
Journal of Parallel and Distributed Computing 60, 113�133 (2000)

A New Strategy for Improving the Effectiveness
of Resource Reclaiming Algorithms in

Multiprocessor Real-Time Systems

Indranil Gupta1, G. Manimaran2, and C. Siva Ram Murthy3,

Department of Computer Science and Engineering, Indian Institute of Technology,
Madras 600 036, India

Received August 24, 1998; revised May 3, 1999; accepted August 25, 1999

The scheduling of tasks in multiprocessor real-time systems has attracted
the attention of many researchers in the recent past. Tasks in such systems
have deadlines to be met, and most real-time scheduling algorithms use worst
case computation times to schedule these tasks. Many resources will be left
unused if the tasks are dispatched purely based on the schedule produced by
these scheduling algorithms, since most of the tasks will take less time to
execute than their respective worst case computation times. Resource reclaim-
ing refers to the problem of reclaiming the resources left unused by a real-
time task when it takes less time to execute than its worst case computation
time. Several resource reclaiming algorithms such as Basic, Early Start, and
RV algorithms have been proposed in the recent past. But these pay very
little attention to the strategy by which the scheduler can better utilize
the benefits of reclaimed resources. In this paper, we propose an esti-
mation strategy which can be used along with a particular class of resource
reclaiming algorithms (such as Early Start and RV algorithms) by which the
scheduler can estimate the minimum time by which any scheduled but
unexecuted task will start or finish early, based solely on the start and finish
times of tasks that have started or finished execution. We then propose an
approach by which dynamic scheduling strategies, which append or
reschedule new tasks into the schedules, can use this estimation strategy to
achieve better schedulability. Extensive simulation studies are carried out to
investigate the effectiveness of this estimation strategy versus its cost. � 2000

Academic Press

Key Words: multiprocessor real-time systems; dynamic scheduling; resource
reclaiming; precedence constraints; resource constraints.

Article ID jpdc.1999.1594, available online at http:��www.idealibrary.com on

113 0743-7315�00 �35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1 Present address: Department of Computer Science, Cornell University, Ithaca, New York 14850.
E-mail: gupta�cs.cornell.edu.

2 Present address: Department of Electrical and Computer Engineering, Iowa State University, Ames,
Iowa 50011. E-mail: gmani�iastate.edu.

3 E-mail: murthy�iitm.ernet.in.



1. INTRODUCTION

Because of their high performance and reliability, multiprocessors are emerging
as powerful computing tools for safety-critical, real-time applications such as
nuclear plant control and avionic control [10]. The problem of multiprocessor
scheduling, which is to determine when and where a given task executes, has
attracted considerable attention in the past [10�13]. Two classes of scheduling
algorithms��static and dynamic��have emerged. In static algorithms, the assign-
ment of tasks to processors and the time at which the tasks start execution are
determined a priori. Static algorithms [3, 6] are often used to schedule periodic
tasks with hard deadlines which are known a priori. The advantage is that if a solu-
tion is found, one can be sure that all deadlines will be guaranteed. However, this
approach is not applicable to aperiodic tasks whose arrival times and deadlines are
not known a priori. Scheduling such tasks in a multiprocessor real-time system
requires dynamic scheduling algorithms. In dynamic scheduling [5, 7, 8, 13], when
new tasks arrive, the scheduler dynamically determines the feasibility of scheduling
these new tasks without jeopardizing the guarantees that have been provided for
the previously scheduled tasks.

In general, for predictable execution, which is essential in a real-time system,
schedulability analysis must be done before tasks start execution. For schedulability
analysis, tasks' worst case computation times must be taken into account. A feasible
schedule is generated if the timing, precedence, and resource constraints of all the
tasks can be satisfied, i.e., if the schedulability analysis is successful. Tasks are
dispatched according to this feasible schedule.

Dynamic scheduling algorithms can be either distributed or centralized. In a dis-
tributed dynamic scheduling scheme, tasks arrive independently at each processor.
The local scheduler at the processor determines whether or not it can satisfy the
constraints of the incoming task. If so, the task is accepted; otherwise, the local
scheduler tries to find another processor to accept the task. In a centralized scheme,
all the tasks arrive at a central processor called the scheduler, from which they are
distributed to other processors in the system for execution. In this paper, we will
assume a centralized scheduling scheme. The communication between the scheduler
and the processors is through dispatch queues (DQs). Each processor has its own
dispatch queue. This organization, shown in Fig. 1, ensures that the processors
always find some tasks in the dispatch queues when they finish the execution of
their current tasks. The scheduler runs in parallel with the processors, scheduling
the newly arriving tasks, and periodically updating the dispatch queues. The
scheduler has to ensure that the dispatch queues are always filled to their minimum
capacity (if there are tasks left with it) for this parallel operation. This minimum
capacity depends on the worst case time required by the scheduler to reschedule its
tasks upon the arrival of a new task [4, 9]. The schedule constructed by the
scheduler is assumed to be stored in a set of schedule queues (or SQs, one queue
per processor), presumably in the scheduler's memory itself. The dispatch queues
are updated by the scheduler from these schedule queues just before the invocation
of the scheduling algorithm or when they become empty so that the processors can
execute tasks in parallel with the scheduler's running.

114 GUPTA, MANIMARAN, AND SIVA RAM MURTHY



http://isiarticles.com/article/7173

