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Abstract

A firm chooses a price and how much product information to disclose to a consumer
whose tastes are unknown to the firm. We provide a necessary and sufficient condition
on the match function for full disclosure to be the unique equilibrium outcome what-
ever the costs and prior beliefs about product and consumer types. That condition
encompasses the case where all consumer types agree on the ranking of product types’
quality as in standard persuasion games, but it also allows for different consumer types
to have different rankings of the potential product types. When product and consumer
types are independently distributed, a necessary and sufficient condition on equilibrium
payoffs is that they are at least as high as those under full disclosure for all product
types; in particular, full disclosure is always an equilibrium with independent types.

KEYywoRrDSs: Consumer heterogeneity; information certification; persuasion game; un-
raveling of information.

JEL CLASSIFICATION: C72; D82; L15.

1 Introduction

Much attention has been devoted to the transmission of quality information from firms to
consumers. Product quality is however a very special kind of product information, since
all consumers agree that higher quality products are better. Much of the relevant product
information pertains to characteristics that appeal differently to different types of consumers

and thus concerns the horizontal match between the buyer and the product. For instance,
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video game users usually prefer higher quality graphics, but most casual users’ will not find
such a higher quality so appealing if it is associated with high required skills to play the
game. This paper analyzes the disclosure of certified information, allowing for horizontal
match information, and investigates under what circumstances the firm will voluntarily and

fully disclose product information.

We consider a monopoly seller and a buyer with unit demand. The match function in-
dicates the consumer’s valuation as a function of his own type (his privately known taste)
and the type of the firm (the product characteristics). A special case is the standard “per-
suasion game” (Grossman, 1981, Grossman and Hart, 1980, Milgrom, 1981, Milgrom and
Roberts, 1986) where all consumer types have an identical ranking of valuations for the dif-
ferent product types. In other words, product types may be ranked in terms of quality (see
Milgrom, 2008, for a recent literature review). As is well known, if the firm may perfectly
certify product quality at no cost, full quality disclosure is the unique equilibrium outcome.
The argument runs as follows. The top quality product type would never pool with any
other product type since it can certify that it is the highest quality and sell with the same
probability at a higher price. The argument unravels down to the lowest quality type.

We generalize the unraveling result by providing a necessary and sufficient condition on
the match function for full revelation of the product’s type to be the unique equilibrium,
regardless of the firm’s costs and the prior on the agents’ types. We call this condition
pairwise monotonicity. It requires that, for every pair of types of the firm and every pair
of types of the consumer the matches can be ordered with respect to the firm’s types or
with respect to the consumer’s types. Equivalently, for each pair of product types, consumer
types can be partitioned into subgroups such that (i) for any two subgroups all consumer
types in one subgroup are willing to pay more for the two products than all consumer types
in the other subgroup, and (ii) all consumer types within a subgroup rank the two product

types identically.

The standard persuasion game is clearly a special case where pairwise monotonicity
trivially holds. But pairwise monotonicity can also accommodate products differentiated
in terms of their horizontal match with different consumer types. For example, it holds
whenever consumer types can be ranked in terms of willingness to pay in the same manner
for all product types. As a more elaborate illustration, consider a firm selling a video game
that may be one of three possible product types, A, B and C. The situation depicted in
Figure 1 is consistent with pairwise monotonicity. All gamers value C' less than A and B.
Furthermore, all types of hard-core gamers are willing to pay more than casual gamers for

A and B, while hard-core (respectively casual) gamers order A and B in the same way.

Pairwise monotonicity is the weakest possible sufficient condition for uniqueness of the

fully revealing equilibrium outcome in the sense that, if it does not hold, there are some
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Figure 1: A match value satisfying the sufficient condition for full disclosure.

prior beliefs and costs such that an equilibrium exists where information is not fully revealed.
However, if the prior is restricted so that product types and consumer types are independently
distributed, then full disclosure of the product’s type is always an equilibrium, even when
pairwise monotonicity fails. But other (partially and non) revealing equilibria may exist. We
show that when types are independent a necessary and sufficient condition for an outcome
to be supported by an equilibrium is that it yields a profit at least as large as full revelation

for all product types.

Finally, we explore the implications of our results in terms of the full information demands
for the various product types. Interestingly, pairwise monotonicity puts no restriction on
the shape of these demand curves: it holds as long as consumer types are ranked in the
same manner along all the curves. We finally show that, if firm and consumer types are
independently distributed, pairwise monotonicity is equivalent to the following requirement:
for any two product types, the set of consumer types with willingness to pay between two
crossing points of the demand curves should be the same for both product types and all
consumer types in that set rank the two products identically. This condition ensures that
for any purchase probability, the inverse demand for one product type lies above the inverse
demand if the two types pool. This allows for a deviation from a pooling equilibrium that

is profitable for one of the two types of the firm.

Related Literature. — Recently, Anderson and Renault (2006, 2009), Johnson and Myatt



(2006) and Sun (2011) have analyzed disclosure of horizontal match information in specific
examples and find that it may be profit maximizing for the firm to disclose no information
or partial information. Anderson and Renault (2006) and Johnson and Myatt (2006) as-
sume that all product types are symmetric, so that the profit maximizing solution is not
type dependent. Johnson and Myatt (2006) consider a set of signals about the consumer’s
valuation that may be ranked unambiguously in terms of informativeness. They find that
the monopolist’s profit is maximized by using either the least informative or the most in-
formative signal. By allowing for general informative signals, Anderson and Renault (2006)
show that it is optimal for the firm to provide partial information that takes the form of
a threshold on the consumer’s valuation, where those consumers with valuations above the
threshold learn this information but no more.! Sun (2011) considers a monopolist selling a
product on the Hotelling line and finds that there are equilibria where product types that

are close enough to the end points pool on not disclosing product information.?

We present the model in Section 2 and then turn in Section 3 to establishing that pairwise
monotonicity is sufficient for existence and uniqueness of a fully revealing equilibrium. Sec-
tion 4 provides a general condition for existence of a fully revealing equilibrium and explores
the possibility that other equilibria also exist. Some discussion of our results is presented in
Sections 5 and 6 by interpreting our analysis in terms of demand curves and then discussing

some possible extensions. Section 7 concludes.

2 Model

A monopolist sells a single unit of its product to a consumer. The firm has perfect and
private information about the product’s characteristics while the consumer has perfect and
private information about his tastes. The match between the characteristic of the firm’s

product and the consumer’s tastes may therefore be written as

r(s,t) € Ry,

L Although Anderson and Renault derive the result while allowing the consumer to acquire information
through search, the result still holds if search is ruled out (see Saak, 2006).

2Other explanations in the literature for partial information disclosure include competition (Board,
2009, Levin, Peck, and Ye, 2009), unsophisticated buyers (Hirshleifer, Lim, and Teoh, 2004, Mullainathan,
Schwartzstein, and Shleifer, 2008), costly communication (Jovanovic, 1982, Verrecchia, 1983) and partial
certifiability (Shin, 1994). Recently, Chakraborty and Harbaugh (2011) also study informative advertising
in a cheap talk framework, assuming that firms can only provide “soft information” to the consumers. Other
papers study optimal disclosure while assuming that the seller can commit to a disclosure rule (see, e.g.,
Ottaviani and Prat, 2001, Rayo and Segal, 2010, Kamenica and Gentzkow, 2011); by contrast, we assume
that the seller chooses which information to disclose at the interim stage.



where s € S is the firm’s type and t € T is the consumer’s type. A consumer’s type
(respectively a firm’s type) describes his private information about his tastes (respectively
its private information about the product’s characteristics) as well as any information he
may have about the other party’s information. For technical simplicity the sets S and
T are assumed to be finite. Let u € A(S x T') be the strictly positive prior probability
distribution over the profile of types. The firm’s type and the consumer’s type are allowed
to be correlated. This could for instance reflect a difference in information across consumer
types about the product’s characteristics or difference in information across firm types about

the consumer’s tastes.

The firm has a constant marginal cost v(s) > 0 when its type is s. We assume that, for
every s € S, there exists t € T such that r(s,t) > y(s), meaning that each type of the firm

can potentially make a strictly positive profit with at least one type of the consumer.

The timing of the game is as follows.

(i) Information stage. The firm learns s € S and the consumer learns ¢t € T

(ii) Pricing and disclosure stage. The firm commits to an observable price p € R and sends

a message m € M (s), where M (s) is a nonempty type dependent set;

(iii) Decision stage. The consumer observes the price p and the message m, and chooses

whether to buy the good or not;

(iv) Payoffs. Players’ payoffs are zero when the consumer does not buy the good; if the

consumer buys the good his payoff is r(s,t) — p, and the firm’s payoff is p — v(s).

Denote by M = (J,.g M(s) the set of all possible messages that can be sent in the
disclosure stage. Every subset of types of the firm is certifiable in the sense that for every
S C S, there is a message mg € M such that mg € M(s) if and only if s € S. Notice that
under this assumption, any information that could be signaled through prices can also be
transmitted at no cost with direct information disclosure. Hence, although the price may

depend on the firm’s type, it has no real signaling role along the equilibrium path.

For the most part, the analysis only requires that full disclosure of the firm’s type s (mes-
sage myg) is possible. The assumption that disclosed information is certifiable is especially
justified for advertising because of laws on misleading advertising, but is also justified if the
firm can provide hard evidence about the product characteristic, or if disclosed information

can be verified by the consumer at no cost.

A (pure) strategy of the firm is a mapping pr : S — R x M such that ¢r(s) € R x M(s)
for every s € S. A (pure) strategy of the consumer is a mapping oo : T'X R x M —
{Buy, NotBuy}. A belief function of the consumer is a mapping 5 : T x R x M — A(S).

b}



As a solution concept for this game, we use the sequential equilibrium. The additional
restrictions imposed on a sequential equilibrium, on top of those on a perfect Bayesian
equilibrium, are especially relevant in this context, where beliefs are defined for a receiver
(the consumer) who may have different types (see, for instance, Footnote 10).> Our results
focus on the existence of particular pure strategy equilibria, but our uniqueness results are

proved in the class of all equilibria (pure and mixed).

After the pricing and disclosure stage, the optimal decision of the consumer of type ¢ is

to buy the product if and only if*
El[r(s,t) |t =t,(p,m)] > p.

In equilibrium, a consumer necessarily buys when indifferent.® Hence, the optimal choice

(p*,m*) of the firm of type s should satisfy

*,m*) € ar max —(s))D(p,m,s),
(p*,m") g(p,m)emst)(p v(s))D(p, m, s)
where

D(p,m,s) =Pr[E[r(s,t) | t,(p,m)] > p|s=s],

is the expected demand of the firm when its type is s and it sends the signal (p, m). Notice
that Elr(s,t) | t,(p,m)] only depends on the realization of s through t, and only if types

are not independent.

3 Generalized unraveling

We now provide a general condition for a fully revealing equilibrium to exist and be unique
whatever the costs and the prior. We say that the match is statewise monotonic with respect
to the firm’s type, if, for every s,s'" € S, s # &, either r(s',t) > r(s,t) for all t € T or
r(s',t) < r(s,t) for all t € T. There is then a quality ranking of product types as in the

3Strictly speaking, since the set of possible signals is infinite (any price p € R is possible), a strictly
positive perturbed strategy cannot be defined as in Kreps and Wilson (1982) (they consider finite games).
However, it is easy to avoid this problem by assuming that the set of possible prices is finite but fine enough
(all our results and examples apply with a fine enough set of prices).

4Bold letters denote random variables when there may be a risk of confusion. Expectations and proba-
bilities are defined w.r.t. the consumer’s belief 3.

5Otherwise, the firm would brake the indifference by slightly lowering its price.



standard persuasion game or the following example:

1 ta 13
st 9 507
T, 8 3 6

s3 6 2 0

It is easy to show that existence and uniqueness of the fully revealing equilibrium is
guaranteed in this case. Existence is obtained by considering beliefs that put probability

one on the following price independent worst case type:

wet(p,m) = arg 8611\}1}{1(@ r(s,t),
for some t € T'. Thanks to statewise monotonicity with respect to the firm’s type, the above
worst case type is independent of the selected consumer type t and pins down the “lowest
quality” product. Throughout the paper we resort to the idea of a worst case type. It
can be readily established that the consistency requirement in the definition of a sequential
equilibrium is satisfied whatever the prior as long as the worst case type is not consumer

type dependent.

Deviation from full disclosure, that involves selecting m # m, is not profitable since
D(p,m,s) < D(p,ms,s) for all m € M(s) and p € R,. To show that there is no other
equilibrium outcome assume by way of contradiction that types in a subset with at least two

elements S C S, send the same signal (p, m) with strictly positive probability. Let

§ = argmaxr(s,t),
ses
for any t € T, be the highest quality product in S. If 5’s demand is zero, then by certifying
its type it can apply a price higher than +(5) and earn a strictly positive profit. If §’s
demand is strictly positive, then by statewise monotonicity with respect to the firm’s type
the willingness to pay with full revelation of type s, 7(5,t) exceeds the willingness to pay
if 5 pools, for all t € T, so the type § firm can increase its price when it certifies its type,
while keeping the same demand as when it pools with types in S. Hence pooling can never

be sustained in equilibrium.

We next show by means of examples that statewise monotonicity with respect to prod-

uct types is much too strong a condition for existence and uniqueness of a fully revealing



equilibrium. Consider first the following match:

t1 ta
r'B= 1|81 1 4
S9o 2 3

This match function is not statewise monotonic with respect to the firm’s type, but it is
statewise monotonic with respect to the consumer’s type in the sense that for every t,t' € T,
t # ', either r(s,t') > r(s,t) for all s € S or (s, t') < r(s,t) for all s € S.° Tt is easy to see
that whatever the prior the unique equilibrium is fully revealing. To get existence it suffices
to consider the following worst case type for m € M(s;1) U M (s2):

sy ifp>2,
S1 1fp§ 2.

wet(p,m) =

In other words, the worst case type is the product type that the marginal consumer type likes
the least. To get uniqueness, suppose on the contrary that s; and sy pool. Then the firm
type selling the product that suits best the marginal consumer will deviate. If both ¢; and
to buy, then the price is given by p € (1,2) and type sy can profitably deviate by revealing
its type and charging price p’ = 2 > p, in which case both types of the consumer still buy.
Similarly, if only ¢ buys, then the price is given by p € (3,4) and type s; can profitably
deviate by revealing its type and charging price p’ = 4 > p, in which case consumer ¢, still
buys.

Consider now the following match function:

t1 t2 t3
rce = | $1 5 4 3
s 6 1 2

This match function is neither statewise monotonic with respect to the firm’s type nor state-
wise monotonic with respect to the consumer’s type. Nevertheless, the unique equilibrium

is fully revealing whatever the prior. To see that there is a fully revealing equilibrium it

6The following application from Chakraborty and Harbaugh (2010) also satisfies statewise monotonicity
with respect to the consumer’s type but not with the respect of the firm’s type: the firm’s characteristic is
multidimensional, s = (s',s?) € R, where s' is an horizontal aspect of the product, s* a vertical aspect,
the firm is located at 0, and the valuation of a consumer located at t € [0,1] is r(st, s%,t) = s> —s't. In
Chakraborty and Harbaugh (2010) full disclosure is not an equilibrium because they consider the case of

cheap talk (i.e., information is not certifiable).



suffices to consider the following worst case type for m € M(s;) U M (s3):

sy if p < 4,
wet(pm) =4 ° P
s; ifp>4.

Again, it is the worst product for the marginal consumer type: for p < 4, type t; cannot
be marginal since the firm would otherwise charge a price of at least 5. To see that this
equilibrium outcome is unique, suppose on the contrary that s; and s, pool. If t3 is the
marginal type, then to prevent s; from revealing its type the price should not be smaller
than 3, a contradiction with the fact ¢3 buys. If ¢5 is the marginal consumer, then to prevent
s1 from revealing its type the price should not be smaller than 4, a contradiction with the
fact t5 buys. Finally if only #; buys, then sy would deviate by revealing its type and choosing

a price equal to 6.

The three match functions that we have considered thus far share a common feature that
turns out to be a key property for establishing existence and uniqueness of a fully revealing
equilibrium. It runs as follows. For any non empty subset of firm types, S C S, and any non
empty subset of consumer types, T C T, there exists an ordered pair (5,%) € S x T that has
the following “saddle point” property: (i) r(5,t) = max g 7(s,?); (ii) 7(5,t) = min, .y r (5, t).
In other words, product type 5 is the best product in S for consumer type ¢ and consumer
type t is willing to pay the least among all consumer types in T for product type 5. For
instance, such a saddle point is reached for the whole 3 x 3 matrix in the match r4, which
satisfies statewise monotonicity with respect to the firm’s type, at (5,t) = (s, t). Similarly,
the 2 x 2 matrix has a saddle point at (s9,?;) in the match rp, which that satisfies statewise
monotonicity with respect to consumer types, and at (s, t3) in our last 2 x 3 example, r¢.

If we drop t3 in that same last example then the saddle point is reached at (s, %2).

We now show that if the above property holds, then there cannot be an equilibrium with
several firm types pooling with some positive probability, as long as the match function is
generic.” Consider some pooling of several firm types in S, where the price is such that the
set of consumer types who buy is 7. Then the price is less than consumer ¢’s expectation of
the match, which, if the match function is generic, is strictly less than r(5,¢). Hence, firm
type 5 could increase its price to 7(3,%) and still sell to all types in T by part (ii) of the
saddle point property above.

"Formally, we only require that r(s,t) # r(s’,t) for every s # s’ and t € T. This assumption rules out
situations where two firm types correspond to the same product and differ only in terms of the available
information about the other party. If we allow for different firm types selling the same product, so that the
match would be constant across those firm types, then it is possible to adapt the argument to show that
product information is revealed in equilibrium. This is the case if product information is certifiable and the
consumer is never indifferent between two different products.



If we consider the restriction of the match to two firm types and two consumer types,
then the saddle point property is equivalent to statewise monotonicity with respect to the
firm’s type or the product’s type. This property holds for all pairs of product types and

consumer types in all three match functions above. We now state this property formally.

Definition 1 The match function r(-,-) is pairwise monotonic if for every pair of types of
the firm (s, s') € S?%, s # &', and every pair of types of the consumer (¢,t') € T2, t # t', one

of the following conditions hold:

(0 r(s,t) >r(s,t) (i) r(s',t) > r(s,t)
r(s,t") > r(s',t); r(s',t') > r(s,t');

(i) r(s,t) > r(s,t) (iv) r(s,t") > r(s,t)
r(s,t) >r(s,t); r(s',t) >r(s,t).

The proof of the next theorem establishes that pairwise monotonicity is equivalent to the
existence of a saddle point in all sub-matrices of the match function. From our discussion

above, this establishes that there cannot be an equilibrium that is not fully revealing.

Remark 1 The equivalence of pairwise monotonicity and the existence of a saddle point for
all sub-matrices of the match function has an interesting alternative interpretation. It says
that if a zero-sum game is pairwise monotonic, then every sub-matrix has a saddle point.
Hence, every sub-matrix, interpreted as a zero-sum game, is strictly determined in the sense
that the pure maxmin coincides with the pure minmax. Coincidentally, this is related to
Shapley (1964) who shows that a zero-sum game has a (pure) saddle point if every 2 x 2
sub-matrix of the game has a saddle point.

Theorem 1 If the match is generic and pairwise monotonic, then there is a unique sequen-

tial equilibrium outcome, which is fully revealing.

Proof. Uniqueness. Assume that there exists an equilibrium where a set of types S C S,
with |S| > 2, pool (i.e., choose the same signal (p, m) with strictly positive probability). Let
T C T be the set of consumer’s types that buy the good after the signal (p,m). Since for
every s € S there exists t € T such that 7(s,t) > 7(s), we necessarily have T # () and
p > 7(s) for all s € S. When |T| = 1, the standard unraveling argument shows that pooling
is impossible, so let |T| > 2. Denote by R = (r(s, t)) (s.1)e57 the matrix of matches restricted
to types in S x T'. Notice that the price applied by firms in S is such that

p < Itrél%l E(r(s,t) | (p,m)).

10



For every s € S and t € T let

t(s) € argminr(s,t) and §(t) = argmaxr(s,t).
teT seSs
That is, t(s) is (possibly a selection of) the smallest match in the s line of R (call it a white
cell) and 5(¢) is the highest match in the ¢ column of R (call it a gray cell). Equilibrium
conditions imply that those (gray and white) cells cannot by confounded; that is, there is
no pair (s,t) such that (s,t) = (5(¢),#(s)). Otherwise, firm s can profitably deviate by
revealing its type and applying the price r(s,t) = r(5(t),t) = max,gr(s’,t) > p, for which
all consumers in T buy since r(s,t) = r(s,t(s)) < r(s,t') for every ¢ € T.

Now, in the matrix R we delete iteratively any line without a gray cell, i.e., any line s
such that s # 5(t) for every ¢t € T, and any column without a white cell, i.e., any column
t such that t # t(s) for every s € S. Denote by R* the remaining matrix of matches, and
S* and T™ the corresponding sets of types of the firm and of the consumer. Notice that
this matrix has at least two lines and two columns because gray and white cells cannot be

confounded. This procedure is illustrated below.
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Let

r* = max r(s,t),
(s,t)eS*xT*

be the highest match in the matrix R*. By definition r* necessarily corresponds to a gray
cell, i.e., r* = r(5(t*),t*) for some t* € T*. Let s* = 5(t*) so that r* = r(s*,t*). By the
construction of R* (any column having a white cell and any line having a gray cell) there
exists s’ € S* such that t(s') = t* and ¢’ € T* such that 5(¢') = s as illustrated below:

. O e

B [

r(s',t*)

Finally, r(s*,t') < r(s*,t") = maxeg+x7 r(s,t), so the match is not pairwise monotonic.

Existence.  Consider a complete disclosure strategy of the firm such that a message
ms € M(s) is sent by each type of the firm, with m, ¢ M(s') for all s’ # s. We construct

a worst case type function such that no firm’s type has an incentive to deviate from this

11



complete disclosure strategy. Consider a signal (p, m) off the equilibrium path, and consider
the matrix of matches restricted to firm types in M~t(m), with |[M~!(m)| > 2. By the first
part of the proof we know that if the match is pairwise monotonic, then the minimum match
of some firm’s type coincides with the maximum match of some consumer’s type (for every
sub-matrix of matches); that is, at least one white cell coincides with some gray cell. Denote
by (s1,t1) the corresponding cell, and 71 = r(sy,t;) the corresponding value. If p > r; then
type t; never buys whatever his beliefs, and we apply the same construction to the matrix of
matches without t;. If p < r; then type s; has no incentive to deviate from full disclosure to
(p, m) and we let wct(p, m) # s1 (i.e., we consider a belief system such that 5(s; | ¢,m,p) =0
for every t). If [M~*(m)\{s1}| = 1 the argument is complete. Otherwise we consider the
new matrix of matches without the s; line. We apply the same reasoning as above to this
new matrix: let (s9,f2) be a gray and white cell of this matrix, let 79 = 7(s9,t2) be the
corresponding value, and construct the worst case types as above. If p > ry then type ¢,
never buys whatever his beliefs, and we apply the same construction to the matrix of matches
without t5. If p < ry then type ss has no incentive to deviate from full disclosure to (p, m)
and we let wct(p,m) # so. If M1 (m)\{s1, s2}| = 1 the argument is complete. Otherwise,
we apply the same construction up to (sy,t) such that |[M~Y(m)\{s1,s2,...5:}|=1. m

As will be seen in Proposition 3 below, pairwise monotonicity is the weakest possible
sufficient condition on the match function that ensures uniqueness, while keeping prior beliefs

and costs unrestricted.

For the sake of interpretation, we now provide the following alternative definition of
pairwise monotonicity, which is useful to relate the properties of match functions to inverse
demand functions (see Section 5). A match function is pairwise monotonic if for every pair
of product types, consumer types can be partitioned into subgroups such that (i) there
is monotonicity with respect to consumer types between subgroups (ii) all consumers in a
subgroup rank the two product types identically.® For instance, in the video game example in
the introduction, there are two groups of consumer types, the casual users and the hard-core
users. The ranking between the two high quality products is the same within subgroups,
although it differs across subgroups. An illustration with four subgroups is depicted in
Figure 2, assuming for clarity a continuum of consumer types: consumer types are on the
horizontal axis while the vertical axis measures the match. There is no loss of generality in
taking the match for s; to be increasing since consumer types may always be rearranged.
Pairwise monotonicity, which is satisfied in Figure 2 (a), is equivalent to requiring that,
for any crossing points between the two matches, the match with product s, lies below the
crossing point for consumer types on the left and above the crossing point for consumer

types to the right. For a pair of consumer types between two crossing points, statewise

80f course, this interpretation also works by switching “product” and “consumer” types.

12



7(s9,1)
r(si1,t)

(a) Pairwise monotonicity (b) Failure of pairwise monotonicity

Figure 2:

monotonicity with respect to product types holds, while for a pair of consumer types on
either side of a crossing point, statewise monotonicity with respect to consumer types holds.
If the match for product sy loops up before a crossing point or loops down after a crossing

point, then pairwise monotonicity fails as in Figure 2 (b).

We next consider some equilibrium properties when pairwise monotonicity does not nec-

essarily hold.

4 Equilibria without unraveling

The next proposition shows that, even if pairwise monotonicity fails, there still exists a
fully revealing equilibrium, whatever the prior as long as there is no correlation between the
firm’s and the consumer’s type. To understand why, notice that if the type of the firm is
independent of the type of the consumer, then the demand of the firm given p and m does

not depend on its actual type, i.e.,
D(p,m,s) = D(p,m) = Pr[Elr(s, t) [ t, (p,m)] = p].

It follows that the firm’s preference over the consumer’s belief is, conditionally on the
price and the message sent, independent of its real type because the demand only depends
on the price and the consumer’s belief. Hence, starting from a strategy of full disclosure it is

easy to prevent the firm from deviating by constructing, for each price p, a worst case type
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that minimizes the firm’s demand at price p.° This can be done independently of the firm’s

real type.

Proposition 1 Assume that the consumer’s type and the firm’s type are independent. Then,

there exists a fully revealing equilibrium.

Proof. Consider a complete disclosure strategy of the firm such that a message mg € M(s)
is sent by each type of the firm, with m, ¢ M(s) for all s’ # s. When types are independent,

the demand for such a message at price p is given by
D(p,ms) = Pr[r(s,t) > p].
For every m € M and p € R, let

wct(p,m) € arg min  D(p, my),

(p,m) € arg _mir - (p, ms)
be the (worst case) type of the firm whose demand at price p when it reveals its type to
the consumer is the lowest one among all types that can send message m. For any signal
(p,m) € R x M of the firm, consider the belief of the consumer that puts probability one on

wect(p, m) whatever the consumer’s type. Along the equilibrium path, the firm gets

max(ps — Y(s))D(ps, ms).

Ps

This profit is larger than what it gets by deviating to (p, m) € R x M(s), which by construc-

tion is equal to

- in  D(p,my).
(p 7(8))8,61\?}{1(1%) (p, M)

This completes the proof of Proposition 1. =

The appendix describes an example with correlated types (but without pairwise mono-
tonicity) where there is no fully revealing equilibrium.'® Proposition 1 shows that as long as
types are independent, pairwise monotonicity is not necessary for existence of a fully reveal-
ing equilibrium. As we show below, pairwise monotonicity is however necessary to ensure
uniqueness of the fully revealing outcome whatever the prior distribution of types and costs.

We start by providing a useful characterization of equilibria with independent types.

9When the cost of the firm is not type dependent, the proof of Proposition 1 can be simplified by
considering price-independent beliefs off the equilibrium path.

0Tn the example, it is important to require strong belief consistency (in the sense of Kreps and Wilson,
1982). If we allow arbitrary beliefs off the equilibrium path, existence of a fully revealing equilibrium
is immediate even with correlated types. It suffices to consider beliefs off the equilibrium path that put
probability one on argmingens—1(m) 7(s,t), which are inconsistent when they depend on t.
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The next proposition provides a simple method for characterizing all equilibrium out-
comes when types are independent. To this end we define canonical disclosure strategies:
a strategy @g(-) is canonical if, for every price and message (p,m) in the range of @pg(-),
if type s € S does not send (p,m) (i.e., pr(s) # (p,m)), then the message m cannot be
sent by type s (i.e., m ¢ M(s)). Notice that, under our assumption that every subset of
types is certifiable, considering only canonical strategies does not restrict the set of possible
equilibrium outcomes.!! The proposition says that a (canonical) disclosure strategy induces
an equilibrium outcome of the game if and only if the (interim) payoff for the firm is no

smaller than the payoff the firm would earn at the fully revealing equilibrium whatever its

type.'?

Proposition 2 Assume that the consumer’s type and the firm’s type are independent. A
canonical disclosure strategy induces an equilibrium iff whatever the firm’s type the induced

interim expected payoff for the firm is not smaller than its fully revealing equilibrium payoff.

Proof. Necessity. This part is obvious.!3 If the disclosure strategy of the firm is such
that pp(s) = (p, m) with

(p —(s))D(p,m) < (ps — (5))D(ps, ms),

where (ps, ms) is the signal sent by the firm at the fully revealing equilibrium, then (simply
by subgame perfection) the firm can profitably deviate from ¢g at s by sending the signal
(ps, ms)-
Sufficiency. Consider a canonical disclosure strategy ¢p of the firm such that pp(s) =
(p,m) and
(p = (s))D(p,m) = (ps — ¥(5)) D(ps, ms), (1)

where (ps, ms) is the signal sent by the firm of type s at the fully revealing equilibrium.
Notice that any deviation from a canonical disclosure strategy is observable by the consumer.

Consider the same beliefs for the consumer off the equilibrium as in the proof of Proposition 1.

UFor example, if S = {s1,s2}, M(s1) = {mo,m1}, M(s2) = {mg, ma2}, then the disclosure strategy
vr(s1) = (p,m1) and pr(s2) = (p, mo) is not canonical, but is equivalent to the canonical strategy ¢x(s1) =
(p, m1) and @/z(s2) = (p,m2) in terms of information that is transmitted to the consumer.

12 .. . . .

The proposition does not extend to correlated types since we already observed in the example in the
Appendix that full revelation may not be an equilibrium when types are correlated.
13Notice that this part also applies with correlated types and non-canonical disclosure strategies.
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If the firm deviates from @g(s) = (p,m) to (p',m’) it gets

" — (s min  D(p',my) < max(ps — (s min  D(ps, my
W =), _min DO/ < max(p —2(9)_min  D(pm)

< max(ps — v(s))D(ps, my) because s € M~ (m'),
Ps

which by (1) is smaller than the payoff it gets without deviating from ¢r(s). m

Using Proposition 2 we may now show that the converse of Theorem 1 is also true in the
sense that pairwise monotonicity is the weakest sufficient condition that ensures that the fully
revealing outcome is unique, independent of the specification of the prior and production

costs.

Proposition 3 Assume that the match is generic but not pairwise monotonic. Then, there
exists an open set of costs and priors such that the game has an equilibrium outcome, which is

not fully revealing, and which is strictly better for the firm than the fully revealing equilibrium.

Proof. If the match is generic but not pairwise monotonic then there exist two pairs
(s1,82) € S* and (t1,ty) € T?, where r(s1,t1) = a, 7(s1,t2) = b, 7(s2,t1) = c and (s, t2) = d
such that a > b, a > ¢, d > c and d > b, as illustrated below:

a > b
V A
c < d.

Assume zero costs. Also assume for now that the prior puts all the weight on this 2 x 2
matrix. Because no consumer type has a higher willingness to pay for both firm types than
the other, (here a > b and d > ¢), we may specify a probability for firm type s;, o, such
that the two consumer types have the same expected willingness to pay if the firm’s type
is not revealed: ca + (1 —o)c = ob+ (1 — o)d (the left hand side is larger for ¢ = 1 while
the reverse inequality holds for o = 0). Hence, if the firm does not disclose, it can sell with

probability 1 at a price equal to the common expected match.

If the firm wishes to sell with probability 1 while revealing its type, it must charge a price
which is at most the lowest match for its product, b for type s; and ¢ for type s;. However,
these values also correspond to the lowest match for one of the consumer types (there would
otherwise be a saddle point), and hence are strictly less than the expected match under no
disclosure. The firm therefore earns strictly less profit than with no disclosure by revealing
its type and selling with probability 1.

Finally, if the firm reveals while only selling to one consumer type, the best it can do

is sell to the consumer type with the highest match with its product type and charge the
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corresponding price, a for type s; and d for types sp. Assume that type t; has probability o
and type to has probability 1 — ¢. Then the corresponding revenue with such a strategy is
still strictly less than the no disclosure revenue.

Let us now alter probabilities slightly so that all firm types and consumer types other
than sy, sq, t1, and t; have a negligible but strictly positive weight, and consider strictly
positive but small enough costs. Then it is still true that types s; and sy are strictly better
off pooling than they would be with full disclosure. It follows from Proposition 2 that there
is an equilibrium where s; and sy pool and all the other firm types fully reveal. m

We illustrate the multiplicity of equilibria when pairwise monotonicity is violated with
an example where it is easy to identify the equilibrium that is most favorable to the firm.
Consider the following match function, which is inspired by Table 1 in Anderson and Renault

(2006), with a uniform prior and the same cost v(s) = v € [0,5) for every product type.

lh t2 t3

s1 b 4 1

s 5 1 4

ro=1s3 4 5 1
sa 1 5 4

ss 4 1 5

s¢ 1 4 b

The fully revealing equilibrium leads to the profit max %, E’_T”’ whatever the firm’s type.

No information revelation yields the profit max {O, 1053” }, so it is an equilibrium if and only

if max{O, 10537} > max{%, E’_T”}, i.e.,, v < 2. However, when 7 € [1,4] the best equi-
librium for the firm is partially revealing: the firm’s disclosure strategy yields the partition
{{s1,53}, {82, 55}, {84, 56}}, the price is equal to 9/2 and the profit is equal to max {0, %}
Note that this partially revealing equilibrium implements a threshold of 4 along the lines

of the optimal solution described in Anderson and Renault (2006): all consumer types with

willingness to pay above 4 learn this with no additional information.'4

Also note that, for any cost v, the profit maximizing equilibrium among the three con-
sidered above implements a socially first-best outcome since a consumer buys if and only if
his match exceeds marginal cost. This is also the profit maximizing solution since the firm
extracts all of the consumer’s expected surplus through its price. Hence, as the unit cost

increases, the profit maximizing solution is first, non disclosure, then partial disclosure, and

14Tn Anderson and Renault (2006) where consumers may acquire full product information through costly
search before buying, the coincidence of profit maximization and the first-best socially optimum outcome
only arises if search costs are large enough.
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finally full disclosure.

5 Demand curves and information disclosure

As illustrated by Johnson and Myatt (2006), the strategic choice by a firm to reveal or
not reveal product information amounts to choosing among different demand curves. For
instance, the classic unraveling result may be loosely described as follows: high quality firms
prefer to reveal product information because it puts them on a demand curve that dominates
the one they would face by pooling with lower quality firms. We here explore how pairwise

monotonicity relates to demand curve properties.

For each product type, s, we may define the perfect information inverse demand as
P(q,s) = max{p: D(p,ms, s) > q} = max{p: Prr(s,t) > p|s=s] >q}, (2)

for any ¢ € (0,1]. The inverse demand gives the highest price that the firm selling product
s can charge while being able to sell with a probability of at least q.

A first question is whether there are properties of inverse demands for the various product
types that are sufficient to guarantee that the match is pairwise monotonic. One situation
where we might expect this to happen is when full information demands do not cross. Such
a property holds for instance when products may be ranked in terms of quality so that the
match function is statewise monotonic with respect to firm types. A generalization of the
persuasion game unraveling result would be that the no crossing point property of demand
curves is enough to guarantee full revelation of product information. The following example

however shows that this is not the case:

t1 to
r=1,s 5 3
S9 2 4

Assume that the prior is uniform. The inverse demand for product type s; always lies above
the inverse demand for product sy: that is, the largest price at which product s; may be sold
with a given probability is always at least as large as the largest price at which product s
may be sold with the same probability. The match however is not pairwise monotonic and
non revelation may be sustained as an equilibrium, for instance with zero production costs.
It yields a profit of 3.5 against only 3 for the largest full information profit. Non disclosure

is therefore an equilibrium by Proposition 2.

The above example may be enriched to illustrate an interesting property of quality dis-
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closure. Consider now the match function below, involving four products.

l1 1o

s1 5 3
r=|sy, 2 4
s3 4 2

sS4 3 5

Note that product type s; dominates product type s3 in terms of demand curve but also
in terms of quality ranking, since it is preferred by both consumer types. The same is true
regarding product type s4 vis-a-vis product type sg. The two superior quality firm types s;
and s, would like to separate themselves from the two other types. Still, assuming again
a uniform prior and zero costs, non disclosure may be sustained as an equilibrium, as a
direct application of Proposition 2. Hence, quality information is not necessarily revealed in
equilibrium when the relevant product information also pertains to the match. Sun (2011)
derives related results in a setting where the set of product types and consumer types are

represented by the Hotelling line and product types may also differ in terms of quality.

In order to obtain a demand dominance condition that implies pairwise monotonicity,
we need to require that for any pair of products, the lowest point on one demand curve is
above the highest point on the other demand curve. Formally, for any s,s’ € S, we have
P(1,s) > P(0,s') or P(1,s') > P(0,s).> This is a very strong restriction that actually
implies statewise monotonicity with respect to the firm’s type.

Conversely, pairwise monotonicity, and hence uniqueness of a fully revealing outcome
may be ensured for any set of perfect information demand curves. Recall that a special case
of pairwise monotonicity is statewise monotonicity with respect to consumer types. Now
consider a finite set of step inverse demand functions defined on (0,1]. Then it is not too
difficult to see that all consumers can be ranked identically along all demand curves and the
prior can be specified appropriately so that statewise monotonicity with respect to consumer
types is satisfied and the resulting inverse demands are as desired.

We illustrate this idea with the following simple example. Consider the two following
inverse demand functions: P(q,s;) = 3 for ¢ € (0, .4], P(q,s1) = 2forq € (.4,1], P(q,s9) =4
for ¢ € (0,.3], P(q,s2) = 3 for ¢ € (.3,.7] and P(q,ss) = 1 for ¢ € (.7,1], Such inverse
demands may be generated, for example, with three consumer types and the following match

15The inverse demand P is not defined for ¢ = 0 and P(0, s) should be thought of as the limit as q tends
to zero, which always exists.

19



function

t1 to t3
r=1,s 3 2 2
S9 4 3 1

which is statewise monotonic with respect to the consumer’s type. Then assume that the
prior is such that the conditional probability of consumer types t1, t, and t3 are respectively,
4, .3 and .3, conditional on s = s; and .3, .4 and .3, conditional on s = s5. Such a
procedure may clearly be adapted to any finite set of step inverse demand functions so that
pairwise monotonicity puts no restriction on the full information demand curves for the

various product types.

We now show that pairwise monotonicity imposes some restrictions as to the allocation
of different consumer types along the various demand curves. This in turn provides a simple
demand curve intuition on the sufficiency of pairwise monotonicity for uniqueness of the fully
revealing outcome. Let us now assume that consumer and product types are independent.
To illustrate the general idea, consider the example depicted in Figure 3. The match function
for two product types s; and sy with a continuum of consumer types is shown in panel (a).
It satisfies pairwise monotonicity. The corresponding demand curves are derived in panel

(b), assuming that consumer types are uniformly distributed.

Because of independence and pairwise monotonicity, crossing points for the match func-
tions in Figure 3 (a) exactly translate into crossing points between inverse demand curves in
Figure 3 (b). Take for instance consumer types to the left of the first crossing point between
matches. They are all willing to pay less than the match value at the crossing point and all
other consumer types are willing to pay more. Hence the probability of selling at that price
is given by the probability measure associated to these types which is the same for both
products, thanks to our independence assumption. Hence demand curves must cross at this
price and this corresponds to the farthest right crossing point in Figure 3 (b). Repeating the
argument iteratively shows that all crossing points coincide. From this analysis we conclude
that the consumer type population may be partitioned into subgroups such that the willing-
ness to pay for both products within a given subgroup lies between two consecutive crossing
points of the demand curves and all consumers within a subgroup agree on the ranking of

the two products.

Figure 3 also shows as a dashed curve the expected match E[r(s,t)] for all consumer
types in Panel (a) (assuming product types have equal probabilities) from which is derived
the no information inverse demand in Panel (b), again as a dashed curve. The expected
demand lies strictly in between the two demand curves between two crossing points as long
as the probability defined on product types is non degenerate. Hence, if we consider an

equilibrium where the two products pool and face the no information demand curve, there
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Match value Price

Figure 3:

is always one firm type that is better off deviating to full information thus selling at a higher

price with the same probability.!

6 Discussion

This section discusses some possible extensions of the model.

More general communication. We have assumed that the consumer is not able to commu-
nicate information about his type to the firm before the pricing and disclosure stage. This
is without loss of generality when our condition for the existence and uniqueness of a fully
revealing equilibrium is satisfied; that is, the fully revealing equilibrium exists and remains
unique under pairwise monotonicity even with two-way communication. But other inter-
esting equilibria could be obtained when pairwise monotonicity is not satisfied, by adding
communication from the consumer to the seller. To see this, consider the following match

function with a uniform prior and no cost:

t1 to t3
r=1,s 3 0 2
59 0 3 2

16This argument works as long as the price in the candidate pooling equilibrium does not coincide with
a crossing point. If it does, then a standard argument using first order conditions shows that the firm type
with the less elastic demand is better off deviating to full disclosure and increasing its price.
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There is a fully revealing equilibrium with profit 4/3 and a non revealing equilibrium with
profit 3/2. This profit can be improved upon if the consumer can first reveal whether his
type is t3 or not (this can even be a cheap talk claim). If the consumer reveals that his type
is t3 the price offered by the seller is 2 and he discloses no information; otherwise the price
is 3 and product information is revealed by the seller. This yields profit 5/3 which is strictly

higher than any equilibrium profit without information transmission from the consumer.”

Competition. There is limited literature on product information disclosure and competi-
tion. The existing work such as Meurer and Stahl (1994), Board (2009) or Anderson and
Renault (2009), considers a two stage game where firms first disclose information and then
choose prices. Results in these models are often in contradiction with the predictions of the
monopoly setting. Board (2009) considers Mussa and Rosen preferences (Mussa and Rosen,
1978) where consumers are heterogeneous in their willingness to pay for quality, and finds
that the firm that draws the lower quality in a duopoly may choose not to disclose it. Note
that the match induced by such preferences is both statewise monotonic with respect to the
firm’s type and with respect to the consumer’s type. In contrast, Meurer and Stahl (1994)
and Anderson and Renault (2009) consider information that pertains to the horizontal match
between the firm’s type and the consumer’s type and find that, in equilibrium, product in-
formation is revealed. Monopoly models in similar settings would predict that the equilibria
that maximize the firm’s profit involve no disclosure or partial disclosure, as in the example

based on match rp at the end of Section 4.

The source of the difference however is not so much competition per se, but rather the
strategic effect of information revelation in the first stage on the competitor’s pricing in the
second stage. In both cases, firms choose not to reveal information, or on the contrary, to
reveal it, in order to avoid a Bertrand type situation in the second stage that would wipe out
profits. If we think of product information disclosure and pricing as selected simultaneously,
such a strategic effect disappears. Then if we consider quality disclosure as in Board (2009),
a standard unraveling argument applies to each firm’s reaction function and there cannot
be an equilibrium where quality is not revealed. Whether and how the argument can be
extended to a situation where the match between the consumer type and each firm’s type
is pairwise monotonic remains an open question. The relevant condition might be a joint

condition on the two match functions associated with the two competing firms.

1"We thank V. Bhaskar for suggesting this example.
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7 Concluding remarks

Our analysis considerably extends the well known unraveling argument according to which
certified quality information is always revealed: we allow the relevant information to pertain
to the horizontal match along with quality. We show that pairwise monotonicity is sufficient
for existence and uniqueness of a fully revealing equilibrium outcome, and is also necessary
in order for uniqueness to hold independent of the prior and costs. However, a fully revealing
equilibrium always exists if the firm’s type and the consumer’s type are independent. We also
find that pairwise monotonicity imposes no restriction on the shape of the full information
demand curves for the different product types but rather, on the allocation of consumer types
along the demand curves. We use this property to provide some intuition in terms of demand

curves as to how pairwise monotonicity guarantees full disclosure of product information.

Pairwise monotonicity is a condition that applies to the match alone independent of
production costs or the prior on the agents’ types. It may still be the case that, when it does
not hold, there are production costs and prior distributions of types for which full revelation
of product information is the unique equilibrium outcome. For instance, in the example at
the end of Section 4, the fully revealing equilibrium is unique when costs are high enough, so
that the firm wishes to only serve the consumer type with the highest valuation. Regarding
the prior distribution of types, we have shown in Section 4 that if pairwise monotonicity
fails, there is a prior for which two firm types pool in some equilibrium. However, for a
given match function that does not satisfy pairwise monotonicity, there are typically priors
for which there is necessarily full revelation. Our ongoing research aims at exploring these
issues further as well as considering extensions to two sided information transmission and

competition.

A Appendix

Non-ezistence of a fully revealing equilibrium due to correlated types. Assume that costs are
zero (y(s1) = v(s2) = 0) and consider the following match function and correlation matrix,

where we assume 0 < p < 2¢ < 2:18

tl tg tl t2
r=|s1 p 2 H= 1% % %
2 2 p n 5

18Notice that this match is not pairwise monotonic. Otherwise, a fully revealing equilibrium would always
exist by our theorem.
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If the firm fully reveals its type to the consumer, then it sets the price p = 2 and gets a
profit equal to 2¢ whatever its type. We show that if € is small enough, then the firm has
an incentive to deviate from full revelation. We have to show that whatever the consumer’s

belief after a deviation by the firm, s; or sy gets a profit which is strictly larger than 2e.

Notice that the consumer’s belief off the equilibrium path may depend on the observed
price. This allows a large flexibility to punish the firm if it deviates from complete information
disclosure. In this example, however, a deviation to the same price p = 2e 4 (1 —¢)p will be
profitable for at least one of the firm’s type whatever the consistent belief of the consumer.
The idea is that this price is accepted by one type of the consumer with large probability
(1—¢) whenever a type s; of the firm makes the consumer believe that it is the other type s_;,
for ¢ = 1,2. Under some conditions on the game, the fact that two types want to imitate each
others is sufficient to prevent full revelation of information (see, e.g., the “single crossing”
property in Giovannoni and Seidmann, 2007), but is not sufficient in our framework since we
also have to consider non-degenerated beliefs off the equilibrium path. For example, when
p = 0, by setting the price to 2(1 — €), each type of the firm would be strictly better off
when the consumer believes that it is the other type, but a fully revealing equilibrium can

be constructed by setting the consumer’s belief off the equilibrium path to his prior belief.

We first observe that if ¢; or ¢ buys the good at price p = 2e+ (1 —¢)p, then the expected
profit of one of the two types of the firm is at least

= (1-¢)2e+ (1-¢)p),

so the deviation would be profitable for one of those types whenever II > 2¢, i.e., p > %

This is possible under the assumption that p < 2¢ whenever ¢ is small enough (take ﬁ <
1).

It remains to check that at least one of the consumer’s type t; or ty always accepts to
buy at price p off the equilibrium path. Let m € M (s;) N M(s3) be a message available to
the firm whatever its type, and let p; be the consumer’s belief that the firm’s type is s; when
the consumer’s type is ¢; and he observes the signal (p,m) off the equilibrium path. The
maximum price under which the consumer accepts to buy the good is p; = 2(1 — 1) + ppa
when his type is t; and py = 2us + p(1 — o) when his type is t5. The firm does not deviate
from full revelation by sending (p, m) only if p; and ps are both smaller than p, which yields
ty > 1 —¢ and pus < €. However this belief system is not consistent since it cannot be

obtained by Bayes’ rule whatever the strategy of the firm.
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