IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

1113

SAT-Based Counterexample-Guided
Abstraction Refinement

Edmund M. Clarke, Member, IEEE, Anubhav Gupta, and Ofer Strichman

Abstract—We describe new techniques for model checking in
the counterexample-guided abstraction-refinement framework.
The abstraction phase ‘“hides” the logic of various variables, hence
considering them as inputs. This type of abstraction may lead to
“spurious” counterexamples, i.e., traces that cannot be simulated
on the original (concrete) machine. We check whether a coun-
terexample is real or spurious with a satisfiability (SAT) checker.
We then use a combination of (-1 integer linear programming
and machine learning techniques for refining the abstraction
based on the counterexample. The process is repeated until either
a real counterexample is found or the property is verified. We
have implemented these techniques on top of the model checker
NuSMYV and the SAT solver Chaff. Experimental results prove the
viability of these new techniques.

Index Terms—Abstraction, model checking, satisfiability (SAT).

I. INTRODUCTION

HILE state-of-the-art model checkers can verify circuits

with several hundred latches, many industrial circuits are
at least an order of magnitude larger. Various conservative ab-
straction techniques can be used to bridge this gap. Such ab-
straction techniques preserve all the behaviors of the concrete
system but may introduce behaviors that are not present origi-
nally. Thus, if a universal property (i.e., an ACTL* property) is
true in the abstract system, it will also be true in the concrete
system. On the other hand, if a universal property is false in
the abstract system, it may still be true in the concrete system.
In this case, none of the behaviors that violate the property in
the abstract system can be reproduced in the concrete system.
Counterexamples corresponding to these behaviors are said to
be spurious. When such a counterexample is found, the abstrac-
tion can be refined in order to eliminate the spurious behavior.
This process is repeated until either a real counterexample is
found or the abstract system satisfies the property. In the latter
case, we know that the concrete system satisfies the property as
well, since the abstraction is conservative.

Manuscript received April 14, 2003; revised August 27, 2003 and November
10, 2003. This work was supported in part by the Semiconductor Research Cor-
poration (SRC) under Contract 99-TJ-684, by the National Science Foundation
(NSF) under Grant CCR-9803774, by the Office of Naval Research (ONR), and
by the Naval Research Laboratory (NRL) under Contract N00014-01-1-0796.
The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of SRC, NSF, ONR, NRL, the U.S. government, or any other
entity. This paper was recommended by Associate Editor C.-J. R. Shi.

E. M. Clarke and A. Gupta are with Carnegie Mellon University, Pittsburgh,
PA 15213 USA (e-mail: emc@cs.cmu.edu; anubhav@cs.cmu.edu).

O. Strichman is with the Technion, Haifa 32000, Israel (e-mail:
ofers@ie.technion.ac.il).

Digital Object Identifier 10.1109/TCAD.2004.829807

There are many known techniques, some automatic and some
manual, for generating the initial abstraction and for abstraction
refinement (for example, see Rushby’s suggested architecture
for using information derived from a model checker to refine
predicate abstractions within a theorem prover [1]). The auto-
matic techniques are more relevant to this paper because our
method is fully automatic. Our methodology is based on an iter-
ative abstraction-refinement process. Abstraction is performed
by selecting a set of latches or variables and making them invis-
ible, i.e., they are treated as inputs. In each iteration, we check
whether the abstract system satisfies the specification with a
standard ordered binary decision diagrams (OBDD)-based sym-
bolic model checker. If a counterexample is reported by the
model checker, we try to simulate it on the concrete system
with a fast Boolean satisfiability (SAT) solver. In other words,
we generate and solve a SAT instance that is satisfiable if and
only if the counterexample is real. If the instance is not satis-
fiable, we look for the failure state, which is the last state in
the longest prefix of the counterexample that is still satisfiable.
Note that this process cannot be performed with a standard cir-
cuit simulator, because the abstract counterexample does not in-
clude values for all inputs.

We use the failure state in order to refine the abstraction. The
abstract system has transitions from the failure state that do not
exist in the concrete system. We eliminate these transitions by
refining the abstraction, i.e., by making some variables visible
that were previously invisible. The problem of selecting a small
set of variables to make visible is one of the main issues that
we address in this paper. It is important to find a small set in
order to keep the size of the abstract state space manageable.
This problem can be reduced to a problem of separating two
sets of states (abstraction unites concrete states, and therefore
refining an abstraction is the opposite operation, i.e., separation
of states). For realistic systems, generating these sets is not fea-
sible, both explicitly and symbolically. Moreover, the minimum
separation problem is known to be NP-hard [2]. We combine
directed sampling with integer linear programming (ILP) and
machine learning techniques to handle this problem. By directed
sampling we mean that rather than choosing samples randomly,
we guide the search for samples in a way that guarantees a full
separation of the states sets without explicitly computing them.

The rest of the paper is organized as follows. In the next
section, we survey related work and also discuss the main
differences between this paper and an early version of it that
we published in [3]. In Section III, we briefly give the technical
background of abstraction and refinement in model checking.
In Section IV, we describe our counterexample-guided abstrac-
tion-refinement framework. We elaborate in that section on

0278-0070/04$20.00 © 2004 IEEE

1114

how the counterexample is being checked and how we refine
the abstraction. We also describe refinement as a learning
problem. In Sections V and VI, we elaborate on our separa-
tion techniques and on alternative objective functions. These
techniques are combined with the directed sampling technique,
which is described in Section VII. We give experimental results
in Section VIII, which prove the viability of our methods
compared to a state-of-the-art model checker (Cadence SMV
[4]). We conclude in Section IX.

II. RELATED WORK

The closest work to the current one that we are aware of is
described in Lu’s thesis [5] and is more briefly summarized in
[2]. Like the current work, they also use an automatic iterative
abstraction-refinement procedure that is guided by the counter-
example, and they also try to eliminate the counterexample by
solving the state-separation problem. But there are three main
differences between the two methods. First, their abstraction is
based on replacing predicates of the program with new input
variables, while our abstraction is performed by making some
of the variables invisible (thus, we hide the entire logic that de-
fines these variables). As we will later show, the advantage of
this approach is that computing a minimal abstraction function
becomes easy. Secondly, checking whether the counterexample
is real or spurious was performed in their work symbolically,
using OBDDs. We do this stage with a SAT solver, which for this
particular task is extremely efficient (due to the large number
of solutions to the SAT instance). Thirdly, they derive the re-
finement symbolically. Since finding the coarsest refinement is
NP-hard, they present a polynomial procedure that, in general,
computes a suboptimal solution. For some well-defined cases
the same procedure computes the optimal refinement. We, on
the other hand, tackle this complexity by considering only sam-
ples of the states sets, which we compute explicitly. In order to
maintain optimality while still only checking samples, we sug-
gest a method for guiding the sampling process in a way that
allows us to efficiently compute an optimal refinement, as if we
sample the entire set of states.

The work of Das et al. [6] should also be mentioned in this
context, since it is very similar to [2], the main difference being
the refinement algorithm. Rather than computing the refinement
by analyzing the abstract failure state, they combine a theorem
prover with a greedy algorithm that finds a small set of previ-
ously abstracted predicates that eliminate the counterexample.
They add this set of predicates as a new constraint to the abstract
model.

Previous work on abstraction by making variables invisible
(this technique was used under different names in the past) in-
cludes the localization reduction of Kurshan [7] and others (see,
for example [8] and [9]). The localization reduction follows
the typical abstraction-refinement iterative process. It starts by
making all but the property variables invisible. When a spurious
counterexample is identified, it refines the system by making
more variables visible. The variables made visible are selected
according to the variable dependency graph and information that
is derived from the counterexample. The candidates in the next
refinement step are those invisible variables that are adjacent

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

on the variable dependency graph to currently visible variables.
Choosing among these variables is done by extracting infor-
mation from the counterexample. Another relevant work is de-
scribed by Wang et al. in [10]. They use three-valued simulation
to simulate the counterexample on the concrete model and iden-
tify the invisible variables whose values in the concrete model
conflict with the counterexample. Variables are chosen from this
set of invisible variables by various ranking heuristics. For ex-
ample, like localization, they prefer variables that are close to
the currently visible variables in the variable dependency graph.

More recent research by Chauhan et al. [11] follows very sim-
ilar lines to ours. Like our approach, they also look for the failing
state with a SAT solver. But rather than analyzing the failing
state, they derive information from the SAT solver that explains
why the spurious counterexample cannot be simulated beyond
this state on the concrete machine. More specifically, they build
an unsatisfiability proof by joining conflict graphs in the SAT
solver and make visible all the variables from the failing state
that correspond to vertices in this graph. As a second step, they
try to minimize this set by gradually making some of these vari-
ables invisible again and check whether this makes the instance
satisfiable. The success of the second phase depends on the (ar-
bitrarily chosen) order in which they remove the variables.

This approach has both advantages and disadvantages com-
pared to ours. The main advantage is that their refinement step
consists of solving one SAT instance and analyzing the proof of
unsatisfiability of this instance. We, on the other hand, look for
an optimal solution and therefore solve an optimality problem
that can potentially take more time. By doing so, we hope to
make the model checking step faster. In general, there is less
arbitrariness in our procedure compared to theirs. In practice,
it is hard to compare the two methods because of this arbitrari-
ness. For example, it is possible that due to two equally good
refinements that the two tools perform, the next counterexample
that they need to analyze is different (the counterexamples that
model checkers produce are chosen arbitrarily from an expo-
nential number of options) and hence changes the results of the
overall procedure. For this reason, it is possible that their tool
occasionally finds smaller abstract models compared to ours.
We will refer to this point further when describing our experi-
mental results.

With this technique, they were able to outperform in most
cases an early version of the current research that was published
in [3]. For the current paper, we added several improvements
that enable us now to perform better than [11] in some of the
harder cases and comparable in the easier instances, as we
report in Section VIII. The two main improvements are the
following. First, rather than minimizing the number of latches
that we choose to make visible, we now minimize the number
of inputs to the abstract model. Since existentially quantifying
out inputs is a major bottleneck in model-checking, this change
made a significant improvement in our results. We describe
this improvement in Section V-B. Second, we improved the
directed sampling scheme that was occasionally a bottleneck
in our system. We define a criterion for being a “good sample”
in the sense that such samples lead to faster convergence of
this stage, as we describe in Section VII-B. Both of these
improvements require solving a SAT instance with some

CLARKE et al.: SAT-BASED COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

optimality criterion. We chose a pseudo-Boolean solver (PBS)
[12] as an optimization engine, because it is very efficient in
solving the type of instances we consider, as we will explain
in Section VIIIL.

III. ABSTRACTION IN MODEL CHECKING

We start with a brief description of the use of abstraction in
model checking (for more details refer to [13]). Consider a pro-
gram with a set of variables V' = {z1,...,2,}, where each
variable z; ranges over a nonempty domain D..,. Each state s
of the program assigns values to the variables in V. The set of
all possible states for the program is S = Dy, X --- X Dy, .
The program is modeled by a transition system M = (S, I, R)
where

S set of states;

ICS
RCSxS

We use the notation I(s) to denote the fact that a state s is in
I, and we write R(s1, s9) if the transition between the states s1
and s» is in R.

An abstraction function h for the system is given by a surjec-
tion h : S — S, which maps a concrete state in .S to an abstract
state in S. Given a concrete state s; € S, we denote by h(s;)
the abstract state to which it is mapped by h. Accordingly, we
denote by h~1(3) the set of states s such that h(s) = 3.

Definition 1: The minimal abstract transition system M =
(8,1, R) corresponding to a transition system M = (5,1, R)
and an abstraction function A is defined as follows:

1) S ={3|3s.s € SAhA(s) = §}.

2) I ={3]3s.I(s) A h(s) = 5}

3) R = {(§17 §2) | 381. 382. 1%(817 82) A h(Sl) = <§1 A

h(SQ) = <§2}

Intuitively, minimality means that M can start in state h(s) if
and only if M can startin state s, and M can transition from h(s)
to h(s') if and only if M can transition from s to s’. We refer the
reader to [14] for a detailed discussion of optimal abstractions
in model checking.

For simplicity, we restrict our discussion to model checking
of AGp formulas, where p is a nontemporal propositional for-
mula. The theory can be extended to handle any safety prop-
erty because such formulas have counterexamples that are finite
paths.

Definition 2: A propositional formula p respects an abstrac-
tion function h if forall s € S, h(s) Ep = s = p.

The essence of conservative abstraction is the following
preservation theorem [13], which is stated without proof.

Theorem 1: Let M be an abstraction of M corresponding to
the abstraction function h and p be a propositional formula that
respects h. Then, M = AGp = M = AGp.

The converse of the above theorem is not true, however. Even
if the abstract model invalidates the specification, the concrete
model may still satisfy the specification. In this case, the ab-
stract counterexample generated by the model checker is spu-
rious, i.e., it does not correspond to a concrete path. The ab-
straction function is too coarse to validate the specification, and
we need to refine it.

set of initial states;
set of transitions.

1115

Definition 3: Given a transition system M = (S, 1, R) and
an abstraction function h, A’ is a refinement of h if
1) for all s1,s2 € S,h'(s1) = h/(s2) implies h(s1) =
h(SQ);
2) there exists s1,s2 € S such that h(s;1) = h(s2) and

W(s1) # B (s2).

IV. ABSTRACTION REFINEMENT

Based on the above definitions, we now describe our coun-
terexample-guided abstraction-refinement procedure. Given
a transition system M and a safety property ¢, we have the
following.

1) Generate an initial abstraction function h.

2) Model check M. If M = ¢, then M = . Return TRUE.

3) If M £ ¢, check the counterexample on the concrete
model. If the counterexample is real, M [~ . Return
FALSE.

4) Refine h, and go to step 2).

The above procedure is complete for finite-state systems. Since
each refinement step partitions at least one abstract state, the
number of loop iterations is bounded by the number of concrete
states. In the next subsections, we explain in more detail how
we perform each step.

A. Defining an Abstraction Function

We partition the set of variables V' into two sets: the set of
visible variables which we denote by V and the set of invisible
variables which we denote by Z. Intuitively, }V corresponds to
the part of the system that is currently believed to be impor-
tant for verifying the property. The abstraction function h ab-
stracts out the irrelevant details, namely the invisible variables.
The initial abstraction in step 1) and the refinement in step 4)
correspond to different partitions of the set of variables. As an
initial abstraction, V) includes the variables in the property ¢. In
each refinement step, we move variables from 7 to V), as we will
explain in Section IV-D.

More formally, let s(z),z € V denote the value of variable
x in a state s. Given a set of variables U = {u1,...,u,},U C
V, sV denotes the portion of s that corresponds to the variables
inU,ie., sY = (s(u1)...s(up)). Let V = {v1,...,v;}. The
partitioning of the set of variables into visible and invisible de-
fines our abstraction function h : S — S. The set of abstract
states is S = D,,, x --- x D,, and the abstraction function is

simply h(s) = s".

B. Computing the Minimal Abstraction

For an arbitrary system M and abstraction function h, it is
often too expensive or impossible to construct the minimal ab-
straction M [13]. However, our abstraction function allows us
to compute M efficiently for systems where the transition rela-
tion R is inA a functional form, e.g., sequential circuits. For these
systems, M can be computed directly from the program text
by removing the logic that defines the invisible variables and
treating them as inputs. We prove that this operation results in a
minimal abstraction.

Theorem 2: The circuit obtained by replacing invisible vari-
ables with nondeterministic values represents a minimal ab-

1116

straction of the original circuit, corresponding to the abstraction
function h(s) = sV.

Proof: The proof is based on the observation that we can
quantify out the next state copy of the invisible variables if the
transition relation is in functional form, because in that case the
value of each next state variable does not depend on other next
state variables.

Consider a sequential circuit with latches {z1,...,%,}

and inputs {i1,...,%,}. We use the standard nota-
tion z’ to denote the next- state version of z. Let
s=(x1,...,2p),8 = (21,...,2),) and i = (41, ...,44). The

transition relation R for the 01rcu1t can be expressed as
n
/ - !/ -
R(373>:37’ /\$j:f$j<s7l)
1

where fx]. is the functional definition of xs By definition, the
minimal abstract transition relation R for the circuit is given by

R(3,8) = 3s3s'(R(s,s") Ah(s) = § A(s') = §).

Substituting expressions for R and the abstraction function h,
and splitting s and s’ into visible and invisible parts yields

R(3,8)=3sY3s73s'V3s' 7 3i

N @=foi (s

zj €V

/\ @ —fmJ vv Ii)

x; €T

We can eliminate the quantification over the visible variables
using the rule: Ja(f(a) A a = b) = f(b). Thus, we get

Since the left conjunct does not depend on 5%

quantification over 5’7 inside, which gives us

, we can push the

R(3,8)=3s"3i | N &)= fa,(5.57,0)

= fu;(8,57,1)

The quantification over s’Z evaluates to TRUE because fx,; does
not depend on zs Thus, the expression simplifies to

A/_
/\‘”j—

z; eV

R(3,8) = 3s%3i
Now we are left with existential quantification over the primary
inputs and the invisible variables. This proves that the minimal
abstract transition system corresponding to our abstraction can
be derived syntactically from the original system by replacing
the invisible variables with inputs. [|

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

C. Checking the Counterexample

For safety properties, the counterexample generated by the
model checker is a path ($1, 8o, ... 8,,). The set of concrete
paths that corresponds to this counterexample is given by

m—1
Ym = <513m A /\ R(S,L'7S,L'+1)
i=1
} ey

/\/\h =

According to Section IV-A, h(s;) is simply a projection of s;
to the visible variables. The right-most conjunct is therefore a
restriction of the visible variables in step ¢ to their values in the
counterexample.

The counterexample is spurious if and only if the set v, is
empty. We check for that by solving 1),,, with a SAT solver. This
formula is very similar in structure to the formulas that arise in
bounded model checking (BMC) [15]. However, v, is easier to
solve because the path is restricted to the counterexample. Most
model checkers treat inputs as latches, and therefore the coun-
terexample includes assignments to inputs. While simulating the
counterexample, we also restrict the values of the (original) in-
puts that are part of the definition (lie on the right-hand side) of
the visible variables to the value assigned to them by the coun-
terexample, which further simplifies the formula.

If a satisfying assignment is found, we know that the coun-
terexample corresponds to a concrete path, which means that
we found a real bug. Otherwise, we try to look for the “failure”
index f, i.e., the maximal index f, f < m, such that) is sat-
isfiable. Given f, ($1,...8¢) is the longest prefix of the coun-
terexample that corresponds to a concrete path. Our implemen-
tation performs a binary search over the range 1...m in order
to find the highest value f such that 1) is satisfiable. Thus, the
number of SAT instances we solve is bounded by log m.

D. Refining the Abstraction

As in Section IV-C, let f denote the failure index. Let D de-
note the set of all states d; such that there exists some (d; ... dy)
in . We call D the set of deadend states. Intuitively, D denotes
the set of reachable concrete states corresponding to the abstract
failure state. By definition, there is no concrete transition from
D to }L_1(§f+1).

Since there is an abstract transition from 3¢ to 5.1, there is
a nonempty set of transitions ¢ from h=1(35) to h=1(8541)
that agree with the counterexample. The set of transitions ¢ is
defined as follows:

dr = {(sf,s7+1) | R(s¢,57+1)
Ah(sg) =38 ANh(spe1) =812} (2)

Given the definition of h, ¢ ¢ represents all concrete paths from
step f to step f 41, where the visible variables in these steps are
restricted to their values in the counterexample. Let B denote
the set of all states by such that there exists some (by,bs11) in
¢¢. We call B the set of bad states (see Fig. 1). Intuitively, B is
the set of concrete states corresponding to the failure state that
have a transition to a concrete state in the next abstract state of
the trace.

The counterexample exists because there is an abstract tran-
sition from s ¢ to s¢; that does not correspond to any concrete

CLARKE et al.: SAT-BASED COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

1117

Abstract O

Trace /

O

[

Ll

Concrete
Trace

Fig. 1.

transition. The transition exists because the deadend and bad
states lie in the same abstract state. This suggests a mechanism
to refine the abstraction. The abstraction A is refined to a new
abstraction A’ such that Vd € D,Vb € B (h'(d) # h'(b)). The
new abstraction puts the deadend and bad states into separate
abstract states and therefore eliminates the spurious transition
from the abstract system.

E. Refinement by Separation and Learning

In the following definition, let S = {s1...s,,} and T =
{t1...t,} be two sets of states (binary vectors) representing
assignments to a set of variables .

Definition 4 (Separation of States With Sets of Variables): A
set of variables U = {uy ... uy},U C W separates S from T
if for each pair of states (s;,t;),s; € S,¢; € T, there exists a
variable u, € U such that s;(u,) # t;(u,).

Definition 5 (State Separation Problem): Given two sets of
states S and 7', as defined above, find a minimal set of variables
U={uy...ux}, U C W that separates S from 7.

This definition is compatible with the intuitive definition
given in [2].

Now, let D; and By denote the restriction of D and B, re-
spectively, to their invisible parts, i.e., D = {s’|s € D} and
Br = {s!|s € B}.Let H € T be a set of variables that sepa-
rates Dy from Bj. The refinement is obtained by adding H to
V. Minimality of H is not crucial, rather it is a matter of effi-
ciency. Smaller sets of visible variables make it easier to model
check the abstract system, but can also be harder to find. In fact,
it has been shown that computing the minimal separating set is
NP-hard [2]. In Section V-B, we will show that in fact there is
a better minimality criterion than simply the number of added
variables to V.

Lemma 1: The new abstraction function 2’ puts D and B in
different abstract states in the abstract system.

Proof: Letd € D and b € B. The refined abstraction
function A’ corresponds to the visible set ' = V U H. Since
H separates Dy and By, there exists a u € H s.t. d(u) # b(u).
Thus, for some v € V', d(u) # b(u). By definition, h'(d) =
(d(uy) ...d(ug))and h'(b) = (b(uq) ... b(ug)),u; € V'. Thus,
K (d) # h'(b). [|

The naive way of separating the set of deadend states D from
the set of bad states B would be to generate and separate D and
B either explicitly or symbolically. Unfortunately, for systems
of realistic size, this is usually not possible. For all but the sim-
plest examples, the number of states in D and B is too large
to enumerate explicitly. For systems with moderate complexity,
these sets can be computed symbolically with OBDDs. Experi-
ence shows, however, that there are many systems for which this
is not possible [2]. Moreover, even if it were possible to generate

=0

}Dead
end o
Bad —

Spurious counterexample corresponds to a concrete path that “breaks” in the failing state. Failing state unites concrete “deadend” and “bad” states.

Min Zgl Vi
subject to: (Vs € Sp,) (Vt € Sg,) Z v; > 1
1<i<|Z,
s(vi)#t(vq)

Fig. 2. State separation with ILP.
D and B, it would still be computationally expensive to identify
the separating variables.

Instead, we select samples from D and B and try to infer the
separating variables for the entire sets from these samples. Naive
sampling results in loss of data and, hence, loss of optimality.
We will show in Section VII how a guided sampling scheme
avoids the loss of optimality.

The idea of learning from samples has been studied ex-
tensively in the machine learning literature, and a number of
learning models and algorithms have been proposed [16]. In the
next section, we describe one of these algorithms and propose
several techniques of our own for separating sets of samples
of deadend and bad states, which we denote by Sp, and Spg,,
respectively.

V. SEPARATION AS AN ILP PROBLEM
A. Basic 0-1 ILP Formulation

A formulation of the problem of separating Sp, from Sg, as
a 0-1 ILP problem is depicted in Fig. 2.

The value of each Boolean variable vy ...v|z in the ILP
problem is interpreted as v; = 1 if and only if v; is in the
separating set. Every constraint corresponds to a pair of states
(s:,t;), stating that at least one of the variables that separates
(distinguishes) between the two states should be selected. Thus,
there are |Sp,| x |Sp,| constraints.

Example 1: Consider the following two pairs of states:

S1 = (0/ 17071) ty = (1/ 17171)
52 = (1, 17 170) to = (070707 1)

Let v; correspond to the ¢th component of a state. Then, the
corresponding ILP is

4
Min Z v;
i=1
subject to:
vy +wv3 > 1 // Separating s; from ¢;
V2 Z 1
vy > 1 /] Separating s, from ¢

// Separating s; from ¢,

vy + vy +v3+vy >1 // Separating s, from to.

1118

i 31
Subject to:

1.Vs€ Sp,. Vt € Sg,.

1<,

s(vi)#t(v;)

2.V1 <i <|Z]. Yv; € Fanln(v;).

Fig. 3.

The optimal value of the objective function in this case is 3,
corresponding to one of the two optimal solutions (v, v2,vy)
and (1}3, V2, ’U4).

B. Changing the Objective

The criterion of the minimum number of latches that sepa-
rate a given set of samples is not necessarily the optimal one
for faster model checking. Through experiments, we discov-
ered that minimizing the number of added inputs to the abstract
model predicts far better the complexity of model checking (one
of the expensive stages in model checking is removing the quan-
tifiers over all inputs). Let In denote the set of primary inputs.
In order to find the set of separating variables that minimizes
the number of inputs in the resulting abstract model, we de-
rive a mapping Z — (27YI") from each invisible variable to
the set of variables in its (first-layer) fan-in that are not yet in
the model. Let FlanIn(v) denote this set for a variable v, and
let F = Ule=|1 FanlIn(v;). With ILP, we can now encode each
variable v € 7 with a new Boolean variable and add a constraint
stating that if v is true, than so are all the variables in FanIn(v).
Minimizing over the sum of inputs gives us the desired result.
In Fig. 3, we give a 0-1 ILP formulation of this problem.

Example 2: Continuing Example 1, suppose that we derive
the following mapping of invisible variables to variables in their
Fanln:

vy — {i1,43} vy — {i1,i5}
vy — {7,2} Vg — {i37i4}.
The corresponding ILP is (here, we write the new set of con-

straints as propositional formulas rather than inequalities, for
clarity)

5
Min) i;
i=1

subject to:

...... // same constraints as in Example 1
— 11 A 13
— 11 N 15
— 2'2

Vg — 2'3/\2'4.

There are three possible satisfying assignments to the con-
straints that appeared in Example 1: {v1, v, v4}, {v3,v2,v4},

and {v1, v, v3,v4}. Only the first option minimizes the number
of inputs to four.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

Z v; > 1

v; —v; >0 // Same as v; — v;

0-1 ILP formulation of the state separation problem, where the objective is to minimize the number of inputs in the abstract model.

In all our experiments, minimizing over the number of in-
puts turned out to be more efficient than simply minimizing the
number of latches. In some cases, it enabled us to solve instances
that we could not solve with the previous method in the given
time and memory bounds.

VI. SEPARATION USING DECISION TREE LEARNING

The ILP-based separation algorithm outputs the minimal
separating set. Since ILP is NP complete, we also experi-
mented with a polynomial approximation based on decision
trees learning (DTL). In this section, we formulate the basic
separation problem as DTL (we could not find a natural way
to formulate the objective function of Section V-B with this
model). This technique is polynomial both in the number of
variables and the number of samples, but does not necessarily
give optimal results.

Learning with decision trees is one of the most widely used
and practical methods for approximating discrete-valued func-
tions. A DTL algorithm inputs a set of examples and outputs a
tree, where each node represents a subset of the input examples.
An example is described by a set of attributes and the corre-
sponding classification. The algorithm generates a decision tree
that classifies the examples. Each internal node in the tree spec-
ifies a test on some attribute, and each branch descending from
that node corresponds to one of the possible values for that at-
tribute. Each leaf in the tree corresponds to a classification.

Data is classified by a decision tree by starting at the root
node of the decision tree, testing the attribute specified by this
node, and then moving down the tree branch corresponding to
the value of the attribute. The process is repeated for the subtree
rooted at the branch until one of the leafs is reached, which is
labeled with the classification.

The problem of separating Sp, from Sp, can be formulated
as a DTL problem as follows:

* the attributes correspond to the invisible variables;

* the classifications are +1 and —1, corresponding to Sp,
and Sp,, respectively;

* the examples are Sp, labeled +1, and S, labeled —1.

We generate a decision tree for this problem. From this tree,
we extract all the variables present at the internal nodes. These
variables constitute the separating set.

Lemma 2: The above algorithm outputs a separating set for
S D and S B;-

Proof: Letd € Sp, and b € Sp,. The decision tree will
classify d as +1 and b as —1. So, there exists a node n in the
decision tree, labeled with a variable v, such that d(v) # b(v).
By construction, v lies in the output set.]

1

CLARKE et al.: SAT-BASED COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

Example 3: Going back to Example 1, the corresponding
DTL problem has four attributes (v1, v, v3,v4) and, as always,
two classifications (+1, —1). The set of examples F contains
the following elements:

((0,1,0,1),+41) ((1,1,1,1),-1)
((1717170)7+1> ((0707071) _1>'

The tree appearing in Fig. 4 corresponds to the separating set
(’Ul, v, ’U4).

A number of algorithms [16] have been developed for
learning decision trees, e.g., ID3 [17] and C4.5 [18]. All these
algorithms essentially perform a simple top-down greedy search
through the space of possible decision trees. We implemented
a simplified version of the ID3 algorithm, which is described
in Fig. 5 [16]. At each recursion, the algorithm has to pick an
attribute to test at the root. We need a measure of the quality
of an attribute. We start with defining a quantity called entropy
[16], which is a commonly used notion in information theory.

Definition 6: Given a set S containing nq positive examples
and ng negative examples, the entropy of S is given by

Entropy(S) = —pe logs pe — pe logs pe
where ps, = (ng)/(ne + ne) and ps = (ng)/(ne + ne).

Intuitively, entropy characterizes the variety in a set of exam-
ples. The maximum value for entropy is one, which corresponds
to a collection that has an equal number of positive and nega-
tive examples. The minimum value of entropy is zero, which
corresponds to a collection with only positive or only negative
examples. We can now define the quality of an attribute A by the
reduction in entropy on partitioning the examples using A. This
measure, called the information gain [16], is defined as follows.

Definition 7: The information gain of an attribute A with
respect to a set of samples E is calculated as follows:

Gain(E, A) = Entropy(E) — (|Ep|/|E|) - Entropy(FEo)

— (|E1|/|E]) - Entropy(E)
where Fy and F/; are the subsets of examples having the values
zero and one, respectively, for attribute A.

The BestAttribute (Examples, Attributes) procedure re-
turns the attribute A € Attributes that has the highest
Gain(Examples, A). Its complexity is O(|Examples]
|Attributes|), where |X| is the number of elements in the
set X.

Example 4: We illustrate the working of our algorithm with
an example. Continuing with our previous example, we calcu-

late the gains for the attributes at the top node of the decision
tree.

Entropy(E) = —(2/4) log,(2/4) — (2/4) log,(2/4) = 1.00
Gain(F,v,) =1 — (2/4) - Entropy(E,, o)
—(2/4) - Entropy(,, =1) = 0.00
Gain(F,vy) =1 — (1/4) - Entropy(E,,—0)
— (3/4) - Entropy(y,=1) = 0.31
Gain(E,v3) =1 — (2/4) - Entropy(E,,—o)
— (2/4) - Entropy(y,=1) = 0.00
Gain(E,v4) =1 — (1/4) - Entropy(E,,=0)
— (3/4) - Entropy(,,=1) = 0.31.
The DecTree algorithm will pick v or vy to label the Root.

1119

-1 +1] | +1 -1

Fig. 4. Decision tree for Example 3.

VII. DIRECTED SAMPLING OF STATES

Sampling Dy and Bj does not have to be arbitrary. As we
now show, it is possible to direct the search to samples that con-
tain more information than others. Let §(Dy, Br) denote the
minimal separating set for Dy and By. Finding 6(Dy, Br) by
explicitly computing Dy and By and separating them is com-
putationally too expensive, because both the size of these sets
and the optimal separation techniques are worst case exponen-
tial. We therefore look for samples Sp, and Sp, that are small
enough to compute and separate, and on the other hand, main-
tain 6(Sp,,Sp,) = 6(Dr, Br). Finding these sets is what we
refer to as directed sampling.

A. Algorithm Sample-and-Separate

We suggest an iterative algorithm for directed sampling. Let
SepSet denote the current separating set. Initially, SepSet = 0.
Our algorithm iteratively adds or replaces elements in SepSet
until it becomes a separating set for Dy and Bj. In each step
1 > 0, the algorithm finds samples that are not separable by
SepSet that was computed in the previous iteration. Computing
a new pair of deadend and bad states that are not separable by
SepSet can be done by solving ®(SepSet), as

d(SepSet) = 15 A P’ A /\
v;eSepSet

v; = v (3)

where 1)+ and ¢ ; are the formulas representing the deadend and
bad states as defined in (1) and (2). The prime symbol over ¢ ¢
denotes the fact that we replace each variable v € ¢ ¢ with anew
variable v’ (note that otherwise, by definition, the conjunction
of ¢ with ¢ is unsatisfiable). The right-most conjunct in the
above formula guarantees that the new samples of deadend and
bad states are not separable by the currently existing separating
set.

Algorithm Sample-and-Separate, described in Fig. 6, uses
formula (3) to compute the minimal separating set of D and By
without explicitly computing or separating them. In each step ,
it solves (3). If the formula is satisfiable, it derives from the solu-
tion the samples d; € Dy and b; € By (these are simply the as-
signments to the variables in 1y and ¢';, respectively), which by
definition are not separable by the current separating set SepSet.
It then recomputes SepSet for the union of sets that were com-
puted up to the current iteration. By repeating this process until
no such samples exist, it guarantees that the resulting separating
set separates D from Bj. Note that the size of SepSet can ei-
ther increase or stay unchanged in each iteration.

The algorithm in Fig. 6 finds a single solution to ®(SepSet)
and hence a single pair of states d; and b;. However, the size

1120

DecTree(Examples, Attributes)

. Create a Root node for the tree.

6. return Root.

Fig. 5. DTL algorithm.

SepSet = ;
1=0;

repeat forever {

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

If all examples are classified the same, return Root with this classification.

Let A = BestAttribute(Examples, Attributes). Label Root with attribute A.

. For i € {0, 1}, let Ezamples; be the subset of Examples having value i for A.

. For i € {0,1}, add an i branch to the Root pointing to subtree generated by
Dectree(Examples;, Attributes — {A}).

I1f &(SepSet) is satisfiable, derive d; and b; from solution;

else exit;

SepSet:(S(Uj.zo{dj}, U;:O{bj}) //Separating all deadend from

t=1+1; }

all bad states seen so far;

Fig. 6. Algorithm Sample-and-Separate implements directed sampling by iteratively searching for states that are not separable by the current separating set.

Fig.7. Deadend states, where gray squares denote variables that separate the state from its bad state counterpart. Selecting samples with a smaller set of separating
variables leads to faster convergence when looking for sets of variables that separate all pairs of samples.

of each sample can be larger. Larger samples may reduce the
number of iterations but also require more time to derive and
separate. The optimal number of new samples in each iteration
depends on various factors, like the efficiency of the SAT solver,
the separation technique, and the examined model. Our imple-
mentation lets the user control this process by adjusting two pa-
rameters: the number of samples generated in each iteration and
the maximum number of iterations.

B. Bottleneck: Ordering of Samples

Although algorithm Sample-and-Separate enables us to com-
pletely separate the two sets of states in most cases, we found
that in some large examples it can become a bottleneck. This
problem is at least partially a consequence of the arbitrariness
of selecting an optimal solution when there are multiple equally
good possibilities. For example, in the biggest circuit we ex-
perimented with (which has 5000 latches), typically there are
more than 1000 latches that can independently separate a spe-
cific sample of deadend and bad states (d;, b;). Our optimization
engine selects one of these latches arbitrarily, say v;. Then, a
new pair of states (d}, b}) is sampled, and, again, more than 1000
options exist to separate the sets ({d;, d; }, {b;, b} }) with a single
variable. If any one of these options was selected in the first iter-
ation rather than vy, it would have ruled out the sample (d, b).
Fig. 7 illuminates the general problem. It shows five deadend
states, where each square represents a variable. Grayed squares

denote variables that individually separate each state from its
bad state counterpart (i.e., the bad state that was sampled in the
same iteration of the algorithm).

The set {vs,v10}, for example, is sufficient for separating
Sp, -..Sp, from their counterpart bad states Sp, ... Sg, . Sup-
pose that these five states constitute Dy, the full set of deadend
states. Our goal is to find a small set of variables that eliminates
all of them, while sampling the least number of states. Two pos-
sible scenarios are, reading from left to right:

* (SDys20); (Spy,017); (S, 012); (SDs s v3);

* (Spy:v14); (Sps, v6);
where each pair represents a deadend state and the variable that
is selected to separate it from its corresponding bad state. In the
second option, the selection of v14 eliminates all states except
Sp,, hence the faster convergence. It is quite straightforward
to see that giving priority to samples with a minimum number
of separating variables improves the probability for fast conver-
gence. For example, in the case of Fig. 7, choosing Sp, first
guarantees the elimination of Sp, regardless of the separating
variable that is selected. But the converse is not true. Choosing
Sp, first gives us only a probability of (3/17) to guess a vari-
able that eliminates Sp, .

Selecting, in each iteration, the sample that has the minimum
number of separating variables, corresponds to finding a satis-
fying assignment to ®(SepSet) of (3) that minimizes the number
of pairs (v;, v}) that are evaluated differently. This problem can

CLARKE et al.: SAT-BASED COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

1121

Circuit||SMV Samp, ILP Samp, DTL|| Eff, DTL Eff, Opt
Time ||Time|S L Time|S |L ||Time|S |L ||Time|S |[L
1U30 ||0.7 0.1 |0 1 0.1 |0 |1 |j0.1 [0 |1 |[0.14 |0 |1
U35 ||0.6 0.1 |0 1 01 (0 |1 (0.1 [0 |1 (0.1 [0 |1
1U40 ||1.2 6.3 |3 4 09 |5 [6 ||06 |2 |3 ||0.59|1 |3
1U45 ||37.5 ||6.1 |3 4 1.1 |5 |6 (0.7 |2 [3 |[0.85 |1 |3
IU50 [|23.3 |{19.7 {13 |14 ||9.8 |13 |14 {|24.0 |4 |17 ||4.02 |2 |9
1U55 |- - - - 207216 [9 [|13.0 |1 |6 ||0.37 (0 |1
1U60 |- 7.8 |4 7 7.8 (4 |7 |45 |1 |6 |0.48 |0 |1
1U65 |- 79 |4 7 79 |14 |7 ||3.8 |1 [5 ||0.51]0 |1
7 |- 81 |4 7 8.2 |4 |7 ||3.8 |1 |5 ||047]0 |1
IU75 ||102.9 [{32.0 |9 10 |j24.5 |13 |14 ||24.1 |2 |7 |[0.32 |0 |1
1U80 |603.7 [|31.7 |9 10 |{44.0 |13 |14 |[24.1 |2 |7 |}0.37 |0 |1
1U85 {12832 |[33.1 |9 10 ||44.6 {13 |14 [|25.2 |2 |7 ||0.36 [0 |1
1U90 |- 33.0 |9 10 ||44.6 |13 |14 ||25.4 (2 |7 [|0.35 |0 |1
Avg. 4123.2||783.5|>5.6(>7.1{{174.3|7.2|8.8(|10.7 |1.5|5.8/(0.7 [0.3[1.9
Fig. 8. Model checking results for property 1. Timeout was set to 10000 s and is included in the average results appearing in the last line.
Circuit{|SMV Samp, ILP Samp, DTL Eff, DTL Depen. [6] Eff, Opt
Time ||Time |S L Time |S L Time |S L time[S |L |[time [S |L
1U30 ||7.3 8.0 3 20 7.5 3 20 6.5 3 20 1.9 |4 (20 |[5.56 (3 |20
IU35 ||19.1 ||11.8 |4 21 127 |4 21 11.0 |4 21 10.4|5 (21 [[22.58 |4 |21
1U40 ||53.6 |[25.9 |6 23 19.0 |5 22 16.1 |5 22 13.3(6 (22 |133.78 [5 |22
1U45 ||226.1 [|28.3 |5 22 253 |5 22 22.1 |5 22 25 |6 |22 ||38.9 |5 |22
IUS0 ||1754 |{160.4 |13 32 85.1 |10 27 15120 |7 31 32.8|6 |22 |[|57.39 |5 |22
1U55 |- - - - - - - - - - 61.914 |20 |[58.94|3 |20
1U60 ||- - - - - - - - - - 65.514 (20 ([76.74 |3 |20
1U65 |- - - - - - - - - - 67.5/4 (20 [|79.99 |3 |20
70 |- - - - - - - - - - 71414 |20 |/69.39(3 |20
175 |- 1080 |21 38 586.7 (16 33 130.5 |5 26 15.7|5 (21 |[22.59 |4 |21
1U80 |- 1136 |21 38 552.5 |16 33 153.4 |5 26 21.1|15 |21 [|25.61 |4 (21
U85 |- 1162 |21 38 581.2 (16 33 167.7 |5 26 24.6|5 (21 ([27.5 |4 |21
IU9% |- 965 |20 37 583.3 |16 33 167.1 |5 26 24.3|5 |21 |[|27.96 |4 |21
Avg. 6312.3|3429.0|>12.7|>29.9||3265.6|>10.1|>27.1{|4291.9|>4.9|>24.4||133.5 |4.8/20.8||42.1 |3.8|20.8

Fig. 9. Model checking results for property 2. Timeout was set to 10000 s and is included in the average results appearing in the last line.

be easily formulated as an 0-1 ILP problem, or, as we will ex-
plain in the next section, as a pseudo-Boolean constraint (PBC)
problem [12].

Due to the better ordering of samples, in some of the big ex-
amples we witnessed a decrease of two orders of magnitude in
the number of iterations that are required for convergence of the
sampling algorithm.

VIII. EXPERIMENTAL RESULTS

We implemented our framework inside NuSMV [19]. We use
NuSMYV as a front end, for parsing SMV files and for gener-
ating abstractions. However, for actual model checking, we use
Cadence SMV [4], which implements techniques like cone-of-
influence reduction, cut-points, etc. We implemented a variant
of the ID3 [17] algorithm to generate decision trees. We use
Chaff [20] as our SAT solver. Some modifications were made to
Chaff to efficiently generate multiple state samples in a single
run.

To solve our 0-1 integer linear programs, we experimented
with both the mixed ILP tool LP-Solve [21] and the PBC solver
PBS [12]. Every 0-1 ILP problem can be modeled as a PBC
problem. A PBC is a linear constraint over Boolean variables,
e.g., 2b; + 3by < C where C is an integer. Solving a 0-1 ILP

minimality problem with PBC can be done by gradually de-
creasing a constant on the right-hand side of the objective func-
tion. While PBC can be flattened to propositional formulas, such
an expansion is exponential. PBS, rather than performing this
expansion, is built in the spirit of a standard Davis—Putnam SAT
solver with special Boolean constraint propagation (BCP) rules
for satisfying PBCs. For example, in the example above, if a par-
tial assignment is by = 1 and C' = 3, it deduces that b must be
equal to zero. PBS accepts as input a CNF formula and a list of
PBCs, one of which can be defined as an objective function. The
formulation of our ILP problems, as described in Figs. 2 and 3,
require solving constraints of the form > v; > 1 orv; — vj > 0,
which can be easily transformed to standard CNF clauses. PBS
is therefore particularly suitable for these kinds of problems. We
tuned PBS for our instances by forcing it to split first on vari-
ables in the objective function, and try first the value O for these
variables since it is a minimality problem. This strategy turned
out to be far superior to standard dynamic orderings.

Our experiments were performed on the “IU” family of
circuits, which are various abstractions of an interface control
circuit from SUN’s Pico-Java processor, that we got from
Synopsys. We also experimented with several other circuits
from various other sources, as we report in Fig. 10. All exper-
iments were performed on a 1.5-GHz Dual Athlon machine
with 3-GB RAM and running Linux. No precomputed variable
ordering files were used in the experiments.

1122

Depen. [6] Eff. Opt
Design|Length|Time |S L Time |[S |L
M9 |TRUE [|10.2 |2 38 29 |1 |38
M6 TRUE ||44.3 |4 50 188 |4 |50
M16 |TRUE [[1162 |61 35 44.7 |13 |34
M17 |TRUE |- - - 733 |8 (39
D6 20 917 |46 89 1773 |43 |92
IUpl |TRUE ||3350 (13 19 - 9 |41
Avg. 2580.6(>25.2|>46.2(|2095.4|11.3[49.0

Fig. 10. Results for various large hardware designs, comparing our techniques
with [6].

The results for the “IU” family are presented in Figs. 8 and
9. The two tables correspond to two different properties. We
compared the following techniques: 1) “SMV”’: Cadence SMV;
2) “Samp, ILP”: Random sampling, separation using LP-solve,
50 samples per refinement iteration; 3) “Samp, DTL”: Random
sampling, separation using DTL, 50 samples per refinement
iteration; 4) “Eff, DTL”: Directed sampling, separation using
DTL; and 5) “Eff, Opt”: Directed sampling with the opti-
mization described in Section VII-B, minimizing the number
of inputs rather than the number of latches as described in
Section V-B, and solving the optimization problems with PBS.
After a large set of experiments, which we do not list here, we
concluded that the combination of these three optimizations is
dominant over any subset of them, both for the results in this
table and the tables in Figs. 9 and 10. For the results in Fig. 9,
we added the results of [11] (they did not report their results
for the circuits in the first table).

For each run, we measured the total running time in seconds
(“Time”), the number of refinement steps (“‘S”), and the number
of latches in the final abstraction (“L”). The original number of
latches in each circuit in indicated in its name. A “—" indicates
run-time longer than 10 000 s.

The experiments indicate that our technique expedites stan-
dard model checking in terms of execution time. As predicted,
the number of iterations is generally reduced when either ILP
or directed sampling is applied. These results are improved fur-
ther with the “Opt” configuration as described above and are
comparable to [11]. Our procedure, as expected, constructs ei-
ther an equal or smaller abstract model compared to them (as
indicated by the number of latches chosen). The method de-
scribed in [11] also tries to reduce the number of latches by at-
tempting to remove one latch at a time and checking whether
the spurious counterexample can be simulated on the reduced
abstract model. If the answer is no, they remove the latch. This
technique does not guarantee a minimal abstract model and de-
pends on the order in which the latches are examined. In the set
of benchmarks we describe here, their method was quite suc-
cessful though, as it achieved minimality or near minimality in
most cases. In this set of examples, our minimality technique did
not translate, in general, to faster run times compared to them
because the model checking phase was not a bottleneck in either
systems. We believe that the small advantage that they have in

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

some cases is related to the fact that unlike their implementa-
tion, we do not currently use an incremental SAT solver to find
the failure state. We refer the reader to the Section I, where we
explained in more detail the difference between the two methods
and why it is hard to compare between them.

Comparing the various configurations of our tool, it is ap-
parent that in most cases the reduction in the number of re-
quired latches translates to a reduction in the total execution
time. There were cases (see, e.g., circuit /U50 in Fig. 9), how-
ever, in which smaller sets of separating variables resulted in
longer execution time. Such “noise” in the experimental results
is typical to OBDD based techniques.

We also tried another set of examples, as summarized in
Fig. 10.! For this set of examples, we replaced Cadence-SMV
with the model checker used by [11] to check the abstract
models. This model checker is built on top of NuSMV 2 and
has several optimizations that Cadence-SMV does not have,
like a very efficient mechanism for early quantification, as
described in [22] and [23] (for the smaller examples described
in the first two tables, changing the model checker did not
make any notable difference).

Here, we can see that our method performs better in four cases
and worse in two. As explained in Section II, we attribute the
smaller number of latches that they find in the last two cases to
the arbitrariness of the counterexamples that are generated by
the model checker.

IX. CONCLUSION

We have presented an automatic counterexample guided
abstraction-refinement algorithm that wuses SAT, ILP,
pseudo-Boolean constraint solving, and techniques from
machine learning. Our algorithm outperforms standard model
checking, both in terms of execution time and memory require-
ments. Our refinement technique is very general and can be
extended to a large variety of systems. For example, following
our earlier publication of this method in [3], directed sampling
was adopted to model checking of software with predicate
abstraction, as reported in [24].

REFERENCES

[1] J. Rushby. Integrated formal verification: Using model checking with
automated abstraction, invariant generation, and theorem proving.
presented at Theoretical and Practical Aspects of SPIN Model
Checking: Proc. 5th and 6th Int. SPIN Workshops. [Online]. Available:
citeseer.nj.nec.com/rushby99integrated.html

[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Proc. 12th Int. Conf. Computer-Aided
Verification (CAV’00), vol. 1855, E. Emerson and A. Sistla, Eds. New
York, 2000.

[3] E. Clarke, A. Gupta, J. Kukula, and O. Strichman, “SAT based abstrac-
tion-refinement using ILP and machine learning techniques,” in Proc.
14th Int. Conf. Computer-Aided Verification (CAV’02), vol. 2404, E.
Brinksma and K. Larsen, Eds, Copenhagen, Denmark, July 2002, pp.
265-279.

Unfortunately, we could not compare many other circuits because the model
checker used by [11] is unstable.

CLARKE et al.: SAT-BASED COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT

(4]
[5]

[6

—_

(71

[8

—_

[9

—

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. McMillan, Cadence SMV, CA: Cadence Berkeley Labs.

Y. Lu, “Automatic abstraction in model checking,” M.S. dissertation,
Carnegie Mellon Univ., Pittsburgh, PA, 2000.

S. Das and D. L. Dill, “Successive approximation of abstract transition
relations,” in Proc. 16th Annu. IEEE Symp. Logic Comput. Sci., 2001,
Boston, MA, June 2001.

R. Kurshan, Computer Aided Verification of Coordinating Pro-
cesses. Princeton, NJ: Princeton Univ. Press, 1994.

F. Balarin and A. Sangiovanni-Vinventelli, “An iterative approach to lan-
guage containment,” in Proc. 5th Int. Conf. Computer-Aided Verification
(CAV’94), vol. 697, C. Courcoubetis, Ed.. New York, 1993, pp. 29-40.
J. Lind-Nielsen and H. Andersan, “Stepwise CTL model checking of
state/event systems,” in Proc. 11th Int. Conf. Computer-Aided Verifica-
tion (CAV’99), vol. 1633, N. Halbwachs and D. Peled, Eds. New York,
1999, pp. 316-327.

D. Wang, P--H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano,
“Formal property verification by abstraction-refinement with formal,
simulation, and hybrid engines,” in Proc. Design Automation Conf. 2001
(DAC’01), 2001.

P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang, “Au-
tomated abstraction refinement for model checking large state spaces
using SAT based conflict analysis,” in Fourth Int. Conf. Formal Methods
in Computer-Aided Design (FMCAD’02), Portland, OR, Nov. 2002.

F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “PBS: A back-
track-search psuedo-Boolean solver and optimizer,” in Fifth Int. Symp.
Theory Applicat. Satisfiability Testing (SAT), 2002.

E. Clarke, O. Grumberg, and D. Long, “Model checking and abstrac-
tion,” in ACM Trans. Prog. Lang. Syst., vol. 16, 1994, pp. 1512-1542.
R. Cleaveland, P. Iyer, and D. Yankelevich, “Optimality in abstractions
of model checking,” in Static Anal. Symp., 1995, pp. 51-63.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Proc. Workshop Tools Algorithms Construction
Analy. Syst. (TACAS’99). New York, 1999.

T. M. Mitchell, Machine Learning. New York: WCB/McGraw-Hill,
1997.

J. Quinlan, Induction of decision trees, in Machine Learning, 1986.

, Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1993.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A new
symbolic model checker,” Int. J. Software Tools Technology Transfer
(STTT), vol. 2, no. 4, pp. 410425, 2000.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaft:
Engineering an efficient SAT solver,” in Proc. Design Automation Conf.
2001 (DAC’01), 2001.

M. Berkelaar, “LPSolve, Version 2.0,” Eindhoven Univ. Tech., Eind-
hoven, The Netherlands.

P. Chauhan, E. M. Clarke, S. Jha, J. Kukula, T. Shiple, H. Veith, and D.
Wang, “Non-linear quantification scheduling for efficient image com-
putation,” in Proc. ICCAD 2001, 2001, pp. 293-298.

P. Chauhan, E. M. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang,
“Using combinatorial optimization algorithms for efficient image com-
putation,” in Proc. Correct Hardware Design and Verification Methods
(CHARME), 2001, pp. 293-309.

S. Chaki, E. Clarke, A. Groce, and O. Strichman, “Predicate abstraction
with minimum predicates,” in Proc. 12th Conf. Correct Hardware De-
sign and Verification Methods (CHARME), vol. 2860, D. Geist and E.
Tronci, Eds., L’ Aquila, Italy, Oct. 2003, pp. 19-34.

1123

Edmund M. Clarke (M’96) received the B.A. de-
gree in mathematics from the University of Virginia,
Charlottesville, VA, in 1967, the M.A. degree in
mathematics from Duke University, Durham, NC,
in 1968, and the Ph.D. degree in computer science
from Cornell University, Ithaca, NY, in 1976.

After receiving his degrees, he taught in the
Department of Computer Science, Duke University,
for two years. In 1978, he moved to Harvard Uni-
versity, Cambridge, MA, where he was an Assistant
Professor of Computer Science in the Division of
Applied Sciences. He left Harvard in 1982 to join the faculty in the Computer
Science Department, Carnegie Mellon University, Pittsburgh, PA. He was
appointed a Full Professor in 1989. In 1995, he became the first recipient of the
FORE Systems Professorship, an endowed chair in the School of Computer
Science. His research interests include software and hardware verification and
automatic theorem proving. In 1981, he and his Ph.D. student A. Emerson first
proposed the use of model checking as a verification technique for finite-state
concurrent systems. His research group pioneered the use of model checking
for hardware verification. Symbolic model checking using BDDs was also
developed by his group.

Dr. Clarke has served on the editorial boards of Distributed Computing
and Logic and Computation and is currently on the editorial board of
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. He is Editor-in-Chief of
Formal Methods in Systems Design. He is on the steering committees of two
international conferences, Logic in Computer Science and Computer-Aided
Verification. He was a corecipient (along with R. Bryant, A. Emerson, and
K. McMillan) of the ACM Kanellakis Award in 1999 for the development
of symbolic model checking. For this work, he also received a Technical
Excellence Award from the Semiconductor Research Corporation in 1995 and
an Allen Newell Award for Excellence in Research from the Carnegie Mellon
Computer Science Department in 1999. He is a Fellow of the Association for
Computing Machinery and a member of Sigma Xi and Phi Beta Kappa.

Anubhav Gupta received the B.Tech. degree in com-
puter science and engineering from the Indian Insti-
tute of Technology, Delhi, India, in 1999. Since then,
he has been working toward the Ph.D. degree in com-
puter science from Carnegie Mellon University, Pitts-
burgh, PA, under the supervision of Edmund Clarke.

His research interests include verification of hard-
ware and software systems.

Ofer Strichman received the B.Sc. and M.Sc.
degrees from the Technion University, Israel, in op-
erations research and systems analysis. He received
the Ph.D. degree from the Weizmann Institute, Israel,
where he worked on various formal verification
topics under the supervision of Amir Pnueli.

After two years as a post-doctoral researcher
at Carnegie Mellon University, Pittsburgh, PA, he
joined the Technion University as an Assistant
Professor in 2003. His research interests include
formal methods, decision procedures in first order
logic, SAT procedures, and selected areas in operations research.

