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Abstract— This paper has two purposes: investigating a

featureless visual servoing approach based on mutation analysis

and proposing a visual servo control method for nanomanipu-

lations. For the first purpose, the featureless visual servoing

method is needed because traditional visual servoing relies

heavily on robust feature extraction and tracking, which are

very difficult in natural environment. The mutation analysis

based approach in this paper considers the image as a set,

and designs a controller to make the distance between the

initial and goal image sets converge to zero, thereby steering

the initial image to the goal image. For the second purpose,

atomic force microscopic (AFM) based nanomanipulations with

subnanometer accuracy are very difficult because the position

sensor cannot provide valuable feedback due to large noises

at this precision level. We propose to use the images obtained

by AFM and perform a visual servo control. This method,

independent of external sensors, can directly perform control

on the AFM end tip’s position. The featureless controller is

successfully validated on AFM images and the results suggest

a potential precision enhancement for nanomanipulations.

I. INTRODUCTION

Visual servoing uses vision information to control the

motion of a mobile robot or a manipulator for various tasks

such as navigation or manipulation. Consider the eye-in-hand

configuration when the camera is rigidly attached to a robot

or a manipulator. The goal for visual servoing is to design

a control law, under which the mobile robot or manipulator

can move, so that the current image will eventually converge

to a specified goal image [1]. This problem is usually solved

in vector space by minimizing the error e(t) defined as

e(t) = s(t)−s∗, where s(t) and s∗ are the current and desired

position vectors of features from the image, respectively [1].

This approach, however, relies heavily on robust feature

extraction and tracking. In fact, good features may be difficult

to find and they may also become occluded during the

movement in natural environment [2]. Furthermore, reliable

feature tracking for visual servo in complex real environ-

ments is quite challenging [3]. To address these problems,

artificial fiducial markers are employed for the experiments

in most of visual servoing literature.

Instead of using fiducial markers, there is a trend to come

up with featureless visual servoing techniques in recent years.

In these techniques, the servo control is directly performed

based on pixel intensity information in the image, and no

explicit feature extraction and tracking is required. Several

different featureless visual servoing methods are proposed
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in literature. In general, they can be classified into four

categories based on how the error e(t) is defined.

The first method [4], considering the whole image as a

feature, performs principle component analysis on the origi-

nal image to obtain an eigen space with reduced dimension.

Then the control is performed to make the error in this

eigen space converge to zero. This method, although not

depending on explicit feature extraction, requires processing

on the entire image; moreover, formal proof of convergence

is not provided. The second method [5], similar to the first

one, processes the original image with a spatial sampling

function to derive a kernel measurement, and a controller is

designed to make the measurement error converge to zero.

But the controller is only obtained for a subset of rigid

body motions instead of a general six degree-of-freedom

motion. The third method tries to make the sum-of-squared-

difference of intensities between two images converge to

zero, and the matrix relating the camera motion to the

motion of individual pixels is obtained through the optical

flow equation. Two different implementations exist for this

method. In [6], the optimization based control is performed

without formal convergence proof, while in [7], [8], similar

gradient control is designed to stabilize a helicopter but with

a formal stability proof. It’s also worth mentioning that the

latter considers a dynamic model with force/torque input

instead of a kinematic model with only velocity input. The

last method employs the entropy from information theory to

obtain the mutual information between two images and uses

an optimization approach to maximize it [9]. This method is

robust with respect to different lighting conditions.
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Fig. 1. The scheme for mutation analysis based visual servoing

The mutation analysis based visual servoing approach is

another featureless method proposed earlier than all above

methods [10]. The basic idea for this approach is shown in

Fig. 1. Both the current and goal images are considered as

sets, and the error between two images is defined as the

distance between two sets. A controller is then designed to

make the image set distance converge to zero. Nevertheless,

since the space of sets does not have the linear structure of

vector space, the traditional dynamics model in vector space
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cannot be used; instead, the non-vector mutation analysis for

set evolution should be employed [11], [12]. Therefore, this

method provides a fundamentally different way to solve the

featureless servoing problem.

The purpose of this paper is twofold. On one hand, we

want to bring this mutation analysis based visual servoing

method into the community’s attention. Essentials of muta-

tion analysis will be explained, and the controller for binary

images in [10] will be extended to gray scale images. On

the other hand, we propose a potential application for visual

servoing: atomic force microscope (AFM) based nanomanip-

ulation, and validate the mutation analysis based method with

simulations on AFM images. Note that a literature review for

AFM based nanomanipulations will be given in section IV.

The rest of paper is organized as follows. First of all,

essential concepts in mutation analysis will be presented

in section II. After that, the mutation equation model for

visual servoing and the controller design are given in sec-

tion III. Based on the controller, the potential application

for nanomanipulation with visual servoing is presented in

section IV, and the simulation results with AFM images are

demonstrated in section V. Finally, the conclusions are given.

II. MUTATION ANALYSIS FOR SET EVOLUTIONS

Mutation analysis deals with the dynamics of sets instead

of vectors. In this case, the linear structure of vector space

does not exist because the addition and scalar multiplication

of sets cannot be properly defined [12]. This nonvectorial

characteristic requires a set of new tools which will be

elaborated in this section.

A. Distance Between Sets

Although lack of linear structure, the space of sets can be

a metric space if a proper metric is defined. The Hausdorff

distance between two sets can be such a metric; indeed, it has

been widely used to compare binary images [13]. We define

the Hausdorff distance step by step. First of all, the distance

between a point x ∈ R
n and a set K ⊂ R

n is defined as:

dK(x) = infy∈K ||y−x||, where || · || is the Euclidean distance

between two points. The projection of x to K is the set of

points y ∈ K defined by ΠK(x) = {y ∈ K : ||y−x||= dK(x)}.

The distance from set X to set Y is defined as d(X ,Y ) =
supx∈X dY (x), and the distance from Y to X is d(Y,X) =
supy∈Y dX (y). Generally, these two distances do not equal to

each other and thus will not form a metric. But the Hausdorff

distance defined as

dh(X ,Y ) = max{d(X ,Y ), d(Y,X))} (1)

is a metric. The gray scale images can be considered as a

set of points in three dimensions because each pixel has two

pixel index values and one intensity value. Therefore, the

Hausdorff distance between two gray scale images X and Y

is:

dh(X ,Y ) = max{max
x∈X

min
y∈Y

||x− y||, max
y∈Y

min
x∈X

||y− x||)} (2)

where x,y ∈N
3 are vectors formed by three natural numbers.

Note that since the index values and intensity have different

units, a proper rescale for the index values should be per-

formed so that they have the same range as the intensities.

The computational complexity for Hausdorff distance is large

if the scanning search method is used, but it can be greatly

reduced if other branch-and-bound approaches are used [14].

B. Tubes and Transitions

To describe the set dynamics, the evolution of a set, called

tubes, should be defined at first. A tube K(t)⊂R
n is defined

as [10]:

K(·) : R
+ �→ 2R

n

(3)

where 2R
n

is the power set of Rn which is the collection of

all subsets of Rn. Let ϕ : E �→R
n with E ⊂R

n be a bounded

Lipschitz function. Denote the set of all such functions as

BL(E, Rn). For ordinary differential equation (ODE) ẋ =
ϕ(x) with initial condition x(0) = x0. The transition for ϕ
is defined as:

Tϕ(t,x0) = {x(t) : ẋ = ϕ(x), x(0) = x0} (4)

where x(t) is the solution to above ODE. In other words,

the transition is nothing but the solution to a given ODE at

time t. Note that a rigorous definition for transitions requires

it to satisfy four conditions [12], but for simplicity, we use

above definition which can be shown to satisfy those four

conditions (Ch. 1, Example 3, [12]). The above definition

can be extended when the initial condition is a set instead

of a point:

Tϕ(t,K0) = {x(t) : ẋ = ϕ(x), x(0) ∈ K0} (5)

where K0 is a set containing all possible initial conditions

which implies Tϕ(t,K0) is also a set. In fact, Tϕ(t,K0) can

be considered as a reachable set of points at time t generated

by ϕ with the initial points in K0. It can also be considered

as a tube evolving from K0 under the rule given by ϕ . Note

that this definition can also be shown to satisfy the four

conditions for transitions (Ch. 1, Example 4, [12]).

C. Mutation Equations

To describe the set dynamics, time derivative of a tube

should be defined, but this is not trivial since the space of sets

has only the structure of metric space. Fortunately, we can

extend the derivative of a function in vector space to metric

space based on transitions. For a function f : R+ �→ R
n, the

derivative is defined as v= limΔt→0[ f (t+Δt)− f (t)]/Δt. This

can be rewritten in the first order approximation form as [12]:

lim
Δt→0

1

Δt
|| f (t +Δt)− ( f (t)+ vΔt)||= 0 (6)

where f (t) + vΔt can be considered as a new point in

R
n obtained by starting from f (t) and moving along the

direction v after Δt time. Similarly, in the context of tube,

transition Tϕ(Δt,K(t)) can be considered as a new set in

R
n obtained by starting from K(t) and moving along the

direction of ϕ after Δt time. Therefore, similar to Eq. (6), the

derivative of a tube K(t) should be the function ϕ satisfying:

lim
Δt→0+

1

Δt
dh(K(t +Δt),Tϕ(Δt,K(t))) = 0 (7)

5684



where K(t+Δt) is the set at time t+Δt according to the tube

K(·) : R+ �→ 2R
n
. Note that for a given tube, there may be

none or multiple ϕ satisfying Eq. (7); therefore, the mutation

of a tube K(t) is defined as the set, possibly empty, of all ϕ:

K̊(t) = {ϕ(x) ∈ BL(E, Rn) : Eq. (7) is satisfied} (8)

Based on the mutation of a tube, the mutation equation

describing set dynamics is defined as:

ϕ(x) ∈ K̊(t) (9)

The mutation equation defined above has only x as its

parameter. To add the control input to the equation, consider

a map ϕ : E ×U �→ BL(E, Rn) where U is the set of all

possible controls u. Then the controlled mutation equation

can be defined as:

ϕ(x(t),u(t)) ∈ K̊(t) with u(t) = γ(K(t)) (10)

where γ : 2R
n
�→U is the feedback map from current set K(t)

to the control input.

III. MUTATION ANALYSIS BASED VISUAL SERVOING

Based on mutation analysis, the visual servoing problem

can be formulated as a stabilization problem: Given a goal

image set K̂ and an initial image set K(0), design a feedback

controller u(t) = γ(K(t)) based on current image set K(t)
such that dh(K(t), K̂)→ 0 as t → ∞.

To solve this problem, the mutation equation should be

first derived, which requires to determine ϕ(x(t),u(t)). In the

visual servoing case, x(t) will be the trajectory for individual

pixel in the image. Therefore, we can denote x = [x1, x2, x3]
T

where x1 and x2 represent the pixel position and x3 is the

pixel intensity. The control input u(t), if a kinematic model is

considered, will be the camera’s spatial velocity which con-

sists of three linear velocity components and three angular

velocity components; let u(t) = [vx,vy,vz,ωx,ωy,ωz]
T. Based

on the definition of ϕ(x(t),u(t)), all we need to do is to find

the relation ẋ(t) = ϕ(x(t),u(t)). In fact, ẋ1(t) and ẋ2(t) are

related to u(t) by the interaction matrix [1]. In what follows,

ϕ(x(t),u(t)) will be obtained based on the interaction matrix.

Under invariant lighting condition, the projection of a 3D

point in the environment onto the image plane will have a

constant intensity; therefore, we have ẋ3(t) = 0. Suppose the

camera is calibrated, i.e., the intrinsic parameters such as

skew factor or pixel aspect ratio are known. Then with the

perspective projection model, any point in the image plane

with coordinates x1 and x2 is related to the corresponding 3D

point P in the environment with coordinates P= [px, py, pz]
T

by:

x1 = λ px/pz, x2 = λ py/pz, (11)

where λ is the focal length. Without loss of generality, we

can assume λ = 1. By direct differentiation Eq. (11) and

considering ẋ3 = 0, we have:

ẋ(t) = Lu(t) (12)

where

L =

⎡
⎣−1/pz 0 x1/pz x1x2 −(1+ x2

1) x2

0 −1/pz x2/pz 1+ x2
2 −x1x2 −x1

0 0 0 0 0 0

⎤
⎦

Note that L is obtained by adding a third row to the traditional

interaction matrix to consider an extra intensity element x3

in x. Similar to the usual visual servoing, the depth pz should

be determined, whose value can be directly estimated from

the feature variations in different images [15]. In this paper,

however, we consider pz to be a constant in order to simplify

the analysis. In this case, L only depends on x. Based on

Eq. (12), we have ϕ(x(t),u(t)) = L(x(t))u(t).
Then the tube K(t) for image set evolution induced from

ϕ(x(t),u(t)) is:

K(t) = Tϕ(t,K0) = {x(t) : ẋ = ϕ(x(t),u(t)), x(0)∈ K0} (13)

where K0 is the initial image set. With this K(t), Eq. (7) is

satisfied; therefore, the controlled mutation equation is:

L(x(t))u(t) ∈ K̊(t) (14)

To simplify the notation, t will be omitted in the following

discussion, and above equation is denoted as L(x)u ∈ K̊.

Because ϕ(x,u) = L(x)u is linear in u, the same controller

derived in [10] can be used. To obtain the controller, the

following Lyapunov function candidate is defined [10]:

V (K) =
∫

K
d2

K̂
(x)dx+

∫
K̂

d2
K(x)dx (15)

Note that if we define the error as e = dh(K, K̂), then the

Lyapunov function candidate is usually defined as e2/2. With

this candidate, however, the possibility of differentiation is

unknown. For the Lyapunov function candidate in Eq. (15),

we can verify that if V (K) → 0, then e → 0. In fact, if

V (K)→ 0, we have both dK̂(x)→ 0 with x ∈ K and dK(x)→
0 with x ∈ K̂ because the distance is nonnegative. Then

d(K, K̂)→ 0 and d(K̂,K)→ 0. The definition of Hausdorff

distance implies e → 0.

Note that the Lyapunov function candidate in Eq. (15) is

different from traditional Lyapunov function in vector space

because it’s a function of a time varying set. In fact, it is

called shape Lyapunov function [16]. Based on the Lyapunov

function candidate in Eq. (15), we can have the following

theorem, whose proof is given in [10].

Theorem 1 [10]: For the system L(x)u∈ K̊(t) with x∈R
m,

L(x)∈R
m×n, u∈R

n, and K(t)⊂R
m, the following controller

can locally exponentially stabilize it at K̂:

u(t) = γ(K) =−αA(K)+V (K) (16)

where α > 0 is a gain factor and A(K)+ is the Moore-Penrose

pseudoinverse of A(K) ∈ R
1×n defined by:

A(K) =
∫

K
d2

K̂
(x)

m

∑
i=1

∂Li

∂xi

dx+2

∫
K
[x−ΠK̂(x)]

TL(x)dx

−2

∫
K̂
[x−ΠK(x)]

TL(ΠK(x))dx

where Li (i = 1,2, . . . , m) are the m row vectors in matrix L,

and ∂Li/∂xi is also a row vector with the same dimension.
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IV. APPLICATION TO NANOMANIPULATIONS

Atomic Force Microscopy (AFM) is one of the primary

tools for imaging and manipulating matters at nanoscale.

As shown in Fig. 2, the AFM consists of a piezo-actuated

cantilever with a sharp tip at its end. Once the tip interacts

with the sample surface, the atomic force will cause a

deflection of the cantilever which will be recorded by a

position sensitive device (PSD). The amplitude of deflection

represents the height of sample point. In this way, the

topography of the sample surface can be obtained [17].

Tip 

PSD 
Laser

source 

Cantilever

Piezo tube 

Sample  

y

z

x

Fig. 2. Principle of Atomic Force Microscopy

Traditionally, AFM is used as a high resolution imaging

tool for sample topography interrogating. In recent years, by

considering the cantilever as a micro robotic arm, the AFM

is used for manipulation to mechanically push, pull, or cut

structures at nanoscale [18]. Due to the invisibility of the

nano world, the manipulation is usually achieved in a scan-

manipulation-scan fashion. First of all, an area of interest

is scanned and the resulting image is used to identify the

objects intended to be manipulated. Based on the location

of the object in the image, a control signal is designed and

applied to the AFM, leading to an open loop movement for

the cantilever. Finally, the area of interest is scanned again

to verify the manipulation results.

According to above process, the fundamental requirement

for successful nanomanipulation is precise point to point

motion, i.e., the horizontal position for the AFM tip should

be controlled precisely enough. Nevertheless, the movement

induced vibration, low frequency creep effect, thermal drift,

and inherent hysteresis for piezoactuator make the desired

position accuracy difficult to achieve [19]. Although position

sensors can be added to provide state feedback, they can

only measure pizeotube’s position instead of tip’s position;

the large sensor noise at such precision level also makes the

sensor incapable of providing valuable feedback. Therefore,

sensor deficiencies exclude the use of standard feedback

control methods.

To address these problems, the model inversion based

feedforward compensation is always used [20]. Although this

method provides satisfactory results in some cases, the iden-

tification process is quite complicated, and the performance

relies on the accuracy of the forward model [21]. Several

other methods such as combined feedforward/feedback and

H∞ can also be employed to enhance the performance [22].

Desired Position

K

Current Position

Image I

K̂

(a) First case

K

Image I

Interm
idiate

Im
ages

Planned Trajectory
K̂

(b) Second case

Fig. 3. Illustration of two cases for visual servoing based nanomanipulation

Visual servoing provides another approach for manipula-

tion in the nano world. In fact, the AFM can be considered as

a single pixel image sensor with two translational degree of

freedoms, and an image is obtained by sequentially moving

the AFM tip on the sample surface. Based on this idea, the

visual servoing based nanomanipulation can be implemented

in two cases. For both cases, suppose an area of interest is

scanned and an image I is obtained, from which the desire

image set can be specified.

The first case is when the desired AFM tip position is

sufficiently close to the current tip position. The goal image

K̂, containing the desired tip position in the image, can

be specified in image I. The current image K is obtained

by using the AFM for a local scan around its current tip

position [23]. Once K is obtained, the current tip position can

be obtained by comparing K with I using image registration

methods such as template matching. This case is shown in

Fig. 3(a), where the current and desired positions are shown

as solid circles and the corresponding images are shown as

squares. Then the controller in Eq. (16) can be used to steer

the AFM tip to the desired position. Note that during the

implementation, when the tip arrives an updated position, a

local scan should be performed to obtain an updated image.

The second case corresponds to when the desired AFM

tip position is far away from the current position. In this

case, a series of intermediate images, with their image centers

along a planned trajectory between the current and desired

positions, can be used as the intermediate goal images. The

consecutive intermediate images should be sufficiently close

so that the same approach for the first case can be employed.

This case is shown in Fig. 3(b), where four intermediate

images along a straight line trajectory are shown.

The nanomanipulation discussed above can be considered

as a special case with only two translational velocity com-

ponents vx and vy as the inputs. Without loss of generality,

assume pz = 1, then we can obtain ϕ(x,u) from Eq. (12) as:

ϕ(x,u) = Lu

where

L =

⎡
⎣−1 0

0 −1

0 0

⎤
⎦

is a constant matrix. In this case, A(K) in the controller given
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End

Fig. 4. Simulation Flow chart

by Eq. (16) is simplified to:

A(K) = 2{
∫

K
[x−ΠK̂(x)]

Tdx−
∫

K̂
[x−ΠK(x)]

Tdx}L

It should be noted that the scanning images have been

used to obtain the parameters for the forward model [20] and

compensate the dynamic effects [24]. However, to control

directly with the image information is, to the best of our

knowledge, never considered before. On the other hand, our

approach is very similar to the vision guided robot navigation

based on image memory [25]; however, our approach is

different because no feature is used.

V. SIMULATION RESULTS

In this section, we validate our controller using AFM

images for the above two cases. For the first case, the

simulation flow chart is shown in Fig. 4. First of all, a goal

image K̂ and a current image K, sufficiently close to each

other, will be chosen from a given whole image I. Note

that in real AFM implementation, both K̂ and its position

in I are specified, but K is obtained by a local scan and its

position is derived by a image registration using K and I. In

our simulation, it’s assumed that both K and its position are

known in advance. Based on K̂ and K, the control input

u is calculated, which is used to update the position for

K. Although the control signal is the translational velocity

vx and vy, it can be considered as displacements if the

time intervals for each iteration are the same. Therefore, an

updated K is obtained by moving K in I with control input

as the displacements. Note that in AFM implementation,

we should move the AFM tip to the updated position and

perform a local scan to update K. Using the updated K, the

same process is performed again to obtain a new control

signal. The program terminates until dh(K, K̂) = 0.

The simulation is performed based on two gray scale

images with size 256× 256 pixels as shown in Fig. 5. The

image in Fig. 5(a) has a scan size 25μm and is scanned for

nanowire manipulation, while the image in Fig. 5(b) has a

scan size 32μm and is scanned for hacat cell manipulation.

The initial and goal images, with size 30× 30 pixels, are

labeled in original image and also enlarged on the right.

For the nanowire image, the pixel distance between initial

and goal images is ten pixels horizontally and seven pixels

vertically. The simulation results for this image are shown

in Fig. 6(a), where both values for Lyapunov function and

Hausdorff distance for all the iterations are shown. From

the figure, both values decrease monotonically, and after five

iterations, the current image coincides with the goal image.

For the hacat cell image, the pixel distance between initial

and goal images is ten pixels horizontally and fifteen pixels

vertically. The simulation results shown in Fig. 6(b) demon-

strate that the control goal can be achieved. Although the

Lyapunov function value decreases, the Hausdorff distance

increases at the third iteration. This is because the decrease

of Lyapunov function cannot guarantee the decrease of

Hausdorff distance, but if the Lyapunov function approaches

zero, the Hausdorff distance must also approach zero as

discussed in section III.
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Goal Image

(a) Nanowire AFM images

Initial Image

Goal Image

(b) Hacat cell AFM images

Fig. 5. Simulation images for the first case
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(a) Results for nanowire AFM images
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(b) Results for hacat cell AFM images

Fig. 6. Simulation results for the first case

For the second case when the initial image and goal image

are far away from each other, a straight line trajectory is

used to generate the intermediate images. To guarantee the

convergence at those intermediate goal images, the pixel

distance between two consecutive images is chosen to be

four pixels vertically, while the horizontal pixel distance is

obtained from the equation of the line trajectory. The same

images, as shown in Fig. 7, are used for the simulation,

where the initial and goals images are also shown. For both

simulations, the pixel distance between the initial and goal

images is 40 pixels horizontally and 60 pixels vertically.

Therefore, the number of intermediate goal images is 14.

The simulation results for both images are shown in Fig. 8,

where the center positions in pixels for the desired trajectory

and the true trajectory are plotted. The end points for the

black solid lines are the center positions for the intermediate
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goal images, while the end points, shown as small circles in

the figure, for the red dashed lines are the center positions

for the images obtained by servo control. From the figure,

we can see that although the true positions may deviate from

the desired positions sometimes, the final goal position can

be achieved. For the nanowire image, a total number of 38

iterations is performed to arrive the goal image, which means

an average of 2.5 iterations from one intermediate goal image

to the next one, while for the cell image, the total number

is 29 and the average number is thus 1.9.

Initial Image

Goal Image

(a) Nanowire AFM images

Initial Image

Goal Image

(b) Hacat cell AFM images

Fig. 7. Simulation images for the second case
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(a) Results for nanowire images
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(b) Results for hacat cell images

Fig. 8. Simulation results for the second case

VI. CONCLUSIONS

In this paper, the framework of using mutational analysis

for featureless visual servoing is reinvestigated. Different

from existing featureless methods, this set evolution based

approach considers the image as a set, and the controller

is designed based on the distance between two image sets.

The simplified controller with two translational degree of

freedoms is validated using AFM images. If the initial

image and goal image are close enough, the controller can

successfully steer the initial image to the goal image. On the

other hand, if they are far apart, a set of intermediate goal

images will be obtained with consecutive images sufficiently

close to each other. Then the initial image can also be

steered to the goal image successfully. The method presented

in this paper can be considered as a new approach for

precise nanomanipulations, and the implementation on an

AFM system will be performed in the future.

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servo control part I: Basic
approaches,” IEEE Robot. Autom. Mag., vol. 13, no. 4, pp. 82–90,
2006.

[2] J. Shi and C. Tomasi, “Good features to track,” in IEEE Conf. on

Computer Vision and Pattern Recognition, 1994, pp. 593–600.
[3] E. Marchand and F. Chaumette, “Feature tracking for visual servoing

purposes,” Robot. Auton. Syst., vol. 52, no. 1, pp. 53–70, 2005.
[4] K. Deguchi, “A direct interpretation of dynamic images with camera

and object motions for vision guided robot control,” Int. Journal of

Computer Vision, vol. 37, no. 1, pp. 7–20, 2000.
[5] V. Kallem, M. Dewan, J. P. Swensen, G. D. Hager, and N. J. Cowan,

“Kernel-based visual servoing,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst., San Diego, CA, USA, 2007, pp. 1975–1980.
[6] C. Collewet, E. Marchand, and F. Chaumette, “Visual servoing set

free from image processing,” in Proc. IEEE Int. Conf. Robot. Autom.,
Pasadena, CA, USA, 2008, pp. 81–86.

[7] A. Censi, S. Han, S. B. Fuller, and R. M. Murray, “A bio-plausible
design for visual attitude stabilization,” in Proc. IEEE Int. Conf.

Decision and Control, Shanghai, China, 2009, pp. 3513–3520.
[8] S. Han, A. Censi, A. D. Straw, and R. M. Murray, “A bio-plausible

design for visual pose stabilization,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst., Taipei, Taiwan, 2010, pp. 5679–5686.
[9] A. Dame and E. Marchand, “Improving mutual information-based

visual servoing,” in Proc. IEEE Int. Conf. Robot. Autom., Anchorage,
Alaska, USA, 2010, pp. 5531–5536.

[10] L. Doyen, “Mutational equations for shapes and vision-based control,”
Journal of Mathematical Imaging and Vision, vol. 5, no. 2, pp. 99–109,
1995.

[11] J. P. Aubin, Mutational and Morphological Analysis: Tools for Shape

Evolution and Morphogenesis. Birkhäuser, 1998.
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