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Atomix: A Framework for Deploying Signal Processing Applications on
Wireless Infrastructure

Manu Bansal, Aaron Schulman, and Sachin Katti
Stanford University

Abstract

Multi-processor DSPs have become the platform of
choice for wireless infrastructure. This trend presents
an opportunity to enable faster and wider scale deploy-
ment of signal processing applications at scale. However,
achieving the hardware-like performance required by
signal processing applications requires interacting with
bare metal features on the DSP. This makes it challeng-
ing to build modular applications.

We present Atomix, a modular software framework
for building applications on wireless infrastructure. We
demonstrate that it is feasible to build modular DSP soft-
ware by building the application entirely out of fixed-
timing computations that we call atoms. We show that
applications built in Atomix achieve hardware-like per-
formance by building an 802.11a receiver that operates
at high bandwidth and low latency. We also demonstrate
that the modular structure of software built with Atomix
makes it easy for programmers to deploy new signal pro-
cessing applications. We demonstrate this by tailoring
the 802.11a receiver to long-distance environments and
adding RF localization to it.

1 Introduction

Programmable Digital Signal Processors (DSPs) are in-
creasingly replacing ASICs as the platform of choice
for performing the heavyweight signal processing in our
wireless infrastructure. The primary driver for the shift
toward this programmable infrastructure is the increased
rate of wireless standard updates: the 3GPP releases a
new LTE standard roughly once every 18 months [3].
DSPs enable such quick upgrade cycles since their soft-
ware can be updated with the push of a button.DSPs
in the infrastructure strike balance between high perfor-
mance, low power, (only 5-8 Watts to run a 20MHz LTE
basestation), and programmability. They do so by com-
bining multiple processing cores for programmability

with hardware accelerators for performance and power
efficiency.

The trend toward building programmable DSPs into
wireless infrastructure presents a valuable opportunity:
programmers can build new signal processing applica-
tions and quickly deploy them on wireless infrastructure
at scale. Such applications encompass both communica-
tion and non-communication signal processing. Commu-
nication applications include standard wireless protocols
(e.g., LTE and WiFi), as well as customized protocols for
particular environments (e.g., long distance rural broad-
band [14, 6]). Non-communication applications include
using radio waves for localization [28, 8].

There are three basic primitives that programmers
need from the software framework of DSPs to build and
deploy signal processing applications: fapping into a sig-
nal processing chain, tweaking a signal processing block,
and inserting or deleting a signal processing block. How-
ever, the DSP software framework must present a modu-
lar interface to the programmer that supports these prim-
itives. Such modularity is essential to add new applica-
tions without needing to modify or understand the full
software base which could uptake excessive effort. For
example, tweaking a specific block to improve its func-
tion or efficiency should not affect other blocks, nor
should it require the programmer to tweak or understand
other parts of the software.

Designing a modular software framework for DSPs
is challenging because of the demanding requirements
of the communication applications that it must support.
Communication applications are both high through-
put and latency sensitive. This combination requires
hardware-like performance from the DSP software; it
must be highly efficient and have predictable execution
timing. For example, to process a typical 20MHz WiFi
channel, the DSP must process a sample of the signal
every 25ns (assuming Nyquist sampling). Assuming the
DSP is running at a 1GHz (this is a typical DSP clock
rate), there are only 25 cycles available on average per
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DSP core to process each sample. Additionally, the pro-
cessing has to finish within a short time because of ARQ.
For instance, WiFi needs to decode and send an ACK
within 16us of receiving the last sample of a packet.

Building modular DSP software that has hardware-
like efficiency and predictability is challenging. The pri-
mary reason is, programmers must use several bare metal
features to achieve hardware-like performance. DSPs
such as the TI 6670 [23] are highly parallel processors
with multiple cores and hardware accelerators. There
is no rich operating system support to manage those re-
sources with adequate performance. As a result, the pro-
grammer must manually parallelize software. DSPs typ-
ically lack cache-coherent shared memory. This forces
the programmer to explicitly move data across cores
and hardware accelerators. Further, DSPs tend to have
shallow memory hierarchies with software-addressable
SRAM that the programmer has to explicitly manage.

In this paper, we present Atomix, a modular software
framework for developing high bandwidth and low la-
tency apps for DSPs. The key idea behind Atomix is
the atom abstraction, which is defined as a unit of exe-
cution that takes a fixed, known amount of time to run
every time it is invoked. In Atomix, programmers can
express every module in a signal processing application
as an atom. Atoms can be an algorithmic blocks such as
FFT, or compositions of blocks such as OFDM, or dif-
ferent packet processing modes in protocols such as LTE
or WiFi, or even low-level plumbing primitives such as
data transfer across cores.

We evaluate the Atomix framework by using it to build
a standard 802.11a WiFi receiver called AtomixIla.
WiFi is an ideal app to evaluate the performance capa-
bility of Atomix because it uses the same bandwidth as
LTE with similar processing complexity and spectral effi-
ciency of an OFDMA protocol. Additionally, WiFi’s de-
code latency constraints of tens of microseconds are two
orders of magnitude tighter than LTE’s'. For a 10MHz
WiFi channel, Atomix11a achieves a frame decode la-
tency of 36.4us with a variance of 1.5us.

We also evaluate the modularity of apps developed in
Atomix by developing two apps on top of Atomix]la:
(1) we customize Atomixlla to support long-distance
links and (2) we add RF localization to Atomix11a.

2 Background and Design Goals
2.1 App Taxonomy

A typical wireless stack is naturally specified in terms
of signal processing blocks, a data flowgraph that com-
poses those blocks, and a state machine that selects ap-

ILTE’s 3ms HARQ process turnaround requirement allows for ap-
proximately 1ms of decode latency.
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Figure 1: Modules of an 802.11a receiver: blocks, data-
flowgraphs, and a state machine.

propriate flowgraphs to process incoming samples. For
example, an 802.11a baseband receiver (fig. 1) has
blocks for OFDM demodulation, channel equalization,
constellation-to-bit slicing, and Viterbi decoding. Differ-
ent blocks are composed into separate data flowgraphs
for decoding a 54Mbps sample stream, a 6Mbps sample
stream, or the PHY layer header, or for transmitting an
ACK. Finally, the flowgraphs are assembled into a re-
ceiver state machine that transitions from the header de-
code state to one of the data decode states, optionally
followed by the ACK transmit state.

We classify apps according to the kind of modifica-
tions needed to the base wireless stack. (For a wireless
stack app that is bootstrapping the base-station, the base
stack is null.) To illustrate the classification, we use a
simple OFDM receive chain (fig. 2) as the underlying
stack that is modified. We classify applications based on
modifications that fall into three main categories:

Tap. These modifications tap the signal at various points
in the processing chain to implement their functionality.
Fig. 2 shows an example of tapping the CSI output and
sending it back for offline processing. Such tapping
capability is needed for applications like indoor local-
ization [28, 8]. Localization works by converting few
samples from the right point in the signal processing
chain into location estimates.

Tweak. These modifications tweak parameters of
individual signal processing blocks that are already part
of the wireless stack to implement tailored functionality.
Fig. 2 shows an example of tweaking the channel equal-
ization block. The ability to tweak parameters or modify
the functionality of a block can enable applications
like better receiver designs (e.g. [13, 25]) for existing
transmission formats or adapting the signal chain to a
different deployment setting such as long distance rural
WiFi links as we show in sec. 5.

Insert (and Delete). These modifications insert new
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Figure 2: Three basic kinds of modifications

blocks into the signal processing chain, either in the crit-
ical path or as additional branches. By inserting new
blocks, we can add new functionality to existing signal
processing chains. For example, we can add a BER-
estimation block for fine-grained channel quality indica-
tion to significantly improve rate-adaptation performance
[26].

A new wireless stack app that bootstraps a basestation
also requires insertion of new blocks.

2.2 Requirements and Design Goals

Our goal is to design a software framework for wireless
infrastructure in which new signal processing applica-
tions can be easily created and deployed. This requires
three properties from the framework:

1. Modularity — For a programmer to easily add new
apps, the framework must provide a modular inter-
face supporting tap, tweak, and insert primitives.
In using those primitives, the programmer must be
able to make local code changes without needing to
understand or refactor unrelated parts of the existing
implementation.

2. Predictable latency — When a new app is deployed,
the underlying communication stack should exhibit
hardware-like predictable latency. The programmer
should be able to precisely estimate and control the
latency down to the order of a microsecond. This
will let the programmer ensure that the timing re-
quirements specified by the communication proto-
col are still met (e.g., 16us sample processing la-
tency for 20MHz WiFi).

3. High computational throughput — As new apps
are deployed, the underlying communication stack
should remain computationally efficient. The pro-
grammer should have the tools needed to utilize the
full computational power of the hardware platform
to meet sample-rate processing requirements (e.g.,
40Msps for a 20MHz WiFi channel). Modularity
and predictable latency should not come at the ex-
pense of computational efficiency.

While is easy to meet any of these requirements in iso-
lation, combining them generally leads to tradeoffs.

—> —> —
2 AtomA | = —> Atom A —= AtomB =
—> —>
ta tht i

(a) An atom is a unit of ex-
ecution with fixed timing

(b) Atom compositions have
fixed timing

Figure 3: The atom abstraction

In a modular system designed for predictability, mod-
ules could always be provisioned for worst-case execu-
tion times. However, that would an inefficient choice
if modules had large gaps between worst and average-
case execution times. Another system that dynamically
schedules modules with the objective of keeping proces-
sors busy would achieve high average processing effi-
ciency. However, it could cause high variability in ex-
ecution latencies of modules [15]. By programming an
application using low-level instructions, a programmer
could tightly control processing latencies; by optimizing
it as a monolithic piece of software, she could extract the
best possible performance from the hardware. However,
the resulting implementation would lack modularity.

These tradeoffs make the design of Atomix challeng-
ing. However, as we discuss in the next section, our in-
sights about the application structure of wireless data-
planes allows us to design for all of these goals simulta-
neously.

3 Design

3.1 The atom abstraction
The design of Atomix is based on the key abstraction of
an atom:

Atom: A unit of execution with fixed timing.

In Atomix, every operation from signal processing to
system handling can be implemented as an atom. Fur-
ther, those atoms can be composed to form more com-
plex atoms. When atoms are composed, their execution
times add up, so that if A and B are atoms, /(Ao B) =
t(A) +t(B) (fig. 3).

The Atomix framework provides the substrate to im-
plement signal processing blocks as atoms (sec. 3.2).
It also enables programmers to compose those simple
atoms into more complex flowgraph atoms (sec. 3.3) and
state atoms (sec. 3.4) to tie together an entire signal pro-
cessing application. Finally, it provides the capability
to map atoms onto multiple cores to create fine-grained
pipelines exploiting parallelism (sec. 3.5).

The Atomix framework provides atoms for common
platform handling operations such as transferring data
between cores and interacting with accelerators. The
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programmer only needs to implement atoms in C lan-
guage for custom signal processing blocks. Then, she
can tie them together into flowgraphs and a state machine
using the language provided by Atomix. The framework
provides a high-level declarative API to compose atoms
and to map them to multiple cores. Atomix provides a
compiler to translate the declarative code into C code.
Translated application code and custom signal process-
ing atoms are compiled with the target DSP’s native C
compiler. Atomix also provides an optimized runtime
system (sec. 3.6) to execute compiled atoms efficiently
with predictability. The full Atomix application develop-
ment workflow is described in sec. 3.7.

Block, flowgraph, and state abstractions have one-to-
one correspondence with the structure of baseband appli-
cations (i.e., the basestation stack and other signal pro-
cessing applications). Consequently, baseband applica-
tion software in Atomix has the modularity inherent in
the application structure. Since the implementations are
entirely made up of atoms, they have predictable timing
at every granularity of the modular structure.

To create efficient parallel implementations that can
process high sample bandwidths at low latency, the
programmer simply ties together appropriate system-
handling atoms with signal processing atoms. Then
they use the high-level API to map flowgraphs and state
machines onto multiple cores. Modularity and pre-
dictable timing of atoms simplifies the process of design-
ing pipelines, since the programmer can design a sched-
ule for different bandwidth or latency objectives by sim-
ply adding up timings of blocks under various layouts.

In the modular structure of Atomix, signal processing
blocks are encapsulated into separate atoms. As a result,
atom interfaces provide fine-grained signal tap points;
blocks can be tweaked individually by tweaking the cor-
responding atoms; blocks can be inserted and deleted at
fine granularity. Since atoms are tied together using a
high-level API, inserting and deleting new atoms is easy.

The timings of atoms add up when they are composed.
This simple additive relation allows the programmer to
easily infer the effect of a modification on the end-to-
end timing of the implementation. On tweaking an atom,
she only needs to re-time the tweaked atom and substi-
tute its new cost. On inserting an atom, she simply adds
the execution time of the inserted atom to obtain the new
end-to-end timing. After predicting the effect of modi-
fication on timing, the programmer can easily adjust the
multicore layout in the high-level API, if needed to meet
processing bandwidth or latency requirements.

We note that the atom abstraction — a unit of exe-
cution with fixed timing — is an idealized design goal.
A software system will inherently have some variability
in execution times. For example, the micro-architecture
of a processor could affect timing due to bus contention

QPSK 48 cplx QPSK48 96 bits

—>| Slicer —

> 48cpl 48 bit:
N2l gpsk M K ppgyag R
Constellation?
BPSK: 200cy _
Input data length? =
QPsK: 400cy P 8 tapskag = 200cy

1 OFDM symbol: 200cy
2 OFDM symbols: 400cy

Figure 4: Signal processing blocks to atoms

or hardware instruction manipulation. Atomix strives to
achieve sufficiently low variability in execution times of
atoms for the purpose of building wireless signal pro-
cessing applications.

3.2 Blocks decompose into atoms

The basic unit of a signal processing application is a sig-
nal processing block. A block takes in an input signal
and transforms it to another output signal. For exam-
ple, a constellation bit-slicer block takes in constellation
symbols like BPSK or QPSK symbols and produces data
bits from them. The execution time of a block depends
on the operation it performs, the length of data on which
it operates, the processor type (i.e., DSP or accelerator)
on which it operates, and the memory location of data
buffers it operates on. For a block to be abstracted as an
atom, it must execute in known, fixed amount of time.
An Atomix signal processing block implements a fixed
algorithmic function, operates on fixed data lengths, is
associated with a specific processor type, and uses only
the memory buffers passed to it during invocation.

Consider the example of a bit-slicing operation, as
shown in fig. 4. A slicer block will be decomposed in
Atomix as separate BPSK, QPSK, QAM blocks. Each
of these blocks will be implemented to accept input and
output buffers of fixed lengths, leading to BPSK48 for
a BPSK block that takes in 48 complex symbols. The
blocks must also be implemented for specific execution
core types. If the BPSK48 block could run on both a DSP
core and an ARM core, BPSK48DSP and BPSK48ARM
would be separate blocks. They may share code in-
ternally through common subroutines. By following
those decomposition rules, a programmer can implement
blocks so that they always executes the same set of in-
structions on the same kind of processor.

Atomix blocks only make use of memory buffers
passed in through function calls, making their memory
accesses explicit. Further, the signature of the block im-
plementation is annotated to indicate input and output
ports. The Atomix compiler uses I/O port annotations
to manage data flow between atoms, as discussed later
in sec. 3.3. The Atomix framework provides high-level
APIs to control memory placement so that a block al-
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Atom | Operation

F_RG buffer = readGet (fifo)

F_WG buffer = writeGet (fifo)

F_RD void readDone (fifo, buffer)
F_WD void writeDone (fifo, buffer)

Table 1: Atomix FIFO atoms (denoted collectively by F).

FG_BPSK

—> csi _J/
‘F‘F‘eq‘FH —>‘F‘bpsk48|F}—>
R )

—> F | ofdm | F

(a) Composing a flowgraph from atoms.

#atom: <atomname>:<atomtype>

atom :eq :EQ

atom :bpsk48 :BPSK48
#fifo:<fifoname>:nbufs=<nbufs>:mem=<memoryid>
fifo :fEgDDSyms :nbufs=2 :mem=L2

fifo :fDDBits :nbufs=4 :mem=L2

#flowgraph:<fgname>:<atomname>; +
flowgraph:FG.BPSK:{csi; ofdm; eq; bpsk48;}

#wire:<atomname>:<fifoname>+
wire :eq :£CSI, fFdDDSyms, fEgDDSyms
wire :bpsk48 :fEgDDSyms, £DDBits

(b) Code to compose the flowgraph

Figure 5: Composing a flowgraph from atoms

ways operates on the same memory types (L2 or DDR
etc.). Further, in Atomix, blocks run to completion unin-
terrupted.

By following simple decomposition rules, Atomix en-
ables the programmer to implement signal processing
blocks as atoms. The blocks will run fixed sets of in-
structions executing uninterrupted on fixed resources us-
ing fixed memories. As a result, they will have fixed ex-
ecution times.

3.3 Flowgraphs are expressed as atoms

The Atomix framework lets the user program applica-
tion flowgraphs as atoms. For example, the 6Mbps data
decoding flowgraph, shown previously in fig. 1, can be
expressed as an atom. Flowgraphs are created by tying
together signal processing blocks to FIFO queues. FI-
FOs provide intermediate storage and pass data between
signal processing atoms. The framework provides oper-
ations to access FIFOs as atoms. This makes an Atomix
flowgraph a composition of signal processing atoms and
FIFO access atoms. Since a flowgraph is a composition
of atoms, it is also an atom in itself.

To program a flowgraph in Atomix, the user declares
atoms, FIFOs, wirings between atoms and FIFOs, and
the execution sequence of atoms in the flowgraph. Con-
sider the simple signal processing flowgraph shown pre-
viously in fig. 2. It shows a channel state information

< }W

Action Rule
ST_HDR

Next state
Iteration count

(a) State control flow. Blue: Data flow, Red: Control flow.
ST_HDR

o

ST_BPSK

() e

ST_QPSK

o |

DISPATCHER

(b) State machine example. Blue: Data flow, Red: Control flow.
atom :dispatcher :Dispatcher

atom :dxHDR :HDRParser

atom :jumpToCRC :Jump

fifo :fDispatcher :nbufs=2 :mem=L2
flowgraph:FG_HDRAXN:{ ... }
flowgraph:FG_BPSKAXN:{ ... eqg; bpsk48; ... }
flowgraph:FG.QPSKAXN:{ ... eg; gpsk48; ... }

flowgraph:FG_HDR.RULE:{ dxHDR; }
flowgraph:FG.DD_RULE:{ jumpToCRC; }

wire :dispatcher :fDispatcher

wire :dxHDR :fDispatcher
#state:<statename>:<FG.action>:<FG_rule>
state :ST_HDR :FG_HDR_AXN:FG_HDR_RULE
state :ST_BPSK :FG_BPSK_AXN:FG_-DD_RULE
state :ST_QPSK :FG_QPSK_AXN:FG_DD_RULE

(c) Code to compose a state machine

Figure 6: Composing a state machine

block (CSI) and an OFDM demodulator block (OFDM)
both feeding data to a channel equalizer block (EQ) that
feeds data to a slicer block (SLICER). A specific realiza-
tion of this flowgraph with the BPSK48 block is shown
in fig. 5a.

In the implementation, block-level atoms and FIFOs
are declared with the atom and £ifo API, as shown in
5b. In declaring FIFOs, the programmer is able to control
the memory region in which the FIFO will be allocated,
thus also controlling the execution time of the atoms that
will operate on those FIFOs.

The programmer creates a named flowgraph construct
that specifies the sequence in which atoms of the flow-
graph will be executed (e.g., FG_BPSK in fig. 5b). FI-
FOs are wired to atoms using the wire API to specify
the flow of data between atoms. FIFOs are wired to re-
spective input and output ports of the atoms. Based on
the wiring information, the Atomix compiler inserts ap-
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propriate FIFO atoms (denoted by F, described in table
1) for each wired atom. FIFO atoms draw and return
buffers from FIFO queues. These FIFO access atoms
have known, fixed execution times.

Atomix implements a simple control flow model
where a flowgraph is executed by executing each of its
atoms in sequence without interruption. This straight-
through execution model implies that the timing of a
flowgraph is simply the sum of timings of its constituent
atoms, namely, the signal processing atoms created by
the user and the FIFO atoms inserted by the framework.

3.4 States are expressed as atoms

At the top level, Atomix applications are state machines.
With blocks and flowgraphs implemented as atoms, the
final application component that the programmer needs
to create is the state machine. Atomix enables the user to
program states as atoms.

The main components of a state machine are a dis-
patcher atom and named state structures, as shown in fig.
6a. A state is made up of two flowgraphs, the action
flowgraph and the rule flowgraph. Control flow starts
from the dispatcher atom which invokes the next state
in the state machine’s transition sequence with an iter-
ation count n. When the framework invokes a state, it
executes the action flowgraph n times followed by the
rule flowgraph once. The action typically performs sig-
nal processing operations while the rule flowgraph uses
the output of the action flowgraph to decide the next state
to transition to.

As an example, consider the reference 802.11a re-
ceiver previously shown in fig. 1. An implementation
of a subset of that state machine in Atomix is shown in
fig. 6b. It shows a header decode state, two data decode
states and an ACK transmit state. States are declared
with the state API as shown in table 6¢ for reference
state machine.

A block making state transition decision writes out a
decision buffer into the dispatcher’s queue, where the de-
cision buffer indicates the next state and the correspond-
ing iteration count n. In the example in fig. 6a, the deci-
sion atom DxHDR translates the header field decoded by
the corresponding action flowgraph into a decision out-
put of (< ST_BPSK | ST_QPSK >, n). When control
returns to the dispatcher at the end of ST_HDR, the dis-
patcher reads the next-in-queue decision buffer to con-
tinue state transitions.

The components that make up the execution sequence
of a state are the dispatcher atom and the action and rule
flowgraphs. Since a state is composed of atoms, it is also
an atom in itself.

3.5 Atoms generalize to multiple cores

DSPs are able to processing high-bandwidth com-
munication applications at low power because of the
parallelism of multiple DSP cores, and hardware ac-
celeration. Atomix enables the programmer to easily
parallelize and accelerate flowgraphs and states on
multicore DSPs.

Multicore flowgraphs. Flowgraphs are parallelized by
splitting into smaller flowgraphs, one for each core. Each
sub-flowgraph contains a subset of the blocks in the orig-
inal flowgraph. The programmer may choose any assign-
ment of blocks to the sub-flowgraphs.

Consider the example of the BPSK flowgraph shown
previously in fig. Sa. It is shown laid out as a pipeline
on three DSP cores in fig. 7a. The single flowgraph
(FG_BPSK) is split into three sub-flowgraphs, one for
each core: FGBaO processes the ofdm block on dsp0,
FGBal processes the csi and eq blocks on dspl, and
FGBa2 processes the bpsk48 block (shown as b) on
dsp2. Declarations of these flowgraphs are shown in fig.
Tc.

Multicore blocking FIFOs and transfer atoms. When
flowgraphs are parallelized, FIFOs are assigned to the
same cores as the blocks they are wired to. However, it
is possible that a FIFO is wired to multiple blocks that
are assigned to different cores. In our example, one such
FIFO is at the output of ofdm and the input of eq. In
such a case, the FIFO is replaced with multiple FIFOs,
one for each core to which its wired blocks are assigned.
The blocks are re-wired to the FIFOs on their own cores
to prevent expensive remote FIFO access. This is neces-
sary to preserve the timing of blocks.

When a FIFO is replaced by multiple FIFOs on dif-
ferent cores, data needs to be transferred between them
for the flowgraph to compute the correct result. Atomix
provides data transfer functionality as transfer atoms. By
inserting transfer atoms in the sub-flowgraphs, continuity
of the flowgraph is preserved. In the example of ofdm
and eqg blocks, the transfer atom t is inserted in sub-
flowgraph FGBaO on dsp0. This atom pushes data from
the output FIFO of ofdm on dsp0 to the input FIFO of
eq on dspl. This is shown in figs. 7a and 7b. (The atom
t could have been inserted into sub-flowgraph FGBal
instead. In that case, it would pull data from dspO to
dspl, and the cost of data transfer operation would be
added to FGBRal.)

The FIFO read and write atoms are implemented as
blocking operations; a read call on a FIFO returns only
when it has a filled buffer and, similarly, a write call
returns when the FIFO has an empty buffer. By being
blocking, FIFO access atoms are able to synchronize ex-
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ecution of multiple cores on data dependencies. For ex-
ample, the eq atom on dspl is able to run only when the
ofdm atom on dsp0 has produced a data buffer and t has
finished transferring it to dspl.

Simple extensions to the declarative API let the
programmer specify multicore assignment of atoms and
FIFOs, as shown fig. 7c. Transfer atoms are inserted
into flowgraphs like any other signal processing atoms.

o‘fdm‘ lti i

o‘fdm‘lti Vi Y

7 y

vepl

1 L L] 1
4590 | | , V) ¢
dspl: csi eq[csi eq ; 4 3 : i 3 3 : 3
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(a) Multicore pipeline example.
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(b) Multicore state machine structure.

#atom :<name> :<atomtype> : core=<id>
atom :disO :Dispatcher :core=0
atom :disl :Dispatcher :core=1
atom :t : TR :core=0
atom :dx : Jump :core=0
atom :v :VCPIssue rcore=2
atom :w :VCPWait rcore=2
#fifo :<name> :nbufs=<nbufs>:mem=<id>
fifo :fDisO :nbufs=4:mem=core(.L2
fifo :fDisl :nbufs=4:mem=corel.L2

flowgraph:FGBa0:{ofdm; t;}
flowgraph:FGBr0:{dx; cp;}
flowgraph:FGBal:{csi; eq;}
flowgraph:FGBrl:{tl;}

flowgraph:FGBa2:{u; b; w; v;}
flowgraph:FGBr2:{t2;}
#state:<stname>:core=<id>:<FGaxn>:<FGrule>

state :ST-BPSK :core=0:FGBal:FGBr0
state :ST_BPSK :core=1:FGBal:FGBrl
state :ST-BPSK :core=2:FGBa2:FGBr2

(c) Code to compose a multicore pipeline. Highlighted fields
are multicore extensions to the APL

Figure 7: Parallelizing atoms on multiple cores.

Multicore states. Multicore states enable parallelized
execution of the top-level application state machine. A
multi-core state structure is made up of a pair of action
and rule flowgraphs for each core. When the multicore

system enters a state, each core executes its respective
flowgraph pair for that state. By setting the core-specific
actions of a multicore state to sub-flowgraphs of a paral-
lelized flowgraph, the programmer is able to create effi-
cient multicore processing pipelines.

A three-core version of the BPSK state ST_BPSK is
shown in fig. 7b. For this state, the cores now use
sub-flowgraphs FGBa0, FGBal, and FGBa2 as actions.
Similarly, they use FGBr0O, FGBrl, and FGBr2 for
rules. The code to declare the multicore state is shown
in fig. 7c.

A multicore state machine executes like multiple par-
allel state machines executing asynchronously. Each
core has its own dispatcher atom (fig. 7b. On any core,
control flow starts at the dispatcher, passes through the
next state to execute, and returns to the dispatcher. Cores
synchronize on the state transition sequence by exchang-
ing transition decisions computed in the rule flowgraphs.

In our example, once the system enters ST_BPSK,
all cores start processing their respective action flow-
graphs for the state. These sub-flowgraphs exchange data
through the transfer atoms that the programmer inserted
when parallelizing them. Collectively, they execute the
parallelized BPSK processing pipeline.

After finishing a state’s action iterations, cores inde-
pendently execute their respective rule flowgraphs for
that state. In our configuration, only dspO executes the
decision atom dx for the BPSK state. Its output decision
is distributed to each dispatcher through transfer atoms
t1 and t2. By executing state-transition decision atoms
on a single (though possibly different) core for each
state, the programmer synchronizes state transitions
across all cores. In this way, the entire system transitions
states in lock-step.

Accelerator atoms. The pipeline shown in fig. 7a
includes atoms for Viterbi-decoding on Viterbi Co-
Processors (VCPs). To use the VCPs, Atomix provides
VCPIssue (v) and VCPWait (w) atoms. A VCPIssue
atom can configure a VCP and start its execution. A
VCPWait atom can wait for VCP execution to terminate
and thus synchronize a DSP core with a VCP core.
A hardware accelerator takes a fixed amounts of time
to execute a given workload. Consequently, issue and
wait operations interacting with an accelerator finish
executing in predictable amounts of time, making them
atoms. This model extends to other accelerators.

Multicore execution model and timing. The multicore
execution model of Atomix is similar to the single-core
setting. Blocks access FIFOs for input and output buffers
before they execute, they run as soon as buffers are avail-
able, and they always runs to completion. Cores com-
municate by transferring data between FIFOs, and syn-
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Figure 8: Lock-free queue management

chronize execution by polling FIFOs with blocking calls.
When a block polls a FIFO, its wait duration is deter-
mined by execution times of upstream atoms, including
data producers and transfer atoms.

In this manner, execution control flow simply mimics
data flow in the system. This allows the timing of a mul-
ticore atom to be computed by adding up the execution
times of atoms on the critical path of execution, i.e., the
slowest path of data flow in the parallel execution.

To illustrate the timing model, we analyze the BPSK
action flowgraph pipeline. We assume that data is
arriving every 4 units of time. We also assume that
the blocks have the following execution costs per
iteration: ofdm:2.5, csi, eq:1.5,b:1.0, £, u, w, v:0.5,
and VCP-processing:6.0. The total DSP computation
load of this flowgraph is 6.0 units, which cannot be
sustained at data arrival rate by a single DSP. When
laid out on three DSP cores and two VCPs with transfer
atoms, the pipeline is able to meet the processing
throughput requirement, as shown in fig. 7a. The
pipeline’s latency is the timing of the critical path
ofdm-t-eg-u-b-w-v-VCP, which is 13.5 units.

3.6 Efficient data-flow implementation

The runtime system of Atomix executes fine-grained
pipelines with hardware-like efficiency using two main
techniques: lock-free FIFOs, and asynchronous data
transfers.

Lock-free FIFO implementation. The FIFO imple-
mentation in Atomix provides a simple API with four
functions (table 1). We design the functions to execute
extremely efficiently: the Get functions take 40 cycles
each, and the Done functions take 8 cycles each. Typ-
ically, FIFO queues in multicore environments are im-
plemented with locks to serialize access. Atomix does
use them because locks are expensive, and they can cre-
ate timing variability by serializing concurrent accesses
in arbitrary order. Atomix FIFO API implementation is

Per-buffer status _=>  TCC &~

freeOrBusy o =
filledOrEmpty —> 1 s ]
linkNum f1 f2

(a) Extended buffer state (b) Transfer scenario

Figure 9: Link number field and Transfer Completion
Code (TCC) for handling asynchronous transfers

entirely lock-free.

In order to operate correctly without locks, Atomix re-
quires every FIFO to have a single-reader and a single-
writer (SRSW) at any point in multicore execution. In
addition to common readldx and writeldx status for the
queue, a per-buffer 2-bit (freeOrBusy, filledOrEmpty)
status tuple is maintained (fig. 8a). As FIFO API calls
are made, the buffer transitions through those states (fig.
8b). If a call cannot succeed (e.g., RG in state 01), it
blocks until the buffer reaches the required state for the
call to proceed. Only one of the four possible API calls
can succeed and hence, modify the data structures in any
given state. By the SRSW property, only one FIFO ac-
cessor will ever be allowed to write to the FIFO data
structure, ensuring race-free operation without locks.

The SRSW constraint may seem too restrictive com-
pared to typical FIFO APIs. However, in our experience,
most FIFOs wireless applications naturally have single
readers and single writers. Multiple readers or writers
from different states could still be wired to the same
FIFO since at any given time, the system is in exactly
one state.

Handling asynchronous transfers. The FIFO functions
read/writeDone cannot be used with asynchronous
DMA transfer. In order to run them upon DMA transfer
completion, DSP cores must be interrupted, which would
cause variability in atom execution. To deal with this is-
sue, we introduce the buffer state forwarding mechanism,
where the FIFO manager is able to deduce readDones
and writeDones without those calls being made ex-
plicitly.

To implement buffer state forwarding, we extend per-
buffer status field with a linkNum field (LN). On our
prototyping platform, TI KeyStone DSPs, DMA chan-
nels have associated event registers to indicate transfer
completion. We denote this register by TCC (fig. 9).
When the DMA transfer atom TD issues a DMA request,
it sets up the LN field of source and destination buffers to
point to the TCC register of the DMA channel used for
the transfer. TD issues the request and returns. The core
that executed TD moves on to other atoms. The trans-
fer would finish later asynchronously but the buffers will
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continue to be marked busy. However, when the buffers
are accessed again in FIFO order, the queue manager is
able to identify from non-zero LN field that they were
marked busy for an asynchronous transfer. The queue
manager then polls the TCC flag pointed by LN. When
the TCC indicates transfer completion, the queue man-
ager forwards the state of the buffer as if the correspond-
ing readDone or writeDone was called on the buffer.

3.7 Full app development workflow

| Block-level atoms (C) |

| Composed atoms (Ax) | | Schedule, Res. Assgn.

| Parallelized atoms (Ax) |

Atomix compiler

| Low-level code (C) | |Atomix|ibraries(c)|

| Native app binary |

Figure 10: Full Atomix app development workflow

Stages in Atomix app development. To summarize the
Atomix framework design, the following is an overview
of the application development workflow (fig. 10). First,
the user implements signal processing blocks as atoms in
C language. Next, she composes blocks into flowgraphs
and states using the declarative interface of Atomix.
Then, she computes a parallelized schedule and resource
assignment that will meet the latency and throughput
requirements of the application, and incorporates it in
the declarative app code. This high-level app code is
then compiled down to low-level C code by the Atomix
compiler. Finally, the low-level application C code is
compiled with the platform’s native C compiler and
linked against Atomix runtime libraries into a binary.
The modular structure of Atomix applications and the
streamlined development flow let the user rapidly iterate
designs and optimize performance.

Algorithmic scheduling. The execution model of
Atomix makes it possible to algorithmically compute the
best parallelized schedule for an application. Blocks
can be profiled individually for execution times. Then,
finding the optimal schedule for a flowgraph can be ex-
pressed as a resource assignment problem with depen-
dency constraints. FIFO access costs, data transfer costs
and accelerator access costs can all be modeled as ad-
ditional constraints. We have been able to formulate
the flowgraph scheduling problem as an Integer Lin-
ear Program (ILP). The flowgraph scheduling problem
in Atomix is similar to the instruction-loop scheduling

problem solved by VLIW compilers [17, 18]. Incorporat-
ing algorithmic scheduling in the Atomix compiler can
simplify the application development flow even further.

4 Building an 802.11a Receiver in Atomix

We put Atomix framework’s capability of providing low
latency and high throughput to test by using it to imple-
ment a I0MHz 802.11a receiver called Atomix11la. We
implement 802.11a as a benchmark due to its particularly
demanding requirements. It uses the same bandwidth
modes as LTE (5, 10, 20 MHz), imposing similar pro-
cessing complexity. However, it places much more strin-
gent frame-decoding latency constraints than LTE - 64 us
for SMHz and 32us for I0MHz compared to more than
Ims for LTE. To stress the system, we implement the
highest throughput Modulation Coding Scheme (MCS)
in 802.11a, MCS 7: 64-QAM with 3/4 coding rate, which
operates at 27Mbps on a 10MHz channel.

We first evaluate Atomixlla and show that (1)
Atomix11a can decode over-the-air frames in real-time
on the TI 6670 a 4-core, 4-Viterbi accelerator 1.25GHz
DSP, (2) Atomixlla can achieve 36us processing la-
tency with 1.5us of variability, sufficient to meet require-
ments of a SMHz 802.11a channel and close to meeting
10MHz requirements, and (3) most of the atoms we built
for Atomix1la have predictable timing. Next, we de-
scribe the use of Atomix to implement a modular 802.11a
receiver that has low latency and high throughput on the
low power (7 Watt) TI 6670 DSP. We could implement
the receiver in about 3000 lines of declarative application
code (excluding individual block implementations in C
language).

4.1 Evaluation of Atomix11a

We first demonstrate that Atomix11a is a robust, faithful
implementation of 802.11a signal processing. Then we
evaluate Atomix11a’s latency and timing variability, and
finally we evaluate the runtime of Atomixlla’s atoms
to show that they come close to Atomix’s fixed runtime
atom abstraction.

Atomix11a exceeds receiver sensitivity requirements.
An 802.11a compliant receiver must be able to decode
1,000 byte packets with a Packet Error Rate (PER) of
0.10 at -65dBm receive power over an AWGN channel,
as measured at the RF frontend’s antenna port [7]. In
our experiment, we feed signal over an RF co-axial
cable to emulate an AWGN channel without multipath
reflections. On the receiver, we use the high-quality
RF frontend of an R&S FSW spectrum analyzer to
digitize received signal into baseband I/Q samples, so
the experiment focuses on the robustness of Atomix11la
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Figure 11: Atomix11a exceeds receiver sensitivity spec-
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Figure 12: Atomixlla processing latency is at most

36.4us and it varies at most by 1.5us.

baseband running on the TI 6670 DSP, not the quality
of the RF frontend. Fig. 11 shows the results of this ex-
periment. Atomix]la exceeds 802.11a’s requirement of
0.10 PER at -65dBm; it achieves a 0.046 PER at -78dBm.

Atomix11a operates robustly indoors. The second ro-
bustness test is to see if Atomix1la can decode packets
sent over-the-air in challenging indoor multipath chan-
nels causing frequency selective fading. Robust 802.11a
receivers use a computationally intensive zero-forcing
channel equalizer to equalize the sub carriers.

We setup a 6 meter link across an office and trans-
mitted 100,000 802.11a frames, each 1,000 bytes, at
MCS 7 (64-QAM, 3/4 coding rate), and over the I0MHz
channel at 2.479GHz. We used a USRP2 RF frontend
connected to the TI 6670 DSP with gigabit ethernet.
Both the transmitter and the receiver were connected
with 3 dBi omnidirectional antennas. The receiver
successfully decoded (verified CRC) for 99,999/100,000
frames. Therefore Atomix11a is capable of an extremely
low PER of 0.001% in an indoor office environment, and
is likely a faithful implementation of 802.11a.

Atomix11a has low processing latency. Next, we per-
form an end-to-end test of Atomix framework’s ability
to support a low latency, low timing variability, and high
throughput signal processing chain. We transmitted 200
frames each of different sizes (6-50 symbols, 122-1310
bytes) to the USRP2 which is connected to the TI 6670
DSP. We compute the processing latency by subtract-
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Figure 13: Atomix]11la atoms have low timing variabil-
ity.

ing the frame processing time of Atomixlla from the
frame’s airtime. We measure Atomixlla’s maximum
processing latency, as well as the range over which it
varies.

Fig. 12 shows the results of this experiment. The
whiskers are the minimum and max of each of the
200 frames, and the boxes show the 25T, 50t 75t
percentiles. For all the frame sizes tested, the minimum
and maximum processing latency is similar, indicating
that the composition of atoms adds minimal latency
between frames. The max processing latency is 36.4 s,
1.14x the requirement of 32us for 802.11a. Although
36.4us latency is low, the AtomixIla implementation
could be further optimized to meet protocol latency
requirements. Specifically, there is room to optimize the
implementations of individual atoms, and to algorithmi-
cally compute the parallelization schedule of atoms that
minimizes decode latency.

Most Atomix1la atoms have low timing variability.
In the final experiment, we observe the variability of the
runtime of every atom in Atomixlla. We expect some
variability due to L1 caching and micro-architectural
sources of variability like bus contention (sec. 3.2). We
instrumented each of the atoms in the Atomix11a imple-
mentation with a lightweight cycle counter that records
the cycle count of each execution of the atom. We mea-
sured the runtime of every atom that executes while re-
ceiving 12 frames of 500 bytes (20 OFDM symbols at
MCS 7). Most atoms run every OFDM symbol of the
frame.

Fig. 13 shows the min, max, and 75th percentile
runtime of all of the 150 atoms that were executed in
Atomix11a (bottom), as well as the number of times each
of those atoms were run in our experiment (top). Most
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Figure 14: Fine-grained OFDM symbol pipelining in
Atomix11a’s data decode state.

atoms have a fixed or insignificant runtime (atoms 60-
150). These atoms include both framework atoms such
as memory transfers, as well as Atomix11a computation
atoms such as the 64-QAM soft slicer and the PLCP’s
soft deinterleaver.

Atomix11a’s atoms have at most a 0.486us range be-
tween their max and min runtime due to L1 caching and
micro-architecture. The atom with the largest runtime
range (atom 0) is the channel estimator, which is the most
computationally intensive atom in Atomix11a. Although
the difference between the max and min runtime for these
atoms can be significant, for all atoms the 75th percentile
of runtime is close to the minimum. This shows that the
atom abstraction holds well in practice. Further, execu-
tion times of different atoms have low co-variance. This
explains the low end-to-end packet decoding variability
of 1.5us. This variability can be reduced further by dis-
abling L1 caching on the TI 6670 and managing the L1
SRAM in software with Atomix transfer atoms.

4.2 Implementation of Atomix11a

Modularity resulting from the atom abstraction enabled
us to implement Atomixlla with fine-grained pipeline
parallelism, which was crucial in achieving high through
and low latency on the TI 6670 DSP. We implemented
signal processing blocks as fine-grained atoms that op-
erate on one OFDM symbol (8us worth of samples
at 10MHz) every iteration, as discussed earlier. The
Atomix API enabled us to compose the block-level
atoms into flowgraphs and states and schedule them for
high performance in a low power budget of 7W.

Precise timing of atoms allowed us to spread the
pipeline over all the cores and accelerators so it would
execute without stalls and achieve the required pro-
cessing throughput of 10Msps reliably. Fine-grained
atoms allowed us to pipeline data processing with data
reception to achieve low decode latency of 36s.

Fine-grained pipeline structure. The fine-grained
pipeline structure of Atomix11a is shown in fig. 14. It
depicts a snapshot of the pipelining in payload decod-

0 50 100 450 500
Time (usec)

Figure 15: Core utilization of AtomixIla while it re-
ceives a 1500 byte MCS 7 frame at 10MHz.

ing state. At any point in the steady state, six OFDM
symbols are being processed in the pipeline. With fine-
grained resource allocation API of Atomix, we could
lay out the pipeline so that each DSP core and Viterbi
co-processor (see ahead) contributed to the processing
of an OFDM symbol. This enabled the highest sam-
ple processing throughput achievable by the hardware re-
sources.

The core utilization map resulting from our fine-
grained pipeline is shown in fig. 15. It depicts the
processor’s active and idle time on all four DSP cores
while it is receiving a 1500 byte 802.11a MCS 7 frame.
The vertical grid indicates the arrival of a symbol to
Atomix1la. As the figure shows, all cores are partic-
ipating in a pipeline to process every arriving OFDM
symbol.

Parallelizing Viterbi decoding for high throughput.
Optimal Viterbi-decoding is a sequential algorithm.
However, in practice, the decoded sequence of bits
(codeword) can be partitioned into overlapping chunks
that can be decoded in parallel with negligible perfor-
mance penalty under certain overlap size constraints.
We use this scheme to use all 4 VCPs for decoding the
same WiFi frame, where each chunk is one-half OFDM
symbol with appropriate padding of surrounding bits to
satisfy overlap constraints. Such a scheme has also been
used in BigStation [30] where it is described in more
detail.

Optimizing latency with overlapping states. Atomix
allows different cores to operate simultaneously in dif-
ferent states. This feature enables the implementer to use
all cores to execute as many states at once as possible,
and thus provide lower latency than if the states ran in
serial. For example, fig. 15 shows as the LTF symbol
arrives we split its processing across two cores, and
same for the PLCP symbol?. The split point for the LTF

2Note that with a 10MHz signal, the LTF and PLCP processing ends
before the arrival of the next symbol. However, with a 20MHz signal
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state is after CFO estimation because the CFO estimates
can immediately be applied on the PLCP symbol when
it arrives. Then, when the channel estimates finish
on core | in LTF, the rest of the PLCP is processed.
Core 1 uses the channel estimates to complete the PLCP
processing with the symbol transferred from core 0. In
summary, Atomix enabled pipelined processing of two
symbols in two states at the same time on two cores.

Easy to program. We implemented the Atomixlla
receiver in 3000 lines of Atomix’s high-level code. The
Atomix compiler translated the high-level code into
about 30,000 lines of low-level application-specific C
code. Atomix reduces the LoC effort by an order-of-
magnitude. Further, it makes the development process
significantly easier through its abstractions compared
to directly writing low-level code. All of the blocks
in Atomixlla’s signal processing library were imple-
mented with less than 300 lines of C code each.

Low resource footprint. The Atomix atom abstrac-
tion requires each configuration of a signal processing
block to be split out as a separate block, e.g. BPSK48,
BPSK96, QPSK48. To avoid code size explosion, we
implement similar blocks as wrappers on a common pa-
rameterized kernel (e.g., BPSK<N>). Atomix API also
provides primitives to instantiate parameterized blocks
in the atom declarations.

Using those techniques, Atomix11la has code size of
468 KByte per core. This comfortably fits in the 512
KByte of L2 SRAM per core that we allocated as pro-
gram memory. The data size on any core is at most 145
KByte out of 512 KByte of L2 SRAM allocated for data
memory. Code size could be further optimized by cre-
ating per-core binaries containing only code executed on
each of the cores. Another approach is to write the blocks
in C++ using templates. It is also possible to partition the
SRAM in favor of program memory.

5 Modifiability

We demonstrate the modularity of the Atomix 802.11a
receiver by adapting it to two new applications: long-
distance links, and phase-array location signatures.

5.1 Adapting to long-distance links

Long-distance wireless links appear in settings like ru-
ral connectivity [6], point-to-point backhaul and commu-
nity networks [4]. They are challenging because the de-
lay spread of the multipath wireless channel also grows
with link distance. However, WiFi is designed for shorter
distance links. As a case-study of Atomix modifiability,

(4us interval), the PLCP symbol will arrive during LTF processing.
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Figure 17: Performance on a two-tap multipath channel.
Long cyclic-prefix (CP) is critical for long outdoor links.

we demonstrate the process of systematically diagnosing
and adapting our base WiFi receiver to work well over an
emulated long-distance link.

We emulate a long-distance channel that has two mul-
tipath components: the line-of-sight component, and a
reflection delayed by 2us (20 samples) that is 12dB lower
in strength. On this channel, the unmodified Atomix11a
receiver resulted in 100% packet error rate (PER). To as-
certain that the signal strength is not the limiting factor,
we tap the baseband chain to read off sample energy val-
ues being computed by the energy-detection block (ED),
as shown in fig. 16. On the simulated transmission with
an average carrier-to-noise ratio (CNR) of 45dB, our tap
revealed the CNR to be 45.4dB, confirming sufficient
signal strength for successful decode.

Ruling out signal strength limitation, we suspected a
high-distortion channel. To look deeper, we inserted an
error-vector-magnitude (EVM) computation block after
slicing the constellation. On a distortion channel, we
would expect a high EVM value, or equivalently, a low
SNR indicated by the EVM. The EVM block runs in
0.64us on core 1. We set it to compute on the output of
the PLCP field. Core 1 had enough cycles (fig. 15) in the
PLCP decode state to run EVM without adding latency
to packet decode. Our EVM block indicated only 19.2dB
SNR, much lower than 45.4dB CNR. This strengthened
the suspicion of a poor channel.

To find the ground truth about the channel, we inserted
a block to compute the time-domain channel impulse re-
sponse (CIR) using the long training field (LTF) of the
preamble, same as used for frequency-domain channel
estimation. The CIR block runs in 3.4us. We set it to
run core 3, which has enough spare cycles after packet
detection to run CIR without hurting packet decode. The
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CIR block showed the channel response to be as shown
in fig. 17a. It accurately recovered the emulated channel
and pointed us to the root problem: two strong compo-
nents 20 samples apart, and a delay spread too high for
the standard WiFi OFDM cyclic prefix length of 16 sam-
ples.

Armed with this knowledge, we implemented the solu-
tion of increasing the cyclic prefix (CP) length to 32 sam-
ples. To implement the longer CP communication mode,
only the SYNC block needed tweaking. It is responsible
for discarding the cyclic prefix from each OFDM sym-
bol before passing it to rest of the processing chain. We
tweaked it to discard 32 samples instead of 16. After im-
plementing the longer CP, performance of the link came
back to the expected CNR-PER quality on a benign chan-
nel. The observed performance of CP length 32 over the
2us two-tap channel is shown in fig. 17b. On the same
reception as before, the EVM block now indicated SNR
of 38.7dB, much closer to the CNR of 45.4dB, confirm-
ing that signal distortion had been effectively corrected.

By simply tapping existing signals, tweaking a block
and inserting a few blocks, we could methodically adapt
the receiver to a new application setting. The whole exer-
cise took just a few hours of programmer-time to modify
or add a total of 20 lines of declarative code (after we
implemented the individual signal processing blocks).

5.2 Adding location signatures

Location signatures of a wireless transmitter can be com-
puted using phase-array processing at a MIMO AP re-
ceiver. MUSIC [19] is a popular algorithm to compute
angle-of-arrival (AoA) spectrum which is used in many
location-based systems like [28, 29]. It is desirable to
embed AoA spectrum computation on the AP to save
bandwidth incurred in remote computation, and to make
location estimates available at the AP at sub-millisecond
latencies. For such scenarios, we demonstrate addition of
an AoA computation application to our Atomix 802.11a
receiver.

The set of blocks used to compute AoA spectrum
is shown in fig. 18a. A flowgraph is composed
with the phase-multiplier block (PH), correlation matrix
computation block (Rxx), a complex Hermitian eigen-

decomposition block (EIG), and a spectrum computation
block (SPT). We leverage the baseband receiver to detect
WiFi packets using preamble-detection. Preamble sam-
ples are tapped and copied on a FIFO for AoA computa-
tion. Once the packet decode finishes, AoA computation
is invoked. A sample of AoA spectrum computed on the
DSP processor is shown in fig. 18b.

The entire AoA computation chain takes 530us with
room for further optimization. Its components are: PH:
1.5us, Rxx: 21lus, EIG: 178us and SPT: 330us. For
eigendecomposition, we use a FORTRAN-to-C trans-
lated routine from EISPACK [2]. Our simple implemen-
tation is already able to compute an AoA spectrum in
about half of a millisecond at the base-station. We are
able to reproduce the results from [28, 29], which we
omit for brevity. To add the AoA app, we needed to
add only about 30 lines of declarative code to the base
Atomix11a receiver (in addition to blocks in C).

6 Related work

Existing frameworks suited to building baseband appli-
cations using abstractions of blocks and flowgraphs have
only targeted GPPs and FPGAs. Also, operating systems
for building realtime programs on DSPs do not provide
the right abstractions for modular communication
applications. To the best of our knowledge, Atomix is
the first system to enable high-performance, modular
communication applications on multi-core DSPs.

Modular frameworks for GPPs and FPGAs. GNU
Radio [5] is a rapid prototyping toolkit for signal pro-
cessing applications. It provides interfaces to connect
blocks into flowgraphs on GPPs and DSPs [10]. How-
ever, unlike Atomix, GNU Radio’s abstractions do not
have guaranteed timing. They depend on abundant pro-
cessing resources for real-time performance.

The SORA [21] software radio and its modular soft-
ware architecture called Brick [11] provide real-time per-
formance of wireless applications on GPPs. With similar
modularity goals, SORA/Brick and Atomix share simi-
larities in the programming interfaces. However, the dif-
ferences in GPP and DSP architectures make for very
different designs of the two systems. SORA’s design in-
cludes mechanisms like binding threads to cores, mask-
ing interrupts from cores and special memory handling
for optimization cache performance on signal processing
apps. These apply well to the GPP environment with a
general-purpose operating system but do not carry over
to the DSP architecture.

Ziria [20] is a domain specific language targeted to
GPPs for implementing efficient PHY designs. It facil-
itates concise and error-free expression of PHY control
logic. It also provides support for automatic vectoriza-
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tion of individual signal processing blocks. The advan-
tages of programming signal processing apps in Ziria,
currently limited to GPPs, are complementary to those
of Atomix. They can be extended to DSPs by a compiler
that translates Ziria programs to Atomix programs, using
Atomix as a convenient abstraction layer.

The Click modular router [9] provides an abstraction
of blocks and flowgraphs for building packet-based net-
work infrastructure. The expressiveness of Click’s sim-
ple elements and FIFOs was an inspiration for Atomix.
However, Click is not suited to developing wireless ap-
plications on DSPs. For instance, Click’s elements lack
timing guarantees; the Click dynamic scheduler is a
source of timing variability.

Streamlt [24] provides a flowgraph model and in-
tuitive syntax to program stream processing applica-
tions. The Streamlt programming language explicitly
reveals parallelization opportunities to the compiler so
it can exploit task, data, and pipelining parallelism. In
that sense, Streamlt’s compiler complements Atomix.
However, Streamlt’s abstractions lack guaranteed exe-
cution times. Moreover, Streamlt encourages embed-
ding branches within blocks that can cause variability.
Atomix forbids this behavior, and requires all branches
to be expressed as their own atoms.

AirBlue [12] simplifies design of cross-layer signal
processing applications for FPGAs. Like Atomix,
AirBlue also requires FIFOs between signal processing
blocks to enable modular modifications. However, mod-
ular implementation of an application for predictable
and efficient execution poses different challenges on
multi-core DSPs and FPGAs.

Real-time operating systems for DSPs. Real-time
operating systems such as QNX Neutrino [16], Win-
dRiver VxWorks [27] are used in automotive, robotics
and avionics systems. DSPs have their own real-time op-
erating systems such as TT SYS/BIOS [22], and 3L Dia-
mond [1]. In principle, the real-time guarantees provided
by these systems (e.g., priority-scheduling, predictable
interrupt timing) can be applied to real-time wireless in-
frastructure applications too. However, these abstrac-
tions can only be indirectly mapped to the blocks and
flowgraphs that make up baseband applications. Real-
time OSes generally provide some form of FIFO-based
interprocess communication that can be used to create
flowgraphs. However, such FIFOs are not designed for
the fine-grained pipeline parallelism that Atomix’s lock
free FIFOs enable.

7 Discussion

Atomix in the development pipeline: Atomix aims to
make signal processing applications easy to deploy on

DSPs in the wireless infrastructure.However, Atomix
can also enable at-scale prototyping and testing of
wireless applications. Platforms like USRP E310 and
E110 integrate DSPs and ARM cores with commod-
ity RF frontends in embedded form-factors. These
platforms are ideal for building wide-scale research
testbeds. Atomix makes them easy to program for rapid

prototyping.

Limitations of Atomix: Atomix pushes conditionals out
of blocks to the top level construct of state machine.
This makes stepping through conditionals much slower
than having them embedded within blocks. Most base-
band apps spend majority of their time in computation-
ally heavy signal processing blocks, making the cost of
stepping through states negligible. However, for applica-
tions dominated by data-dependent workloads like iter-
ative computations like successive interference cancella-
tion or searching/sorting, Atomix can be inefficient.

8 Conclusion

Atomix is a framework for building and widely deploy-
ing modular, predictable latency, high throughput base-
band signal processing applications. The key abstraction
that enables Atomix is that of an atom — a computation
unit with fixed execution time. Atomix demonstrates that
by abstracting operations as atoms, ease of programming
and fine control for predictable timing can be provided
simultaneously without sacrificing efficiency for signal
processing applications. We show that it can be used to
deploy apps in both WiFi and LTE infrastructures.

We plan to make Atomix available to the research
community and enable the implementation and evalua-
tion of new baseband apps at scale. We also plan to fur-
ther develop Atomix to be a programmable dataplane for
a software-defined radio access network. Specifically,
we plan to investigate open APIs (analogous to Open-
Flow) that programmable basestations should expose to
enable networks to tightly manage packet processing on
aper-flow basis, and enable software defined control over
the wireless infrastructure.
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