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Library-based microbial source tracking (MST) can assist in reducing or eliminating fecal pollution

in waters by predicting sources of fecal-associated bacteria. Library-based MST relies on an

assembly of genetic or phenotypic “fingerprints” from pollution-indicative bacteria cultivated from

known sources to compare with and identify fingerprints of unknown origin. The success of the

library-based approach depends on how well each source candidate is represented in the library

and which statistical algorithm or matching criterion is used to match unknowns. Because known

source libraries are often built based on convenience or cost, some library sources may contain

more representation than others. Depending on the statistical algorithm or matching criteria,

predictions may become severely biased toward classifying unknowns into the library’s dominant

source category. We examined prediction bias for four of the most commonly used statistical

matching algorithms in library-based MST when applied to disproportionately-represented known

source libraries; maximum similarity (MS), average similarity (AS), discriminant analyses (DA), and

k-means nearest neighbor (k-NN). MS was particularly sensitive to disproportionate source

representation. AS and DA were more robust. k-NN provided a compromise between correct

prediction and sensitivity to disproportional libraries including increased matching success and

stability that should be considered when matching to disproportionally-represented libraries.
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INTRODUCTION

Predicting sources of fecal contamination is important for

managing water bodies and protecting humans against

waterborne disease. By predicting the source(s) of fecal-

associated bacteria, Microbial Source Tracking (MST)

allows scientists and regulators to prioritize and more

effectively respond to health and environmental hazards

associated with fecal-contaminated waters (Scott et al. 2002;

Simpson et al. 2002; Stewart et al. 2003). Some of the

commonly used MST methods are library-based and rely on

the assembly of genetic or phenotypic “fingerprints” from

pollution-indicative bacteria cultivated from known sources

of fecal contamination (Scott et al. 2002; Simpson et al.

2002). Scientists predict unknown sources of fecal contami-

nation using computer-based statistical analysis to match

unknown source fingerprints to those from the known-

source library (Wiggins 1996; Hagedorn et al. 1999; Dombek

et al. 2000; Harwood et al. 2000; Bower 2001; Whitlock et al.

2002). The success of the library-based approach depends

on the distribution of fingerprint patterns among source

candidates, how well each source candidate is represented

in the library, and which statistical algorithm or matching

criterion is used to match unknowns (Ritter et al. 2003).

Construction of known-source libraries is often limited

by the availability of known-source samples and our ability

to collect and process those samples (Wiggins et al. 2003;

Robinson 2004). As a result, libraries may contain dispro-

portional representation of isolates among the source

candidates. For example, collecting large numbers of
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samples from a wastewater treatment plant may be

relatively easy while collecting an equivalent number of

individual dog samples may require much more effort and

may not be feasible. The concern is that libraries that are

heavily “loaded” toward a particular source may bias

predictions toward the dominant library source.

The potential bias resulting from disproportional

libraries may be particularly problematic depending on

which statistical matching algorithm is used to match

unknown source isolates. Library-based methods employ a

variety of statistical methods to match fingerprints of

unknown origin to the known-source library (Wiggins 1996;

Hagedorn et al. 1999; Dombek et al. 2000; Harwood et al.

2000; Bower 2001; Whitlock et al. 2002; Carson et al. 2003;

Ritter et al. 2003;Wiggins et al. 2003;Hassan et al. 2005). Since

each method relies on a different strategy for matching, some

algorithms may be more sensitive than others to dispropor-

tional source representation in the library. Maximum

similarity (MS), commonly used in MST data analysis, is a

statistical matching algorithm which classifies an unknown

into the source group to which its most similar known

member belongs (Applied Maths Inc. 2004). Consequently,

using MS may result in increased predictions to the dominant

source category simply because there are more “opportu-

nities” to match to the dominant source.

Average similarity (AS) and discriminant analysis (DA)

provide alternative matching strategies to MS where isolates

are matched to known sources based on proximities to the

center of each source group, rather than on the proximity to

a single library isolate. AS assigns unknown source

fingerprints to the source group based on the average

similarity of that fingerprint to all fingerprints within each

known source group in the library (Applied Maths Inc.

2004). DA classifies unknowns into source groups based on

a “rule” developed from a calibration data set (e.g. library)

(SAS 2004). This “rule” is based on the distribution of

distances between library fingerprints and the centroid of

each source group in order to estimate the relative

likelihood of belonging to each source group (Johnson

1998). In the case of both AS and DA, disproportionate

libraries may create unstable estimates for the center of each

group by allowing a greater number of outliers which may

skew the estimated probabilities leading to incorrect

prediction.

A study was performed in 2003 on a coastal watershed

in Mississippi that consistently displayed elevated levels of

fecal coliform bacteria in the water, forcing the area to be

closed by the state for recreational use (Robinson 2004).

Three potential sources of fecal contamination source (dog,

gull, sewer) were identified in this urban, mostly residential,

watershed. Source samples were collected and processed,

based on availability, for enterococci by rep-PCR using

BOX sequence (50-CTA CGG CAA GGC GAC GCT GAC

G-30) primers (BOX-PCR). Although an attempt was made

to build a library from equal numbers of isolates within each

source, the variable rates of isolation, confirmation, and the

selection of unique fingerprint patterns (i.e. clones) by

removing identical fingerprints from the same sample, led to

a disproportional representation among source candidates.

The resulting library contained approximately three times as

many sewer isolates as dog and gull isolates combined.

Analysis of the data raised concerns that having a greater

number of sewer representatives in the library may bias

identification towards the sewer source.

This paper examines the use of library-based rep-PCR

data and three common statistical methods (MS, AS, DA)

and one alternative statistical method (k-NN) in the

presence of disproportionate source representation. The

results are based on simulation studies using the enter-

ococcal fingerprints from the study described above, where

we estimate the probabilities of correct and incorrect

prediction for identifying three sources (sewer, gull, and

dog) using disproportional libraries.

METHODS

To examine how disproportional source representation

affects source identification, simulation studies estimated

correct and incorrect prediction probabilities for MS, AS,

DA, and k-NN across various libraries. These libraries

differed in terms of the number and the relative proportion

of sewer isolates that were randomly selected within each

source group.

Data used in this study were obtained from the previously

described 2003 study and consisted of samples (N¼ 242)

collected from animals (dog and gull) and three sewer lift

stations along the Mississippi gulf coast (Robinson 2004).
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From 73 dog, 106 gull, and 63 sewer samples, 1,666 sewer,

343 dog, and 221 gull enterococci were isolated and

confirmed biochemically (USEPA 2000). An average of 4

dog, 2 gull, and 26 sewer enterococci isolates were picked

from each sample. These isolates were analyzed by BOX-

PCR, visualized by gel electrophoresis to create individual

isolate fingerprints, and assessed using BioNumerics v3.5

(Applied Maths, Sint-Martens-Latem, Belgium). Band-based

binary data (presence/absence) were imported into SAS (v.

9.1, SAS Institute, Cary, NC). Clonal isolates or those isolates

identified within individual samples as fingerprints having

exact matching banding patterns (e.g. 100% similarity) were

excluded from analyses. Dog and gull isolates isolated from

the same sample had a high degree of clonality (data not

shown) while sewer sample isolates were rarely clonal.

For each simulation, isolates from each source category

were randomly selected, without replacement, from the

isolate archive using the SAS procedure ‘PROC SURVEY-

SELECT’ and placed into a library. The first simulation

library construction consisted of sampling an equal number

of isolates from each source group in the archive (100 dog,

100 gull, and 100 sewer). One hundred isolates were chosen

from each group because of limiting pools of dog (n ¼ 343)

and gull (n ¼ 221) isolates. In the second set of simulations,

libraries were constructed by sampling increasing numbers of

sewer isolates (e.g. 200, 300, 400, 800), while keeping the

remaining number of dog and gull isolates the same (e.g. 100).

The jaccard similarity coefficient was used as the

similarity measure for both MS and AS, Mahalanobis

distance was used for DA, and Euclidean distance was

used for k-NN. Ties were excluded from analyses if the

isolate tied to more than one source during assignment. If

an isolate tied to two different isolates within the same

source then ties were kept and matched to that source. No

thresholds of fingerprint similarity were applied.

Simulations were repeated using k-nearest neighbor as a

statistical alternative to MS, AS, and DA. In k-Nearest

Neighbor (k-NN), source prediction is based on the

unknown fingerprint’s proximity to k of the most similar

known individuals, rather than proximity to a single known

individual or to the source group as a whole. We applied

k ¼ 1, 2, 3, 30, and 100 nearest neighbor strategies using the

SAS procedure ‘PROC DISCRIM’ and Euclidean distance

(SAS v 9.1).

Jackknife estimates of correct and incorrect prediction

probabilities were calculated for each of the three sources in

the library and for each of the four statistical matching

procedures. The standard jackknife analysis, also known as

“cross-validation” or “leave-one-out” analysis, calculates the

bias of an estimator by deleting one isolate each time from the

original data set and examining the similarity of that isolate to

the remainder of the isolates in the library (Shao & Tu 1995;

Wiggins et al. 2003). Jackknife estimates of correct and

incorrect prediction probabilities for each source group are

based on calculating the percentage of correct and incorrect

source assignment across all (deleted) isolates within each

source group. This emulates assignment of an unknown

isolate to a library unit and provides an estimate of source

group bias (correct versus incorrect assignment). Under

simple random sampling, these jackknife estimates

provide nearly unbiased estimates of library accuracy (and

inaccuracy) for classifying unknown isolates for each source.

Final estimates of percent correct prediction and

incorrect prediction probabilities (%CP and %IP) for each

library construction were based on averaging jackknife

estimates across 1,000 simulations. Overall rates of %CP

and %IP were based on averaging prediction probabilities

across the sources.

RESULTS AND DISCUSSION

The first simulation involved randomly selecting 100

isolates from each of the three source groups and classifying

those isolates using jackknife analysis of MS, AS, DA, and

3-NN matching algorithms. Each source group was cate-

gorized best by different algorithms (Table 1). 3-NN best

matched dog (67%) and sewer (58%) isolates. Gull isolates

were best matched by AS (93%). For all source groups, AS

showed the lowest (49%) average %CP while 3-NN showed

the highest (62%). MS and DA exhibited similar average

%CP at 58% and 54%, respectively.

The second set of simulations involved randomly

selecting 100 isolates from each dog and gull source group

(as in first simulation) and increasing the number of sewer

isolates in the library (200 up to 800), and then performing a

jackknife analyses on each library to determine the

disproportional effect on %CP and %IP. MS exhibited an
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increase in correct prediction for sewer isolates (þ38%) and

a decrease in correct prediction for dog (225%) and gull

(217%) isolates when additional sewer isolates (n ¼ 800)

were added to the library (Figure 1). These increases in %CP

for sewer were followed by an increase in %IP for dog

(þ42) and gull (þ30%) (Figure 2). AS exhibited a stable

(,0% change) %CP across the three sources as sewer

isolates were added to the library (Figure 1). DA also

exhibited a moderately stable %CP for sewer (þ16%), dog

(27%) and gull (22%) sources upon addition of sewer

isolates to the library. These %CP rates were higher than AS

(except gull sources) and more stable than MS. AS and DA

algorithms exhibited slight changes in %IP as the library

became increasingly disproportional (Figure 2). Although

changes in AS %IP were negligible across the three sources,

DA resulted in modest increases in %IC for dog (þ10%)

and gull (þ6%) as sewer source with the addition of sewer

isolates to the library (n ¼ 800).

Additional simulations of nearest neighbors were

performed (k ¼ 1, 2, 3, 10, 30, 100) (k ¼ 1, 2, 10, 30 and

100 data not shown). 1-NN exhibited results similar to MS.

In fact, in terms of matching strategies, 1-NN is equal to

MS. The only difference here is that different similarity or

distance measures were used; Euclidean was used for 1-NN

and Jaccard was used for MS. As more nearest neighbors

were added (k ¼ 2,3), bias was reduced and %IP stabilized.

As k increases (i.e. k ¼ 100), results generally mirrored AS.

There were, however, some differences. For example, dog

was classified best using 100-NN. Observed differences

between the two strategies are likely to be the effect of

different similarity measures (as with 1-NN and MS) and

slightly different matching algorithms; DA uses probability-

based methods and AS uses average similarity. Our results

indicated that when MS appears to be a better matching

algorithm with a given data set in proportional library

conditions, a lower number of nearest neighbors (i.e. 1–3)

may be most appropriate in disproportional conditions.

Conversely, when AS seems to be a better choice in

proportional conditions, a larger number of nearest neigh-

bors (i.e. 100–200), depending on library size and

proportion, may yield more reliable results. In this study,

k ¼ 3 nearest neighbor provided an optimum balance of

%CP and %IP (Figures 1 and 2) among the sources.

Researchers have suggested that removing clonal isolates

from the library improves prediction and library representa-

tiveness within a source tracking library (Wiggins et al. 2003;

Hassan et al. 2005). The library sources in this study exhibited

clonality within individual sample by type. Dog and gull

samples were frequently clonal while sewer samples were

rarely clonal. Improvement in prediction rates by removal of

Table 1 | The percent correct prediction (%CP) for dog, gull, and sewer sources

against maximum similarity (MS), average similarity (AS), discriminant

analysis (DA), and 3-nearest neighbor (3-NN) using a proportional group size

library

Source

Matching algorithm Dog Gull Sewer Ave. %CP

MS 55% 67% 53% 58%

AS 29% 93% 27% 49%

DA 53% 61% 48% 54%

3-NN 67% 62% 58% 62%

Figure 1 | Estimated probability of correctly predicted isolates into each source, sewer (a), dog (b), and gull (c), as a function of increasing numbers of library sewer isolates for

maximum similarity (MS), average similarity (AS), discriminant analyses (DA), and 3-nearest neighbor (3-NN) analysis.
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clonal isolates by sample depends on which statistical

matching algorithm is used. For example, removing clones

has no effect on prediction rates with MS since matching

relies only on a single isolate. With DA and AS, removing

clones may alter predictions substantially depending on the

number of clones since means or centroids depend on all the

data. We suggest that additional clones should be removed if

they belong to the same individual within the same source as

additional clones may bias the distribution offingerprints and

artificially reduce variability. Furthermore, removing clones

provides a more conservative estimate of correct and

incorrect prediction probabilities. When building a source

tracking library of this type and addressing sample, library, or

analysis bias, one must consider the goals of the study. Is it a

goal to obtain the highest rate of correct prediction possible

or to correctly identify a contaminating source in a water

body, even if the library does not have close to 100% rates of

correct prediction? These things must be considered when

building a source tracking library.

Bias within a MST library may be caused by additional

measures such as overlap in fingerprint distribution among

sources. Overlap in fingerprint distribution occurs when

fingerprint patterns from one source are more similar to a

different source than to its own source group. Unlike sample

isolate clonality, fingerprint overlap among library sources

affects all matching algorithms tested. The data set exhibited

some overlap of rep-PCR fingerprints between sources

(Robinson 2004, data not shown). This introduces bias

and difficulty of correctly predicting fecal sources

completely unrelated to disproportional library size.

In order to deal with overlap, some researchers have

suggested the use of similarity thresholds to make it more

difficult for isolates to match to different sources (Whitlock

et al. 2002; Hassan et al. 2005). With similarity thresholds,

an unknown isolate is eliminated from consideration if the

similarity or average similarity coefficient is below some

threshold value. The reasoning is that if the similarity

coefficient is low, then there is not enough evidence for

identifying the source. While this may improve the rates of

correct prediction for both proportional and dispropor-

tional libraries, the omission of unknown isolates is

problematic when attempting to determine the ratio

among sources or the greatest source among a collection

of samples (Ritter et al. 2003). If the decision is made to use

thresholds, then we recommend reporting the number of

isolates that were omitted as well as the individual

predictions for the remaining isolates.

The use of other types of library-based MST methods may

or may not result in similar bias as those shown here with rep-

PCR when disproportional libraries are used. More specific

methods, such as PFGE, that create a larger number of bands

and increase resolution among different fingerprints may

result in more fingerprint overlap, especially in the presence

of multiple subtypes within a source. Less discriminative

methods, such as ribotyping, are less source-specific but

allow easier matches of library isolates to unknown source

isolates which can increase bias as disproportionality

increases. The effect disproportional libraries have on

library-based methods depends on the distribution of

fingerprints. If increasing the resolution separates out the

sources from each other then %CP will be greater and bias

will not change with increased disproportionality. However,

if increased resolution only creates more overlap then bias

may increase. We recommend that the user estimates the

Figure 2 | Estimated probability of incorrectly predicted dog (a) and gull (b) isolates as sewer as a function of increasing numbers of library sewer isolates for maximum similarity

(MS), average similarity (AS), discriminant analyses (DA), and 3-nearest neighbor (3-NN) analysis.
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jackknife probabilities of %CP and %IP associated with a

particular method. Choosing a method that discriminates

among library sources yet can accurately identify unknown

environmental (extralibrary) isolates is ideal.

CONCLUSIONS

Unequal source representation in the library may substan-

tially bias source prediction toward the more dominant

library source. The magnitude of bias is affected both by the

amount of disproportionality among source candidates and

by the choice of statistical algorithm used to match

unknowns. Of the three commonly used statistical algor-

ithms (MS, AS, and DA) investigated in this paper, MS was

the most sensitive to disproportional source representation.

While AS and DA were more robust in the case of

disproportional libraries, they were not always the best for

correctly matching unknowns. K-Nearest neighbor tended

to perform as well as MS when proportional libraries were

used, and was as stable as DA and AS when disproportional

libraries were tested. The success and stability of k-NN

matching strategy is a compromise between matching to a

single isolate and matching to the group as a whole.

When analyzing library-based MST data, it is important

not only to consider the %CP of sources groups, but also the

%IP and the proportional library size. Disproportional

library conditions arise frequently due to sampling and

processing limitations. However, it is not necessary to

eliminate samples from a data set simply to create a

proportional library. When disproportional libraries arise,

it is necessary to survey the data statistically and compare

results using different statistical algorithms as well as

considering the possible bias associated with dispropor-

tional libraries and some matching algorithms.

Our results suggest that k-NN offers a valuable

compromise when working with disproportional libraries,

incorporating the strengths of both MS and AS/DA. K-NN

allows for the identification of subtypes in the library, a

strength of MS, and is robust where increases in prediction

bias associated with using disproportionate libraries occur,

a strength of AS/DA. The choice of k allows the researcher

the flexibility to address each issue: subtype identification

and library-based bias as the situation demands. At k ¼ 1,

k-NN is equivalent to MS. As k increases, k-NN takes on

more characteristics of AS/DA. K-NN is suggested for those

cases where disproportionate libraries are used and where

MS typically performs better than AS or DA using

proportional libraries. In choosing k, we suggest calculating

jackknife estimates of both correct and incorrect prediction

rates for various levels of k. In this way, the researcher can

weigh the trade-offs associated with increased correct

prediction probabilities and prediction bias. We found

that for the 2003 study, k ¼ 3 provided an optimum

balance. We believe that k-nearest neighbor offers a

promising statistical matching algorithm that should be

considered when using disproportional libraries. Future

research should investigate how disproportional libraries

and statistical matching algorithms affect bias in prediction

rates for other library-based methods including PFGE,

multiple antibiotic resistance (MAR), antibiotic resistance

analysis (ARA), and ribotyping data sets.

ACKNOWLEDGEMENTS

The original data set used in this research was generated in

2003 through funding by The National Oceanic and

Atmospheric Administration through the Coastal Impact

Assistance Program grants MS-17 and MS-24. Thanks also

to Kyle Kingsley and Brian West of Applied Maths, Inc. for

explanation of the BioNumerics software and to

J. Christopher Jolly for aid with organization and writing

of this manuscript.

DISCLAIMER

The National Ocean Service (NOS) does not approve,

recommend, or endorse any proprietary product or material

mentioned in this publication. No reference shall be made

to NOS, or to this publication furnished by NOS, in any

advertising or sales promotion which would indicate or

imply that NOS approves, recommends, or endorses any

proprietary product or proprietary material mentioned

herein or which has as its purpose any intent to cause

directly or indirectly the advertised product to be used or

purchased because of NOS publication.

508 B. J. Robinson et al. | Disproportional versus proportional MST libraries Journal of Water and Health | 05.4 | 2007



REFERENCES

Applied Maths Inc. 2004 BioNumerics User Manual Version 4.0.

Applied Maths BVBA, Austin, TX.

Bower, R. J. 2001 Fecal source identification using antibiotic

resistance analysis. Puget Sound Notes 45, 3–8.

Carson, C. A., Shear, B. L., Ellersieck, M. R. & Schnell, J. D. 2003

Comparison of ribotyping and repetitive extragenic

palindromic-PCR for identification of fecal Escherichia coli

from humans and animals. Appl. Environ. Microbiol. 69,

1836–1839.

Dombek, P. E., Johnson, L. K., Zimmerley, S. T. & Sadowsky, M. J.

2000 Use of repetitive DNA sequences and the PCR to

differentiate Escherichia coli isolates from human and animal

sources. Appl. Environ. Microbiol. 66, 2572–2577.

Hagedorn, C., Robinson, S., Filtz, J., Grubbs, S., Angier, T. &

Reneau, R. Jr 1999 Determining sources of fecal pollution in

a rural Virginia watershed with antibiotic resistance

patterns in fecal streptococci. Appl. Envion. Microbiol. 65,

5522–5531.

Harwood, V. J., Whitlock, J. & Withington, V. 2000 Classification of

antibiotic resistance patterns of indicator bacterial by

discriminant analysis: use in predicting the source of fecal

contamination in subtropical waters. Appl. Environ. Microbiol.

66, 3698–3704.

Hassan, W. M., Wang, S. Y. & Ellender, R. D. 2005 Methods to

increase fidelity of repetitive extragenic palindromic PCR

fingerprint-based bacterial source tracking efforts. Appl.

Environ. Microbiol. 71, 512–518.

Johnson, D. E. 1998 Applied Multivariate Methods for Data Analysts.

Brooks/Cole Publishing Co., Pacific Grove, CA, USA.

Ritter, K. J., Carruthers, E., Carson, C. A., Ellender, R. D.,

Harwood, V. J., Kingley, K., Nakatsu, C., Sadowsky, M., Shear,

B., West, B., Whitlock, J. E., Wiggins, B. A. & Wilbur, J. D.

2003 Assessment of statistical methods used in library-based

approaches to microbial source tracking. J. Wat. Health. 1,

209–223.

Robinson, B. J. 2004 Source Analysis using Enterococci and its

Application to a Coastal Watershed. A thesis. Department of

Biological Sciences. The University of Southern Mississippi, USA.

SAS Institute Inc. 2004 SAS OnlineDocw 9.1.3. SAS Institute Inc.,

Cary, NC.

Scott, T., Rose, J., Jenkins, T., Farrah, S. & Lukasik, J. 2002

Microbial source tracking: current methodology and future

directions. Appl. Environ. Microbiol. 68, 5796–5803.

Shao, J. & Tu, D. 1995 The Jackknife and Bootstrap. Springer-

Verlag, New York, USA.

Simpson, J., Santo Domingo, J. & Reasoner, D. 2002 Microbial

source tracking: state of the science. Env. Sci. Technol. 36,

5280–5288.

Stewart, J., Ellender, R. D., Gooch, J. A., Jiang, S., Myoda, S. &

Weisberg, S. 2003 Recommendations for microbial source

tracking: lessons from a methods comparisons study. J. Wat.

Health. 1, 225–231.

U.S. Environmental Protection Agency (USEPA) 2000 Improved

Enumeration Methods for the Recreational Water Quality

Indicators: Enterococci and Escherichia coli. EPA Office of

Water, Office of Science and Technology, Washington, D.C.,

USA.

Whitlock, J. E., Jones, D. T. & Harwood, V. J. 2002 Identification of

the sources of fecal coliforms in an urban watershed using

antibiotic resistance analysis. Wat. Res. 36, 4273–4282.

Wiggins, B. A. 1996 Discriminant analysis of antibiotic resistance

patterns in fecal streptococci, a method to differentiate human

and animal sources of fecal pollution in natural waters. Appl.

Environ. Microbiol. 62, 3997–4002.

Wiggins, B. A., Cash, P. W., Creamer, W. S., Dart, S. E., Garcia,

P. P., Gerecke, T. M., Han, J., Henry, B. L., Hoover, K. B.,

Johnson, E. L., Jones, K. C., McCarthy, J. G., McDonough,

J. A., Mercer, S. A., Noto, M. J., Park, H., Phillips, M. S.,

Purner, S. M., Smith, B. M., Stevens, E. N. & Varner, A. K.

2003 Use of antibiotic resistance analysis for representativeness

testing of multiwatershed libraries. Appl. Environ. Microbiol.

69, 3399–3405.

Available online May 2007

509 B. J. Robinson et al. | Disproportional versus proportional MST libraries Journal of Water and Health | 05.4 | 2007

http://dx.doi.org/10.1128/AEM.69.3.1836-1839.2003
http://dx.doi.org/10.1128/AEM.69.3.1836-1839.2003
http://dx.doi.org/10.1128/AEM.69.3.1836-1839.2003
http://dx.doi.org/10.1128/AEM.66.6.2572-2577.2000
http://dx.doi.org/10.1128/AEM.66.6.2572-2577.2000
http://dx.doi.org/10.1128/AEM.66.6.2572-2577.2000
http://dx.doi.org/10.1128/AEM.66.9.3698-3704.2000
http://dx.doi.org/10.1128/AEM.66.9.3698-3704.2000
http://dx.doi.org/10.1128/AEM.66.9.3698-3704.2000
http://dx.doi.org/10.1128/AEM.66.9.3698-3704.2000
http://dx.doi.org/10.1128/AEM.71.1.512-518.2005
http://dx.doi.org/10.1128/AEM.71.1.512-518.2005
http://dx.doi.org/10.1128/AEM.71.1.512-518.2005
http://dx.doi.org/10.1128/AEM.68.12.5796-5803.2002
http://dx.doi.org/10.1128/AEM.68.12.5796-5803.2002
http://dx.doi.org/10.1016/S0043-1354(02)00139-2
http://dx.doi.org/10.1016/S0043-1354(02)00139-2
http://dx.doi.org/10.1016/S0043-1354(02)00139-2
http://dx.doi.org/10.1128/AEM.69.6.3399-3405.2003
http://dx.doi.org/10.1128/AEM.69.6.3399-3405.2003

	A statistical appraisal of disproportional versus proportional microbial source tracking libraries
	&?tpacr=1;Introduction
	Methods
	Results and discussion
	Conclusions
	Acknowledgements
	DISCLAIMER
	References


