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Abstract—In this paper we study opportunistic spectrum ac-
cess (OSA) policies in a multiuser multichannel random access
setting, where users perform channel probing and switchingin
order to obtain better channel condition or higher instantaneous
transmission quality. However, unlikely many prior works in
this area, including channel probing and switching policies for
a single user to exploit spectral diversity, and probing andaccess
policies for multiple users over a single channel to exploittemporal
and multiuser diversity, in this study we consider the collective
switching of multiple users over multiple channels. In addition,
we consider finite arrivals, i.e., users are not assumed to always
have data to send and demand for channel follow a certain
arrival process. Under such a scenario, the users’ ability to op-
portunistically exploit temporal diversity (the temporal variation
in channel quality over a single channel) and spectral diversity
(quality variation across multiple channels at a give time)is greatly
affected by the level of congestion in the system. We investigate
the optimal decision process in this case, and evaluate the extent
to which congestion affects potential gains from opportunistic
dynamic channel switching.

I. I NTRODUCTION

Dynamic and Opportunistic Spectrum Access (OSA) policies
have been very extensively studied in the past few years against
the backdrop of spectrum open access as well as advances in
ever more agile radio transceivers. At the heart of opportunistic
spectrum access is the idea of improving spectrum efficiency
through the exploitation ofdiversity.

Within this context there are three types of diversity gains
commonly explored. The first istemporal diversity, where the
natural temporal variation in the wireless channel causes auser
to experience or perceive different transmission conditions over
time even when it stays on the same channel, and the idea
is to have the user access the channel for data transmission
when the condition is good, which may require and warrant
a certain amount of waiting. Studies like [3] investigate the
tradeoff involved in waiting for a better condition and whenis
the best time to stop.

The second isspectral diversity, where different channels
experience different temporal variations, so for a given user at
any given time a set of channels present different transmission
conditions. The idea is then to have the user select a channel
with the best condition at any given time for data transmission,
which typically involves probing multiple channels to find out
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their conditions. Protocols like [5] does exactly this, andstudies
like [1], [14] further seek to identify the best sequential probing
policies using a decision framework.

The third isuser diversityor spatial diversity, where the same
frequency band at the same time can offer different transmission
qualities to different users due to their difference in transceiver
design, geographic location, etc. The idea is to have the user
with the best condition on a channel use it. This diversity
gain can be obtained to some degree by using techniques like
stopping time rules whereby a user essentially judges for itself
whether the condition is sufficiently good before transmitting,
which comes as a byproduct of utilizing temporal diversity.

We note that the above forms of diversities are often studied
in isolation. For instance, temporal diversity is studied in a
multiuser setting but with a single channel in [12], [15]; spectral
diversity is analyzed for a single user in [11], among others.

As the number of users and their traffic volume increase in
such a multi-channel system, one would expect their abilityto
exploit the above diversity gains to decrease significantlydue
to the increased overhead, e.g., the time it takes to perform
channel sensing or the time it takes to regain access right, or
increased collision due to channel switching. This overhead has
been captured in the form of penalty cost in prior work such
as [11], but is often assumed to be independent of the traffic
volume existing in the system.

With the above in mind, in this paper we set out to study
opportunistic spectrum access policies in a multiuser multi-
channel random access setting, where users are not assumed to
always have data to send, demand for channel follows a certain
arrival process, and collision and competition times are taken
into account. Our focus is on the effect of collective switching
decisions by the users, and how their decision process, in
particular their channel switching decisions, are affected by
increasing congestion levels in the system.

Toward this end we characterize the nature of an optimal
access policy and identify conditions under which channel
switching actually results in transmission gain (e.g. in terms
of average data rate or throughput). Our qualitative conclusion,
not surprisingly, is that with the increase in user/data arrival
rate, the average throughput decreases and a user becomes
increasingly more reluctant to give up a present transmission
opportunity in hoping for better condition later on or in a
different channel. Quantitatively we present algorithms that



2

calculate optimal switching decisions and analyze the stability
of the overall system.

The remainder of this paper is organized as follows. In the
Section II, related works are present. The system model is given
in Section III. In Section IV, we model each channel’s evolution
as an IID process and analyze the properties of an optimal
stopping/switching rule. Numerical results are given in Section
V, and Section VI concludes the paper.

II. RELATED WORK

Opportunistic Spectrum Access(OSA) has been quite ex-
tensively studied in recent years; it aims at various diversity
harvesting with the objective of improving spectrum efficiency.
Example include [10], where centralized scheduling strategies
are examined for a class of OSA problems, and [15], where
temporal diversity is used in a multi-user wireless networkand
optimal stopping policies are developed. In particular, using op-
timal stopping theories [4], optimal strategies for different types
of user are derived, including selfish and collaborate users.
In [12] a distributed opportunistic scheduling problem forad-
hoc communications under delay constraints is considered.The
above works consider only multi-user and temporal diversities
but not spectral diversity.

In [11] authors exploit spectral diversity in OSA for the
single user with sensing errors. The user’s average through-
put is maximized under the optimal policy. However, in this
framework the multi-channel overhead is captured by a generic
penalty on each channel switching. This becomes insufficient
in a multi-user setting as such overhead will obviously depend
on the level of congestion in the system that results in different
amount of collision and the time it takes to regain access to a
channel. In [5] an opportunistic auto rate multi-channel MAC
protocol MOAR is presented to exploit spectral diversity for
a multi-channel multi-rate IEEE 802.11-enabled wireless ad
hoc network. However, this scheme does not allow parallel use
of multiple channels by different users due to its reservation
mechanism. Other works that study multi-channel access by a
single user include [1]–[3], [6], [7], [13].

III. M ODEL, ASSUMPTIONS AND PRELIMINARIES

A. Model and assumptions

Consider a wireless system withN channels indexed by the
setΩ = {1, 2, ..., N}. We associate each channel with a reward
of transmission (e.g., transmission rate)Xj , which is a random
variable with distribution characterized byfXj (x). There are
m cognitive users (or radio transceivers) each equipped witha
single transmitter attempting to send data to a base station. Our
model also captures direct peer-to-peer communication, where
m pairs of users communicate and each pair can rendezvous
and perform channel sensing and switching together through
the use of a control channel [8]. However, for simplicity of
exposition, for the rest of the paper we will take the view of
m users transmitting to a base station. We will assume these
m users are within a single interference domain, so that at any
given time each channel can only be occupied by one user.
Considering spatial reuse will make the problem considerably

more challenging and remains an interesting direction of future
research.

We consider discrete time with a suitably chosen time
unit, and with all other time values integer multiples of this
underlying (and possibly very small) unit. We will assume
that the channel conditions over time form an IID process
defined on this time unit. Conditions in different channels
are independent and are in general not identically distributed.
Parallel and similar results may be obtained for channels
described by Markovian models, though the technical details
are quite different.1

The system operates in a way similar to a multi-channel
random access network like IEEE 802.11, with the following
modifications related to dynamic and opportunistic channel
access. Each user has a pre-assigned (or self-generated) random
sequence of channels; this sequence determines in which order
the user performs channel switching, an approach similar to
that used in [11]. Each time a user enters a new channel, it
must perform carrier sensing and compete for access as in a
regular 802.11 channel. As soon as it gains the right to transmit,
it finds out the instantaneous channel quality it would get ifit
transmits immediately. Upon finding out the channel condition,
this user faces the following choices:

1) Transmit on the current channel right away. Intuitively
this happens if the current channel condition is deemed
sufficiently good. This action will be referred to asSTOP.

2) Forego this transmission opportunity, presumably due to
poor channel condition, but remain on the same channel
and compete for access again in the near future hoping
to come across better condition then. This happens if the
current channel condition is poor, so the user will risk
waiting for possibly better condition later. This action
will be referred to asSTAY.

3) Give up the current channel and switch to the next one
on its sequence. This happens if the current channel
condition is poor, and the prospect of staying on the same
channel to wait for better condition later is not as good as
switching to the next channel. This action will be referred
to asSWITCH.

Note that option (1) above allows the system to exploit both
multiuser diversity (the transmission opportunity is given to
another user in the random access) and temporal diversity (the
user in question waits for better condition to appear in time),
while option (3) allows the system to exploit spectral diversity
as users seek better conditions on other channels. These options,
in particular (1) and (2) are similar to those used in a stopping
time framework, e.g., [15].

In the above decision process a user is not allowedrecall,
i.e., once the user decides to leave a channel it cannot use the
channel for transmission without going through carrier sensing
and random access competition again. More importantly froma
technical point of view, the user cannot claim the same channel
condition once it returns to a previously visited channel. As we

1A more complete version including analysis over slow changing model with
Markovian assumptions can be found in our technical report.
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shall see, due to the IID assumption, under an optimal policy,
once a user leaves a channel it will never return.

Once a user gets the right to transmit on a certain channel, it
can transmit for a period ofT time units, which is a constant.
For simplicity a single time unit is also assumed to be the
amount of time to transmit a control packet.

B. Capturing congestion with a “mean field” approach

As mentioned earlier our focus in this paper is on understand-
ing how the users’ channel access decision process is affected
by increasing traffic load or congestion in the system. To model
this we will first take the view of a single user, and introduce
user arrival rates in each channel as well as the amount of
delay involved in STAY and SWITCH as parameters that need
to be taken into consideration in its decision process. Notethat
these parameter values are the result of the collective switching
decisions of all users, and therefore cannot be obtained prior to
defining the switching policies. Indeed later on we show thatthe
system under the optimal switching policy converges and that
these parameters have well-defined averages, thereby justifying
such an assumption. In other words, policies derived under the
assumption that these parameters have well-defined averages
lead to a stable system with well-defined averages for these
parameters. This not unlike the Markov mean field approach
where a single user operates against a background formed by
all other users in a system over which this single user has no
control or influence. In practice these values can be obtained
empirically through learning.

More specifically, we assume users with transmission needs
arrive at a given channel (either as their random starting posi-
tion or as a result of switching from other channels) as a Poisson
process, with the rate vector given byG = [G1, G2, ..., GN ]
and a sum rate

∑N
i=1 Gi = G. At any given time a user may

or may not have data to send, so the rateG is the aggregate
rate of data arrival from all users.

The level of congestion on any channel is captured by two
parameters. The first is the averagecontention delaytrj on
channelj, which is the average time from carrier sense to
gaining the right to transmit on channelj. The more competing
users there are on channelj, the higher this quantity is. The
second is the averageswitching delaytcj of channelj, which
is the time from a user switching into channelj (from another
channel) to its gaining the right to transmit on channelj.
Compared totrj , the switching delay includes the additional
time it takes for the radio to perform channel switching. We
adopt the following two natural assumptions on these quantities.

Assumption 1:Both trj and tcj are non-decreasing functions
of arrival rateGj , ∀j ∈ Ω.

Assumption 2:Both trj and tcj are non-decreasing functions
of the data transmission timeT , ∀j ∈ Ω.

Remark 3.1:We will show later that these assumptions are
in general true under the optimal access policies derived in
the next section. It is intuitively clear that with increasing
arrival rate and time for data transmission, the contentiontime
increases in general.

C. Problem formulation

For simplicity and without loss of generality, for the single
user under consideration we will relabel the channels in its
sequence in ascending order:1, 2, · · · , N . We now define the
following rate-of-return problem with the objective of maximiz-
ing the effective data rate over one successful data transmission.

Specifically, letπ denote a policyπ = {α1, α2, · · ·αγ(π)},
where αk denotes the k-th actions taken, αk ∈
{STAY, SWITCH}, k = 1, · · · , γ(π)− 1, andαγ(π) = STOP.
γ(π) is the stopping time at which this decision process
terminates with a transmission action. Note that an action is
only taken upon gaining the right to transmit in a channel.

LetXπ
k denote the data rate obtained during thek-th decision

epoch (or stage) under policyπ. If under policyπ a channel
is not used in thek-th stage (i.e.,αk = SWITCH or STAY for
somek) thenXπ

k = 0. Note that by this definition only the last
decision epoch results in a positive data rate. LetT π

k denote
the amount of time spent during decision epochk under policy
π. The goal is to maximize the effective rate over the duration
of this decision process given by:

J∗ = max
π∈Π

E{

∑γ(π)
k=1 Xπ

k · T∑γ(π)
k=1 T π

k

} (1)

with Π denoting the admissible set of policies.
We begin by making an important observation of the optimal

decision process, which is that once we leave a channel we
will never return due to the IID assumption. Note that when
we decide to leave a channel, sayi, it is because its projected
reward is less than the projected reward from the next channel,
i+1, subject to the difference in delay,tri vs. tci+1. Because of
the IID assumption, both projected rewards are essentiallytheir
statistical means which do not change over time. Therefore if
we decide to leave for a better channel it cannot be optimal to
ever return.

This maximization problem can be solved by using dynamic
programming. Here we denote the value function at channeli,
time t under the observed channel statex by Vi,t(x); the value
function Vi,t(x) represents the maximum average throughput
obtainable in stagei, time t facing current channel statex
(current transmission rate). For stagei < N , the value function
is the maximum over all possible actions, given as follows:

Vi,t(x) = max{X i
t(x),

T

T + tri
E{Vi,t+1(y)|x},

T

T + tci+1

E{Vi+1,t+1(y)|x}} (2)

= max{X i
t(x),

T

T + tri
E{Vi,t+1},

T

T + tci+1

E{Vi+1,t+1}} (3)

where the second equality is due to the IID nature of the
channel condition evolution and thusE{Vi,t+1(y)|x} and
E{Vi+1,t+1(y)|x} are both independent of the time indext
and statex. The first term is the transmission rate realized if
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we transmit in the current stage, and the second term indicates
the expected throughput we get if we decide to give up the
current transmission opportunity but stay in the same channel.
The last term models the expected average throughput if we
decide to leave the channel and explore the next. Fori = N ,
channel switching is no longer an option and the value function
is given by

VN,t(x) = max{XN
t (x),

T

T + trN
E{VN,t+1}} , (4)

In the next subsection, we give a quantitative analysis of this
value function.

IV. CHARACTERIZING THE OPTIMAL ACCESS POLICY

A. Uniqueness of optimal stopping rule

As discussed above, in our model after re-competition time
tri , the new value function for a single user is independent
of previous actions; in addition, channels’ characteristics are
independent of each other. We can thus simplify the dynamic
programming problem as follows:

Vi,t(x) = max{X i
t(x),

T

T + tri
E{Vi},

T

T + tci+1

E{Vi+1}}

(5)

Note that T
T+tc

i+1

E{Vi+1} (discounted reward from next stage
i + 1) is essentially a constant (only depends oni). We make
the following substitution

X̂ i
t(x) = max{X i

t(x),
T

T + tci+1

E{Vi+1}} . (6)

We then have the following equivalent dynamic program:

Vi,t(x) = max{X̂ i
t(x),

T

T + tri
E{Vi}} . (7)

Next we prove the threshold property of each stage’s decision
process.

Theorem 4.1:Under certain arrival rate vector, the optimal
action at stagei of deciding between{STOP, SWITCH} and
{STAY} is given by a stopping rule, i.e., the state space of the
channel condition can be divided into a stopping set∆s and
continuation set∆c, such that whenever channel condition is
observed to be in either set above, the corresponding actionis
taken. Furthermore, these two sets are given by the following
threshold property, i.e., the stopping set at stage i is given by

∆s
i = {x : X̂ i

t(x) ≥ x∗}, (8)

and the thresholdx∗ is unique.
Proof. First we prove the existence of the threshold. From [4]
we know that an optimal stopping rule exists if the following
two conditions are satisfied:

1. E{supt wt} < ∞.
2. limt→∞ wt = −∞, a.s.

As in our case, we have

wt = max{X i
t(x),

T

T + tci+1

E{Vi+1}}T − λ(t · tri + T ) (9)

As we assume|X i
t(x)| < ∞; and we know T

T+tc
i+1

E{Vi+1}, T

are both finite. We know the second condition is satisfied easily.
Similarly, we have

w
′

t(x) = max{X i
t(x),

T

T + tci+1

E{Vi+1}}T − λT . (10)

As X i
t(x),

T
T+tc

i+1

E{Vi+1}, λ, T are finite, w
′

t(x) is finite.
Therefore we have

E{max{w
′

t(x), 0}} < ∞, E{(max{w
′

t(x), 0})
2} < ∞ .

(11)

Meanwhile,w
′

t(x)’s are IID, thus using [4], we have

E{sup
t

wt} = E{sup
t

w
′

t(x)− t · λtr} < ∞ . (12)

Existence is thus proved.
Next we prove theuniquenessof the threshold.
According to the principle of optimality in Chapter 2 of [4],

the optimal stopping rule of the transformed problem is given
by

∆s
i = {x : X̂ i

t(x) ≥ V ∗} (13)

HereV ∗ denotes the expected return from an optimal stopping
rule; it satisfies the following optimality equation

V ∗ = E{max{X̂ i
t , V

∗} − λtri } (14)

or

E{max(X̂ i
t − V ∗, 0)} = λtri (15)

Next we introduce the following lemma.
Lemma 4.2:Under certain arrival rate vector, the optimal

thresholdx∗ is an unique solution to

E[X̂ i
t − x]+ =

x · tri
T

(16)

Proof. From the optimal stopping rule, we know theλ which
givesV ∗ 0 will be the solution. Thus we have

E{(max{X i
t ,

T

T + tci+1

E{Vi+1}}T − λT )+} = λtri (17)

Denote ci = T
T+tci+1

E{Vi+1}. Then above formula can be
expressed as

E(max{X i
tT − λT, 0}|X i

t > ci) · P (X i
t > ci)

+ E(max{ciT − λT, 0}|X i
t ≤ ci) · P (X i

t ≤ ci) = λtr (18)

If there exists a solution withλ < ci, we have the following∫ ∞

ci

(x− λ)fXi
t
(x)dx + (ci − λ) · P (X i

t ≤ ci) = λt̄ri

Here define normalized re-competition timet̄ri =
tri
T

. Above
gives us

λ∗ =

∫∞

ci
xfXi(x)dx + ci · P (X i

t ≤ ci)

1 + t̄ri
(19)
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On the other hand, if there exists a solution withλ∗ ≥ ci, we
have ∫ ∞

λ∗

(x− λ)fXi(x)dx = λ∗ t̄ri

which gives us

λ∗ =

∫∞

λ∗
xfXi(x)dx

P (X i
t ≥ λ∗) + t̄ri

(20)

For theλ∗ < ci case, we see that there could be at most one

solution as
∫

∞

ci
xf

Xi (x)dx+ci·P (Xi
t≤ci)

1+t̄r
i

< ci may not hold.
For λ∗ ≥ ci case, rewrite (20) we have

λ∗ t̄ri =

∫ +∞

λ∗

(x − λ∗)fXi(x)dx (21)

The LHS is an increasing function w.r.tλ∗.
By taking derivative we know that the RHS is a decreasing

function w.r.t to λ∗. Therefore we will have at most one
solution of this case; again ”at most” is due to the fact that∫

∞

λ∗ xf
Xi (x)dx

P (Xi
t≥λ∗)+t̄r

i

≥ ci does not hold necessarily. Next we will
show that there cannot exist solution for both cases above.

Suppose there exists solution for the caseλ∗ < ci, therefore
we get ∫∞

ci
xfXi(x)dx + ci · P (X i

t ≤ ci)

1 + t̄ri
< ci (22)

which gives us

t̄ri >

∫∞

ci
xfXi(x)dx + ci · P (X i

t ≤ ci)

ci
− 1 (23)

Now let us assume there exists solution forλ∗ ≥ ci as well,
i.e., ∫∞

λ
xfXi(x)dx

P (X i
t ≥ λ) + t̄ri

≥ ci (24)

Substitutet̄ri >

∫
∞

ci
xf

Xi (x)dx+ci·P (Xi
t≤ci)

ci
− 1 into the L.H.S

we have (details of derivations omitted)

L.H.S<

∫∞

λ
xfXt

(x)dxci∫∞

ci
xfXt

(x)dx + ciP (Xt ≤ ci)− ciP (Xt ≤ λ)

≤ ci (25)

which contradicts the fact
∫

∞

λ
xf

Xi (x)dx

P (Xi
t≥λ)+t̄r

i

≥ ci.
On the other hand, if both of the cases have no solution,

we can follow the similar arguments above and reach the
similar conclusion. Therefore we proved the uniqueness of the
threshold.

Remark 4.3:As we can see,λ∗ and ci are independent
with the current state (observation) for each stage; also as
they are constants, one of the options for each stage can be
easily eliminated immediately. Thus conditioning on continuing
decision process, the strategy at each stage is either{STAY}
or {SWITCH }. Meanwhile, whenλ∗ > ci, staying on the
current will provide higher future reward while whenλ∗ < ci
the continuation decision would be toSWITCH to the next
channel in order. (theλ∗ = ci case is trivial as either move is
good.) Thus the optimal strategy is all clear so far.

B. Monotonicity of value functions

Next we examine the effect of the decrease and increase of
arrival processG.

Lemma 4.4:E{Vi} ≥ E{V
′

i } if Gi ≤ G
′

i, ∀i ∈ Ω.
Proof. Proof can be found in Appendix-A.

The results verify the intuition when the arrival rate increases,
a user will experience longer competition time; thus the cost of
seeking diversity gains by giving up the current transmission
right will increase. Therefore a user’s expected throughput will
decrease in general.

C. Ergodicity of arrival processG

We start the analysis by first stating an assumption.
Assumption 3:No channel is dominant.
Consider a dominant case: all arrival rate will drift to

one channel, for example, channeli. Denote the maximum
throughput for packets staying at channeli by λi(Gi). Denote
the maximum averaged throughput for one packet to stay in the
channel right before channeli asλi−1(0). We assume

λi(G) < λ−i(0), ∀i ∈ Ω. (26)

Next we investigate the ergodicity of each channel.
Lemma 4.5:Channels’ arrival processes are ergodic.

Proof. Without losing generality, consider channeli. According
to our assumption there exits a thresholdG̃i such that

λi(Gi) < λ−i(G−i), ∀i ∈ Ω (27)

for all Gi ≥ G̃i. HereG−i means the aggregated arrival rate of
all other users except useri. As the throughput of sticking with
each channeli is a decreasing function withGi. Therefore We
can see forGi > G̃i, we have

λi(Gi) < λ−i(G−i), ∀i (28)

Under this case, the arrivals on channeli− 1 will NOT skip to
channeli, i.e., forĜi > Gi the probability of skipping satisfies

Pr{Ĝi|Gi} = 0 (29)

Define any increasing, unbounded Lyapunov functionL(Gi) on
[0, G](for example,L(Gi) =

1
G−Gi

), we have

E
Ĝi
[L(Ĝi)|Gi] ≤ L(Gi) (30)

By Foster-Lyapunov criteria [9] we establish the ergodicity of
our system’s arrival process. From this point on, we will use
G to denote the expected arrival vector on each channel.

D. Load balance

Based on above developed optimal sensing strategy, we are
interested in how the overall multi-user system works when
the load of network changes. Intuitively there should be some
balance among all the channels and we will show our results
regarding load balance in this section.

First we prove a lemma.
Lemma 4.6:. ∂Gi

∂G
≥ 0, ∀i ∈ Ω.

Proof. Poof is sketched here and we will prove this property
by induction.
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WhenN = 1, i.e., the system degenerates to a single channel
case, we knowG1 = G, the claim holds obviously. And we
have the induction basis.

Assume whenN = n−1, the claim holds. Now consider the
case withN = n. When there aren channels. Suppose under
G, the stationary arrival vector is given by

G = [G1, G2, ..., Gn]

We increaseG to G
′

and without losing generality suppose
channel 1’s stationary arrival rate decreases, i.e.,G

′

1 < G1.
ThenG

′

−1 > G−1. By induction hypothesis andG
′

−1 > G−1

we know

G
′

i > Gi, ∀i ∈ Ω\1 (31)

As we know underG and stationary distributionG, the in
flow of channel 1G1(IN) and out flow of channel 1G1(OUT)
should be equal to each other, i.e.,G1(IN) = G1(OUT).
Consider the case withG

′

. Let G
′

1 = G1 andG
′

i > Gi, i 6= 1.
Based on the results from above sections we know

E{V
′

i } < E{Vi}, ∀i ∈ Ω\1 (32)

Denote the transmission the user can experience with the whole
group as a combined virtual single channel and denote it as
Channel ”-1”. Therefore we know For any user belongs to
the ”-1” group, the expected throughput decreases. Denote the
expected value function asE{V−1}. As

E{V
′

−1} < E{V−1}, E{V
′

1} = E{V1} (33)

Based on derivation from last section we know the arrival
into channel 1 should be non-decreased; also the threshold of
skipping channel 1 is non-increased and therefore the out flow
of channel 1 is non-increasing. Therefore the channel 1’s arrival
rate will go up and the case withG

′

1 < G1 cannot be stable,
completing the proof.

Based on the load balancing property above we now revisit
the monotonicity of value functions. Note that for each stage
∂Gi

∂G
≥ 0, and combined with Lemma 4.4 we have the following

lemma:
Lemma 4.7:E{Vi}, i ∈ Ω are all non-increasing functions

of G.

E. Impact of data transmissionT

In this subsection we analyze the impact of time reservation
timeT and will answer a general question whether by reserving
more transmission time will bring users more benefits consid-
ering all the efforts we put on channel sensing.

Lemma 4.8:E{Vi}, i = 1, 2, ..., N are all non-decreasing
functions ofT .
Proof. Proof can be found in Appendix-B.

The results reflect the fact that once a user find a good
enough transmission condition, it would like to reserve a longer
time with the current channel setting provided it is within the
channel’s coherence time.

F. Monotonicity of threshold based policy

Here we will characterize the monotonicity of the threshold
strategy w.r.t.G.

Lemma 4.9:G for
∫

∞

ci
xf

Xi
t
(x)dx+ci·P (Xi

t≤ci)

1+t̄r
i

≤ ci is a one
threshold region.
Proof. Proof can be found in Appendix-C.

G. Iterative algorithm for computing the stopping rule

In this section we describe the process of calculating the
threshold for each stage. Notice at the last stage there is no
more channel to skip to, therefore the dynamic program reduces
to a maximum rate of return problem.

VN,t(x) = max{XN
t (x),

T

trN + T
E{VN,t+1(y)|x}}

= max{XN
t (x),

T

trN + T
E{VN}} (34)

This is a standard problem of maximum rate of return and
we omit the details of solving this problem.

Recall that we have

Vi(x) = max{X̂ i
t(x),

T

tri + T
E{Vi}} (35)

We can thus solve dynamic equations backward. After calcu-
lating stagei+1’s threshold andE{Vi+1}, we can proceed to
the previous stage and calculate. Consider stagei now. Based
on the arrival rateGi, constant transmission timeT , we can
calculateci = T

T+tc
i+1

E{Vi+1} andtri+1. Next step we proceed
to calculate ∫∞

ci
xfXi

t
(x)dx + ci · P (X i

t ≤ ci)

1 + t̄ri

If it is less thanci, we are done and claim this is the threshold.
Otherwise, we proceed to a fixed-point equation

λ∗ =

∫∞

λ∗
xfXi

t
(x)dx

P (X i
t ≥ λ∗) + t̄ri

We solve this iteratively as following.
• Starting with any valueλ∗

0, i.e.,λ∗
0 is the initial guess.

Setn = 0.
• Setλ∗

n+1 :=

∫
∞

λ∗
n
xf

Xi
t
(x)dx

P (Xi
t≥λ∗

n)+t̄r
i

.
• n := n+ 1.
• Repeat until converge.

H. A case study

For a packet joining a new channel, very likely it has to wait
an extra amount of time. This is the major cost for enabling
spectral diversity, i.e., contention time. This extra waiting time
consists of two parts.

tci = Ec1
i + Ec2

i (36)

HereEc1
i indicates the waiting time spent on an “unforunate”

arrival during another user’s transmission; whileEc2
i stands

for the time for competition contention. Next we show how to
computeEc1

i andEc2
i .
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Consider a random access system. Letζ denotes the random
back-off time;y denotes the transmission duration of a CTS
packet;fY (Y ≤ y) be the probability that a packet arrives
within the last y transmission duration of a current going
transmission. Following the results from [8], we have

fY (y) = Gi
se

−Gi
sy (37)

hereGi
s is the success rate of users’ competition which is given

by

Gi
s =

Gie
−2Gi

1 + (1 + T )Gie−2Gi
(38)

DenoteW as the contention window. Therefore we have

Wi =
e2Gi

Gi

− 1 (39)

ThenEc1
i can be calculated as following.

Ec1
i =

∫ 1+T

0

fY (y)(1/ζ + y)dy

=
1

Gi
s

+
1

ζ
− (T + 1 +

1

Gi
s

+
1

ζ
)e−(T+1)Gi

s (40)

and

Ec2
i = (e2Gi − 1) · (1/ζ + 2) · (1 + T/Wi) + 2 (41)

Meanwhile, we can see for a current user to release a channel,it
will take himEc2

i amount of time to get back the transmission
right again, i.e.,

tri = Ec2
i = (e2Gi − 1) · (1/ζ + 2) · (1 + T/Wi) + 2

Not hard to verify that(by taking derivatives) the assumptions
in Assumption 1 and 2 are all met. The results in this section
will be used in simulations.

Another point in calculatingtr and tc is to help the users
capture the arrival rate information. For some systems, the
arrival rate information is not revealed to all users. Underthis
case, by collecting empirical data oftr and tc we can get an
estimate of each, which the users can then use to estimate the
arrival information at each channel.

V. NUMERICAL RESULTS

In this section we show a number of simulation results. Here
we assume there are 5 independent channels with their trans-
mission rates exponentially distributed within a finite range.
Their average transmission rate are as following.

{1/0.4, 1/0.6, 1/0.5, 1/0.3, 1/0.2} (42)

We set the back-off parameter as1/ζ = 10 time units;
transmission timeT = 50 time units. The simulation results
are as following.

From Fig.1 it is clear that opportunistic optimal strategy
indeed can bring in benefits but only under mild arrival or com-
petition rate from cognitive users. At the same time, according
to Fig.1, with the increase of arrival rate, the average throughput
per time unit decreases; meanwhile as the value functions
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Fig. 2. Throughput under Opportunistic strategies with differentT

simply will decide the stopping threshold at each channel, we
can see with larger arrival rate, the stopping threshold gets
smaller and smaller, i.e., the stopping region is enlarged.From
Fig.2, the average throughput performance increases alongwith
increase of reserved data transmission timeT . But through
simulation we also observe that this increase gets slower along
with the increase ofT ; this is due to the increase ofT also will
increase cost or penalty for channel releasing and switching in
our opportunistic channel access policy. Overall, these results
are consistent with our analysis.

Meanwhile these observations follow the intuition as when
the arrival rate is high the risk of skipping the current transmis-
sion opportunity is dominating over the potential gain fromthe
change of channel conditions. Therefore each cognitive user
would rather transmit immediately compared to seeking for
diversity gains. On the other hand, essentially if a user can
reserve a longer transmission time, the potential benefits from
opportunistic strategy increase.

Next we show the decision table conditioning on continuation
on each channel (here in our experiment we consider a user
starts channel sensing and decision process from channel 1).
The intuition reflected from the table is that as the channels’
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Arrival Ch 1 Ch 2 Ch 3 Ch 4 Ch 5
0.05 STAY SWITCH SWITCH SWITCH STAY
0.1 STAY SWITCH SWITCH STAY STAY
0.3 STAY SWITCH SWITCH STAY STAY
0.5 STAY SWITCH SWITCH STAY STAY

TABLE I
DECISION OFI.I.D CHANNELS WITH DIFFERENT ARRIVAL RATE

conditions change fast, users on most channels, as long as
either the current channel is a not bad one or there will not be
much better channels later, will stay in the current one instead
of joining an brand new channel to avoid future collisions
especially when the collision probability (arrival rate) is high.

From the above table we can also see with the change of
arrival rate, the continuation decision on certain channelmay
change. Take channel 4 for example. When the arrival rate is
low, users on channel 4 is encouraged to switch as the penalty
for switching to channel 5 is light and meanwhile channel 5
can provides better average throughput according to our exper-
iment’s parameter setting; however, when the arrival rate goes
large, the penalty or risk of switching to channel 5 dominates
the potential benefits by channel switching. Therefore users on
channel 4 will chose to stay on the current channel instead of
skip.

Another observation from the decision table is the clear
advantages of our strategy compared to the isolated single
channel opportunistic strategy by making use of only temporal
diversity. Take channels 2 & 3 for example. As channels 2 &
3’s expected throughput (with the lowest expected transmission
rate according to our experiment setting) is limited even by
taking temporal diversity on the single channel. Therefore, the
continuation decision is shown to be SWITCH, i.e., the optimal
strategy provides users on channel 3 more rewards(which is
essentially brought in by spectral diversity) than temporal
diversity by sticking with the single channel 3 which follows
the strategy in [15].

VI. CONCLUSION

In this paper, OSA problems for multi-user multi-channel
wireless network have been investigated and addressed. Optimal
spectrum access policies have been developed and examined
by taking use of multi-user, spectral and temporal diversities.
The impacts of different factors such as arrival rate from
cognitive users, transmission reservation times, etc havebeen
investigated. At the same time, through theoretical and simula-
tion results, benefits from opportunistic spectrum access under
different network conditions and settings are shown clearly.
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APPENDIX A
PROOF OF MONOTONICITY OF VALUE FUNCTION W.R.T. G

We prove this by induction.
When i = N , i.e., the last stage, we have

λ∗
N t̄rN =

∫ +∞

λ∗

N

(x− λ∗
N )fXN (x)dx (43)

As trN is a non-decreasing function w.r.tGN , it is also in-
creasing withG. And with the increase oftrN , the solutionλ∗

N

can not increase. Thus we proved thatλ∗
N is a non-increasing

function w.r.t.G.
Next let’s assume the non-decreasing property holds fori =

n + 1, n + 1 ≤ N . Consideri = n. We prove both case with
λ∗
n < cn andλ∗

n ≥ cn.
For the second caseλ∗

n ≥ cn, we have

λ∗
n t̄

r
N =

∫ +∞

λ∗

n

(x− λ∗
n)fXn

t
(x)dx (44)

Similarly we knowλ∗
n is a decreasing function w.r.tλ.
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For the first caseλ∗
n < cn,

λ∗
n =

∫∞

cn
xfXn

t
(x)dx + cn · P (Xn

t ≤ cn)

1 + t̄rn
(45)

We can easily getE{Vn} =
∫∞

cn
xfXn

t
(x)dx+cn ·P (Xn

t ≤ cn);
take derivative ofE{Vn} with respect toG we get

∂E{Vn}

∂G
=

∂[E(Xn
t )−

∫ cn

0
xfXn

t
(x)dx + cnP (Xn

t ≤ cn)]

∂cn
·
∂cn
∂G

(46)

∂cn
∂G

=

∂E{Vn+1}
∂G (T + tcn+1)− E{Vn+1}

∂tcn+1

∂Gn+1

(T + tcn+1)
2

(47)

By induction hypothesis we know∂E{Vn+1}
∂G ≤ 0 and

∂tcn+1

∂Gn+1
≥

0. Therefore we conclude that∂cn
∂Gn

≤ 0,∂E{Vn}
∂G ≤ 0. Induction

step is thus completed.

APPENDIX B
MONOTONICITY OF VALUE FUNCTIONS W.R.T. T

When i = N , i.e. the last stage, we have

λ∗
N t̄rN =

∫ +∞

λ∗

N

(x− λ∗
N )fXN

t
(x)dx (48)

As t̄rN is a non-increasing function w.r.tT . And with the
decrease oftrN , the solutionλ∗

N increases. Thus we proved
thatλ∗

N is a non-decreasing function w.r.tG. Assume now the
claim holds fori = n + 1. When i = n, consider two cases.
For the second caseλ∗

n ≥ cn, we have

λ∗
nt̄

r
n =

∫ +∞

λ∗

n

(x − λ∗
n)fXn

t
(x)dx (49)

Similar with the i = N case we knowλ∗
n is an increasing

function w.r.tT .
For the first caseλ∗

n < cn,

λ∗
n =

∫∞

cn
xfXn

t
(x)dx + cn · P (Xn

t ≤ cn)

1 + t̄rn
(50)

We can easily get

E{Vn} =

∫ ∞

cn

xfXn
t
(x)dx + cn · P (Xn

t ≤ cn) (51)

Take derivative ofE{Vn} with respect toT

∂E{Vn}

∂T

=
∂[E(Xn

t )−
∫ cn
0 xfXn

t
(x)dx + cnP (Xn

t ≤ cn)]

∂cn
·
∂cn
∂T

(52)

With basic algebra (we will omit here) and combine with the
fact ∂E{Vn+1}

∂T
≥ 0 (induction hypothesis) and

∂tcn+1

∂T
≥ 0, we

conclude that∂cn
∂T

> 0,∂E{Vn}
∂T

> 0. Induction step is thus
completed.

APPENDIX C
MONOTONICITY OF THRESHOLD STRATEGY W.R.T. G

Consider
∫∞

ci
xfXi

t
(x)dx + ci · P (X i

t ≤ ci) − ci(1 + t̄ri ).
Taking derivative gives us

∂
∫∞

ci
xfXi

t
(x)dx + ci · P (X i

t ≤ ci)− ci(1 + t̄ri )

∂G

= −
∂ci
∂G

− t̄ri
∂ci
∂G

− ci
∂t̄ri
∂G

< 0 . (53)


