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ABSTRACT

We propose novel set-theoretic distributed adaptive filters for coop-
erative signal detection in diffusion networks, a problem that has
been gaining attention owing to its application to cooperative cogni-
tive radio networks. In the proposed method, nodes in a network de-
tect the presence of a signal of interest by means of an inner product
between the current term of a series and a known reference vector.
Each term of the series is computed from information fusion among
neighboring nodes and projections onto closed convex sets, which
are constructed with a priori knowledge of the signal of interest and
measurements obtained by nodes. In particular, we show that sets
based on a priori knowledge are useful to decrease the communi-
cation overhead and to provide good detection performance. Our
results are rigorous in the sense that no approximations are used to
prove convergence properties. In particular, we show conditions to
guarantee that the series converge to a point that can reliably identify
the signal of interest. Furthermore, we also show that recent results
in distributed optimization for dynamic systems can be used to de-
rive algorithms where nodes exchange not only the current vectors of
their sequences (as in previous distributed set-theoretic filters), but
also side information that influences the above-mentioned sets.

Index Terms— Distributed set-theoretic adaptive filtering, cog-
nitive radios, hypothesis testing

1. INTRODUCTION

Algorithms for robust signal detection have been increasingly gain-
ing importance owing to recent developments in wireless systems.
For example, in many proposed cognitive radio systems, secondary
users (unlicensed users) have to detect from local measurements the
presence of primary users (licensed users), with the intent to increase
data rate by using licensed frequency bands in periods of inactivity
of licensees. Algorithms for such a purpose are commonly known
as spectrum sensing algorithms, which have been typically based on
standard signal detection schemes (e.g., correlators, energy detec-
tors, etc.). Unfortunately, in wireless communication systems, con-
ventional signal detection algorithms may have poor performance
owing to local attenuation of signals caused by deep fading.

To improve the robustness of detection algorithms, researchers
have been studying cooperative detection mechanisms [1,2]. In these
schemes, nodes in a network take local measurements of the environ-
ment and exchange information with local neighbors to reach a reli-
able decision of whether a signal is present. In doing so, the resulting
algorithms provide robustness by spatial diversity. To date, cooper-
ative signal detection algorithms are typically based on consensus
algorithms or on algorithms that solve (non-adaptive) distributed op-
timization problems [1]. However, more recently the study in [2]
has shown that adaptive methods may be preferable because, among
other benefits, they can process measurements in real time. These
algorithms are based on distributed adaptive filters (e.g., distributed

versions of the LMS or RLS algorithm), and they use standard as-
sumptions (e.g., Gaussian noise) to make the analysis tractable. Un-
fortunately, if different assumptions are used or the update rule is
modified to use a priori knowledge of the signal of interest, con-
vergence analyses using ideas similar to those in [2] can become
intractable.

We address the above shortcomings by using the results in [3,4]
to derive novel distributed solutions. The objective of the proposed
algorithm is to produce, in every node, a sequence of vectors (fil-
ters) that converge to a point in the intersection of a possibly infinite
number of closed convex sets that are dispersed in both time and
space in the network. As in [2], the presence of the signal of interest
can be verified in every node by means of an inner product between
the current filter and a reference vector. As common in set-theoretic
adaptive filtering [5], sets are constructed in an online fashion from
a priori knowledge of the desired signal and local measurements of
the nodes. Unlike previous adaptive detection methods, the proposed
scheme can easily use a priori knowledge to decrease the communi-
cation overhead and to provide good detection performance. Further-
more, we make only few assumptions concerning noise samples and
regressors to prove convergence, and the analysis does not appeal to
any approximations. For example, we only assume that bounds of
the noise samples are known, but the samples can be drawn from
any distribution satisfying this requirement. We also show by sim-
ulations that the algorithm is robust in scenarios where these few
assumptions fail. In particular, here we show the probability of mis-
detection and false alarm in a setting where noise does not follow
a Gaussian distribution. An additional contribution of this paper is
to show that, in algorithms derived from [3, 4], nodes can exchange
side-information that influences sets considered by their neighbors.

2. PROBLEM FORMULATION

We start by reviewing basic concepts in convex analysis. In more
detail, a set C is said to be convex if v = νv1 + (1 − ν)v2 ∈ C
for every v1,v2 ∈ C and 0 ≤ ν ≤ 1. If, in addition to being
convex, C contains all its boundary points, then C is a closed convex
set. The metric projection PC : R

N → C of a closed convex
set C maps v ∈ R

N to the uniquely existing vector PC(v) ∈ C
satisfying ‖v − PC(v)‖ = miny∈C ‖v − y‖ =: d(v, C), where
‖ · ‖ is the norm induced by the inner product 〈v,y〉 := vTy for
every v,y ∈ R

N .
We now turn to the problem formulation. We consider a network

with N nodes (cognitive radio networks as a particular case), which
are represented by a graph G := (N , E), where N := {1, . . . , N}
is the node set, and E ⊂ N ×N is the edge set. An edge (k, l) ∈ E
indicates that, if required by the communication protocol, node k is
able to send information to node l directly (we assume (k, k) belongs
to E for every k ∈ N ). To simplify the exposition, we also assume
that (k, l) ∈ E if and only if (l, k) ∈ E . Inward neighbors of node k
are denoted by Nk := {l ∈ N | (l, k) ∈ E}.
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In the problem addressed here, as in [2], node k obtains mea-
surements of the form R 	 dk[i] = uk[i]

Two+vk[i], where i is the
time index, uk[i] ∈ R

M is a known regression vector, wo ∈ R
M

is an unknown vector, and vk[i] ∈ R is the noise measurement. We
assume that there are two hypotheses for the vectorwo ∈ R

M :

w
o =

{
0, under H0

ws, under H1
. (1)

The objective of the proposed algorithm is to distinguish, in
every node k ∈ N , whether hypothesisH0 or H1 is true from the
measurements dk[i]. Note that spectrum sensing in cognitive radio
networks is a particular case of this problem [2, Sect. V-B]. (Note:
extending the proposed algorithm to complex baseband signals is
straightforward.)

With the settings above, the active hypothesis can be identified
with distributed adaptive filters [2]. In this paradigm, each node pro-
duces at every time instant i an estimate wk[i] of wo, and nodes
evaluate the active hypothesis with the following test:

w
T
swk[i]

H0

≶
H1

γk[i], (2)

where γk[i] ∈ R is the decision threshold for node k at time i.

3. PROPOSED ALGORITHM

This study is based on the premise that, to have good detection per-
formance, we need a good estimatewk[i] ofwo. To this end, we use
the results in [3,4] to develop novel distributed set-theoretic adaptive
filters. To simplify the exposition, we first present the basic idea of
the algorithm, and then we proceed with the mathematical details.

3.1. Overview of the proposed set-theoretic adaptive filter

In the set-theoretic paradigm, at time i every node k builds closed
convex sets that are likely to contain the estimandum wo. Nodes
also build additional sets to incorporate any a priori knowledge. In
the discussion that follows, sets constructed from measurements are
denoted by Ck[i] 	 wo, and the set corresponding to available a
priori knowledge is denoted by C(ε) 	 wo, where ε is a design pa-
rameter that is described later.1 If all sets are appropriately chosen,
a reasonable estimate ofwo is any vector that lies in the intersection
of as many sets as possible. Ideally, the estimate should belong to all
sets built by different nodes; i.e., belong to Ω� := ∩∞

i=0κ[i] 	 wo,
where κ[i] :=

(⋂
k∈N Ck[i]

) ∩ C(ε). Note that the set Ω� cor-
responds to all information we could possibly have about wo from
the constructed sets, and in the set-theoretic paradigm we assume
that any two points p1,p2 ∈ Ω� are equally good estimates of
wo; i.e., we do not have enough information to prefer p1 over p2.
Unfortunately, obtaining a point in Ω� is often impractical because,
among other problems, i) sets Ck[i] are constructed as information
arrives, ii) data is dispersed in a network with sparse communication,
and iii) nodes have limited memory. However, by imposing reason-
able assumptions, we can derive a low-complexity algorithm that,
loosely speaking, produces sequences of estimates wk[i] that con-
verge asymptotically to a point that belongs to all but finitely many
membership sets of wo. More precisely, the algorithm can produce
sequences of estimateswk[i] that converge to a point in

Ω := lim inf
i→∞

κ[i] = ∪∞
i=0 ∩n≥i κ[n] 	 wo, (3)

1For simplicity, we assume that all nodes have the same a priori informa-
tion; the techniques presented here extend to more general cases where nodes
have different a priori information.

where the overline operator denotes the closure of a set. To derive
such an algorithm, we use the results in [3, 4] by proceeding as fol-
lows. We first define membership sets Ck[i] and C(ε) that are ex-
pected to produce a set Ω where all points are good estimates of wo

(Sect. 3.2). Then we recast the feasibility problem as a time-varying
convex optimization problem (Sect. 3.3). In doing so, by also assign-
ing appropriate weights to the edges of the graph (Sect. 3.4), we can
use the results in [3,4] to produce sequenceswk[i] with the required
properties (Sect. 3.5).

3.2. Membership sets of wo

To build membership sets Ck[i] 	 wo based on measurements dk[i],
we use the following assumption, which is discarded later in Sect. 4.

Assumption 1. The sequences of noise samples vk[i] are bounded
above and below, and the bounds are known; i.e., there exist known
bounds l, u ∈ R such that l ≤ vk[i] ≤ u for every i ∈ N and
k ∈ N .2

Therefore, given measurements dk[0], . . . , dk[i] at node k, we
know thatwo belongs to the following local sets

Lk[i] :=
{
w ∈ R

M | l ≤ d̄k[i]−wT
uk[i] ≤ u

}
	 wo, (4)

where d̄k[i] := η[i]−1 ∑i

j=i−η[i]+1 dk[j], uk[i] :=

η[i]−1 ∑i

j=i−η[i]+1uk[j], η[i] := min{m, i + 1}, and the pa-
rameter m ≥ 1 defines the memory of the algorithm (the maximum
number of samples dk[i] considered at every time i). This last pa-
rameter trades the detection performance at steady state against the
tracking speed in nonstationary environments. More precisely, if
wo changes, the algorithm requires m samples of dk[i] to “forget”
the previous value of wo. Note that, to construct Lk[i], we are
computing averages of possibly noisy measurements dk[i], which
can increase the reliability of Lk[i] when Assumption 1 is not valid.
For example, if noise samples vk[i] are i.i.d., with mild additional
assumptions, the noise variance decreases by increasing m, which
increases the probability that the relation wo ∈ Lk[i] is valid. As a
result, the performance of the algorithm improves.

The set Lk[i] is local information obtained by samples dk[i], but
node k can also obtain information about Lj [i] of the local neighbors
j ∈ Nk by simply obtaining the averages d̄j [i] and uj [i]. We can
incorporate this readily available information into the algorithm by
using Ck[i] := ∩k∈Nk

Lk[i] 	 wo as the set described in Sect. 3.1.
We now define C(ε) 	 wo, which is the set based on a priori

knowledge. In particular, here we use

C(ε) :=
{
w ∈ R

M | ‖w − αws‖ ≤ ε for some α ∈ [0, 1]
}
,

(5)

where ε ≥ 0 is a design parameter used to simplify the convergence
analysis. Note that the relation wo ∈ C(ε) is valid even with ε =
0. This property is useful to decrease the communication overhead
among nodes because all vectors inC(0) are of the formαws, where
ws is known. As a result, if we guarantee that the estimates wk[i]
of wo belong to C(0), then nodes can exchange estimates (which,
as seen later, is a requirement of the proposed algorithm) by simply
sending scalars instead of vectors of dimension M . Unfortunately,
by using ε = 0, we cannot use directly the results in [4] to prove that
the sequences of estimates wk[i] produced by proposed algorithm

2Contrasting with existing work, we do not assume that vk [i] is a sample
of a random variable with a particular distribution (e.g., Gaussian). For the
proposed algorithm to work well in practice, l and u should be sufficiently
small.
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converge to a point in the set Ω defined in (3). However, we can
still prove that the estimates of nodes, when considered together,
improves at every iteration (c.f. Proposition 1).

3.3. The estimation task as a time-varying optimization problem

To derive the proposed algorithm with the scheme in [3, 4], we now
recast the feasibility problem described in Sect. 3.1 with the sets
defined in Sect. 3.2 as a time-varying optimization problem having
the sought estimates as time-invariant solutions. In more detail, we
define a sequence of optimization problems indexed by i having the
following form:

min.
∑
k∈N

Θk[i](wk),

s.t. w1 = . . . = wN (6)

where Θk[i] : R
M → [0,∞) is a local convex function of node k

attaining the value 0 only at points in Ck[ni] for i even or at points in
C(ε) for i odd, and ni := �i/2� (�·� denotes the floor function). By
constructing the cost functions in this way, the set of time-invariant
solutions of (6) (solutions that do not depend on the index i) can be
given in terms of the ideal set of estimates Ω�; the time-invariant so-
lutions arew1, . . . ,wN ∈ Ω� withw1 = . . . = wN . In particular,
here we use the following functions, which have the desired charac-
teristics and often give rise to fast and low-complexity set-theoretic
adaptive filters [5]:

Θk[i](w) =

{∑
j∈Nk

ck,j [i] ‖w − PLj [ni](w)‖, i even,

‖w − PC(ε)(w)‖, i odd,
(7)

where ck,j [i] is the weight given by

ck,j [i] =

⎧⎨⎩
ωk,j [i]

Mk[i]
‖wk[i]− PLj [ni](wk[i])‖ if Mk[i] �= 0,

0 otherwise,

Mk[i] is given byMk[i] :=
∑

j∈Nk
ωk,j [i]‖wk[i]−PLj [ni](wk[i])‖,

wk[i] is the current estimate of wo at iteration i and at node k, and
ωk,j [i] > 0 is the weight that node k gives to the set Lj [ni]. The
weights ωk,j [i] should also satisfy

∑
j∈Nk

ωk,j [i] = 1. The projec-
tions onto the sets Lk[i] and C(ε) are easy to compute [6], but we
omit the details owing to the space limitation.

3.4. Weights assigned to the edges of the graph

To find a solution to all but finitely many optimization problems in
(6), the iterative approach in [3,4] also requires possibly random ma-
trices Ak,j [i] (k, j ∈ N ) taking values on R

M×M , each of which
represents the weight that node k assigns to the edge (j, k) at itera-
tion i (Ak,j [i] = 0 if (j, k) /∈ E ). Furthermore, the block matrix

P [i] =

⎡⎢⎣A1,1[i] · · · A1,N [i]
...

. . .
...

AN,1[i] · · · AN,N [i]

⎤⎥⎦ , i = 0, 1, . . . ,

which takes values on R
MN×MN , should satisfy the following prop-

erties for every i [4, Theorem 2]:

1.
∥∥E [

P [i]TP [i]
]∥∥

2
= 1;

2. P [i]v = v for every v ∈ C ⊂ R
MN ;

where C is the consensus subspace C := span{b1, . . . , bM}, bk =

(1N ⊗ ek)/
√
N ∈ R

MN , 1N ∈ R
N is the vector of ones, ek ∈

R
M is the kth standard basis vector, and ⊗ denotes the Kronecker

product. Moreover, there should exist I ∈ N and ε1 > 0, such
that, for every p ∈ N, we can always find a matrix P [i] satisfying∥∥E [

P [i]T (I − J)P [i]
]∥∥

2
≤ (1 − ε1) for some i ∈ [p, p + I ],

where J ∈ R
MN×MN is the orthogonal projection matrix onto C.

Fortunately, constructing matrices with the above properties is
easy. Indeed, as shown in [4], we can use most existing consensus
algorithms for this task. In particular, to simplify the exposition, we
use here the following deterministic matrices:

Ak,j [i] =

⎧⎨⎩
0 if (j, k) /∈ E and i even,

I if j = k and i even,

ak,jI otherwise,

(8)

where ak,j are the Metropolis-Hastings weights

ak,j =

⎧⎪⎨⎪⎩
1/max{gk, gj}, if k �= j and (j, k) ∈ E
1−∑

j∈Nk\{k}
1/max{gk, gj}, if k = j,

0, otherwise,

and gk = |Nk| denotes the degree of node k in the graph G.

3.5. The set-theoretic adaptive filter

Substituting the functions in (7) and P [i] (composed of the subma-
trices Ak,j [i] in (8)) into [4, Eq. (11)], we obtain the following
algorithm:3

Algorithm 1. 1. Initialization: Set i to 0 and estimates wk[i] to
arbitrary values inRM . Selectm, the memory of the algorithms, and
the parameter ε for the set C(ε). In addition, select two arbitrarily
small constants ε2, ε3 ∈ R.

2. Node k chooses ωk,j [i] > 0 satisfying
∑

j∈Nk
ωk,j [i] = 1.

3. For all k ∈ N , update the estimates according towk[i+1] =∑
j∈Nk

ak,jPC(ε)

(
w′

j [i]
)
, where

w
′
k[i] = wk[i]+μk[i]

⎛⎝ ∑
j∈Nk

ωk,j [i]PLj [ni] (wk[i])−wk[i]

⎞⎠ ,

μk[i] ∈ [ε2, (2− ε3)λk[i]] is an arbitrarily chosen step size, and

1 ≤ λk[i] :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
j∈Nk

ωk,j [i] ‖PLj [ni] (wk[i]) −wk[i]‖2∥∥∥∑j∈Nk
ωk,j [i] PLj [ni] (wk[i]) −wk[i]

∥∥∥2

if wk[i] /∈
⋂

j∈Nk
Lj [ni]

1, otherwise,

4. In every node k, decide whether the signal is present by using
the scheme in (2) (with the new estimatewk[i+ 1]).

5. Increment i and go to step 2.

The theorem below shows sufficient conditions to guarantee that
Algorithm 1 has the desired properties described in Sect. 3.1.

Proposition 1. Let Assumption 1 be valid. By Defining ψ[i] :=
[wT

1 [i] · · ·wT
N [i]]T and ψ� := [(wo)T · · · (wo)T ]T , the following

holds:
1. At every iteration the network performance improves in the

sense that ‖ψ[i+ 1]−ψ�‖ ≤ ‖ψ[i]−ψ�‖.
3Here we use a unity step size when using projections onto C(ε), and we

omit the derivation details owing to the space limitation.
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2. The (time-varying) functions Θk[i] are asymptotically mini-
mized (see also the definition in [5]); i.e., limi→∞ Θk[i](wk[i]) = 0
for every k ∈ N .

3. Nodes reach consensus asymptotically; i.e., limi→∞ ‖wk[i]−
wj [i]‖ = 0 for every k, j ∈ N .4

4. If the parameters ε, l, and u in the sets C(ε) and Lk[i] are
strictly positive, then every sequence wk[i] (k ∈ N ) converges to a
point ŵ ∈ R

M .
5. In addition to the above, we also have ŵ ∈ Ω if

(∀ε4 > 0, ∀r > 0,∃ξ > 0)

inf∑
k∈N d(wk[i], Ck[i]) ≥ ε4∑
k∈N ‖wo −wk[i]‖ ≤ r

∑
k∈N

Θk[i](wk[i]) ≥ ξ.

Proof (Sketch) Properties 1-3 are a direct application of [4, Theo-
rem 2]. Properties 4-5 can also be proved with [4, Theorem 2] by
observing that wo is an interior point of the ideal set Ω�.

4. EMPIRICAL EVALUATION

We simulate a system similar to that in [2]. The network hasN = 20
nodes distributed uniformly at random in a unit grid. Two nodes
k, j ∈ N are neighbors if their Euclidean distance is less than√

(logN)/N (we discard networks not strongly connected). The
vector ws has dimension 10; it is first drawn from a Gaussian dis-
tribution N (0, I), and then it is normalized to ‖ws‖ = 1. As
common in cooperative cognitive radios [2], the regressors uk[i] are
time invariant, and they are drawn from a Gaussian distribution with
p.d.f. N (0, I). Noise vk[i] is i.i.d. in both space and time, and
its p.d.f. is f = (1 − β)N (0, ν2) + βN (0, κν2), where ν > 0,
0 ≤ β < 1, and κ > 1. This distribution is often used to re-
produce impulsive noise in radio channels [7, Ch. 4]. The term
N (0, ν2) represents the Gaussian background noise, and the term
N (0, κν2) models the impulsive component, which has probabil-
ity β of occurring. Here, β = 0.1 and κ = 1, 000. The param-
eter ν is adjusted so that the variance of noise at node k, which is
given by σ2

v,k = (1 − β)ν2 + βκν2, falls within the range [1, 6]
in every run. The noise variance for each node is chosen uniformly
at random. To show the robustness of the proposed method when
many assumptions do not hold, we fix l = 0 and u = 0 for the
sets Lk[i], and we set ε = 0 for C(ε). The threshold for detec-
tion is γk[i] = 0.1. We mitigate noise by setting the step size
of the proposed algorithm to μk[i] = 0.07 λk[i] and the memory
size m to m = 20. As in [2], noise is further mitigated by using
weights ωk,j [i] = σ−1

v,j/(
∑

n∈Nk
σ−1
v,n). The proposed method is

compared with the LMS approach in [2] with step size 0.06 and de-
tection threshold 0.08. We use as the performance metric the empir-
ical probabilities of misdetection and false alarm in the nodes with
the worst performance. They are obtained from 100, 000 runs of the
simulation. In all runs,wk[0] = 0 for both algorithms. Fig. 1 shows
the performance of the algorithms.

We can see that, at steady state, the proposed algorithm has
lower probability of misdetection and false alarm (the probability of
false alarm increases initially because we start from the true hypoth-
esis wk[0] = 0, and the performance cannot be improved by using
updates based on noisy measurements). The superior performance of
the proposed algorithm is explained by the reduced noise variance in
the sets Lk[i] (see the discussion after (4)) and the use a priori infor-
mation. In addition, the proposed method has lower communication
overhead because all estimates wk[i] belong to C(0) when nodes
exchange estimates, so only one scalar per node needs to be reported

4Note that items 1, 2, and 3 hold even if we use C(ε) with ε = 0.
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Fig. 1: Empirical probabilities in the nodes with the worst perfor-
mance as a function of the number of iterations.

in the estimate exchange step (instead of N scalars as in the LMS
algorithm).

5. CONCLUSIONS

We have proposed a distributed signal detection algorithm based on
distributed set-theoretic adaptive filters. In the proposed method,
each node in the network uses a priori knowledge of the signal of
interest and side-information provided by neighbors. As a result, the
algorithm has better detection performance and lower communica-
tion overhead than some previous methods in practical scenarios. In
addition, by using only few assumptions, we prove rigorously con-
vergence properties of the proposed algorithm; we do not appeal to
any approximations as common in the analysis of adaptive filters.
We have also showed that, in practice, the algorithm is robust even
when the assumptions do not necessarily hold.
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