
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

117 | P a g e

www.ijacsa.thesai.org

SSH Honeypot: Building, Deploying and Analysis

Harry Doubleday, Leandros Maglaras, Helge Janicke

School of Computer Science and Informatics

De Montfort University, Leicester, UK

Abstract—This article is set to discuss the various techniques

that can be used while developing a honeypot, of any form, while

considering the advantages and disadvantages of these very

different methods. The foremost aims are to cover the principles

of the Secure Shell (SSH), how it can be useful and more

importantly, how attackers can gain access to a system by using

it. The article involved the development of multiple low

interaction honeypots. The low interaction honeypots that have

been developed make use of the highly documented libssh and

even editing the source code of an already available SSH daemon.

Finally the aim is to combine the results with the vastly

distributed Kippo honeypot, in order to be able to compare and

contrast the results along with usability and necessity of

particular features. Providing a clean and simple description for

less knowledgeable users to be able to create and deploy a

honeypot of production quality, adding security advantages to

their network instantaneously.

Keywords—SSH Honeypot; Cyber Security

I. INTRODUCTION

There has been a variety of honeypots previously
developed to work using the SSH protocol. The aim of this
article is not to build software that can better these is every
way, but more of a focus on a quick, simple, yet effective
alternative to the pre-built packages available as well as
providing a piece of software that can be available to
professionals and unenlightened server users en masse. A
honeypot is a wittingly vulnerable piece of software or system
that is often used to emulate a service, system or network. The
advantages of honeypots are that they are intentionally exposed
in particular ways. The ruse and falsification used in honeypots
is to hopefully entice attackers, which can be harder than it
may seem as most attackers with some sort of knowledge, not a
‘script kiddie’, will soon realise that they are not in a real
system when they try to run certain commands or processes
that the honeypot doesn’t understand. The results from
different types of honeypots often vary significantly in depth,
which will be further discussed in the results section of this
document. Authors in [1] state that, a honeypot should be
available to be attacked, as a security resource it has no value
or purpose when it is not probed, attacked or compromised.
The results that are produced from honeypots can cause vast
improvements in computer security, including but not limited
to; improved Intrusion Detection Systems (IDS), Intrusion
Prevention Systems (IPS) and Anti-Virus software [11],[14].
However, arguably the most important feature is that, when
emulating a particular service or system, the honeypot is
configured exactly the same as the regular services running on
the system. The reason for this is that if an attacker succeeds at
breaking into the honeypot with the same configuration it is
very likely that the actual service could be compromised and is

in need of some extra protection [2]. There are two main
categories of honeypot that this article is concerned with and
they are often used to gather very different information about
the attacker. Low interaction honeypots, which can be referred
to as facades, are much simpler to build and maintain, as they
tend to be a simulation of a particular service, such as SSH [3].
Low interaction honeypots have been favoured by the industry
due to the simplicity and ease to set up and collect meaningful
results [4]. The limitations involved with these particular
honeypots are vast as they only emulate a specific service and
often will have no system beyond that particular service.
Although they have their limitations, these types of honeypots
have been the most prolific in recent years due to these
limitations. The reason for this is that the user of this type of
honeypot will be able to collect and analyse data that is only
relevant to the service they are concerned with, which can give
a much deeper understanding of the techniques and patterns
that attackers tend to follow.

High interaction honeypots are what most people would
consider as a typical honeypot. They provide a fully
functioning system that will allow the attacker to interact with
the system on all levels. Quite simply a high interaction
honeypot can be any vulnerable system that is connected to a
network and can be monitored for analysis. Authors in [5]
describe these as truly vulnerable systems that can be probed,
attacked and exploited, once the attacker gains access to the
system the honeypot can be used in a botnet or to carry out
other attacks. This gives light to some ethical issues with
regard to continuing the research once a honeypot has been
compromised, when should the system be taken back from the
attacker and should it really be used in the type of attacks that
it has been designed to prevent? It is for this reason that they
take a lot of maintaining and will also need a system such as
Honeywall [13], a gateway service monitoring all traffic, in
order to complete a full forensic investigation. The example
used throughout this article has been Kippo, which was
deployed for this project. Other than interaction levels,
honeypots can be classified in other ways such as; usage,
virtual or physical.

Honeypots can take many forms and this means that they
are regularly deployed in very different circumstances and
positions within networks. They must also take into account
the complexity of what they are researching, for example
certain pieces of malware will not act in a malicious way when
it finds itself in a virtual environment, this is obviously because
the more we are allowed to research the methods that attackers
use the more they must evolve in order to maintain the allusive
nature and evade detection [6]. One of these methods is the
minefield deployment system; this method will have a
honeypot which is placed within the same subnet as a number

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

118 | P a g e

www.ijacsa.thesai.org

of servers giving a better chance that the attacker will alert the
honeypot if trying to breach a server on that system. It is well
known that most attacks will scan an entire network or range of
addresses and honeypots within this range will notice this scan,
even if they use tools slowing down the scans to try and
prevent the IDS from being alerted [2]. Other mechanisms of
deployment include a Honeynet [12] which is a method of
deploying an entire network of honeypots, that individually can
collect information about particular services and as a whole can
provide details on what is most likely to be attacked and
whether the attacker will attempt to sit in the network
attempting to perform attacks such as Man in the Middle.

II. AMAZON WEB SERVICE

The hosting of this research was done on the Amazon Web
Service (AWS). AWS provides a number of services but the
Elastic Compute Cloud (EC2) is the web service which was
used. EC2 provides resizable compute capacity in the cloud. It
is designed to make web-scale cloud computing easier for
developers and it is very useful for deploying honeypots. A
main benefit of the AWS is that with its elastic computing it
allows the volumes of instances to be attached, detached and
reattached to instances. Being able to detach and reattach a
volume may seem unnecessary but should the user become
locked out of an instance, because of configuration
modification, the whole server is not lost. One of the main
issues surrounding honeypots is that if they are not attacked
they are of no use [1]. The AWS, being part of one of the
largest companies in the world, has a very high amount of
traffic through its web servers and attackers know the range of
IP addresses, making it much more likely that they honeypot
will be able to collect an adequate amount of data. The AWS
allows the user to select a particular region for where their
cloud servers are deployed, putting it in a different bracket of
IP addresses, which could give massively different results. The
SmartHoney article has used AWS for running all manner of
honeypots, focused on various services, one in particular is
SSH where they found that placing their honeypots in certain
regions meant a significant variation in the volume of these
attacks (https://blog.smarthoneypot.com/tag/aws/). Considering
the use of AWS has been very beneficial to much larger and
full time honeypot projects; SmartHoney, Secure Honey it
seems that it should more than suffice for a much smaller
similar project.

III. SSH PROTOCOL

The SSH protocol is designed to give the user a secure
method of connecting to a system, to login or use the other
services on a system, over an insecure network [7]. The SSH
protocol uses a three step process in order to create the secure
session; these steps are as follows, SSH transport layer, SSH
user authentication and SSH connect. These steps are in fact
sub-protocols that run on top of the previous sub-protocol
respectively to create the SSH tunnel. The transport layer is the
first sub-protocol when creating an SSH session, using TCP/IP
to connect to port 22 of the server in order to provide
authentication of the server and the key exchange. After the
initial connect message there is a protocol-identification so that
both parties are using the same protocol, SSH version 2 for
example. The key exchange algorithm is then negotiated

between the client and server and then the key exchange itself
takes place using the agreed algorithm [8].

The user authentication process is the server confirming the
identity of the user attempting to gain access. This can involve
various methods, but must always include the public key
authentication [7]. This is a check between the server and the
client that the respective public and private keys are owned as
this is used to encrypt the messages. Public key encryption uses
two mathematically related keys, public and private, in order to
encrypt and decrypt data. The private key is secret and only the
owner should know it, whereas the public key is made readily
available. Anything encrypted using the public key can only be
decrypted using the corresponding private key and visa versa.
Although this is the most secure method of authentication it is
not always enabled and can sometimes be bypassed if the
server will accept password authentication instead.

The final sub-protocol is the SSH connect, which runs on
top of SSH transport layer and SSH user authentication. This
sub-protocol is used to create channels used for data transfer,
where each terminal session, forwarded connection, etc, are
separate channels that are multiplexed into a single connection.
It can provide channels for login sessions, TCP/IP connections
and allows remote command execution along with file transfer
using SFTP [7].

SFTP is not to be confused with FTPS, many things have
changed since the introduction of protocols such as FTP and
sending data over any public network without a form of
encryption is considered very dangerous and in some cases
prohibited. Regulations like PCI-DSS and HIPAA, for
example, contain provisions that require data transmissions to
be protected by encryption. When regulations such as these
were initially discussed it was obvious for the need of a secure
way to transfer files, which gave light to the Secure Socket
Layer (SSL) being used on top of FTP to create FTPS. The
issue with this is that it requires a minimum of two channels,
one for the initial connection and subsequent commands and
one for and data transfer, which causes a higher risk of a
security breach as there must be a range of open ports on each
system. SSL also does not offer any authentication per se as
any certificates used can be self signed, therefore this is not an
efficient method to determine the authenticity of any persons or
servers that are being communicated with. Whereas SFTP uses
only one channel as previously discussed to tunnel all
information through. SSH is more specifically for remote login
and has almost completely replaced Telnet for command-line
access to remote computers.

IV. BRUTE FORCE ATTACKS

The most common form of initial attack involving SSH is
brute force and in fact it is the most prolicfic form of attack
against Internet facing servers [9]. The concept of a brute force
attempt is simple; try every possible value until authentication
has been achieved. The issue with using brute force is that
given a 5 character password, where only letters that are of the
same case are used, it could take 265 guesses (11,881,376).
Given that the majority of passwords contain more letters
and/or use numbers or special characters, the amount of time
taken to gain entry could easily surpass the attacker’s lifespan.
In order to speed up this process and make it worthwhile for an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

119 | P a g e

www.ijacsa.thesai.org

attacker they will often use large lists of common passwords,
called dictionaries. Dictionary attacks can be significantly
much more efficient than brute force attacks because they are
not sequentially trying password combinations but rather,
known common passwords that are widely used. By default
most SSH servers will have a limit to the number of
authentication attempts that can be tried per connection, but as
with many things involving connectivity it can be bypassed by
the attacker, if the correct configuration is not it place, quite
simply by adding an extra parameter to the initial connection
command:

ssh -lusername -oKbdInteractiveDevices=`perl -e 'print
"pam," x 10000'` targethost

The above command would allow the attacker up to 10000
password attempts before the connection is refused, which
obviously is very useful while undergoing a brute force attack.
(http://arstechnica.co.uk/security).

V. BUILDING AND DEPLOYING

The aforementioned low interaction honeypots developed
have been written in the C language, this is because there is a
large amount of documentation involving available libraries,
such as libssh, functions and source code that are readily
available for inspiration and utilisation.There are many
different ways to go about creating a low interaction honeypot
of production standard, but with the aim of being simple to use
and develop while maintaining the effectiveness of result
gathering it can be a difficult trade off. The first method that
was used was similar to many projects that already exist using
the C SSH library, libssh, to employ the fuctions of the SSH
protocol.

While conducting initial research about the SSH protocol
and involved honeypot projects, there were quite a few
production honeypots that are available and as most of these
are open source projects the source code can be easily attained
and edited to improve or configure on the users specific
system. The most notable of these actually used the libssh for
C was the SecureHoney project, which had modified a
honeypot that has been previously written by another
developer. This type of method to produce a honeypot is useful
and most of all safe for the user to run, the reason for this is
that the connection is never actually authenticated. The
program uses the functions in the libssh library in order to
listen for connections and begin the authentication process. The
information gathered about the attacker is written into a file for
later analysis. Issues with this is that an attacker with the know-
how will realise that this is not an SSH daemon because
information regarding the SSH can be collected while scanning
and interrogating before attempting an attack. Given this
information it was evident that, while this was exactly the type
of honeypot that was to be produced during this project, an
alternative to this could provide arguably better results with
substantially less programming and development.

The alternative idea however does not emulate the SSH
daemon, because it was created by editing the source code of
by far the most prolific SSH daemon in use, OpenSSH.
OpenSSH was originally part of the OpenBSD suite.
Considering that in 2008 OpenSSH had 88% of the market

share and in October 2015 announced that it will be natively
supported on windows. The advantages of this are that the
honeypot will be, to all intents and purposes, an actual version
of the OpenSSH daemon. This means that an attacker is much
less likely to be susceptible to suspicion when attempting to
brute force the system.

Although this seems like a honeypot in the loosest of
senses, it can be very beneficial as a production honeypot, as
the software can be configured to provide an output, very
similar to that in the SecureHoney project, including creating
specific files for logging attempts and even collecting IP
addresses of the attackers. There are many problems that can
occur when attempting to use this method, as the source code
for the daemon is being edited and recompiled, including
making it difficult to actually use the SSH service for anything
other than they honeypot, which can be devastating if this is
being performed to a remote server.

VI. METHODS

A. Honeypot in C

The first step to this process was becoming familiar with
the libssh and the functions that were imperative to creating a
valid SSH session that we would need as a basis for the
honeypot. These functions are an example of how the libssh
functions can be used to set up the standard configuration of a
new SSH session, which include;

static ssh_session session;

static ssh_bind sshbind;

session=ssh_new();

ssh_options_set(session, ssh_options_timeout, &timeout)

sshbind=ssh_bind_new();

ssh_bind_options_set(sshbind, ssh_bind_options_banner, "ssh

\r\n");

ssh_bind_options_set(sshbind, ssh_bind_options_bindaddr,

listenaddress);

ssh_bind_options_set(sshbind, ssh_bind_options_bindport,

&port);

ssh_bind_options_set(sshbind, ssh_bind_options_hostkey,

"ssh-rsa"); ssh_bind_options_set(sshbind,

ssh_bind_options_rsakey,rsa_keyfile);
The next step after making sure that the session has been

set up and is listening on the desired port we must be able to
accept incoming connections and drop them after the user
authentication credentials that the attacker used have been
logged and placed in a file called ssh_attemps. This forms the
basis of the honeypot and used sections of an SSH honeypot
that was found at as it fulfills the task of collecting the
password attempts.

B. Modification of OpenSSH

This section is to describe exactly how the daemon can be
modified to create a honeypot that is easy to maintain with
little coding, although this can all be bypassed entirely by
simply running the script that has been developed to automate
the process. The automation of this via a script makes this
method more efficient than developing a honeypot in C, having
said this, the OpenSSH source files are written in C and
manual editing of this would need some level of knowledge

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

120 | P a g e

www.ijacsa.thesai.org

regarding programming in C.This method has been separated
into two separate methods, this is because there is an instance
where both methods could be doubled together in order to
gather much more information from a selection of servers.

The first way of doing this is to simply modify the source
code of the daemon. By doing this no SSH connection attempt
will be authorised, the attackers IP address along with the
username and password that was attempted, and these
connection attempts will be written to a file, in the /var/log
directory, called ssh_attempts. The most important part of this
code is the return 0; segment, which is within the password
authentication file in the source code. This line means that no
matter what is entered by the attacker the authentication will
always result in a failure. The problem with this method is that
by doing this, the sshd is rendered useless for any sessions that
the user may need in future without reverting the
modifications.

The second method when editing source code requires a
little more setting up and involves a second instance of the
SSH daemon. The reason for this is that having the service
running twice as two separate services allows different
configuration for each daemon, therefore one should be
configured as the façade daemon and one should be configure
as a usable service. The usable service should be placed on a
large port number preferably between 10000 and 65535 and
designed with usual SSH security.

Finally, using a combination of both daemon modification
methods a network of servers could each run multiple SSH
daemons. Unlike the previous method though, this method has
two fully functional daemons, one of which can be used by the
user for their normal SSH activity and the other uses the
ForceCommand in the sshd_config file. This will force all
connections that are attempted on this daemon, to a central
server that is running the aforementioned modified daemon
that accepts no connections and logs all attempts, including IP
address, username and password.

VII. ANALYSIS

While running various honeypots, that have been partially
developed or modified for the purposes of this project, the
medium-interaction production honeypot Kippo was also
deployed. The reason for initial deployment of this particular
honeypot was to give a better understanding of the way that
well known products, that are already available, record certain
log attempts as well as the particular features that are available.
This gives an insight into this type of technology available and
provides an example of the reporting technique that’s used.
Another reason that this honeypot was deployed was to see if
all the functions that are available in Kippo are of any use.

Interestingly the results of running this honeypot showed
that large number of the attackers, once inside the honeypot,
typed a single command and then exited. From this given
information, it was deduced that the attackers knew they were
within a honeypot. After experiencing this a little more
research was conducted, via the SANS institute forums, and it
would appear that this behavior could be a number of things,
but most likely that they had in fact realised the honeypot for
what it is. Accessing the server that is running Kippo can show

this, and running the command that plays out a particular
connection live.

$: ~/kippo/utils/playlog.py 20160316-100915-9940.log

Another idea is that this is part of an automated brute force
attack. When the target system has finally been compromised,
the machine that is conducting the attack saves the last
password guess and logs out so that the owner can browse the
compromised machine at their convenience. Another notable
point was the large amount of IP addresses that had attacked
this honeypot were predominantly Chinese and South Korean
based internet service providers. This was also the case with
downloads, using wget command. The downloads were
directed to servers with Chinese IP addresses, many of which
had been blacklisted online by various sites that provide lists of
malicious hosts and reports it to relevant bodies.
(https://cymon.io/222.186.15.61).

Kippo is a good tool but observation proves that
fingerprinting may mean that by using a medium interaction
honeypot such as this, we may not actually gain any better
results than the low interaction SSH honeypots that never
accept connections. Kippo can be difficult to use properly as a
server admin with little experience of this type of technology,
with more dependancies and longer set up time along with
much more maintainence for sql databases, whereas a method
that doesn’t bother with what an attacker might possibly do
once inside and a purely keeping them out strategy could
provide just as valuble information with ease.

The idea was to use this as an inspiration in order to create
something similar but more refined to the research needs.
Although this honeypot has been successful with previous
projects, it seemed to give a fair few problems when attempted
to be run on one of the AWS instances. Naturally there were
some dependencies to install and some configuration of the
honeypot that was necessary before it could be used. The issues
faced with running this on an AWS instance were initially
compatibility errors. Errors including being unable to install a
fully functional version of OpenSSL, which is a dependency
with all SSH services as the libraries are used, this was
resolved by using a different AWS instance because the
package could not be located and installing from source on the
server did not compile. More problems followed this, once the
honeypot could be compiled and built it still wouldn’t run due
to the program being unable to find the private key file. On a
final negative point, this technique should be used to create
much more powerful projects and programs such as Kippo,
when attempting to use such sophisticated techniques to
emulate a daemon it makes no sense to limit the service by not
implementing it into a medium to high interaction honeypot.

When emulating a service is required it seems to be far
more efficient to modify a daemon that already has an
enormous market share. Modification, as can be seen in this
project, can be just as useful as developing a honeypot from
nothing, if not more so because of the time saving. The reason
that the method of two SSH daemons was used is because it
allows the most amount of modification if necessary, as it is the
source code being modified. This also makes the honeypot
instance of the daemon incredibly secure, as the password
authentication will always fail regardless of what is entered by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

121 | P a g e

www.ijacsa.thesai.org

the attacker. However, this procedure also offered some
difficulties, such as modifying the incorrect files or missing out
very necessary steps in the process. A solid understanding of
the protocol, daemons, libraries and system files is necessary
for developing any of these previously discussed honeypot
designs.

VIII. CONCLUSIONS

Although this article has seemingly concluded with a tool
that offers very similar services to those that are already
available, this is by no means the limit to what is possible.
Further work would involve the creation of a bash script. This
script could then be used by 3rd parties who wish to conduct
this sort of research or as an easier option when waiting to
launch an SSH honeypot. Other possible development
opportunities could include making this honeypot more
available as a production honeypot. As the software that has
been modified is open source, the redistribution of modified
versions of it is permitted under its license [10]. Therefore it
would not be difficult to produce a script that automates the
whole process, using wget to obtain the modified code. The
benefit of this easy method of install means that it could easily
be placed on a large group of servers. Speculatively speaking,
this would give light to even further development, using the
sshpot.com as stimulus. The group of servers that are running
the modified daemons would send the results to a main hub of
results, being able to produce statistics and security
enhancements alike. A thought on how this would be achieved,
would be running a chronjob that ran another script. This script
would check the hash of the sshd_attempts file and forward the
results if any new ones had been recorded. Alternatively,
editing the sshd_config file once again could also do this.
These new additions would include a Match Group User
section added that forced all connections made, to the modified
daemon, straight to the main server utilising the
ForceCommand option. Rather than beginning with a complete
new build that is a honeypot, use existing well developed and
highly distributed tools in order to develop a instrument that
could be used on a commercial scale

REFERENCES

[1] Spitzner L (2003) History and Definition of Honeypots, Pearson
Education, Boston

[2] Jonsson, Erland, Alfonso Valdes, and Magnus Almgren. Recent
Advances in Intrusion Detection: 7th International Symposium, RAID
2004, Sophia Antipolis, France, September 15-17, 2004, Proceedings.
Vol. 3224. Springer Science & Business Media, 2004.

[3] Mokube, Iyatiti, and Michele Adams. "Honeypots: concepts,
approaches, and challenges." Proceedings of the 45th annual southeast
regional conference. ACM, 2007.

[4] Provos, Niels, and Thorsten Holz. Virtual honeypots: from botnet
tracking to intrusion detection. Pearson Education, 2007.

[5] Alata, Eric, et al. "Lessons learned from the deployment of a high-
interaction honeypot." arXiv preprint arXiv:0704.0858 (2007).

[6] Skoudis, Ed, and Lenny Zeltser. Malware: Fighting malicious code.
Prentice Hall Professional, 2004.

[7] Ylonen, Tatu, and Chris Lonvick. "The secure shell (SSH) protocol
architecture." (2006).

[8] Poll, Erik, and Aleksy Schubert. "Rigorous specifications of the SSH
Transport Layer." Radboud University Nijmegen, Tech. Rep. ICIS–
R11004 (2011).

[9] Owens Jr, James P. A study of passwords and methods used in brute-
force SSH attacks. Diss. Clarkson University, 2008.

[10] Laurent, Andrew M. St. Understanding open source and free software
licensing. " O'Reilly Media, Inc.", 2004.

[11] Zhang, Feng, et al. "Honeypot: a supplemented active defense system
for network security." Parallel and Distributed Computing, Applications
and Technologies, 2003. PDCAT'2003. Proceedings of the Fourth
International Conference on. IEEE, 2003.

[12] Spitzner, Lance. "The honeynet project: Trapping the hackers." IEEE
Security & Privacy 2 (2003): 15-23.

[13] Chamales, George. "The honeywall cd-rom." Security & Privacy, IEEE
2.2 (2004): 77-79.

[14] Simões, Paulo, et al. "On the use of Honeypots for detecting cyber
attacks on industrial control networks." proc of 12th European Conf. on
Information Warfare and Security (ECIW 2013). 2013.

