd(τ, k, ε) =
N

∑
i=k

(

N

i

)

Pd(τ, ε)i
(

1 − Pd(τ, ε)
)N−1

(8)

and

P f (τ, k, ε) =
N

∑
i=k

(

N

i

)

Pf (τ, ε)i
(

1 − Pf (τ, ε)
)N−1

(9)

are the corresponding detection and false alarm probabilities given τ and ǫ. Here, a slot is
considered idle only when k or more SUs cannot detect any activities during the sensing slot.

They proposed an iterative algorithm to find the maximum R(τ, k, ε) with two steps. In the
first step, it finds the optimum k∗ value for an initial given τ by exhaustively trying all possible
values in [1, N]. The second step of the algorithm uses the k∗ value of the first step and solves
equation (10) to find the optimum length of sensing slot τ

∗.

max
τ

R(τ, k, ε) s.t. Pd(τ, ε) ≥ P̄d and 0 ≤ τ ≤ T and 1 ≤ k ≤ N (10)

τ
∗ obtained in step two is used in step one again for the next iteration of the algorithm τ. These

two steps repeat alternatively until k∗ and τ
∗ converge. Their results showed that values for

k and τ are very sensitive to the level of noise. In addition, the throughput of their iterative
algorithm consistently performs better than the OR-fusion-rule and the AND-fusion-rule.

Prior research works for finding optimum sensing duration usually assumed that the
transmission power and rate are fixed and dynamic resource allocation was not considered
(Fan & Jiang, 2009; 2010; Kang et al., 2009; Liang et al., 2008). In addition, there are some
research works on wide-band spectrum sensing (Quan et al., 2008; 2009) which detect the
PU over multiple band of frequency rather than over one band at a time. These studies
have motivated the investigation on techniques of optimizing spectrum sensing and resource
allocation jointly. As an example for dynamic resource allocation application, in (Fan et al.,
2011), the authors considered a network with M frequency bands and three slots for each
frame to be responsible for sensing, reporting, and transmission. They used wide-band
spectrum sensing technique (Bletsas et al., 2010) for sensing the M channels and estimated
the average throughput for secondary user n as

Rn = (1 −
τ

T
)

M

∑
m=1

[
(

1 − P
f

m(τ, εm)
)

P(H0
m).r

0
m,n +

(

1 − Pd
m(τ, εm)

)

P(H1
m).r

1
m,n] (11)

4 N nodes include one secondary base station and N − 1 SUs, where the secondary base station acts as a
sensor node to cooperatively detect the presence of a PU.
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where r0
m,n and r1

m,n are the achievable transmission rates of SU when the channel is free and
when the channel is busy (missed detection was happened), respectively. Also, the subscript

m under parameters shows those are belong to the mth channel. They found the maximum of
Rn for all channels by changing the polyblock algorithm5. The numerical simulations show
that the result of modified polyblock algorithm is close to global maximum of Rn.

2.2 Sensing schedule

According to Section (2.1), the increase in sensing cooperation for a specific channel will
increase the probability of detection Pd and reduce the probability of false alarm Pf . Also,
as mentioned in Section (2.1), there have been some investigations for finding optimum
sensing time to reach the maximum throughput. On the other hand, long sensing duration
could decrease the overall performance. For example, some SUs can sense cooperatively to
reach higher sensing accuracy, but they will lose opportunity to exploit the other channels.
Therefore, there is a trade-off between sensing accuracy on one channel and exploring all
channels to seek opportunities for data transmission. Research works such as (Chen et al.,
2009; Fan & Jiang, 2010; Wu & Tsang, 2009) show that the dynamic spectrum sensing could
be an efficient way to seize the opportunities of transmission without sacrificing sensing
accuracy. The dynamic spectrum sensing is used where the SUs can not sense multiple
frequency bands and there is more than one PU. In this situation, if there is a schedule for
sensing different bands by one particular SU, it can give more opportunities to SUs to find
hole of spectrum and improve their average throughput.

In addition, as PUs start and stop their communications, the dynamic spectral activities
can only be partially observed by SUs because of imperfect spectrum sensing techniques.
Thus, the dynamic spectrum sensing methods used for time-varying environments need to
be able to model system with partially observed variables. Markov modeling is one of the
well-known and widely studied techniques for modeling the behavior of PUs. For example,
(Zhao, Tong, Swami & Chen, 2007) considered the optimal distribution MAC protocols for
opportunistic spectrum access in the partially observable Markov decision process (POMDP)
framework. Also, Zhao et al. investigated the structure of myopic policy in their POMDP
problem and compare it with the optimal policy (Zhao, Krishnamachari & Liu, 2007). (Zhao
& Krishnamachari, 2007) worked on similar problem and considered the imperfect sensing
performance. (Chen et al., 2009) studied the threshold structure of optimal sensing and access
policies for reducing the complexity of optimal policy searching.

Recently, (Zhang et al., 2010) worked on dynamic scheduling for cooperative sensing under
time-varying spectrum environments. They formulate the sensing schedule problem with
POMDP. They derived an optimal policy that determined which SUs must sense which
channels with what sensing accuracy. Also, they studied the solution structure for the myopic
and optimal policy under a simplified model with only two SUs analytically.

The time-domain combining spectrum sensing (TDC–SS) based on the Bayesian method
and the Neyman–Pearson theorem was proposed in (Lee & Kim, 2011). (Lee & Kim, 2011)
assumed that the state of the PU evolves according to the Markov ON–OFF process (Sung et al.,

5 The polyblock algorithm is a monotonic programming method which can solve monotonic
optimization problems. The solution of polyblock algorithm is ǫ-optimal. For more information, see
(Floudas & Pardalos, 2009)
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2006). By using Bayesian method and considering rate of the ON–OFF, the TDC–SS algorithm
sequentially updated the likelihood ratio of PU state and decided the current PU state from
Neyman–Pearson criterion. Also, the TDC–SS algorithm can adapt itself with transition rate
of PU state.

2.3 Challenges

In Section (2.1), the studies of optimal trade-off between sensing time and transmission time
are reviewed. In these studies, the report channel is assumed to be an error-free channel,
but it may not be true in practice. Optimizing the cooperative spectrum sensing parameters
with noisy reports channel is one of the research challenges in cognitive radio. It seems that
applying coding techniques on the report channel and studying its effects can be one way to
mitigate the problem of noisy report channels (Cheng et al., 2009). Also, in most prior works,
finding the theoretical bound of spectrum sensing parameters is limited to the centralized
structure. The distributed cooperative spectrum sensing needs more theoretical investigations
to optimize its key parameters such as sensing time. Comparing to one-hop structure, the
multi-hop structured systems is more difficult to analyze because of their complex structures
in contrast to one-hop systems.

3. Game theoretical approaches

In cognitive radio networks, SUs are able to sense, learn and act to optimize their throughput.
They can also cooperate with each other to improve their performance with the same or less
power consumption. In addition, the wireless environments change continuously due to the
movement of SU and/or PU, the change of background noise and the variation of users’
traffics. In traditional spectrum sensing, each change will force the network controller to
re-allocate the spectrum resources. The re-allocation of the spectrum resource through all
SUs will create a lot of communication overhead and more time for convergence.

Some studies such as (Saad et al., 2011; 2009b; Wang, Liu & Clancy, 2010; Wang, Wu & Liu,
2010) tried to use the the game theoretical techniques to tackle these challenges. By using game
theory framework in cognitive radio, the SUs and PUs behaviors can be studied and analyzed
as a game where each user can choose a strategy to maximize its own utility function. Also,
as we briefly described in Sections (2.1) and (2.2), the optimization of spectrum usage is a
multi-objective optimization problem.

There are two major approaches based on game theory to model cognitive radio systems,
there are “Evolutionary games” (bargaining games) and “Coalitional games”. The example
of evolutionary game can be seen in the work of (Wang, Liu & Clancy, 2010) who studied
the behavior of selfish SUs in cooperative and non-cooperative spectrum sensing games. The
other type of cooperative spectrum sensing, called coalitional game, was studied in (Saad
et al., 2011), where SUs self-organize into coalition groups and select coalition heads6 by a
distributed algorithm. Then, they only share their sensing information through the coalition
group. In Sections (3.1) and (3.2), the details of coalitional and evolutionary spectrum sensing
games will be described.

6 In a coalition set S, the SU with the lowest non-cooperative probability of missed detection will be
chosen as a coalition head.
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3.1 Coalition game for spectrum sensing

In the literature, the centralized approach for cooperation has been most widely studied for
cooperative spectrum sensing. In this approach, the SUs send their sensnig data, or decisions,
to a fusion center and then the fusion center will make a decision about the presence or absence
of PU and will inform the SUs. Also, it is possible to have some SUs, which are working for
different service providers, collaborate with each other without a unique centralized fusion
center. The solution using a centralized fusion center will significantly increase the complexity
and overhead when the number of SUs increases.

To tackle the problem of complexity and communication overhead, in some papers such as
(Kim & Shin, 2008; Sun et al., 2007), the idea of making clusters for cooperative spectrum
sensing was used to improve the spectrum utilization of SUs. For example, in (Sun et al.,
2007), the centralized fusion center employed clustering to reduce the error over a reporting
channel. However, it did not propose any specific algorithm for creating clusters. Further,
(Kim & Shin, 2008) focused on analyzing the performance of cooperative spectrum sensing
based on different detection algorithms with respect to geographical restriction on clustering
of the users. The research shows composing clusters and making decisions for the SUs
belonging to the same cluster will reduce the complexity of decision making and overhead
of communication.

Followed the aforementioned cluster-based cognitive spectrum sensing, (Saad et al., 2011)
recently employed game theoretical techniques for forming optimal clusters and conducting
distributed decision making. The major contribution of (Saad et al., 2011) is the derived
distributed strategy for cooperative spectrum sensing between the SUs. Also, they studied
the effect of network topology on the probability of detection Qm,S and false alarm Q f ,S for
each coalition group S, which are given by

Qm,S = ∏
i∈S

[Pm,i(1 − Pe,i) + (1 − Pm,i)Pe,i], (12)

Q f ,S = 1 − ∏
i∈S

[(1 − Pf ,i)(1 − Pe,i) + Pf ,iPe,i], (13)

where Pm,i and Pf ,i are the probability of missed detection and false alarm for each SU i in

the coalition set S, respectively. Also, Pe,i is the probability of error on the report channel7.
In (Saad et al., 2009b), based on importance of false alarm, the logarithmic barrier function
(Boyd & Vandenberghe, 2004) was used for penalizing the false alarm in the cost function.
(Saad et al., 2009b) defined the cost function C(Q f ,S, α) and the utility function v(S) by

C(Q f ,S, α) =

⎧

⎨

⎩

−α
2.log

(

1 −
(

Q f ,s

α

)2
)

, i f Q f ,S < α

+∞ , i f Q f ,S ≥ α

(14)

v(S) = Qd,S − C(Qd,S, αS) = (1 − Qm,S)− C(Qd,S, αS) (15)

7 According to distributed structure for the fusion center, the report channels are defined between the
SUs and the coalition head of same coalition set S.
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They modeled the problem as a non-transferable8 coalition game (Saad et al., 2009a), and
they applied a distributed algorithm to collaborative sensing. This distributed algorithm
has three phases: “neighborhood discovery”, “coalition group formation”, and “coalition
sensing” respectively.

In the first phase, the distributed algorithm needs to acquire the distances between neighbors,
i.e., the distance between the SU and the PU or the distances between the SUs. In addition, the
probability of missed detection and false alarm of each SU in the neighbors and the existence
of other coalitions are necessary for the coalition group formation. This type of information
can be obtained:

• directly via control channel such as Cognitive Pilot Channel (CPC) (Filo et al., 2009; Sallent
et al., 2009);

• estimated via signal processing techniques (Cardoso et al., 2008; Damljanovic, 2008;
Hossain et al., 2009);

• estimated via ad-hoc routing neighborhood discovery (Arachchige et al., 2008;
Damljanovic, 2008; Krishnamurthy et al., 2009);

• estimated via geo-location techniques (Shellhammer et al., 2009).

The second phase is the coalition group formation. This phase is a distributed iterative
algorithm based on information about the neighborhood discovery performed in the first
phase. The main operations of the second phase are merge, split, and adjust operations that
find the suitable topology of the network. The merge operation tries to group some SUs
to increase the utility function v(S). The split operation tries to separate some SUs for the
coalition group S if the splitting will increase the v(S). The coalitions decide to merge or split
if at least one of the SUs can improve its utility function without decreasing the others’ utility
function. The adjust operation excludes some SUs from coalition group S that do not affect
the v(S). All operations in the coalition group formation must repeat every period θ to adapt
the topology of the network with the dynamic changes of PUs and SUs.

The complexity of the second phase of algorithm depends on the number of merge and split
operations in each iteration. The worst case scenario for N number of SUs before finding

the suitable topology needs to ∑
N−1
i=1 i = N(N−1)

2 merge operation attempts. In practice, the
number of attempts is much less than the worst case. Also, for the split operations, the number
of possible partitions is proportional to the Bell number9, which grows exponentially with the
number of the SUs in each coalition set. However, a coalition does not need to search all
possible cases. It can find a way of splitting in the middle of a search. In addition, the number
of SUs in the coalition sets is very small; therefore, the possible splitting options are restricted.

In the last phase, coalition sensing, each SU reports its sensing bit to the coalition head about
the presence or absence of the PU through the wireless channel, and the coalition head makes

8 A coalition game is non-transferable if the value of the utility function of a coalition can not be
arbitrarily apportioned between coalition’s players (for more information see (Ray, 2007; Saad et al.,
2009a))

9 The number of ways a set of n elements can be partitioned into nonempty subsets is called a Bell
number and is denoted as Bn. For example, there are five ways the numbers {1, 2, 3} can be partitioned:
{{1}, {2}, {3}} ,{{1, 2}, {3}} ,{{1, 3}, {2}} , {{1}, {2, 3}} and {{1, 2, 3}}, so B3 = 5 and similarly B4 =
15.
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the final decision by using the decision fusion OR-rule. Clearly, the required bandwidth for
communication in each coalition set to reach the final decision is significantly less than the
common fusion center, because it needs to send a bit to each PU only through its group. Also,
this strategy has an advantage in reducing the probability of missed detection and power
consumption by sending the sensing bit of each SU to its coalition head only.

3.2 Evolutionary game for spectrum sensing

In most of the studies about cooperative spectrum sensing, a fully cooperative spectrum
sensing is considered. It means in all frames, all SUs take part in sensing and send their own
sensing results to the other SUs for fusion and make final decision about presence or absence
of PUs. According to discussions in Sections (2.1) and (2.2), sensing the PU band consumes
energy and needs certain amount of time. Depend on QoS, performance and throughput of
cognitive radio systems, a SU needs to optimize the length of sensing time in each sensing
slot. Furthermore, with the emergence of new wireless applications and networks, there may
be some SUs which are selfish and attend to take advantage of other sensing result, save their
energy and time and have more time for data transmission. Therefore, the study of dynamic
cooperative behavior of the selfish SUs in the competitive environments is essential to improve
the performance of system and fairness between the SUs.

Modeling the behaviors of SUs as an evolutionary game, where the payoff is defined as SU’s
throughput, has attracted lots of attention in the research community recently. In (Wang, Liu
& Clancy, 2010), an evolutionary game model is studied where selfish SUs tend to overhear
the others’ sensing results and contribute less to the common task. For example, the SUs
like to spent less time in sensing and more time for data transmission. (Wang, Liu & Clancy,
2010) incorporated practical multi-user effect and constraints into the spectrum sensing game.
They analyzed the strategy of updating SU’s profile using the replicator dynamics equations
(Fudenberg & Levine, 1998). They derived the evolutionary stable strategy (ESS) of game and
proved its convergence by analyzing the dynamic of SU’s behavior. Also, they proposed a
distributed learning algorithm that SUs update their strategies by exploring different actions
at each time, adaptively learning during the strategic interaction, and approaching the best
response strategy.

Similar to equation (3), they defined the average throughput function by

R(N) = RH0
(N)P(H0) + RH1

(N)P(H1) (16)

=
T − δ(N)

T
(1 − Pf )CH0

P(H0) +
T − δ(N)

T
(1 − Pd)CH1

P(H1)

where N is the number of collected samples and CH0
and CH1

are the data rate of SU under
H0 and H1 respectively. Also, δ(N) = N/ fs where fs is the frequency of sampling. They
assumed that there was only one PU and its licensed band was divided into K sub-bands.
When the PU was idle, each SU operated exclusively in one of K sub-bands. They defined a
narrow-band signaling channel for exchanging the sensing results. By this setup, some of SUs
can contribute in the sensing part, called, “C” (Contributer) and some of them can refuse to
contribute in the sensing part, in the hope that other will do it for them, called, “D” (Denier).
If no SU contributes in the sensing part, the average throughput or utility of SUs will be zero.
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(Wang, Liu & Clancy, 2010) defined payoff functions for homogeneous10 and heterogeneous11

players separately. For Homogeneous players, the payoff function was defined as

UC(J) = U0(1 −
τ

J
), i f J ∈ [1, K] (17)

and

UD(J) =

{

U0 , i f J ∈ [1, K − 1]
0 , i f J = 0

(18)

where J is the number of contributer SUs and UC and UD are the payoff for contributers and
deniers respectively. U0 denotes the throughput of a denier and τ = δ(N)/T. Here, the denier
can use all of the its time to transmit the data, but the contributer will spend τ/J of its time for
the spectrum sensing and the rest of time for the data transmission. Also, equations (17) and
(18) show that the payoff of players, who do not contribute in the sensing part, will be more
than the payoff of contributer players except no one perform the spectrum sensing.

Consider a simple heterogeneous environment with only two players “1” and “2” with
different false alams probabilities Pf ,1 and Pf ,2. We also assume that a contributing player
will spend τ of its time for spectrum sensing and 1 − τ of time for the data transmission and
a user will transmit at the data rate Ci when no PU is observed. Similar to a homogeneous
environment, at least one of the heterogeneous players has to be a contributer to avoid zero
payoff. The payoff function for the players can be easily found and is shown in Table (1).

❳
❳
❳
❳
❳
❳
❳
❳
❳

player 1
player 2

Contributing Denying

Contributing
C1P(H0)(1 − Pf )(1 −

τ

2 ), C1P(H0)(1 − Pf ,1)(1 − τ),
C2P(H0)(1 − Pf )(1 −

τ

2 ) C2P(H0)(1 − Pf ,1)

Denying
C1P(H0)(1 − Pf ,2), 0,0

C2P(H0)(1 − Pf ,2)(1 − τ)

Table 1. Payoff table for heterogeneous players

(Wang, Liu & Clancy, 2010) derived the replicator dynamic equations (Fudenberg & Levine,
1998) and found an ESS for this problem. In addition, they proposed a distributed learning
algorithm for ESS and showed its convergence by computer simulations.

3.3 Challenges

As we discussed in Section (3.1), the rate of changes in the environment can affect the
performance of coalition group formation. To avoid performance reduction, the operations in
coalition group formation should not be repeated periodically to adapt the dynamic changes
of networks. How to tune the length of period and how to learn it based on the changes
of environment are some of meaningful research challenges. A potential direction is to
use modeling techniques to analyze environmental changes so as to reduce the overhead of
periodic coalition group formation.

10 The individual players with identical data rate and received primary SNR and the same set of pure
strategies will be called homogeneous players.

11 Two players are heterogeneous if they do not have the identical set of parameters (data rates, received
primary, the set of strategies, etc.).
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4. Compressed sensing

Wide-band spectrum sensing is essential for efficient dynamic spectrum sharing in cognitive
radio networks. The wider the range of shared spectral resources the higher the cognitive
network capacity. However, this gain comes at the cost of increasing the complexity of
network spectral resource management at several levels. In particular, the cost of spectrum
sensing is proportional to the range of the sensible spectrum.

While cooperative techniques are used to relax the complexity constraints of wide-band
spectrum sensing, this relaxation is not sufficient or effective in large-scale cognitive radio
networks. In such networks, the range of shared spectrum and/or the number of cooperative
nodes can be too large rendering high cost of sensing data acquisition unit and wide
bandwidth for control channel to exchange sensing information among cooperative nodes.

Compressed sampling is one solution used to address scalability problems in signal
processing by reducing the cost of acquisition at the sensor (Donoho, 2006; Polo et al., 2009;
Romberg, n.d.). Using compressive sensing framework, it is possible to recover the sampled
signals on a probabilistic basis from a few number of measurements, which are less than the
number imposed by the Nyquist rate for band-limited signals. However, successful signal
recovery is conditioned by two factors: signal sparsity and incoherency (Candès & Wakin,
2008; Donoho, 2006). Signal sparsity means that the rate of information to be captured from
the acquired signal is small relatively compared to the signal dimension. In spectrum sensing
applications, this condition implies that the occupancy of the spectrum should be relatively
small compared to the complete range of the spectrum, i.e., the sensed spectrum is sparse. The
incoherency condition means that representation domain of the signal should be incoherent
with the sampling domain. This condition is satisfied in spectrum sensing applications since
the representation domain of the signal is the frequency domain while the sampling domain
is the time domain. The time domain is incoherent with the frequency domain as sudden
changes in one of these domains spreads out in the other one.

Motivated by the fact that the wireless spectrum in rural areas is highly underutilized, i.e.,
sparse (Rysavy, 2009), recent studies have examined the application of these compressive
techniques in spectrum sensing (Bazerque & Giannakis, 2010; Candès et al., 2006; Laska
et al., 2011; Liang et al., 2010; Tian, 2008; Tian & Giannakis, 2007; Zeng et al., 2010). The
research efforts attempt to exploit the efficiency of compressive sensing technique to reduce
the cooperation overhead or sampling complexity in cooperative spectrum sensing.

The compressive sensing framework is comprised of two stages: signal sampling and signal
recovery. The compressive sensing requires a random access to the sensed signal samples
or a linear combination of them. There are several signal sampling systems that have been
proposed in literature for that purpose such as the Random Demodulator (Tropp et al., 2010), the
Modulated Wide-band Converter (Mishali & Eldar, 2010) and the Analog to Information Converter
(Kirolos et al., 2006). Also, a frequency selective filter has been recently suggested as means
of obtaining linear combinations of multiple channel information at the sensing circuit (Meng
et al., 2011).

In addition to the signal sampling systems, several signal recovery technique based on
compressive samples have been proposed in literature. They can be grouped into two
main categories: based on solving linear convex optimization problem such as Basis Pursuit

108 Foundation of Cognitive Radio Systems

www.intechopen.com



Collaborative Spectrum Sensing for Cognitive Radio Networks 13

technique (BP) (Chen et al., 1999) and greedy algorithms such as Matching Pursuit (MP) (Mallat
& Zhang, 1993) and Orthogonal Matching Pursuit (OMP) (Tropp & Gilbert, 2007).

Orthogonal matching pursuit technique is proposed in a distributive spectrum sensing
framework when the received signals among cooperative nodes are highly correlated (Liang
et al., 2010). In (Tian, 2008; Zeng et al., 2010), a distributive compressive sensing technique
based on BP signal recovery technique is presented. The dissemination of sensing information
in this distributive technique enforces consensus among local spectral estimates and shown to
converge with reasonable computational cost and power overhead. The lowest SNR at which
the collaborative compressed sensing in (Zeng et al., 2010) can perform with is probability
of detection around 90% and compression ratio of 50% is approximately 5 dB. However, this
sensing technique assumes identical spectral observations among cooperative nodes. This
can be a limiting factor for deploying it in large scale networks where the observed spectrum
might vary among widely scattered cooperative nodes.

Using similar signal recovery technique, (Bazerque & Giannakis, 2010) has proposed a
cooperative compressive sensing technique that exploits two forms of signal sparsity, i.e. in
the frequency domain and spatial domain. The sparsity in the frequency domain is a result
of the narrow-band nature of transmitted signal compared to the overall range of shared
spectrum. The second form of sparsity emerges from scattered active primary users’ radios
that co-exist with the cooperative cognitive radio. The join spectral-spatial analysis featured
in this technique allows it to be used in large-scale networks since it takes into consideration
the variation of spectral observation due to spatial diversity among cooperative nodes.

The work of (Meng et al., 2011) has addressed the sensing problem in small and large scale
networks jointly using compressive sensing techniques. As a result, two spectrum recovery
approaches were proposed. The first one is based on matrix completion and the second
spectrum recovery approach is based on joint sparsity recovery. The matrix completion
approach is appropriate for small scale cooperative networks as it recovers the channel
occupancy information from a small number of cooperative sensing. The joint sparsity
approach, on the other hand, scales better to large networks because it skips recovering the
reports and directly reconstructs channel occupancy information by exploiting the fact that
each occupied channel is observable by multiple cooperative sensing nodes.

4.1 Challenges

A number of challenges arise from using compressive sensing techniques for spectrum
sensing in general, and in cooperative sensing in particular. One challenge resulted from
sensing densely occupied spectrum where spectrum sparsity condition does not hold.
Furthermore, cognitive radio networks attempt to utilize the available spectral resources in
sparse spectrum through dynamic spectrum access. This can negatively impact the efficiency
of compressive sensing techniques as it increases the occupancy (reduces sparsity) of the
sensed spectrum (Laska et al., 2011). Sensing dense spectrum using compressive sensing
technique is still an open problem. However, (Zhang et al., 2011) have addressed this problem
by proposing a detection mechanism of compressive sensing failure due to sparsity reduction.
This is achieved by modeling the compressed spectrum reconstruction as a Gaussian process
so that the correlation of model parameters can be exploited to detect the failure of compressed
reconstruction due to non-sparse spectrum.
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Sensing heterogeneous sets of active radios poses another challenge because the detection
thresholds for each one might be different. Hence, the ability to classify signals using
compressive samples can be useful in this context and there are a number of recent studies
that have addressed this matter (Davenport et al., 2010). Also, certain signal features can be
exploited to distinguish between legitimate signals and spurious interference from adjacent
cognitive radios. In (Zeng et al., 2010), the orthogonality between the spectrum of primary
users and that of cognitive radio users was utilized as a constraint for consensus optimization
during distributed collaborative sensing.

Another intriguing direction for future research is shadowing effects in cooperative
compressive sensing techniques. (Tian & Giannakis, 2007) suggested complementing the
distance-only dependent propagation functions used in the compressive sensing design with
non-parametric models that can be learned from the data (Mateos et al., 2009).

5. Applications

The characteristics of the wireless environment have considerable impacts on the design
and development of cooperative sensing. Among these characteristics are the mobility of
sensing nodes, the spatial density, power and bandwidth of the co-existing wireless networks.
The literature has reported several performance evaluation studies of cooperative sensing in
various types of wireless environments such as Radar (Wang et al., 2008), UAV (Gu et al.,
2006), VANET (Wang & Ho, 2010), WiFi Networks (You et al., 2011), Relaying-based network
(Roshid et al., 2010), Positioning Services in ad-hoc Networks (Gellersen et al., 2010), Small
scale wireless devices (Min et al., 2011).

5.1 Radar

Cooperative sensing is used to enable sharing different parts of the spectrum with various
types of primary user networks. S-band radar spectrum features great spectral opportunities
for band sharing compared with those at the TV spectrum frequencies (Research, 2005;
SYSTEM, 2006). Studies have examined the feasibility of using cooperative sensing for
managing the coexistence between radar and other communication systems. One study
has concluded that sharing the radar band with another communication system is feasible
on the basis of causing “acceptable interference” to the radar. Acceptable interference is
determined by calculating the safe regions where radar and communication systems can
coexist without causing unacceptable interference to the radar systems. Priori knowledge
about the radar systems, such as swept radar rotation rate and main beam to side-lobe ratio,
and the radar system maximum interference-to-noise ratio (INR) threshold, can assist in
determining the borders of the safe region. It turns out that the number of cooperative nodes,
their channel correlation levels, channel conditions and the detection probability threshold
have considerable impact on the cooperation gain obtained in such wireless environments
(Wang et al., 2008). Therefore sensing node grouping strategies are needed in order to
maximize the cooperative gain with minimum number of sensors.

5.2 UAV

High mobility in wireless environments imposes considerable challenges for cooperative
sensing. Unmanned Air Vehicle networks and Vehicular ad-hoc Network are examples of
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such wireless environments. Cooperative sensing using unmanned aerial vehicles (UAVs)
is a fundamental element in combat intelligence, surveillance, and reconnaissance (ISR) to
estimate the position and velocity of the ground moving target (GMT). In (Gu et al., 2006), the
performance of cooperation sensing among a set of pulse Doppler radar sensors mounted on
a group of UAVs is studied. Specifically, the number and geometry of sensor distributions
impact on the quality of the position and velocity estimates is analyzed. The quality
of the estimation is characterized by its statistical variance and the theoretical minimum
variance is derived based on Cramer-Rao bounds. However, the complexity of such analysis
increases as more types of sensor measurements are involved. In such application and
wireless environment, various type of measurements are obtained; namely: azimuth, range
and range rate measurements. One common assumption to maintain the tractability of the
mathematical analysis is the variance is identical for each measurement type at each UAV. In
case that this assumption is not held, numerical methods are used instead for estimation error
minimizations (Gu et al., 2006). Also, it was found that optimizing the configuration of the
UAV team is essential for efficient “ground moving target identification” (GMTI) and “moving

surface target engagement” (MSTE) operations in ISR systems. One possible representation of
the optimal geometrical set up can be defined by the bearing angle formed by each UAV and
the GMT (Gu et al., 2006).

5.3 VANET

Another type of highly mobile wireless environment is VANET networks. The accuracy and
efficiency of spectrum sensing is essential to maintain reliable information exchange and
data transmission between nearby On-Board Units (OBUs) and Roadside Units (RSUs) for
applications such as route planning, traffic management, as well as other wireless Internet
service in the unlicensed spectrum resources (Wang & Ho, 2010). One fundamental challenge
of cooperative sensing in such networks is the sparsity and variability of spatial density of
vehicles equipped with CR technologies. Another challenge is the heterogeneity of primary
user signals. Nevertheless, cooperative sensing is used in such environments to resolve
some problems that can-not be mitigated by individual sensing such as coordination and
fairness among nodes for efficient resource utilization. In this context, a sensing coordination
node is introduced to establish an adaptive sensing coordination framework (Wang & Ho,
2010) that combines the advantages of both stand alone and cooperative sensing between
CR-VANETs. Rather than having complete control of spectrum sensing and access, the
coordinating nodes assist and coordinate the VANETs for efficient spectral utilization and
minimal communication interruptions. This framework relies on some priori knowledge such
as feature carriers, channel spacing of frequency bands, proactive fast sensing information, as
well as user-based class information, to perform intelligent channel selection of spectrum.

5.4 WiFi

Recent explosive data increase (mostly due to smart phones) for wireless internet access
results in a spectrum shortage and increasing demand for additional spectrum to support
the dramatic increase in data traffic on WiFi networks. One good solution for the spectrum
shortage is to use the underutilized TV spectrum based on Cognitive radio techniques.
Cooperative sensing is proposed in WiFi networks coordinate the coexistence between WiFi
and wireless devices in TV spectrum (You et al., 2011). The study has analyzed the
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performance “k out o f N” rule for cooperative sensing in WiFi networks (You et al., 2011).
The performance of sensing is controlled by sensing time and number of sensors. Both
factors are optimized to maximize data transmission throughput and minimize detection error
respectively.

5.5 Integration of cooperative communication and cooperative sensing

Cooperation strategies are not limited to spectrum sensing application. Other form of
cooperation appears in wireless communication such as relaying. An interesting extension
of cooperative strategies is to integrate cooperative sensing and cooperative communication
in wireless networks with relaying support. This integration was suggested in (Roshid et al.,
2010). Cooperative communication is performed through relaying with different resource
allocation strategies (power allocation for relaying PU traffic and bandwidth allocation for
relaying CR traffic). Such integration of cooperation strategies necessitates an efficient
spectrum management system e.g., spectrum broker in centralized systems and multi-agent
and cognitive pilot channels (CPC) in distributed systems (Roshid et al., 2010). However,
there is no clear description to this date on how the integration can be done. Also, another
open problem is the signaling that enables a joint cooperation of communication and sensing
that can impact the architecture of current networks leading to higher transmission capacity
and transparent coexistence among heterogeneous set of wireless networks.

5.6 Positioning

Cooperative sensing technique is also applied for positioning application in
ad-hoc wireless networks. Unlike most infrastructure based positioning systems
that are based on heterogeneous architecture (fixed/reference and mobile nodes),
cooperative-relative-positioning systems relies on a homogeneous set of nodes that can
measure the relative distance between each pair of nodes. Performing cooperative positioning
in such network setup pertains the following challenges: additional measurements such as
angle measurements may be required, scalable coordination and synchronization system that
can operate in ad-hoc environment, and increasing computational load on sensing node due
to the absence of a centralized entity at which most computational load can be outsourced.
The communication among cooperative nodes is performed in time division multiple access
basis. Each node broadcasts to the rest of nodes its measurements along with the received
measurements from other nodes. Synchronous distributed jam signaling (SDJS) for data
fusion on the physical layer is used to manage a systematic measurement error removal by
estimating statistical measurement parameters from a coordinated transmission of jamming
signals.

5.7 Small scale primary user

As more wireless standards continues to evolve to fulfill the requirements of the new wireless
services, the coexistence among heterogeneous set of wireless networks becomes a critical
challenge. This is particularly true when heterogeneity is not only a result of difference
in the waveform but also in the coverage range. For example, the WiFi network coverage
is around 20-30m in 2.4 GHz while Bluetooth coverage in that portion of the spectrum is
around 5 m (for Bluetooth class 3). Another example is the digital TV signal (DTV) signal
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and wireless microphone signals. Most of the cooperative sensing research has focused on
detecting large scale networks. However, detecting small scale networks bears additional
challenges due to the unpredictability of their transmission schedule and high mobility profile
i.e., highly dynamic temporal and spatial transmission pattern. In such cases, the knowledge
of the transmitter location is more critical than in the case for detecting large scale networks.
Recent studies have examined the problems of detecting small-scale networks. One solution
is to use a disabling beacon additional information such as the signature/authentication and
geo-location of the small scale transmitter as is the case for wireless microphones in the 802.22
Task Group 1 (TG 1) proposal (Lei & Chin, 2008). More recently, a solution proposed in (Min
et al., 2011) identifies the optimal range of sensing fusion in cooperative sensing strategies so
that the average detection delay is minimized for a given sensing performance requirements.
This solution, however, is sensitive to power and location estimation errors. Hence, a join
power-location estimation technique (DeLOC) is proposed (Min et al., 2011) to minimize the
estimation errors and improve the overall detection performance with optimal fusion range.

Limited work has been done in this area, further improvements can be made in the
performance of detection by incorporating further communication layers in addition to the
MAC layer (Min et al., 2011). Also, the fusion of different sensing measurements such as time,
location, orientation and wireless signal power using different types of sensors can further
improve the detection performance.

6. Conclusion

In this chapter, we reviewed the recent studies about cooperative spectrum sensing in
cognitive radio and identified the research challenges and unsolved issues. The chapter
introduced some basic concepts of cooperative spectrum sensing and reviewed theoretical
studies of known bounds and limits. Then, we surveyed the game theoretical approaches in
cooperative cognitive radio briefly. The chapter followed by reviewing compressed sensing
studies for cooperative cognitive radio. In the end, we explored the application of cooperative
spectrum sensing in various types of wireless environments such as Radar, UAV, VANET, WiFi
Networks and etc.
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