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Abstract—In this paper we study opportunistic spectrum ac-
cess (OSA) policies in a multiuser multichannel random aces
setting, where users perform channel probing and switchingn
order to obtain better channel condition or higher instantaneous
transmission quality. However, unlikely many prior works in
this area, including channel probing and switching policies for
a single user to exploit spectral diversity, and probing andaccess
policies for multiple users over a single channel to exploitemporal
and multiuser diversity, in this study we consider the colletive
switching of multiple users over multiple channels. In addiion,
we consider finite arrivals, i.e., users are not assumed to \ahys
have data to send and demand for channel follow a certain
arrival process. Under such a scenario, the users’ abilityd op-
portunistically exploit temporal diversity (the temporal variation
in channel quality over a single channel) and spectral divesity
(quality variation across multiple channels at a give time)is greatly
affected by the level of congestion in the system. We invegtte
the optimal decision process in this case, and evaluate thetent
to which congestion affects potential gains from opporturstic
dynamic channel switching.

|I. INTRODUCTION

Dynamic and Opportunistic Spectrum Access (OSA) policig§ ihe increased overhead e.g.

their conditions. Protocols like [5] does exactly this, atadies
like [1], [14] further seek to identify the best sequentiabiping
policies using a decision framework.

The third isuser diversityor spatial diversity where the same
frequency band at the same time can offer different trarsons
qualities to different users due to their difference in segiver
design, geographic location, etc. The idea is to have the use
with the best condition on a channel use it. This diversity
gain can be obtained to some degree by using techniques like
stopping time rules whereby a user essentially judges deifit
whether the condition is sufficiently good before transimatt
which comes as a byproduct of utilizing temporal diversity.

We note that the above forms of diversities are often studied
in isolation. For instance, temporal diversity is studiedai
multiuser setting but with a single channel in [12], [15]estral
diversity is analyzed for a single user in [11], among others

As the number of users and their traffic volume increase in
such a multi-channel system, one would expect their akitity
exploit the above diversity gains to decrease significadtig
the time it takes to perform

have been very extensively studied in the past few yearsisjajannel sensing or the time it takes to regain access right, o
the backdrop of spectrum open access as well as advanceg i ased collision due to channel switching. This ovedHess

ever more agile radio transceivers. At the heart of oppdstien

been captured in the form of penalty cost in prior work such

spectrum access is the idea of improving spectrum efficiengy [11) byt is often assumed to be independent of the traffic

through the exploitation ofliversity.

volume existing in the system.

Within this context there are three types of diversity gains \yith the above in mind, in this paper we set out to study

commonly explored. The first iemporal diversitywhere the
natural temporal variation in the wireless channel caustsea
to experience or perceive different transmission conuigtiover

time even when it stays on the same channel, and the idg

opportunistic spectrum access policies in a multiuser imult
channel random access setting, where users are not assomed t
always have data to send, demand for channel follows a pertai
fival process, and collision and competition times akera

is to have the user access the channel for data transmissiQR account. Our focus is on the effect of collective swiitgh
when the condition is good, which may require and warragbisions by the users, and how their decision process, in

a certain amount of waiting. Studies like [3] investigate th

tradeoff involved in waiting for a better condition and whien
the best time to stop.

The second isspectral diversity where different channels

experience different temporal variations, so for a giveer u

any given time a set of channels present different transomiss
conditions. The idea is then to have the user select a changs| surprisingly

with the best condition at any given time for data transroissi
which typically involves probing multiple channels to findto
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particular their channel switching decisions, are affechsy
increasing congestion levels in the system.

Toward this end we characterize the nature of an optimal
access policy and identify conditions under which channel
switching actually results in transmission gain (e.g. i
of average data rate or throughput). Our qualitative caichy
is that with the increase in user/datavalr
rate, the average throughput decreases and a user becomes
increasingly more reluctant to give up a present transomssi
opportunity in hoping for better condition later on or in a
different channel. Quantitatively we present algorithrhatt



calculate optimal switching decisions and analyze theilgtab more challenging and remains an interesting direction tfréu
of the overall system. research.

The remainder of this paper is organized as follows. In theWe consider discrete time with a suitably chosen time
Section Il, related works are present. The system modeVvengi unit, and with all other time values integer multiples ofsthi
in Section IlIl. In Section 1V, we model each channel’s evioint underlying (and possibly very small) unit. We will assume
as an IID process and analyze the properties of an optintiaat the channel conditions over time form an IID process
stopping/switching rule. Numerical results are given ictide defined on this time unit. Conditions in different channels
V, and Section VI concludes the paper. are independent and are in general not identically digeihu
Parallel and similar results may be obtained for channels

o _ described by Markovian models, though the technical detail
Opportunistic Spectrum Access(OSA) has been quite eyre quite different

tensively studied in recent years; it aims at various di%ers The system operates in a way similar to a multi-channel
harvesting with the objective of improving spectrum efiiig.  random access network like IEEE 802.11, with the following
Example include [10], where centralized scheduling sgig® ogjfications related to dynamic and opportunistic channel
are examined for a class of OSA problems, and [15], Wheggcess. Each user has a pre-assigned (or self-generatddyira
temporal diversity is used in a multi-user wireless netwand - sequence of channels; this sequence determines in whieh ord
optimal stopping policies are developed. In particulain@®p-  the yser performs channel switching, an approach similar to
timal stopping theories [4], optimal strategies for diiBttypes that ysed in [11]. Each time a user enters a new channel, it
of user are derived, including selfish and collaborate usefg,st perform carrier sensing and compete for access as in a
In [12] a distributed opportunistic scheduling problem &f-  reqylar 802.11 channel. As soon as it gains the right to tnétns
hoc communications under delay constraints is consid&iteel. it finds out the instantaneous channel quality it would gét if
above works consider only multi-user and temporal diviessit (ransmits immediately. Upon finding out the channel cooditi

but not spectral diversity. o this user faces the following choices:

_In [11] authors exp_I0|t spectral diversity in OSA for the 1) Transmit on the current channel right away. Intuitively
single user with sensing errors. The users average through this happens if the current channel condition is deemed
put is maximized gnder the optimal pplicy. However, ir_' this sufficiently good. This action will be referred to 83OR
framework the multi-channel pverhead IS captured bY a gener 2) Forego this transmission opportunity, presumably due to
penalty on each channel switching. This becomes insufficien poor channel condition, but remain on the same channel
in a multi-user setting as such overhead will obviously aepe and compete for acceés again in the near future hoping
on the level of congestion in the system that results in dffe to come across better condition then. This happens if the
amount of collision and the time it takes to regain access to a current channel condition is poor, so the user will risk
channel. In [5] an opportunistic auto rate multi-channel G1A waiting for possibly better condition later. This action
protocol MOAR is presented to exploit spectral diversity fo will be referred to asSTAY
a multi-channel multi-rate IEEE 802.11-enabled wireleds a ) Give up the current channel and switch to the next one
hoc network. However, this scheme does not allow parallel us on its sequence. This happens if the current channel

of multiple channels by different users QUe to its reseovati condition is poor, and the prospect of staying on the same

n_wechamsm._ Other works that study multi-channel access by a channel to wait for better condition later is not as good as

single user include [1}-{3], [6], [7], [13] switching to the next channel. This action will be referred
[1l. M ODEL, ASSUMPTIONS AND PRELIMINARIES to asSWITCH

A. Model and assumptions Note that option (1) above allows the system to exploit both

Consider a wireless system wifti channels indexed by the multiuser diV(_ersity (the transmission opportunity is_ givtp
setQ = {1,2,..., N}. We associate each channel with a rewarf(’in()th_er user in the Fa”dom access) a’??‘ temporal d|ve_:rlak_ty (t
of transmission (e.g., transmission raf&), which is a random user in q_uest|on waits for better condition _to appear |r_1_)|me
variable with distribution characterized bfs; (x). There are while option Sg allows tr:jg.system t% EXpLO't Sp?Ct_rl_?: dw
m cognitive users (or radio transceivers) each equipped avittf'S Users see etter con |t|oqs on other channe S eeeszpt.
single transmitter attempting to send data to a base stadion In particular (1) and (2) are similar to those used in a stogpi
model also captures direct peer-to-peer communicatiomreivhtlme ILamel\DNork,de.g_.,_[15]. ) ¢ all I
m pairs of users communicate and each pair can rendezvouén e above decision process a user is not alloveszll,

and perform channel sensing and switching together throu'afr’ once the user decides to leave a channel it cannot ase th

the use of a control channel [8]. However, for simplicity o annel for transmission without going through carrierstieg

exposition, for the rest of the paper we will take the view o?nd random access competition again. More importantly fom

m users transmitting to a base station. We will assume the@@hmcal point of view, the user cannot claim the same célann

m users are within a single interference domain, so that at a%?ﬁd't'on once it returns to a previously visited channel.we

gNen_ “m_e each _Channel CE_ln only be occupied by O_ne USEEA more complete version including analysis over slow chaggnodel with
Considering spatial reuse will make the problem considgralMarkovian assumptions can be found in our technical report.

Il. RELATED WORK



shall see, due to the IID assumption, under an optimal policg. Problem formulation

once a user leaves a channel it will never return. _For simplicity and without loss of generality, for the siag|
Once a user gets the right to transmit on a certain channelydar ynder consideration we will relabel the channels in its
can transmit for a period df’ time units, which is a constant. sequence in ascending ordér2,--- , N. We now define the
For simplicity a single time unit is also assumed to be thg|iowing rate-of-return problem with the objective of nianiz-
amount of time to transmit a control packet. ing the effective data rate over one successful data trassoni
Specifically, letr denote a policyr = {a1, a2,y },
where «, denotes the k-th actions taken, oy S
As mentioned earlier our focus in this paper is on understanBTAY, SWITCH}, k = 1,--- ,y(w) — 1, anda, () = STOP.
ing how the users’ channel access decision process is edfect(r) is the stopping time at which this decision process
by increasing traffic load or congestion in the system. To ehoderminates with a transmission action. Note that an action i
this we will first take the view of a single user, and introducenly taken upon gaining the right to transmit in a channel.
user arrival rates in each channel as well as the amount otet X denote the data rate obtained during thth decision
delay involved in STAY and SWITCH as parameters that neeghoch (or stage) under poliey. If under policyr a channel
to be taken into consideration in its decision process. Nuwié is not used in thé-th stage (i.e.q, = SWITCH or STAY for
these parameter values are the result of the collectivesing somek) then X = 0. Note that by this definition only the last
decisions of all users, and therefore cannot be obtained fori decision epoch results in a positive data rate. Tt denote
defining the switching policies. Indeed later on we show that the amount of time spent during decision epaciinder policy
system under the optimal switching policy converges andl tha The goal is to maximize the effective rate over the duration
these parameters have well-defined averages, therebyiuugti of this decision process given by:
such an assumption. In other words, policies derived urfder t V) s
assumption that these parameters have well-defined agerage J* — max Ef Z2k=1 X 'T} (1)
lead to a stable system with well-defined averages for these mell Z(:’Tl) 7
parameters. This not unlike the Markov mean field approach

where a single user operates against a background formedf) h 1T depotlng thg adm|§3|ble set of poI|C|e§. ,
all other users in a system over which this single user has no'Ve Pegin by making an important observation of the optimal

control or influence. In practice these values can be otdain@€cision process, which is that once we leave a channel we

empirically through learning. will never return due to the IID assumption. Note that when

More specifically, we assume users with transmission neetis deC|_de to leave a chan_nel, sayit is because its projected
arrive at a given channel (either as their random starting-poreward is less than the projected reward from the next channe

tion or as a result of switching from other channels) as aseois Zh+ 1, subject to the (;lffirenc_e In %ela&’ Vz- i Becau';l_of
process, with the rate vector given 6 = [G1,Go,...Gy] 1€ lD alssumpnon,h.o; dprOJecteh rewards are ess$ﬂt 1?;) _
and a sum rat&Y, G, — G. At any given time a user may Sttistical means which do not change over time. Therefore i

or may not have data to send, so the ratés the aggregate we decide to leave for a better channel it cannot be optimal to

rate of data arrival from all users. ever _return._ L . .
The level of congestion on any channel is captured by tWoThls maximization problem can be solved by using dynamic

parameters. The first is the averagentention delayt” on programming. Here we denote the value function at chainel
channelj, which is the average time from carrier gense gme’ under the observed channel s_tatby Vi (@); the value
gaining the right to transmit on channelThe more competing unction V; () represents the maximum average throughput

users there are on channglthe higher this quantity is. The obtainable in s_tage, time ¢ facmg. current channel sta_te
second is the averagawitching delayt of channelj, which (current transmission rate). For stage N, the value function
) )

is the time from a user switching into channeffrom another is the maximum over all possible actions, given as follows:

B. Capturing congestion with a “mean field” approach

channel) to its gaining the right to transmit on chanrel i T

Compared tot}, the switching delay includes the additional Vig(z) = max{X;(z), T+t E{Vis1(y)la},

time it takes for the radio to perform channel switching. We T

adopt the following two natural assumptions on these qtiesti WE{VH—I,H-I ()lz}} 2)
Assumption 1:Both ¢7 andt; are non-decreasing functions . o T

of arrival rateGj, Vj € . = max{X/(z), mE{‘/i,t+1}7
Assumption 2:Both t7 andt; are non-decreasing functions T i

of the data transmission tirig, vj € €. ———F{Viy1401}} (3)

. - , T +t¢ ’

Remark 3.1:We will show later that these assumptions are i+1

in general true under the optimal access policies derived vfhere the second equality is due to the IID nature of the
the next section. It is intuitively clear that with incre@8i channel condition evolution and thuB{V; ;11 (y)|z} and
arrival rate and time for data transmission, the contertiioe E{Vii1.441(y)|z} are both independent of the time index
increases in general. and stater. The first term is the transmission rate realized if



we transmit in the current stage, and the second term iregicafs we assuméX;(z)| < oco; and we knowTJr%E{ViH},T
the expected throughput we get if we decide to give up thge both finite. We know the second condition is satisfiedyeasi
current transmission opportunity but stay in the same cblanrSimilarly, we have

The last term models the expected average throughput if we

decide to leave the channel and explore the next.iFerV, w; () = max{X}(z), LCE{VZ-H}}T - AT . (10)
channel switching is no longer an option and the value fancti T+t
is given by As Xi(z), %QHE{V;H}, AT are finite, w;(x) is finite.
T ;
Vivi(2) = max{ X (z), WE{VN,H-I}} 7 4) Therefore we have
N

) _ o o E{max{w;(x),O}} < oo,E{(max{w;(x),O})Q} <00 .

In the next subsection, we give a quantitative analysis f th (11)
value function. )

Meanwhile,w, (x)’s are 1ID, thus using [4], we have

IV. CHARACTERIZING THE OPTIMAL ACCESS POLICY /
A. Uniqueness of optimal stopping rule E{Sltlp w} = E{Sltlp wy(z) —t- A} <oo.  (12)

As discussed above, in our model after re-competition tirr?ie . .
, . : - xistence is thus provell
t7, the new value function for a single user is independen

of previous actions; in addition, channels’ characteristire Next we prove theupiqgenessaf the thre_shold.
independent of eac,h other. We ,can thus simplify the dynar%CAcco_rdmg to th? principle of optimality in Chapter 2 .Of [4]’
programming problem as follows: e optimal stopping rule of the transformed problem is give

b
T T Y

,TH;E{%},TH;;HE{%H}} A3 = {z: Xi(z) > V*} (13)

Vig(x) = InaX{XZ(:c)

() HereV* denotes the expected return from an optimal stopping

T+te
i+ 1) is esseﬁiially a constant (only dependsipnWe make V* = E{max{X},V*} — M} (14)
the following substitution
K T or
Xi(z) = X} (x), =————E{V; : 6 g
t(I) Inax{ t('r)v T+ t1¢+1 { +1}} ( ) E{Inax(XZ _ V*,O)} — )\t: (15)
We then have the following equivalent dynamic program:  Next we introduce the following lemma.
5 T Lemma 4.2:Under certain arrival rate vector, the optimal
Via(z) = max{X;(z), mE{Vi}} : (7) " thresholdz* is an unique solution to
Next we prove the threshold property of each stage’s detisio E[Xi — ]t = T -t (16)
process. ! T

Theorem 4.1:Under certain arrival rate vector, the optimaProof. From the optimal stopping rule, we know thewhich
action at stage of deciding betweer{STOP, SWITCH and givesV* 0 will be the solution. Thus we have
{STAY} is given by a stopping rule, i.e., the state space of the . T
channel condition can be divided into a stopping Aétand E{(max{X;, ———FE{Vi1 }}T - \XI)"} = Xt] (17)
continuation setA¢, such that whenever channel condition is T+t
observed to be in either set above, the cqrrespondlng aitiomenote ¢; = H%E{le}- Then above formula can be
taken. Furthermore, these two sets are given by the fo@w'@xpressed as
threshold property, i.e., the stopping set at stage i isrgiwe ‘ ‘ ‘
A= (o Xi(2) > a7} ®) Emax{X;T — \T,0}| X/ > ¢i) - P(X{ > ¢i)
+ E(max{c;T — X\T,0}| X} < ¢;) - P(X; <¢) =M, (18)
and the threshold* is unique. ) ) ) )
Proof. First we prove the existence of the threshold. From [4] |f there exists a solution with < ¢;, we have the following

we know that an optimal stopping rule exists if the following o0 ; .
two conditions are satisfied: / (x = N fxi(x)de + (c;i = A) - P(X; < ¢;) =
1. E{sup, w:} < 0. ' ) .
2. limy_y00 wy = —00, a.S. Here define normalized re-competition timie = =. Above
As in our case, we have gives us
. T Cxfxi(x)dr +¢; - P(XP<¢;
wy = max{X;(z) E{Vig 3T — Xt -t7 +T) (9) A — fci, fxi(x) (X ) (19)

Tt 1+1t7



On the other hand, if there exists a solution with> ¢;, we B. Monotonicity of value functions

have oo Next we examine the effect of the decrease and increase of
/ (x — N fxi(z)dr = Xt} arrival processG.
o : Lemma 4.4:E{V;} > E{V, } if G; < G,,Vi € Q.
which gives us Proof. Proof can be found in Appendix-Al
3o [xs wfxi(w)da 20 The results verify the intuition when the arrival rate irases,
= W (20) 4 user will experience longer competition time; thus thet obs

seeking diversity gains by giving up the current transroissi
For the \* < ¢; case, we see that there could be at most on. g Yy 9 y giving p .
[ frei () dater P(Xi<cr) n%ht will increase. Therefore a user’s expected througmpih

solution as== T+ < ¢; may not hold. decrease in genera'l
For \* > ¢; case, rewrite (20) we have

C. Ergodicity of arrival proces$G

“+oo
Nt = / (x — N fxi(z)dz (21)  We start the analysis by first stating an assumption.
) i N ) Assumption 3:No channel is dominant.
The LHS is an increasing function w.nt. Consider a dominant case: all arrival rate will drift to

By taking derivative we know that the RHS is a decreasing,» channel. for example, channel Denote the maximum
funct_lon W.r.t_to A¥. .Ther_efoure we V:{I|_| have at most ONeroughput for packets staying at chanindly \i(G;). Denote
solution of this case; again "at most” is due to the fact thihe maximum averaged throughput for one packet to stay in the

Jx afyi(x)de . . ) ]
Pxisa ) = ¢ does not hold necessarily. Next we willchannel right before channelas ;1 (0). We assume

show that there cannot exist solution for both cases above.

Suppose there exists solution for the case< ¢;, therefore Ai(G) < A-i(0), Vi € Q. (26)
we get Next we investigate the ergodicity of each channel.
[ afxi(@)de + ¢ - P(X] < ¢;) Lemma 4.5:Channels’ arrival processes are ergodic.
- 117 <& (22)  Pproof. Without losing generality, consider chanrieAccording
. . ! to our assumption there exits a thresh@ld such that
which gives us
Tl e P <) NG < AlG) e @D
ti > ci B (23) for all G; > G,. HereG_; means the aggregated arrival rate of
Now let us assume there exists solution for > ¢; as well, all other users except userAs the throughput of sticking with
ie., each channel is a decreasing function wit&;. Therefore We
“00 can see foiG; > G;, we have
Sy olxlads (24)
PXi=N+8 — Ai(Gi) < Ai(Gy), Vi (28)

Jo wfxi(@)datei P(Xi<e:) 1into the L.H.s Ynder this case, the arrivals on chaniel1 will NOT skip to
© 7 channeli, i.e., forG; > G; the probability of skipping satisfies

Substitutet! > —
we have (details of derivations omitted)

LHS< f;o zfx, (x)dxc; PH{G;|Gi} =0 (29)
S [T afx, (@) de + e P(X; < ) — ¢ P(Xp <)) Define any increasing, unbounded Lyapunov functigay;) on
< ¢ (25) [0, G](for example,L(G;) = z=5-), we have
which contradicts the faeﬁ% > ¢ Ee, [L(G,)|Gi] < L(Gy) (30)
On the other hand, if both of

the cases have no solutiogy Foster-Lyapunov criteria [9] we establish the ergogiai

we can follow the similar arguments above and reach th@, ovstem's arrival process. From this point on, we will use
similar conclusion. Therefore we proved the uniquenes$i®f ts 5 genote the expected arrival vector on each chailhel
threshold Bl '

Remark 4.3:As we can see)\* and ¢; are independent D. Load balance

with the current state (observation) for each stage; also aBased on above developed optimal sensing strategy, we are
they are constants, one of the options for each stage canjhgrested in how the overall multi-user system works when
easily eliminated immediately. Thus conditioning on cooing  the load of network changes. Intuitively there should be som

decision process, the strategy at each stage is ef88AY} palance among all the channels and we will show our results
or {SWITCH }. Meanwhile, when\* > ¢;, staying on the regarding load balance in this section.

current will provide higher future reward while whexf < ¢; First we prove a lemma.
the continuation decision would be ®WITCH to the next  |Lemma 4.6:. 86% > 0,Yi € Q.

channel in order. (the” = ¢; case is trivial as either move isproof. Poof is sketched here and we will prove this property
good.) Thus the optimal strategy is all clear so far. by induction.



WhenN = 1, i.e., the system degenerates to a single chanielMonotonicity of threshold based policy
case, we knowG; = G, the claim holds obviously. And we  Here we will characterize the monotonicity of the threshold

have the induction basis. strategy w.r.tG.
Assume whenV = n—1, the claim holds. Now consider the L 490§ S #fxj (@)dztei P(X{<c:) .
case withN = n. When there arer channels. Suppose under emma 4.9:G for 1+t7 = ¢ils aone

G, the stationary arrival vector is given by threshold region. _ _
Proof. Proof can be found in Appendix-dl

G =1[G1,Ga,.., Gn G. lterative algorithm for computing the stopping rule

We increase@ to ' and without losing generality suppose In this section we describe the process of calculating the
channel 1's stationary arrival rate decreases, (#.,< G;. threshold for each stage. Notice at the last stage there is no
ThenG_; > G_;. By induction hypothesis and'_; > G_; more channel to skip to, therefore the dynamic program resiuc

we know to a maximum rate of return problem.
/ . T
G, > G, Vi€ Q\1 (31) Viv.i(z) = max{ X} (), 7 BV )|}
N
As we know underGG and stationary distributioix, the in B N T
flow of channel 1G, (IN) and out flow of channel &z, (OUT) = max{X;" (), th + TE{VN}} (34)

should be equal to each other, i.€;(IN) = G;(OUT).
Consider the case with . Let G, = G and G, > G;,i # 1.
Based on the results from above sections we know

This is a standard problem of maximum rate of return and
we omit the details of solving this problem.
Recall that we have

E{V,} < E{V;},Vi € O\1 (32) T

T+ T
Denote the transmission the user can experience with thé&ewho )

group as a combined virtual single channel and denote it A% can thus sqlve dynamic equations backward. After calcu-
Channel "-1". Therefore we know For any user belongs t3ting stagei + 1's threshold and={V;,,}, we can proceed to

the "-1" group, the expected throughput decreases. Dehete the previous stage and calculate. Con_5|d_er stagrmN Based
expected value function a&{V_,}. As on the arrival ratez;, constant transmission timg, we can

calculatec; = H%E{Vi“} andt!,. Next step we proceed
’ ’ i+1
E{V_,} < E{V_1},E{V,} = E{Vi} (33) to calculate

Vi(x) = max{X;(x) E{Vi}} (35)

50 i
Based on derivation from last section we know the arrival jcm‘ fot (@)dz +ci - P(X{ < ci)

into channel 1 should be non-decreased; also the threslfiold o L+t

skipping channel 1 is non-increased and therefore the owt flgx it is less thanc;, we are done and claim this is the threshold.
of channel 1 is non-increasing. Thgrefore the channel tigadr Otherwise, we proceed to a fixed-point equation

rate will go up and the case wit¥; < G; cannot be stable, o

completing the proofll A S 2 fxi(@)de

Based on the load balancing property above we now revisit P(X] > X))+t

the monotonicity of value functions. Note that for each etagye solve this iteratively as following.

G, : : : > = . . —
ac = 0, and combined with Lemma 4.4 we have the following [, starting with any value\;, i.e., \} is the initial guess.

lemma: Setn = 0.
Lemma 4.7:E{V;},i € Q are all non-increasing functions Set)\* . — I3 afy(@)de
of G. * ntl T PTG
e n:=n+1.

« Repeat until converge.

E. Impact of data transmissioh

In this subsection we analyze the impact of time reservatibh A case study
time T and will answer a general question whether by reservingFor a packet joining a new channel, very likely it has to wait
more transmission time will bring users more benefits considn extra amount of time. This is the major cost for enabling
ering all the efforts we put on channel sensing. spectral diversity, i.e., contention time. This extra wajttime

Lemma 4.8:E{V;},i = 1,2,..., N are all non-decreasingconsists of two parts.
functions of T'.
Proof. Proof can be found in Appendix-ill

The results reflect the fact that once a user find a gostére E¢! indicates the waiting time spent on an “unforunate”
enough transmission condition, it would like to reservermler arrival during another user’s transmission; whits? stands
time with the current channel setting provided it is withiret for the time for competition contention. Next we show how to
channel’'s coherence time. computeES! and E£2.

t = E{' + E? (36)



Consider a random access system. {_eenotes the random 15
back-off time;y denotes the transmission duration of a CTS
packet; fy (Y < y) be the probability that a packet arrives & Non-opprunitc 6 =0
within the lasty transmission duration of a current going B DO
transmission. Following the results from [8], we have

-e-Non-opportunistic G = 0.3

w

-=-Opportunistic G = 0.3

r~>
o

0 Non-opportunistic G = 0.5

Expected throughput

fr(y) = Gle v (37) A
hereG? is the success rate of users’ competition which is given 13 o
by i .====#=:=:-_:::::..
) G.e—2Gi A LT S gt o
Gi = i - (38) 8 e :
1+ (1+T)Gie %G i . . . .
. . Index of Channels
DenoteWW as the contention window. Therefore we have
e2Gi Fig. 1. Throughput under Opportunistic & non-opporturistirategies under
Wi= G, 1 (39) different G
3
Then E¢! can be calculated as following.
1+T li |
B = [ hw/c+ iy
0 b A
1 1 1 1 i
= — 4> —(TH+14 =4 —)e THVE 40
Gt T+1+ Gl + C)e (40) J

and

=

Expected throughput

o

B2 =(e* % —1)-(1/C+2)-(14+T/W;)+2  (41)

Meanwhile, we can see for a current user to release a chainnel,
will take him E£2 amount of time to get back the transmission J
right again, i.e., ‘ ‘ ‘

3
dex of Channel
t::E;ﬁ:(€2Gi’—1)'(1/<+2)'(1+T/Wi)+2 Index of Channels

Not hard to verify that(by taking derivatives) the assurmipsi Fig. 2. Throughput under Opportunistic strategies wittiedént 7"
in Assumption 1 and 2 are all met. The results in this section
will be used in simulations.

Another point in calculating” andt¢ is to help the users simply will decide the stopping threshold at each channel, w
capture the arrival rate information. For some systems, th@n see with larger arrival rate, the stopping threshold get
arrival rate information is not revealed to all users. Unités Smaller and smaller, i.e., the stopping region is enlargeoin
case, by collecting empirical data ¢f and¢© we can get an Fig.2, the average throughput performance increases alithg
estimate of each, which the users can then use to estimateififgease of reserved data transmission tifiieBut through

arrival information at each channel. simulation we also observe that this increase gets slovesigal
with the increase of’; this is due to the increase @falso will
V. NUMERICAL RESULTS increase cost or penalty for channel releasing and swigcinin

In this section we show a number of simulation results. Hegir opportunistic channel access policy. Overall, theselte
we assume there are 5 independent channels with their trare consistent with our analysis.
mission rates exponentially distributed within a finite gan  Meanwhile these observations follow the intuition as when
Their average transmission rate are as following. the arrival rate is high the risk of skipping the current sauis-
sion opportunity is dominating over the potential gain frira

{1/04,1/0.6,1/0.5,1/0.3,1/0.2} (42) change of channel conditions. Therefore each cognitive use
We set the back-off parameter d¥¢ = 10 time units; would rather transmit immediately compared to seeking for
transmission timel’ = 50 time units. The simulation resultsdiversity gains. On the other hand, essentially if a user can
are as following. reserve a longer transmission time, the potential beneéits f

From Fig.1 it is clear that opportunistic optimal strateg@pportunistic strategy increase.
indeed can bring in benefits but only under mild arrival or eom Next we show the decision table conditioning on continuatio
petition rate from cognitive users. At the same time, acogrd on each channel (here in our experiment we consider a user
to Fig.1, with the increase of arrival rate, the averageuphput starts channel sensing and decision process from channel 1)
per time unit decreases; meanwhile as the value functiofige intuition reflected from the table is that as the channels



Arrival Ch1 Ch 2 Ch 3 Ch 4 Ch 5
0.05 STAY | SWITCH | SWITCH | SWITCH | STAY 3]
0.1 STAY | SWITCH | SWITCH STAY STAY
0.3 STAY | SWITCH | SWITCH STAY STAY [4]
0.5 STAY | SWITCH | SWITCH STAY STAY
(5]
TABLE |

DECISION OFI.l1.D CHANNELS WITH DIFFERENT ARRIVAL RATE

(6]
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APPENDIXA

PROOF OF MONOTONICITY OF VALUE FUNCTION WR.T. G

. ) ) We prove this by induction.
In this paper, OSA problems for multi-user multi-channel \yheni — N ie. the last stage, we have

VI. CONCLUSION

wireless network have been investigated and addresseidn&pt

spectrum access policies have been developed and examined

by taking use of multi-user, spectral and temporal diviersit
The impacts of different factors such as arrival rate fro
cognitive users, transmission reservation times, etc haen
investigated. At the same time, through theoretical andisim
tion results, benefits from opportunistic spectrum accesteu
different network conditions and settings are shown cjearl
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Rs ty is a non-decreasing function w.if, it is also in-
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can not increase. Thus we proved th4t is a non-increasing
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For the second cas¥, > ¢,,, we have

Aty = (44)

+oo
/ (2 — 2 e (2)da
A

*
n

Similarly we know )} is a decreasing function w.rx



For the first case\; < c,,

I afxp (@)de + cn
1+

We can easily gebE{V,,} = [ zfxn (z)dz+c,-P(X] < cp);

Cn

take derivative ofE{V,,} with respect toG we get

- P(X] <)

X, = (45)

0B (V) _
oG
IE(X]) — focn Ith" (z)dz + cn P(X] < cp)] ) % (46) [ |
dcy, 0G
dcn %(T'f‘ tht1) — E{Vn+1}aaé2++11 47
G (T +t541)° *7)

By induction hypothesis we kno@% <0 and%ﬁf1 >

0. Therefore we conclude th%*; < O,% < 0. Induction
step is thus completell
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Wheni = N, i.e. the last stage, we have

ANty = (48)

“+o0

— [ @ Xty la)da
AN

As % is a non-increasing function w.rf’. And with the

decrease of’,, the solution\}, increases. Thus we proved

that A%, is a non-decreasing function w.. Assume now the

claim holds fori = n + 1. Wheni = n, consider two cases.

For the second cas¥, > ¢,, we have

+oo
JRCEERIE
AL
Similar with thei = N case we know)\! is an increasing
function w.r.tT.

For the first case\! < ¢,

(49)

Fxfxn(x)dr + e - P(X] < cp
zy = Je thxp (e ben PAT S en) g
1+
We can easily get
E{V,} = / Tfxp (x)dx + ¢, - P(X] < ¢p) (51)
Take derivative ofE{V,,} with respect tol’
OE{Vn}
oT
a dcy, oT
(52)

With basic algebra (we will omit here) and combine with the
fact % > 0 (induction hypothesis) angf;% >0, we
conclude that%%ﬁ > O,% > 0. Induction step is thus
completedll

APPENDIXC
MONOTONICITY OF THRESHOLD STRATEGY WR.T. G

Consider [ z fx;(x)dz + ¢; - P(X{ < ¢) — ¢i(1 + 1),

Taking derivative gives us

0 [ wfxi(2)dr +ci- P(X] < ¢i) — ei(1+1)

oG
_ O 50c  OF
TG oG 'oaq@

<0. (53)



