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ABSTRACT 

This research investigates the performance of non-linear estimation filtering for GPS-PPP/MEMS-based inertial system. Although 
integrated GPS/INS system involves nonlinear motion state and measurement models, the most common estimation filter employed is 
extended Kalman filter. In this paper, both unscented Kalman filter and particle filter are developed  and compared with extended 
Kalman filter. Tightly coupled mechanization is adopted, which is developed in the raw measurements domain. Un-differenced 
ionosphere-free linear combination of pseudorange and carrier-phase measurements is employed. The performance of the proposed 
non-linear filters is analyzed using real test scenario. The test results indicate that comparable accuracy-level are obtained from the 
proposed filters compared with extended Kalman filter in positioning, velocity and attitude when the measurement updates from GPS 
measurements are available.  

1. Introduction 

Global satellite navigation systems such as the global 
positioning system (GPS) are often used for navigation 
applications. With the lack or complexity of attitude 
determination and the accuracy degradation during partial 
outages, GPS can be integrated successfully with independent 
environmental navigation system such as inertial navigation 
system (INS). The motivation of the proposed integrated 
system is the aiding of GPS observations in compensating INS 
errors which accumulated in integrating process, on the other 
hand, during complete and partial GPS outages, the navigation 
parameters can be continue obtained from the INS. Differential 
GPS technique are commonly used in GPS/INS integration in 
higher accuracy-level applications.  This is mainly due to the 
high accuracy of differential GPS in comparison with 
standalone mode. Unfortunately, this involves the deployment 
of a base station, which limits the range of navigation area and 
increases the cost and complexity of the system. With the 
development of precise point positioning PPP (Zumberge et al, 
1997 and Kouba and Heroux, 2001), which is capable of 
providing decimeter to centimeter positioning accuracy without 
the need for a base receiver; it is possible to develop a high 
accuracy GPS/INS system based on one GPS receiver only. In 
addition, the great advances in micro-electro-mechanical 
sensors (MEMS) provide the development of a generation of 
low cost inertial sensors. MEMS sensors are characterized by 
small size, light weight and low cost with respect to high-end 
inertial sensors. Generally, MEMS sensors have poorer 
performance compared with high-end IMU due to the severe 
biases and errors affecting inertial sensors.   

For the integrated GPS/INS system, the ultimate target is to 
estimate the navigation state of the moving body at the current 
time based on sensor readings, given a set of updated 
measurements (GPS observations) collected at time steps.  The 
Bayesian filtering addresses the estimation problem of the 
dynamic model by propagating the conditioned probability 
density function (PDF) of the navigation state variables fሺx|Zሻ 
from one epoch to the next epoch, knowing the PDF of the 
observationsfሺz|xሻ. This is applied into two steps; prediction 
step and update step. In the prediction step, the dynamic motion 
model is considered based on IMU readings. Assuming that the 

PDF fሺx୩ିଵ|Z୩ିଵሻ	is available at time step k-1, the motion 
model is used to predict the current navigation state variables of 
the moving body by computing the priori PDF  
fሺx୩|Z୩ିଵሻthrough integration process. In the update step, the 
measurement model is considered to incorporate new 
information (GPS observations) to update the priori density to 
obtain the posterior PDF fሺx୩|Z୩ሻ	according to Bayes theorem 
(Jekeli, 2001).  The prediction and update steps repeated 
recursively to obtain the estimated navigation states at time 
steps. The Bayesian filtering yields the optimal estimation 
solution without approximation for the integrated system states. 
However, this recursive solution yields multi-dimensional 
integrals. For nonlinear systems such as our integrated system, 
it is impossible to evaluate these recursive solutions 
analytically. 

One of the solutions is to transform the nonlinear system to 
linear through linearization process by applying Taylor series 
expansion and neglecting the second and higher order terms 
assuming Gaussian distribution density which is applied in 
Kalman filter (KF) estimation. Generally, KF gives optimal 
estimation solution for linear models. In other words, for the 
integrated GPS/INS system, KF gives optimal solution for the 
approximate system (linearized system) rather than the original 
system (nonlinear system). Using first order Taylor 
linearization  may cause divergence of motion models 
especially during GPS outages due to the impact of neglecting 
higher order terms especially when low cost MEMS-based IMU 
is used. The Unscented Kalman filter (UKF) which is first 
introduced as a non-linear filter by Julier et al, (1995), is 
considered as a linear regression Kalman filter, Unlike, 
Extended Kalman filter, UKF linearize the nonlinear systems 
through a linear regression between n points, drawn from the 
prior distribution of the random variable rather than applying 
Taylor series expansion linearization, called sigma points . A 
set of sigma points with appropriate weights is deterministically 
chosen propagated through the true non-linear system, captures 
the posterior mean and covariance (Bergman, 2001).   

On the other hand, nonlinear filters such as Particle filter (PF) 
avoid the linearization of the system model, but instead, obtain 
approximate estimation solution for the nonlinear model rather 
than approximate the system model itself.  PF has been used for 
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GPS/INS integrations using different approaches (Yi and 
Brzezinska 2006, Giremus et al, 2005, Caron et al, 2007 and 
Georgy et al, 2010). PF handles the multi-dimensional integrals 
numerically rather than the exact analytical solution. PF can 
accommodate arbitrary sensor characteristics, motion 
dynamics, and noise distributions, PF has no approximations 
for the system and measurement models the only approximation 
is the numerical solution by estimating the PDF 
Pሺx|Zሻdiscretely by a set of N samples based on the Monte 
Carlo method (Ristic et al., 2002). However, as mentioned in 
(Doucet, 1998), it impossible to sample fromPሺx|Zሻ, an 
importance Density is used instead. This method is called the 
importance sampling (SI) which based on selecting probability 
density which taking into account the observations to time k. 
Generally, in GPS/INS integration, the prior probabilistic 
motion density is used as an importance density. This makes 
the PF suffer specially when using low cost MEMS-based 
inertial sensors because this importance density does not 
produce enough samples in regions where the true PDF is large 
due to the high drift of these low cost sensors. 

This research aims to develop a new integrated navigation 
system based on integrating GPS-based PPP with MEMS 
accelerometers and fiber optic gyros for precise navigation 
applications. The proposed integrated system requires rigorous 
modeling of all errors and biases affecting both inertial and 
GPS observations. We use un-differenced observations for GPS 
PPP. Inertial sensor biases are accounted for through 
calibration, while Gaussian-Markov stochastic process model is 
used to account for the sensor’s random errors. Both UKF and 
PF are employed to merge GPS and inertial sensors data 
compared with the traditional EKF.  

2. GPS-PPP/MEMS-based IMU tightly-
coupled algorithm 

Tightly coupled (TC) architecture is implemented adopting a 
central filter to process GPS raw pseudorange, phase and 
Doppler measurements and the INS-derived observations to 
produce estimates of the state vector including position, 
velocity and attitude.  

The mathematical modeling of INS is commonly described in 
the framework of linear dynamic systems. The dynamic 
behavior of such systems can be described using a state-space 
representation. For this purpose, a system of non-linear first-
order differential equations (mechanization equations) is 
employed. In the local-level frame (n-frame), this state vector 
for INS mechanization is represented by (Jekeli, 2001): 

2

n
n

n n b n n n n

b ie en

n n b
n

b ib in
b

r D V

V R f ( ) V g

R ( )R

                          






 

Where; r୬	is position vector; latitude, longitude and altitude. 
V୬	is the velocity in the ENU frame, consisting of the three 
East, North and Up components,	Vሶ ୬ is the kinematic 
acceleration in the ENU frame,	Ωୣ୬୬ . V୬ is the effect of the 
motion of the ENU frame with respect to the ECEF 
frame,		2Ω୧ୣ

୬ . V୬ is the Coriolis acceleration. g୬	is the gravity 
vector, including the Gravitation term and the centripetal term 
related to the Earth rotation and f ୠ is the specific force vector 

in the body frame and is measured by the accelerometers. The 
matrix 	Ω୧ୣ

୬ 		is the skew-symmetric matrix of rotation rate vector 
of Earth expressed in the ENU frame as;  

0
Tn

ie cos sin         

The matrix 	Ωୣ୬୬ 		is the skew-symmetric matrix of the rotation 
rate vector of the ENU frame with respect to ECEF frame, 
expressed in the ENU frame as:  
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The matrix	Ω୧ୠ
ୠ  is the skew-symmetric matrix of the rotation 

rate vector of the body frame with respect to the ECI frame	ω୧ୠ
ୠ , 

expressed in the body reference, which is measured by the 
gyros. The matrix	Ω୧୬

ୠ  is the skew-symmetric matrix of the 
rotation rate of the navigation frame with respect to inertial 
frame	ω୧୬

ୠ  expressed in the body frame which is computed 
combining 	ω୧ୣ

୬  and 	ωୣ୬
୬ 	transforming the result in the Body 

frame as follows; 
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The bias drift is modeled as a first-order Gauss-Markov process 
(Petovello, 2003) represented by the equations: 
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where The subscript “i” indicates the axis,  ߬௔ and ߬௚ are the 
correlation times for the accelerometers and gyros respectively, 
and	ݓ௔ and  ݓ௚ are the Gauss-Markov process driving noises, 
whose spectral densities are  ݍ௔  and  ݍ௚  . 

The clock errors unique to the GNSS measurements such as 
clock offset and drift are modeled and written as (Brown and 
Hwang 1997):  

o f f s e t d r i f t o f f s e t( c t ) ( c t ) w    
 

drif t drif t( c t ) w  
 

w୭୤୤ୱୣ୲ and 	wୢ୰୧୤୲	are the clock offset and drift driving noise 
with spectral density	q୭୤୤ୱୣ୲ and 	qୢ୰୧୤୲ respectively. The clock 
error spectral densities are computed as Brown and Hwang  
(1997). The complete state vector can be written as; 

n n n
a g of f set dr i f tx [ r , v , , b , b , c t , c t ]      

The measurement model of the GPS/INS filter in the TC 
architecture has the typical form: 

y( k ) h( x )    
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Where y(k) is the corrected un-difference ionosphere-free  GPS 
measurements,  h(x) is the nonlinear observation GPS satellites 
equation function of INS positioning (predicted measurements) 
and ε is the Gaussian white noise with zero mean  and 
covariance matrix R.  

The un-differenced ionosphere-free combination of code 
pseudorange and carrier phase mathematical model can be 
written as; 
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where Pଵ and Pଶ are code measurements on Lଵ and Lଶ, 
respectively; Φଵ	and Φଶ are the carrier phase measurements on 
Lଵ and Lଶ, respectively; dt୰ and dtୱ are the clock errors for 
receiver and satellite, respectively; T is the tropospheric delay; 
d୰ and dୱ  are frequency-dependent code hardware delay for 
receiver and satellite, respectively; δ୰ and δୱ are frequency-
dependent carrier phase hardware delay for receiver and 
satellite, respectively; e୮ଷ, e஍ଷ	are relevant system noise and 
un-modeled residual errors for the un-differenced ionosphere-
free combination of the code and carrier-phase measurements, 
respectively; and λത	are the wavelengths for un-differenced 
ionosphere-free carrier frequencies; Nഥ	is un-differenced 
ionosphere-free ambiguity bias; c is the speed of light in 
vacuum; and ρ is the true geometric range from the antenna 
phase centre of the receiver at reception time to the antenna 
phase centre of the satellite at transmission time. 

Knowing the precise GPS Satellites ephemeris, the outputs of 
position and velocity from the INS mechanization are used to 
predict the pseudorange, phase and Doppler measurements 
through the non-linear observation equations. The corrected 
pseudorange, phase and Doppler measurements from GPS are 
differenced with the INS-predicted measurements. Then the 
integration filter directly processes those residuals to estimate 
the INS state vector. Finally, the obtained INS state estimates 
are feed backed to the INS mechanization using the closed loop 
approach. Figure 1 shows the integration mechanism.  

 

Figure 1. Tightly coupled GPS-PPP/INS implementation. 

3. Estimation Filtering 

Nonlinear estimation filtering techniques are employed to 
estimate the proposed integrated PPP-GPS/INS system state 
vector (described above). In this section, the filter algorithms of 

the UKF and the PF are briefly reviewed. The general 
integrated system can be considered as; 

1 1x(k , k ) f ( x(k )) w(k)       

1y(k) h(x(k , k)) v(k)    

Where f and h are the motion and measurement nonlinear 
models, w and v are the motion and measurement noises 
respectively.  

Unscented Kalman Filter (UKF)  

In UKF, a set of scaled sigma points with appropriate weights is 
deterministically chosen so as to capture the mean and 
covariance of this random vector up to a third order accuracy. 
Consider a random vector x with mean xത and covariance 
matrix	P୶. The scaled sigma points and the corresponding 
weights can be defined according to Bergman, (2001) as 
follows: 

Initialize with (k=0); 
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Where i=1:n, are the sigma points and n is the dimension of the 
state vector. The parameter λ is a scaling parameter. 

Time update step; 

1 1
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Measurement update; 
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1 1k k ,k k k ,kx x K Z  
   

1k k ,k k

T
x x k z kP P K P K


    ( 1 ) 

where ̅ݔ଴ and ଴ܲ are the initial state vector and variance-
covariance matrix respectively. ݔ௜ and ܼ௜ are the state and 
observation vectors for the corresponding sigma points,  f and h 
are the non-linear motion and observation models respectively. 
 ,௞,௞ିଵ, ܼ௞,௞ିଵand  ௫ܲೖ,ೖషభ are the time prediction state vectorݔ
observation vector and variance-covariance matrix 
respectively.	ݔ௞, and  ௫ܲೖ are the time update state vector 
variance-covariance matrix respectively.  

 Particle Filter PF 

In the PF, the probability density function is described and 
evaluated by the set of samples called particles of x as the 
numerical approximation based on the Monte Carlo method 
(Doucet et al., 2000). The filter recursively updates the particles 
and corresponding weights of the particles as follows; 

Initialize with (k=0); 

0 0 0
1ix x , w
N

   

For i =1 …N, the filter particles are drawn for xത଴
୧  from prior 

P(x଴ሻ. In this research, xത଴ and P(x଴ሻ are state vector and 
variance-covariance matrix solution output of  EKF algorithm. 

Importance sampling (k=1: ∞); 

Time update 

The prior probabilistic motion density is used as an importance 
density by passing the state vector samples through the 
nonlinear mechanization equations 

1 0 1 1 1
i
k ,k t :k :kx q(x : x , y )  �  

Measurement update 

In the measurements updating step, the time updating samples 
are passing through the non-linear measurements system to 
create the observation probability density; 

1 1 1 1
i i
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For i =1 …N, the importance weight is evaluated as follow; 
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Normalize the importance weights; 

1

1

N
i i i
k k k

i

w w [ w ]



 
 

Estimation the mean state vector; 

11

N i i
k k k ,ki

x w x 
   

Resampling step 

In this step, the samples with high weights are selected and 
redistributed with neglecting the low weights samples. The 
multinomial distribution resampling technique is applied as 
pointed out in (Sanjeev Arulampalam et al., 2002). 

4. Trajectory test and Result analysis 

Vehicular test is conducted to evaluate the performance of the 
developed integrated GPS-PPP/MEMS-based IMU system. The 
vehicular test was carried out in downtown Kingston (Canada) 
and shows very difficult scenarios for satellite navigation, with 
frequent partial GPS outages of several seconds. The 
equipments used are Novatel SPAN-CPT system and Trimble 
R10 receiver. The SPAN-CPT system consists of a Novatel 
OEM4 receiver and an MEMS-IMU, which contains of three 
MEMS-based accelerometers and three fiber optic gyros. 
Carrier phase-based GPS/MEMS-based IMU solution is used to 
provide the reference solution. In order to create this reference 
solution, a Trimble R7 receiver was setup on a bench mark 
station to act as the base station. The raw GPS pseudorange, 
carrier phase and Doppler measurements in dual-frequency 
were logged at 1 Hz for the GPS receivers while the IMU raw 
data is logged at 100 Hz. The duration of the trajectory test was 
set for about 55 minutes. Figure 2 shows the trajectory test area. 

 

Figure 2. Trajectory area 

Figure 3 shows the positioning errors for latitude, longitude and 
altitude compared with the carrier phase-based GPS/MEMS-
based IMU solution. The positioning results of integrated 
system show that decimeter-level accuracy for all filters while 
few centimeters difference between the filters estimation as 
illustrated in Figure 4 for altitude, as an example. The results 
clarify that the effect of non-linearity in positioning 
determination can be marginal. In addition there are no 
consistent improvements in the positioning when non-linear 
filters are used which indicates that using EKF for high 
accurate integrated system is sufficient. 
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Figure 3. Positioning errors comparison. 

 

Figure 4. Altitude estimation results difference from EKF 
results 

 

Figure 5. Velocity estimation results accuracy referenced to 
differential GPS/MEMS-based IMU velocity results 

For the velocity determination, Figure 5 shows the velocities 
errors in east, north and up using EKF as a central filter. The 
results show centimeter-level accuracy can be achieved using 
single receiver compared with the differential mode. While as 
shown in Figure 6 millimeter-level difference is produced in 
east component as an example when using non-linear filters 

compared with EKF. This small difference comes from the high 
accuracy achieved originally using EKF.     

 

Figure 6. East velocity estimation results for PF and UKF 
differenced from EKF results 

For attitude estimation, due to the lack of determination of the 
attitude using GPS with multi-antenna, the attitude estimation 
accuracy will depend mainly on the velocities estimation 
especially in roll and pitch due to the their strong coupling with 
the horizontal velocities (east and north), and the quality of the 
gyros used especially for the azimuth determination. While the 
velocities estimation using the integrated system as shown 
before achieved centimeter-level difference with the differential 
mode integrated system, the attitude determination for the 
integrated system achieved comparable results with the 
differential mode integrated system as shown in Figure 7. 

 

Figure 7. Attitude estimation results difference from 
DGPS/MEMS-based IMU attitude results 

 

Figure 8. Roll estimation results for PF and UKF difference 
EKF results. 

The same criteria are applied for the estimation of the attitude 
using non-linear filters compared with EKF. As small velocity 
estimation difference experienced using non-linear filters 
compared with EKF, the expected difference between the 
attitude estimation is small as shown in Figure 8 for roll angle 
as an example.  
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5. Conclusion 

This paper investigated the performance of two non-linear 
filters, namely PF and UKF, in comparison with the traditional 
EKF for the proposed GPS-PPP/MEMS-IMU integrated 
system. Un-differenced ionosphere-free linear combinations of 
carrier-phase and code measurements were processed. 
Tropospheric delay, satellite clock, ocean loading, Earth tide, 
carrier-phase windup, relativity, and satellite and receiver 
antenna phase-center variations were accounted for using 
rigorous modeling. Tightly coupled mechanism was adopted, 
which was carried out in the raw measurements domain. Field 
experiments were executed, which cover different scenarios in 
land-based navigation.   The test results indicate that 
insignificant position, velocity and attitude differences 
(centimeter-level position differences, millimeters-level 
velocity differences and less than 0.02 degree differences in 
orientations) are obtained when the measurement updates from 
GPS carrier phase measurements are available. The future work 
will include the investigation of the obtainable accuracy of the 
proposed estimation filters during GPS partial outages.  
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