
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 1256–1270
Verification method of dataflow algorithms in high-level synthesis

Tsung-Hsi Chiang *, Lan-Rong Dung

Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu City 300, Taiwan, ROC

Received 9 December 2005; received in revised form 23 August 2006; accepted 19 December 2006
Available online 22 December 2006
Abstract

This paper presents a formal verification algorithm using the Petri Net theory to detect design errors for high-level synthesis of data-
flow algorithms. Typically, given a dataflow algorithm and a set of architectural constraints, the high-level synthesis performs algorith-
mic transformation and produces the optimal scheduling. How to verify the correctness of high-level synthesis becomes a key issue before
mapping the synthesis results onto a silicon. Many tools exist for RTL (Register Transfer Level) design, but few for high-level synthesis.
Instead of applying Boolean algebra, this paper adopts the Petri Net theory to verify the correctness of the synthesis result, because the
Petri Net model has the nature of dataflow algorithms. Herein, we propose three approaches to realize the Petri Net based formal
verification algorithm and conclude the best one who outperforms the others in terms of processing speed and resource usage.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Formal verification; High-level synthesis; Petri Net; Dataflow graph
1. Introduction

With increasing design complexity of digital signal pro-
cessing system, verification becomes a more and more
important within the design flow. In modern circuits, it is
observed that up to 80% of the overall design costs are
due to verification. Formal verification techniques which
ensure 100% coverage of function and system model cor-
rectness have gained large attention. In Gupta (1992) and
Kern and Greenstreet (1999), authors give excellent survey
of major trends of formal verification techniques which can
be classified into two categories, equivalence checking
(Kern and Greenstreet, 1999) and model checking (Clarke
et al., 1999). Equivalence checking is used to proof the
functional equivalence of two design representations mod-
eled at the same or different levels of abstraction. Model
checking is a process that checks the correctness of a design
model with given properties. Although formal verification
for logic synthesis has been studied very extensively, little
work has been done for high-level synthesis.
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.12.547

* Corresponding author.
E-mail addresses: aries.ece89g@nctu.edu.tw (T.-H. Chiang), len-

non@cn.nctu.edu.tw (L.-R. Dung).
This paper presents a novel verification algorithm to
verify high-level synthesis (HLS) of dataflow algorithms.
Given a dataflow graph (DFG) and architectural con-
straints, the HLS aims to generate the task schedule with
processor assignment. Typically, the HLS performs algo-
rithmic transformation, such as retiming, scaling, and
unfolding, on the DFG to meet the architectural con-
straints, and allocates resources accordingly (Madisetti
and Curtis, 1994; Dung and Yang, 2004; Ito et al., 1998;
Parhi, 1995; Chao and Sha, 1997). Both algorithmic trans-
formation and resource allocation require complex proce-
dures. These procedures are rather heuristic and
error-prone. The integer linear programming (ILP), for
instance, is one of the popular techniques applied for
HLS. The success of ILP is relied on the completeness of
clauses. Any mistake or incomplete description made in
the ILP may result in an illegal solution and affect the cor-
rectness of following synthesis results. This paper intends
to present a formal verification algorithm to unveil the
faults produced in HLS.

In the proposed algorithm, we employed the Petri Net
model as the formal description to check the correctness
of dataflow behavior. Since the Petri Net model executes
the data-driven behavior, it has the nature of dataflow

mailto:aries.ece89g@nctu.edu.tw
mailto:lennon@cn.nctu.edu.tw
mailto:lennon@cn.nctu.edu.tw

T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270 1257
computing and hence a good tool for the verification of
algorithmic transformations and datapath scheduling.
The use of the Petri Net is twofolded. First, the Petri Net
model of dataflow algorithm can hold the data dependence
and hence any legal transformation has to conform to the
firing rules of the Petri Net model. Secondly, the scheduling
candidates is correct if and only if the initiation of each
task is allowed in the Petri Net model. Comparing with
the traditional model checking techniques, the first use
can provide simple but thorough model for restructured
algorithms while the second use can avoid false negative
problems.

The inputs to the proposed formal verification are the
system description and task schedule. The system descrip-
tion is basically a fully specified flow graph (FSFG)
(Madisetti, 1995). The FSFG represents the behavioral
specification of the dataflow algorithm which is also a
design entry of HLS. In HLS, to meet the architectural
constraints, the algorithmic transformation normally
reconstructs the initial FSFG to find out optimal schedul-
ing results. The reconstructed FSFG is admissible if and
only if it is equivalent to the initial FSFG. To verify the
correctness of the task schedule, the proposed algorithm
first converts the initial FSFG to a Petri Net model which
is expressed by Petri Net characteristic matrix, because any
admissible reconstructed FSFG has to have the same char-
acteristic matrix. Later, the matrix will be used to verify
primary properties, such as reachability, liveness, safeness,
and boundedness.

Another input is the schedule, the DUV (design under
verification), generated by HLS. The schedule is expressed
in the format of processor-time chart (or P · T chart). The
P · T chart equally shows the firing sequence. The pro-
posed verification uses the firing sequence to unveil the
legal algorithmic transformations applied for the original
FSFG. The legal algorithmic transformations will then be
candidates to trace the firing sequence of the given
schedule.

Based on the inputs, the proposed verification first
extracts the initial firing pattern and uses it to determine
the candidate reconstructed FSFGs. The candidates will
then be verified with the Petri Net model. If there exist at
least one candidate who can allow the firing sequence to
execute legally (without against the firing rules), the HLS
result is claimed as a correct solution; otherwise, the verifi-
cation will show the counter example in proof of the incor-
rectness. In this paper, we propose three approaches to
realize the PN-based formal verification and conclude the
best one who outperforms the others in terms of processing
speed and resource usage.

1.1. Related work

The existential verification methods utilize the technolo-
gies like BDD (Binary Decision Diagram) (Bryant, 1992;
Brace et al., 1990), SAT (Satisfiability) solver (McMillan,
2002; Parthasarathy et al., 2001), symbolic model checking
(Burch et al., 1991, 1994; Kang and Park, 2003; Parthasar-
athy et al., 2004) and theorem proving (Kljaich et al.,
1989). These technologies are extremely powerful but must
be applied in RTL level. Herein, in order to verify the HLS
result, most literatures were focus on developing a strategy
for RTL validation in which the equivalence between RTL
level and its abstract level description. In Ashar et al.
(1998) and Sarkar (2002), verification task is partitioning
into two subtasks, verifying the validity of register sharing
and verifying correct synthesis of the RTL interconnection
and control. Similarly, in Karfa et al. (2006), Borrione et al.
(2000), Mansouri and Vemuri (2000) and Bolchini et al.
(2000), a high-level design is decomposed into the control
part and the datapath part and modeled by using FSMD
(Finite State Machine with Data Path) (Gajski and Rama-
chandran, 1994). By applying such decomposition meth-
ods, a high-level scheduled design is divided into the
control and the datapath. Thus, the equivalent checking
technique can be applied to check the correctness of data-
path, and the model checking can be used to verify the
validity of control by utilizing the existential verification
technologies.

In this paper, the proposed verification method is based
on Petri Net for verifying the correctness of the high-level
faults induced by applying algorithmic transform and
scheduling processing in HLS. When comparing with the
traditional approaches, this paper adopts the Petri Net the-
ory to verify the correctness of the synthesis result instead
of applying Boolean algebra on it.

1.2. Outline

The remainder of this paper is organized as follows.
Section 2 describes some useful definition and proposed
modeling technique. Section 3 presents the schedule repre-
sentation and system specification to the FSFG design. The
proposed high-level verification technique and verification
algorithms are presented in Section 4. In Section 5, we dis-
cuss the complexity analysis of three verification algorithms
and some experimental results. Section 6 gives the conclu-
sions of this paper.

2. Definition and modeling

In this section, we will discuss some useful definitions
and proposed transformation technique to transform a
FSFG into PN model.

2.1. Fully-specified signal flow graph (FSFG)

Fully-Specified Signal Flow Graph (FSFG) (Madisetti,
1995) or DFG is a natural paradigm for describing DSP
algorithms. A FSFG GFSFG(V,E,D), where V = {v1, . . . ,
vn}, E = {e1, . . . ,em} and D 2 {0,1,2, . . .}, is a three-tuple
directed and edge-weighted graph which contains a vertex
set V, a directed edge set E, and an ideal delay set D. Vertex
set V represents atomic operation of functional units. A

1 time units adder

2 time units multiplier

v16
e20 e21

v9

e18

v10e15

e17 D

e14e13

e10 D
v15 v8

b2

b3

v14
b1

v7
v11

e4

e2
v12 y [n]

e3 D

v13

e19

a3

a2

e16

v2
x [n]

v1

v3

e9

a1
v4

v5

v6

e12

e1

e11

e8e7e6e5

zero time unit signal
duplicator

Fig. 1. A third-order IIR filter in the form of FSFG.

1258 T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270
vertex may have a zero executing delay, such as the signal
duplicator, or may be assumed to take non-zero unit time,
such as adder or multiplier. Directed edge set E describes
the direction of flow of data between functional units. Inter
data dependencies between functional units are denoted by
weighted edges. Fig. 1, for instance, shows a third-order
IIR filter in the form of FSFG.
2.2. Petri Net model

A Petri Net (PN) GPN(P,T,W,M0) is a four-tuple
(Reisig and Rozenberg, 1998), where P = {p1, . . . ,pn} and
T = {t1, . . . , tm} are finite sets of place and transition, W

is the weighted flow relation, and M0 is the initial marking.
A marking is a function M : P ! Z. If M(pi) = k for place
pi, we will say that pi is marked with k tokens. A marking
M is said to be a valid state if and only if M(pi) P 0,
"pi 2 P. Let u and v be two arbitrary adjacent nodes of
PN. If W(u,v) > 0, then there is an arc from u to v with
weight W(u,v). For a node u in P [T, •u (the pre-set of
u) is specified by •u = {v 2 P [TjW(v,u) > 0} and u• (the
post-set of u) is specified by u• = {v 2 P [TjW(u,v) > 0}.
In this paper, for each place pi 2 P, we only allow pi has
only one output transition, that is "pi 2 P, jpi

•j = 1. A
PN can execute by firing enabled transitions. A transition
tr is enabled at marking M (denoted by M[tri) if
"p 2 •tr : M(p) P W(p, tr). Once a transition tr is enabled
at M, it may fire and then reach a new marking M 0

(denoted by M[triM 0). The occurrence of tr lead to a new
marking M 0, defined for each place p by

M 0ðpÞ ¼ MðpÞ � W ðp; trÞ þ W ðtr; pÞ: ð1Þ

A sequence of transitions r = tr1 . . . trk�1 2 T* is a firing

sequence from a marking M1 to a marking Mk if and only
if there exist markings M2, . . . ,Mk�1 such that

Mi½triiMiþ1; for 1 6 i 6 k � 1: ð2Þ

Marking Mk is said to be reachable from M0 if and only if
there exists a firing sequence r : M0[riMk. [Mi is the set of
markings reachable from M by firing any sequence of tran-
sitions, i.e., M 0 2 [Mi () $r 2 T* : M[riM 0. [M0i is the
set of all markings reachable from M0.

Matrix representation of PN is defined by incidence

matrix A (also called the characteristic matrix), which is a
jPj · jTj-matrix with entries

Aij ¼ W ðtrj; piÞ � W ðpi; trjÞ: ð3Þ

The matrix representation usually gives a complete charac-
terization of PN. Let xj = {trj} = (. . ., 0,1,0, . . .) be the unit
jTj · 1 column vector which is zero everywhere except in
the jth element. Also, let l is the jPj · 1 column vector re-
spected to a marking M0 with entries li = M0(pi). The tran-
sition trj is represented by the column vector xj. A
transition trj is enabled at a marking M0 (denoted by
M0[trji) if l P A Æ xj. And the result marking, l 0, of firing
enabled transition trj in a marking l0 is represented by

l0 ¼ dðl0; trjÞ ¼ l0 þ A � xj: ð4Þ
For a sequence of transition firing r : M0[riMk and
Mi[triiMi+1, 1 6 i 6 k � 1, we have

dðl0; rÞ ¼ dðl0; tr1tr2tr3 . . . trk�1Þ

¼ l0 þ
Xk�1

1

A � xj ¼ l0 þ A � f ðrÞ: ð5Þ

The vector f(r) is firing vector of the sequence
r = tr1 . . . trk�1. The ith element of f(r), f ðrÞi 2 Z, is the
number of times that transition tri fires in the r.

2.3. Transformation from FSFG to PN model

The FSFG is attractive to algorithm developers because
it directly models the equations of DSP algorithm. Yet, it
does not sufficiently unveil the dynamical behavior and
the implementation limits in terms of the degree of parallel-
ism and the memory requirement. Thus, we use Petri Net
to model DSP algorithms. It also allows us to discover
the characteristic of the target architecture and to observe
the dynamical behavior of the algorithm.

The FSFG GFSFG(V,E,D) of a DSP algorithm can be
modeled as PN GPN(P,T,W,M0) by applying following
rules:

(1) Vertex set V, whose elements have the computational
power, in FSFG domain is transformed into transi-
tion set T in PN domain.

(2) Edge set E in FSFG domain is transformed into place
set P in PN domain.

(3) Since each place in PN has only one output transi-
tion, the pseudo-transition is added as the signal
duplicator which is corresponded to the fork node
in FSFG.

(4) The delay element set D in FSFG domain is corre-
sponded to the number of token in place in PN
domain. In static analysis, tokens in an PN model
can represent delay elements of an FSFG; thus, mov-
ing tokens between places in a PN model can be seen

FSFG domain

Vertex set
v1~v2

Transition set
tr1~tr2

Edge set
e1~e5

Place set
p1~p5

PN domain
Transformation table

v1

v2

e3

e2

e4

e5

e1 p1
p2

tr1

p3
p4

tr2

p5

FSFG Petri net

Fig. 2. Transformation from FSFG to Petri Net.

b

2D D

e1

e2e3

tr1

p1

tr2

p2

tr3

p3

FSFG with delay elements

Petri net with tokens

FSFG domain
Delay on

edge
Token in

place

PN domain
Transformation table

D

a

c

Fig. 3. FSFG with delay elements and Petri Net with tokens.

FSFG domain

Fork point Pseudo
transition

PN domain
Transformation table

v1 v2

Fork point

e4 e5

e2 e3

e1

p1 Pseudo transition

p2 p3

t1 t2

p4 p5

FSFG Petri net

Fig. 4. Fork point in FSFG domain and pseudo-transition in PN domain.

tr2
p19

p16

tr1
p12

tr5

tr6

p13

p20 tr16 p21

p17

p14

tr8

tr9

p15

p18

tr10

p11

tr11

p10

tr14
tr7

p7 p8

p6tr4

p5

p9

tr3

p1

tr13 p2

p3 p4

tr12

tr15

tr1
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
-1
 0
 0
 0
-1
 0
 0
 0
 0
 0

tr2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
-1
 0
 0

tr3
 1
 0
 0
 0
-1
 0
 0
 0
-1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

tr4
 0
 0
 0
 0
 1
-1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

tr5
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
-1
 0
 0
 0
 0
 0
 0
 0
 0

tr6
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
-1
 0

tr7
 0
 0
 0
 0
 0
 0
-1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

tr8
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
-1
 1
 0
 0
 0
 0
 0
 0

tr9
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
-1

tr10
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
-1
 0
 0
-1
 0
 0
 0

tr11
 0
 0
 0
 1
 0
 0
 0
-1
 0
 0
-1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

tr12
 0
-1
 0
-1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

tr13
-1
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

tr14
 0
 0
-1
 0
 0
 1
 1
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

tr15
 0
 0
 0
 0
 0
 0
 0
 0
 0
-1
 0
 0
 1
 1
 0
 0
 1
 0
 0
 0
 0

tr16
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
-1
 0
 0
 1
 1

P/T
p1
p2
p3
p4
p5
p6
p7
p8
p9

p10
p11
p12
p13
p14
p15
p16
p17
p18
p19
p20
p21

[A] = m =

0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0

Fig. 5. A PN graph and the matrix representation to the third-order IIR
filter of Fig. 1.

T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270 1259
as retiming delay elements between edges in an
FSFG. In dynamical analysis, moving tokens
between places in an PN model represents the execu-
tions of vertex elements in an FSFG.

Fig. 2, for instance, illustrates the transformation from
vertex set V and edge set E to transition set T and place
set P. The vertex set V = {v1,v2} and the edge set
E = {e1,e2,e3,e4,e5} in FSFG domain are transformed into
the transition set T = {tr1, tr2} and the place set
P = {p1,p2,p3,p4,p5} in PN domain with respect. Another
example is given in Fig. 3, a FSFG graph with delay ele-
ments is transformed into a Petri Net. The vertex set
V = {a,b,c} and the edge set E = {e1,e2,e3} of FSFG are
transformed into the transition set T = {tr1, tr2, tr3} and
the place set P = {p1,p2,p3} of PN model. The delay ele-
ments in FSFG domain is donated by the number of
tokens in places, such that M0(p1) = 0, M0(p2) = 1 and
M0(p3) = 2.

In FSFG domain, a computing result of a functional ele-
ment is one or more other functional elements’ inputs.
Data source in the prior functional element causes a data
fork point. A fork point in FSFG can be modeled as a
pseudo-transition in PN model. The pseudo-transition
duplicates copies of data source as many as the output
nodes in FSFG graph. The equivalence graph of fork point
in FSFG domain and pseudo-transition in PN domain is
shown in Fig. 4. Another example illustrating the PN
model of the third-order IIR filter of Fig. 1 by applying
above transformation rules is showing in Fig. 5 while the
characteristic matrix A with the initial marking m shows
the matrix representation of the PN model.
3. Schedule and system specification

In this section, we describe the representation of sche-
dule to a FSFG design and its PN model. The system spec-
ification, which dominates the correctness of the given
schedule, is also presented.
3.1. Schedule to the FSFG

In HLS, a FSFG design may contain cycles to model a
DSP application with loops. The intra-iteration precedence
relation is represented by the edge without delay and the
inter-iteration precedence relation is represented by the
edge with delays. Given an edge e(vi,vj) 2 E in FSFG

1260 T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270
design, d(e) means the data used as inputs in node vj are
generated by node vi at d(e) inter-iteration before. A static

schedule of a cycle FSFG is a repeated pattern of an execu-
tion of the corresponding loop. And a static schedule must
obey the precedence relations of the directed acyclic graph
(DAG) portion of a FSFG design that is obtained by
removing all edges with delays from that FSFG.

A sequencing graph is a DAG Gs(V,E), where vertex set
V = {viji = 1,2, . . . ,n} is in one-to-one correspondence with
the set of the FSFG design, and edge set E = {(vi,vj)ji, j =
1,2, . . . ,n; i 5 j} is representing their dependencies. An
example of sequencing graph is showing upper in Fig. 6a.
Different scheduling algorithms have been proposed in
Parhi and Messerschmitt (1991), Chao and Sha (1997)
and Hwang et al. (1991) addressing different constrained
problems to find the desired schedule. The desired schedule
have to satisfy the precedence constraints specified by the
sequencing graph.

A schedule S to the FSFG design is represented in
space–time (P · T) domain. The abscissa denotes time axis,
[1, le(S)], where le(S) is the length of the schedule. The ordi-

nate denotes the processor space, [1,nres], where nres is the
total number of processors used for the scheduling. During
the period of the ith iteration, schedule determines the start
times of all nodes in FSFG. Let opi

j be one of the task,
which is corresponded to the vertex vj 2 V of a FSFG in
the ith iteration. The start time of each task is a mapping
u : V ! Zþ, which arranges each task node opi

j to begin
its execution at the time step uðopi

jÞ, where Zþ ¼
f1; 2; . . .g is the positive integers. The task assignment func-
tion s : V! {1,2, . . . ,nres} is a mapping from each task
node opi

j to a single processor sðopi
jÞ.
v6 v5 v8

v9

v10

v11

v7v2

v1

v4

v3

v12

1

2

3

4

5

6

P

F

Step
1
2
3
4
5
6

Tasks schedule
op5

1, op6
1, op8

1

op9
1

op2
1, op4

1, op7
1

op1
1, op10

1

op3
1, op11

1

op12
1

S

Fig. 6. A sample schedule of the t
Let di
j be the executing delay for each task node opi

j, the
length le(S) of a schedule S is the latest finish time of all the
operations scheduled, that is leðSÞ ¼ maxfuðopi

jÞþ
di

j � 1 j 8opi
j 2 V g. For each task node opi

j 2 V , a schedule
of the FSFG design is given as following:

• Start time: ti
j ¼ uðopi

jÞ;u : V ! Zþ ¼ f1; 2; . . .g:
• Executing delay: di

j 2 Z ¼ f0; 1; 2; . . .g:
• Finish time: ei

j ¼ uðopi
jÞ þ di

j:
• Task assignment: pei

j ¼ sðopi
jÞ; s : V ! f1; 2; . . . ; nresg:

• Length of the schedule: leðSÞ ¼ maxfuðopi
jÞþ

di
j � 1 j 8opi

j 2 V g:
• The earliest task-finished step: tetf ¼ minfuðopi

jÞþ
di

j � 1 j 8opi
j 2 V g:
3.2. Execution of a task

As mentioned in previous section, for a given FSFG
design, the nodes represent computational tasks, while
the arcs represent data dependencies, buffering, and direc-
tion of data transfer between task nodes. A task node
cannot execute until sufficient data is ready on its input
arcs. When the data-amount has been reached on each of
its input arcs, a task node can execute. When a task node
executes, it consumes data from its input arcs, executes
the task through the duration of the executing delay of that
task, and it produces data onto its output arcs. The same
executing process can cross-refer from FSFG to PN model.
In PN domain, transitions represent task nodes and places
represent arcs, while token movements between places rep-
resent the firing sequence of transitions. A transition cannot
fire until sufficient tokens are ready on its input places.
op6
1 op4

1

op8
1 op7

1

op9
1 op10

1 op11
1

op5
1 op2

1 op1
1 op3

1 op 12
1

time
E

PE1

PE2

PE3

PE4

1 2 3 4 5 6

iring transitions
tr5
tr6
tr8

tr2
tr9

tr1
tr4
tr7
tr10

tr3
tr11

tr12

tep
1
2
3
4
5
6

Firing transitions

{tr5, tr6, tr8}
{tr2, tr9}
{tr1, tr4, tr7, tr10}
{tr3, tr11}
{tr12}

{ non }

hird-order IIR filter in Fig. 1.

(2) J

task 9

time

Schedule

Start time t9 End time ε9

Executing delay d9

tr9 is enabled
PN domain

After tr9 fires

tr9 fires at ε9

Fig. 7. Executing duration of a task.

task 9

time

PE3

Start time t9 End time ε9

Executing delay d9

task 9 op'

tr9 is enabled

tr9 fires

Schedule

PN domain

Fig. 8. Task 9 is preempted by operation node op 0.

T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270 1261
When each of its input places has at least one token, a tran-
sition can fire. If there exists more tokens on its input
places, a transition may fire several times. When a transi-
tion fires, it consumes tokens from each of its input arcs,
and it produces tokens onto its output places.

As showing in Fig. 7, task 9 is a task node of the sche-
dule. Where t9 is the start time, d9 is the executing delay,
and the finish time of this task is e9. The executing process
of this task node can be divided into three durations: before
task executing, during task executing, and after task exe-
cuting. In PN domain, a task of FSFG can be transformed
into a transition tr9 of PN model. Before task executing, tr9

may or may not enable. Then, tr9 is enabled during task
executing. At last, transition tr9 fires instantaneously at
the moment after finishing the execution of task 9. An
example schedule is showing in Fig. 6c. At each step of
the schedule, enabled transitions may fire at the end of each
step. The tasks schedule and its firing transitions are
illustrated.

3.3. System specification

The mentioned system is the given schedule, or the
DUV. In HLS, designers may apply high-level transforma-
tion techniques on their original FSFG design and obtain
the desired optimal or suboptimal schedule from its
restructured FSFG. For all operation nodes in a FSFG
design, schedule determines the start time of each task.
The executing order of all tasks in the schedule must satisfy
the system specification, which can be extracted from the
restructured FSFG. Let opi

j and opi
k be two distinguish

tasks in ith iteration of S. The properties to the system
are defined as following. We also describe the false-cause
and its detection in PN domain.

(1) Non-preemption property
• Definition: Let opi

j be one of the task in schedule S.
An admissible schedule must ensure that a computa-
tion is not preempted by another that is scheduled on
the same processor at the same time. On the other
word, if the deterministic executing delay of a single
task opi

j in the ith iteration is di
j, then for each time

unit during its executing delay, the same processor
pei

j must execute that task, such that:
PEkðuÞ ¼ pei
j; pei

j ¼ sðopi
jÞ; ti

j 6 u < ti
j þ di

j; ð6Þ

where PEk(u) is the assignment function for resource
k, 1 6 u 6 le(S).
• Fault-cause: In Fig. 8, for instance, the executing
delay of task 9 is d9. During executing delay d9,
task 9 is preempted by operation node op 0. An
admissible schedule must avoid such preemptive
execution.

• Detection: At the sth step of schedule length le(S), the
marking state ls to the sth step is a (jPj · 1)-column
vector, which indicates the number of tokens on each
places. During executing delay di

j of task opi
j, the PN

transition trj with respect to its operation node opi
j

must be enabled, that is
lsðpÞ > 0; 8p2�trj; 1 6 s 6 leðSÞ: ð7Þ
ob completion property
• Definition: Let f be the unfolding factor, which
implies f consecutive iterations of the design. During
one period of the ith-iteration of S, an admissible
schedule must ensure that each operation node in ver-
tex set V of the FSFG is scheduled at exact once.
Thus, job completion property must ensure that each
operation node in vertex set V of the FSFG must be
scheduled at exact f times during the length of S, that
is:
ti
j > 0; ti

j ¼ uðopi
jÞ; 1 6 i 6 f ; 8opi

j 2 V :

ð8Þ

• Fault-cause: Schedule S violates job completion prop-

erty if one or more operation nodes are not scheduled
in S. For example, the start time of operation node
opi

j is ti
j ¼ 0.

• Detection: Let f be the unfolding factor obtained from
given schedule S, and s be the index of the sth step of
S. Let firing vector js be a (jTj · 1)-column vector. If
the jth element of the firing vector is js(j) = 1, it indi-
cates the transition trj, corresponded to the operator
node opi

j at ith-iteration, fires at the sth step. An
acceptable schedule must ensure that each operation
node opi

j at the ith-iteration is scheduled exact once
during the schedule length le(S). On the other word,

task 9

time

PE3 task 10

PN model

tr9 tr10Firing sequence

Fig. 9. Precedence property of two operation tasks.

Detect unfolding factor

Transform FSFG
into PN model

The original
FSFG design

Given schedule
(DUV)

Job-completion
check ?

Check job-completion

no

yes

1262 T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270
transition trj must fire f times totally during the length
le(S).
First stage:
Build the reachability tree with Bread-first traverse,
recedence property
Second stage: Verify schedule with Depth-first traverse

and find the candidate markings

 Does candidate
marking exist?

yes

no
(3) P
• Definition: Let DAG graph Gs(V,E) be the scheduled

sequencing graph to the given schedule S, where the
set of nodes V represents operation nodes, and
the set of edges E describes dependencies between
the nodes. For each edge eðopi

j; opi
kÞ 2 E, the prece-

dence property must ensure that operation opi
j should

be completed before operation opi
k can start, that is
Does there exist any
reachable marking?

no
ti
k P ti

j þ di
j; ð9Þ

where ti
j ¼ uðopi

jÞ, ti
k ¼ uðopi

kÞ are the start times of
operation nodes, and di

j is the executing delay of opi
j.
Report :
Given schedule is valid.

Report :
Given schedule is invalid.

The counterexample of the firing
sequence is given.

yes

Done Done

Fig. 10. Flowchart for the proposed high-level verification method.
• Fault-cause: In Fig. 9, transition tr10 is a successor of
transition tr9, thus the execution order of these two
operation nodes must ensure tr9! tr10. Schedule S

violates precedence property if these two operation
nodes execute in reverse order.

• Detection: At the sth step of S, the firing vector js is a
(jTj · 1)-column vector. If the jth element of the firing
vector is js(j) = 1, it indicates the operation node opi

j

fires at the sth step. Let ls be the marking state at the
sth step of S, next marking ls+1 can be obtained by
using Eq. (4), that is
lsþ1 ¼ ls þ A � js; 1 6 s 6 leðSÞ: ð10Þ

Vector js is said to be a valid firing if resulting mark-
ing ls+1 from ls is valid. If all the resulting markings
are valid, schedule S is satisfied under the precedence
property.
4. High-level verification

In this section, proposed two-stages verification tech-
nique is introduced. The algorithms to both stages are also
presented separately as the implementations.

4.1. Verification flow

A flowchart illustrating our verification flow is shown in
Fig. 10. There are two inputs to the flow: a given schedule
and the original FSFG. The given schedule is the DUV
(design under verification) that needs to be verified. The
original FSFG reserves the characteristics of the system
that the DUV must be satisfied. The proposed verification
method tries to find the correct restructured FSFG, which
is candidate to the DUV at the first stage, and then, it
checks whether the executing sequence, the DUV, of the
PN model corresponded to the candidate is satisfied at
the second stage. Before introducing two-stages verification
method, we address the preprocessing on both inputs
separately.

One of the inputs is the given schedule. In system-level
design flow, designers may use unfolding algorithm to
pursue perfect FSFG achieving iteration period bound
on their original FSFG design. Usually, the FSFG of
the DSP algorithm describes one iteration of the compu-
tation. By applying unfolding algorithm on the FSFG is
to unfold the original FSFG by a factor f which implies
f consecutive iterations of the design. In contrast, we per-
form unfolding checking in our verification flow to detect
the unfolding factor f from given schedule. Another input
to the verification flow is the original FSFG graph. It is
transformed into a PN model by proposed transformation
rules.

In PN domain, the markings, which can be reached from
the initial marking, can be seen as the retimed FSFGs of

m

tr5t r7 tr10

tr9t r10t r11

tr9 tr11tr5 tr7

m1

m2

m3

m4

tr7t r9 tr11

Enabled
{tr5, tr7, tr10}

Earliest task-finished set: {tr5, tr9}
nop
{tr10}

Depth fired
tr10{tr5, tr9}

Remained
{tr5, tr9}

{tr9, tr10, tr11} {tr10} tr10 {tr5, tr9}
{tr5, tr7, tr9, tr11} tr5 {tr9}

{tr5, tr9}
{tr5, tr9}
{tr9} {tr7, tr9, tr11} { } tr9 { }

ebl_set

[0 0 0 0 0 1 1 2 0 0 0 0 0 0]
[0 0 0 0 0 1 1 1 0 0 0 1 1 0]
[0 0 0 0 0 1 1 0 0 0 0 2 2 0]
[0 0 0 0 1 0 1 0 0 0 0 2 2 0]
[0 0 0 0 1 0 1 0 0 0 1 1 2 0]

m
m1

m2

m3

m4

Markings

{ }

r9, tr10, tr11}

Fig. 11. Check whether a marking is a candidate marking.

tr1

p4

tr4
p5

tr9

p11
p12 p13

p8

tr10

p7tr6

p3

p1 tr2

p8

tr5 tr7

tr11

p6 p9
tr8

p14

p10

p2 tr3

op5
1

op9
1

time
PE

PE1

PE2

1 2 3 4

Firing transitions tr5
tr9

op7
1

op11
1

op4
1 op1

1

op8
1 op3

1

PE3

PE4

tr7
tr11
tr4

tr1
tr8

tr3

Fig. 12. An example schedule and second order IIR filter.

T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270 1263
the original design. Some reachable markings are the cor-
rect restructured FSFGs for the given schedule. These
markings, which dominate the correctness of the given
schedule, are said to be the candidate markings. In order
to find the candidate markings, Breadth-First algorithm is
used to traverse all the markings of PN reachability tree
at the first stage. If the candidate marking does not exist,
it means the correct retimed FSFG does not exist, it reports
the given schedule is not valid due to absent of the candi-
date marking. If the candidate marking exists, we continu-
ously apply Depth-First algorithm on each candidate
marking.

The given schedule is valid if there exists an initial mark-
ing, the candidate marking, of the PN model leading a fir-
ing sequence of the schedule valid. At the second state, we
apply Depth-First traverse procedure on each candidate
marking to check whether the given schedule is valid by
checking the firing sequence of the schedule. At last, if
there exists such candidate marking, the flow is done and
reports given schedule is valid, or a counterexample of
invalid firing sequence is reported if given schedule is
invalid.

4.2. The candidate marking

The candidate marking set is a subset of the reachable
marking set of a Petri Net. A candidate marking is proba-
bly the correct initial marking, it also means correct reti-
med FSFG, which leads the firing sequence of a given
schedule being valid.

Let S be a schedule of a FSFG. The earliest task-finished
set etf_set of S are the tasks which are finished at the ear-
liest task-finished step tetf in S, such that

etf set ¼ fopi
j j ei

j ¼ tetf ; 8opi
j 2 V g: ð11Þ

Assuming m is a marking of the PN model. A firing se-
quence r : tr1 . . . trk of transitions is denoted by m!r mk,
where m1 . . . mk are valid states, such that

m!tr1 m1!
tr2 � � �!trk mk: ð12Þ

Marking m is defined as a candidate marking, if marking m

and firing sequence r satisfy Definition 1.

Definition 1. Marking m is said to be a candidate marking if
and only if there exists a firing sequence r : tr1 . . . trk, such
that for all tasks op 2 etf_set are covered by all the
transitions in r, i.e., etf_set � r. And it is also satisfied that
each firing transition trj 2 r is either a pseudo-transition,
dj = 0, or an earliest task-finished transition, ej = tetf.
As an example, Fig. 11 shows the procedure to check
whether a marking is candidate. For a given schedule in
Fig. 12, the earliest task-finished step is tetf = 1, and the
earliest task-finished set is etf set ¼ fopi

j j ei
j ¼ tetf ¼ 1g ¼

fv5; v9g. Marking m = [00000112000000] is said to be a
candidate marking of the corresponded PN model. Since,
there exists a firing sequence r : tr10tr10tr5tr9, m!r m4, such
that etf_set � r. The markings, m1 . . . mk, of the firing
sequence, m!tr10 m1!

tr10 m2!
tr5 m3!

tr9 m4, are valid states, where
m1 = [00000111000110], m2 = [00000110000220], m3 =
[00001010000220], and m4 = [00001010001120].

4.3. Proposed verification method

The proposed high-level verification method includes
two stages: the Breadth-First and the Depth-First traverse
procedures. At the first stage, the Breadth-First traverse
procedure tries to find candidate markings, the correct

m3

c c
c

c

cm4

c c
c

c

cm7m6 c

c c

m5 c m8 c

c c

m2

tr6
tr9 tr11

c

m
tr6 tr10

root
c

m1 c

tr5
tr10

tr7

Candidate
C

C

C
-

C

C

C

C

C

Branches
{tr6, tr10}
{tr5, tr10, tr7}
{tr9, tr6, tr11}
{tr10, tr7}
{tr9, tr5, tr10, tr11, tr7}
{tr5, tr10}
{tr6, tr11}
{tr9, tr5, tr10, tr11, tr7}
{tr9, tr6}

0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 2 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 2 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1 1 0
0 0 0 0 0 1 0 2 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 1

States
m
m1

m2

m3

m4

m5

m6

m7

m8

#.

Fig. 14. Build reachability tree with Breadth-First search algorithm.

1264 T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270
retimed FSFGs, from reachability tree. At the second
stage, the Depth-First traverse procedure verifies given
schedule by checking the candidate markings. Since, the
nodes of reachability tree are exponential growth with the
height of the tree, two-stages method is the better policy.
The verification method shortens the searching space by
finding candidate markings at the first stage. At the second
stage, it verifies given schedule by checking candidate
markings rather than all the reachable markings of reach-
ability tree.

Assuming there are n operations in a given FSFG, and
hence there are n transitions in the corresponded PN
model. Let f be the unfolding factor of a given schedule
while designers performing unfolding technique on their
FSFG design. At the first stage, the procedure tries to find
the candidate marking set from the reachable marking set
from the reachability tree and fires each transition once
each time. The height of each marking in reachability tree
is the distance from the root node to itself. Since, during
one iteration period of the schedule S, le(S), each scheduled
task must be fired once, the height can also be seen as the
number of transitions that have been fired since the root
node. Thus, for an n-tasks schedule, the upper height-bound

of the reachability tree is bounded by Hup = f Æ n. At the
second stage, it continually finds the solution marking set
from the candidate marking set. The set relation between
three marking sets is shown in Fig. 13, that is S3 � S2 �
S1. The purpose of the first stage is trying to reduce the
searching space from reachable marking set S1 to candi-
date marking set S2, while the second stage is trying to find
solution marking set S3 from candidate marking set S2.

4.4. First stage: breadth-first traverse procedure

At the first stage of the verification method, we apply
Breadth-First traverse procedure to find the candidate
markings from the reachability tree. Three approaches,
which include the exhaustive, the early-terminated and
the optimal approaches, are proposed in this paper and dis-
cussed in the following sections.

4.4.1. The exhaustive approach
The first approach to verify a given schedule of a

FSFG is the exhaustive approach. It tries to build reach-
ability tree with Breadth-First traverse procedure. The
S3: Solution set

S2: Candidate set
S1: Reachable set

Fig. 13. The relation between reachable, candidate and solution marking
sets.
reachability tree contains all the reachable markings of
a Petri Net. As an example, Fig. 14 shows a reachability
tree of the Petri Net in Fig. 12. In Fig. 14, each node in
the tree associated with a reachable marking of the Petri
Net. The root node of the reachability tree is the initial
marking m of a given PN model. In this marking, two
transitions are enabled: tr6 and tr10. For each enabled
transition, the procedure creates new nodes in reachabil-
ity tree for the reachable markings which result from fir-
ing both transitions. An arc, labeled by the transition
fired, leads from the initial marking to each new node.
Then it applies candidate checking for each new node
to check whether a marking is candidate. The procedure
continually builds reachability tree for each new produced
node until reach the upper height-bound Hup, which is
bounded by Hup = f Æ n for a finite n-tasks schedule. The
pseudo-code of the exhaustive approach is shown in
Fig. 15.

In the beginning of Fig. 15, function is_candidate checks
whether the marking l is candidate. Then, marking l is
marked unvisited and enqueued in a queue structure Q.
For each unvisited node in Q, the algorithm finds enabled
set of transitions, creates breaching nodes and applies can-
didate checking on each new produced node. At last, new
produced nodes are enqueued in Q and wait for next itera-
tion, in lines 10–27.

The queue structure Q is a first-in-first-out queue. The
markings in Q need to be processed are in ascending order
with respected to their height. As an example in Fig. 14, the
traverse order of the reachability tree which is rooted by
marking m is m,m1,m2, . . . ,m8, . . .

Fig. 15. The exhaustive approach.

T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270 1265
4.4.2. The early-terminated approach
The second approach to verify a schedule of a given

FSFG is called the early-terminated approach which
improves the exhaustive approach. Before introducing the
improved approach, we first consider Lemma 1.

Lemma 1. Let Ttree be a reachability tree which is bounded

by upper height-bound Hup and m1 be any one of the

candidate markings in Ttree. For any other candidate marking

m2 in the successor path of marking m1, m2 is in the solution

marking set S3 if and only if m1 is in S3.

Proof 1. Let etf_set be the earliest task-finished set of a
given schedule and transition sequence r1 be a firing
sequence that leads m1 2 S2 from root marking mr of Ttree

to be a candidate marking, that is mr!
r1 m1. Assuming there

exists another candidate marking m2 2 S3, m2 5 m1, with
firing sequence r2 that leads m2 from root marking mr of
Ttree to be a candidate marking, that is mr!

r2 m2, and is in
the successor path of marking m1.

As defined in Definition 1, it must be satisfied that
etf_set � r1 and etf_set � r2 where the elements of r1 and
r2 are all in {nop} [{etf_set}. As described in assumption,
m2 is in the successor path of marking m1, it is still satisfied
that r2 = r1 [{nop}. This implies m2 is in solution marking
set S3 if and only if m1 is in S3. h

The early-terminated approach is based on the exhaus-
tive approach and uses Lemma 1. It tries to minimize the
size of candidate set S2 from reachable set S1. The differ-
ence between the exhaustive and the early-terminated
approaches is that when an enqueued unvisited marking
is candidate, the early-terminated approach ignores the
candidate marking and marks as a visited node. Then, it
proceeds other unvisited nodes in queue Q until all the
markings have been visited. In Fig. 16, as an example,
the traverse order of the early-terminated approach is
m,m1,m2,m3, . . . ,m10. The pseudo-code of the earliest-ter-
minated traverse method is shown in Fig. 17. In lines 12–
14, it ignores the candidate marking and proceeds other
unvisited nodes.

4.4.3. The optimal approach

The third approach to verify a schedule of a given FSFG
is the optimal approach which is improved from the early-
terminated approach. In order to reduce reachable marking
set S1 of the reachability tree, it tries to merge the redun-
dant nodes when it proceeds Breadth-First traverse.

m2

m4

m1

m

m3 m5

c

c

m6 m7 m8 m9

c

m10

root

Fig. 16. The traverse order of early-terminated approach.

m0

m1

m4 m5

m6

m9

c

tr6 tr10

m3

tr5 tr10 tr7

m7

c
tr7tr10

c m8m7 c

c

tr5 tr10

tr10

m2

root

Fig. 18. Merge the redundant node in optimal traverse approach.

1266 T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270
Let m be an unvisited node to be processed. If m is a
candidate marking, it ignores this node by using Lemma
1 and proceeds other unvisited nodes in queue. If m is
not a candidate marking, it finds enabled set of transitions
and creates new node on each enabled transition. For each
new produced node with marking m 0, if there exists another
node in the reachability tree, and has the same marking
associated with it, then the node with marking m 0 is a
duplicate node. Since, the marking m 0 has appeared in
the tree, this new produced node is redundant. Then, it
merges this redundant node to the existential node and cre-
Fig. 17. The early-term
ates transition link from marking m to the existential node.
As an example in Fig. 18, when it proceeds marking m5, it
founds the new created node with marking m7 is a duplicate
node. It merges these nodes and creates transition from m5

to m7. Then, it continually proceeds other unvisited nodes
in queue.

The pseudo-code of the optimal approach is shown in
Fig. 19. In lines 12–14, if the node n is a candidate marking,
then it ignores this node by using Lemma 1 and proceeds
the other nodes in queue Q. In lines 26–32, function
inated approach.

Fig. 19. The optimal traverse approach.

Candidate marking c
m=[00100001000000]

Depth-first search

T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270 1267
find_duplicate_node checks whether the new created node
nn is duplicate. If there exists a duplicate node, it ether
returns the dual node to dual_node or returns null. It con-
tinually proceeds other unvisited nodes until all nodes are
visited.
m1 = [00001011001010]

m2 = [00010000100111]

m3 = [10000000010110]

m4 = [01000000000110]

Firing: tr6, tr5,
tr10, tr9

Firing: tr10, tr7,
tr11, tr4

Firing: tr1, tr8

Firing: tr2, tr3

Step 1

Step 2

Step 3

Step 4

Fig. 20. Verify schedule with Depth-First search algorithm.
4.5. Second stage: Depth-First traverse method

At the second stage, we apply Depth-First traverse pro-
cedure to verify a schedule on candidate markings rather
than all reachable markings in PN model. As showing in
Fig. 20, a candidate marking m which is found in the first
stage is probably the correct marking, the correct retimed
FSFG, that leads a given schedule being valid. For a given
schedule in Fig. 12, task tr5 and task tr9 are scheduled and
finished at the first step of the schedule. The procedure tries
to fire one transition of these scheduled tasks or enabled
nop operations once each time during the first scheduled
step. At the end of the first step, marking m1 is obtained
from candidate marking m by firing transition sequence
r : tr6tr5tr10tr9, that is m!r m1, where transition tr6 and

—

—

— —

— — —

—

Fig. 21. Path traverse with Depth-First search algorithm.

1268 T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270
tr10 are nop operations. The procedure continually tra-
verses entire length of the schedule step-by-step until all
the scheduled tasks are fired. A given schedule is said to
be valid if and only if all the markings in the traverse path
are valid.

The pseudo-code of the second stage is shown in Fig. 21.
At the beginning, the procedure marks all nodes in queue Q

unvisited in line 3. For all unvisited candidate markings, it
traverses all entire length of the schedule, applies procedure
go_further_depth_firing at each scheduled step in line 12.
Procedure go_further_depth_firing has three parameters:
the absolute step s of a given schedule, the current marking
l and the output marking l 0. The pseudo-code for proce-
dure go_further_depth_firing is illustrated in Fig. 22, and
it returns true if and only if the firing markings during step
s are valid. A valid schedule exists if and only if all the fir-
ing markings of the entire length of the schedule are valid.
At last in lines 19–21, all solution markings are added to
sol_set.

5. The complexity analysis and result

Assuming there are n non-nop operations in a given
FSFG, thus there are n non-nop transitions in the corre-
sponded PN model. Let f be the unfolding factor of a given
schedule. As described in previous section, the upper-
height of the reachability tree of the corresponded PN
model is bounded by Hup = f · n. The complexity analysis
of the proposed two-stages verification method is discussed
as following.

At the first stage, three approaches are proposed includ-
ing the exhaustive, the early-terminated and the optimal
traverse methods. In the first approach, each node in the
reachability tree has n enabled transitions in worse case,
the level 0 (the root node) has one node.

Level 1 has n nodes
Level 2 has (n)(n) = n2 nodes
Level 3 has (n2)(n) = n3 nodes
.
Level f Æ n has (nfÆn�1)(n) = nfÆn nodes

The total number of nodes is

1þ nþ n2 þ � � � þ nf �n ¼ ðnf �nþ1 � 1Þ=ðn� 1Þ: ð13Þ

Thus, the space complexity of the heuristic approach is
O(NfÆN), in worse case.

In the second approach, the early-terminated approach,
the algorithm stops traversing a node while it is candidate.
Let p, p 6 (f Æ n), be the deepest level that Breadth-First tra-
verse procedure can reach. The complexity of the second
approach is O(Np), p 6 f Æ n.

In the third approach, the optimal approach, the algo-
rithm merges duplicate markings in order to reduce the
reachable marking set of the reachability tree. Let
x 2 Z ¼ f1; 2; . . .g be the merging radio in the reachability
tree. The complexity of the three approach is O((N/x)p),
p 6 f Æ n. Thus, the relation of the complexity between three
approaches is:

OðN f �nÞ > OðNpÞ > OððN=xÞpÞ: ð14Þ

At the second stage, the algorithm performs Depth-First
traverse to verify a given schedule by checking the firing se-
quence, which contains f Æ n transitions, of the PN model.
Thus, the complexity is O(f Æ n), in worse case.

Fig. 22. The pseudo-code for procedure go_further_depth_firing of DFS_traverse_path in Fig. 21.

T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270 1269
Fig. 23 shows the experimental results of using three
approaches. The optimal approach outperforms the others
in terms of time and resource usage.
Fig. 23. The experimental results.
6. Conclusion

This paper aims to exploit formal verification techniques
for high-level synthesis. In the top-down design flow,
design errors should be removed as early as possible; other-
wise, errors detected at the later stages will result a costly,
time-consuming redesign cycles. Although formal verifica-
tion for logic synthesis has been studied very extensively,
little work has been done for high-level synthesis. The
paper presents a novel verification flow that can efficiently
detect the design errors from the results of high-level syn-
thesis. As shown in the experimental results, we can apply
the optimal approach for the first phase to efficiently verify
complex design cases.
Acknowledgement

This work was supported by the National Science Coun-
cil, ROC, under the grant number NSC 94-2220-E-009-039.

1270 T.-H. Chiang, L.-R. Dung / The Journal of Systems and Software 80 (2007) 1256–1270
References

Ashar, P., Bhattacharya, S., Raghunathan, A., Mukaiyama, A., 1998.
Verification of rtl generated from scheduled behavior in a high-level
synthesis flow. In: Proceedings of the 1998 IEEE/ACM International
Conference on Computer-Aided Design, pp. 517–524.

Bolchini, C., Montandon, R., Salice, F., Sciuto, D., 2000. Design of
VHDL-based totally self-checking finite-state machine and data-path
descriptions. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 8 (1), 98–103.

Borrione, D., Dushina, J., Pierre, L., 2000. A compositional model for the
functional verification of high-level synthesis results. IEEE Transac-
tions on VLSI Systems, 526–530.

Brace, K.S., Rudell, R.L., Bryant, R.E., 1990. Efficient implementation
of a BDD package. ACM/IEEE Design Automation Conference,
40–45.

Bryant, R.E., 1992. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys 24 (3), 293–318.

Burch, J., Clarke, E., Long, D., 1991. Symbolic model checking with
partitioned transition relations. In: International Conference on Very
Large Scale Integration, pp. 49–58.

Burch, J., Clarke, E., Long, D., MacMillan, K., Dill, D., 1994. Symbolic
model checking for sequential circuit verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 13 (4),
401–424.

Chao, L.-F., Sha, E.H.-M., 1997. Scheduling data-flow graphs via
retiming and unfolding. IEEE Transactions on Parallel and Distrib-
uted Systems 8 (12), 1259–1267.

Clarke, E.M., Grumberg, O., Peled, D.A., 1999. Model Checking. The
MIT Press.

Dung, L.-R., Yang, H.-C., 2004. On multiple-voltage high-level synthesis
using algorithmic transformations. IEICE Transactions on
Fundamentals.

Gajski, D.D., Ramachandran, L., 1994. Introduction to high-level
synthesis. IEEE Design and Test 11 (4), 44–54.

Gupta, A., 1992. Formal hardware verification methods: a survey. Formal
Methods in System Design 1, 151–238.

Hwang, C., Lee, J., Hsu, Y., 1991. A formal approach to the
scheduling problem in high level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 10 (April),
464–475.

Ito, K., Lucke, L.E., Parhi, K.K., 1998. Ilp-based cost-optimal dsp
synthesis with module selection and data format conversion. IEEE
Transactions on Very Large Integration Systems 6 (4), 582–594.
Kang, H.-J., Park, I.-C., 2003. SAT-based unbounded symbolic model
checking. In: Proceedings of the 40th Conference on Design Automa-
tion, pp. 840–843.

Karfa, C., Mandal, C., Sarkar, D., Pentakota, S.R., Reade, C., 2006. A
formal verification method of scheduling in high-level synthesis. In:
Proceedings of the 7th International Symposium on Quality Electronic
Design, pp. 71–78.

Kern, C., Greenstreet, M., 1999. Formal verification in hardware design: a
survey. ACM Transactions on Design Automation of E. Systems 4
(April), 123–193.

Kljaich, J., Smith, B.T., Wojcik, A.S., 1989. Formal verification of fault
tolerance using theorem-proving techniques. IEEE Transactions on
Computers 38 (3), 366–376.

Madisetti, V.K., 1995. VLSI Digital Signal Processors. IEEE Press.
Madisetti, V.K., Curtis, B.A., 1994. A quantitative methodology for rapid

prototyping and high-level synthesis of signal processing algorithms.
IEEE Transactions on Signal Processing 32 (11), 3188–23208.

Mansouri, N., Vemuri, R., 2000. Automated correctness condition
generation for formal verification of synthesized RTL designs. Journal
of Formal Methods in System Design 16 (1).

McMillan, K.L., 2002. Applying SAT methods in unbounded symbolic
model checking. In: 14th Conference on Computer Aided Verification,
pp. 250–264.

Parhi, K.K., 1995. High-level algorithm and architecture transformations
for dsp synthesis. Journal of VLSI Signal Processing 9, 121–143.

Parhi, K., Messerschmitt, D., 1991. Static rate-optimal scheduling of
iterative data-flow programs via optimum unfolding. IEEE Transac-
tions on Computers 40 (2), 178–195.

Parthasarathy, G., Cheng, K.-T., Huang, C.-Y., 2001. An analysis of
ATPG and SAT algorithms for formal verification. In: Proceedings of
International High Level Design Validation and Test Workshop, pp.
177–182.

Parthasarathy, G., Iyer, M.K., Cheng, K.-T., Wang, L.-C., 2004. Safety
property verification using sequential SAT and bounded model
checking. IEEE Design and Test of Computers 21 (2).

Reisig, W., Rozenberg, G., 1998. Lectures on Petri Nets I: Basic Models.
Springer-Verlag.

Sarkar, D., 2002. Register transfer operation analysis during data path
verification. In: Proceedings of the 2002 Conference on Asia South
Pacific Design automation/VLSI Design, p. 172.

	Verification method of dataflow algorithms in high-level synthesis
	Introduction
	Related work
	Outline

	Definition and modeling
	Fully-specified signal flow graph (FSFG)
	Petri Net model
	Transformation from FSFG to PN model

	Schedule and system specification
	Schedule to the FSFG
	Execution of a task
	System specification

	High-level verification
	Verification flow
	The candidate marking
	Proposed verification method
	First stage: breadth-first traverse procedure
	The exhaustive approach
	The early-terminated approach
	The optimal approach

	Second stage: Depth-First traverse method

	The complexity analysis and result
	Conclusion
	Acknowledgement
	References

