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Near-Optimal Resource Allocation for Type-II
HARQ based OFDMA Networks under Rate and

Power Constraints
Nassar Ksairi(1), Philippe Ciblat(1), Christophe J. Le Martret(2)

Abstract—We address the problem of multiuser power and
bandwidth allocation for a general class of OFDMA-based wire-
less networks that employ a Type-II Hybrid Automatic Repeat
reQuest (HARQ) mechanism along with practical Modulation
and Coding Schemes (MCSs). This problem is formulated as
minimizing the sum transmit power required to satisfy individual
goodput constraints without exceeding maximum allowable per-
link or per-node transmit power levels. We assume that the
resource manager has only statistical knowledge of the Channel
State Information (CSI) of the Rayleigh-distributed fast-fading
links of the network. Using a tight approximation of the goodput,
we propose an algorithm allowing to compute the corresponding
optimal resource allocation. We finally provide an efficient
selection of the different MCSs that can be coupled with the
proposed resource allocation algorithm to significantly boost its
performance.

I. INTRODUCTION

To cope with the growing demands in terms of spectral effi-
ciency and quality of Service (QoS), modern wireless network
standards include a combination of advanced physical and link
layer techniques such as Orthogonal Frequency Division Mul-
tiple Access (OFDMA), adaptive MCS, Bit-Interleaved Coded
Modulation (BICM), and HARQ. Both HARQ and adaptive
MCS are powerful mechanisms that allow reliable commu-
nications over time-varying channels. Among the different
HARQ schemes, the so-called Type-II, which includes Chase
Combining (CC-HARQ) and Incremental Redundancy (IR-
HARQ) [1], is the most promising in terms of performance.
In addition, a random Subcarrier Assignment Scheme (SAS)
along with BICM allows to harvest the inherent diversity in
wireless links while OFDMA allows to properly handle the
multi-path and the multi-user interference. The benefits of the
above-mentioned techniques are not limited to infrastructure-
based networks but extend to ad hoc configurations too.

This article deals with sum transmit power minimization for
wireless networks using OFDMA, BICM and practical MCSs
at the physical layer and Type-II HARQ at the link layer. This
problem is of great interest for two reasons. First, transmit
power minimization is crucial to reduce energy consumption
and to minimize the impact produced by the network on
other systems through interference. Second, Type-II HARQ
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(as opposed to the simpler Type-I) is a very promising link-
layer mechanism as we already mentioned. Although the
above problem arises in a wide class of wireless systems, we
hereafter rather focus on ad hoc networks. In such networks,
generally a node called “resource manager” is elected to per-
form the resource allocation even if pairwise communications
are allowed. The delay between the initiation of a specific
link and the reception by the resource manager of the CSI
feedback associated with that link may span several frame
periods. Consequently, the resource manager has only outdated
CSI whereas it can have accurate statistical CSI due to the
much larger coherence time of the latter. We therefore assume
that the resource allocation should be done with only statistical
CSI about the different wireless links.

In order for our system model to be compatible with any
network topology, we assume that each node can potentially
establish more than one outgoing communication link. Either
Time-Division Multiplexing (TDM) or Orthogonal Frequency-
Division Multiplexing (OFDM) can be used to enable simul-
taneous operation of the links coming out of the same node.
Moreover, real-world wireless communication systems place
practical limitations on the operation of the transmitter of each
node. In this article, we consider two of these limitations [2],
namely, either i) a constraint on the long-term average transmit
power due to limited battery life or ii) a constraint on the short-
term average transmit power imposed either by regulations or
to avoid nonlinearities of the power amplifiers. We show in
Section III that the first limitation gives rise to a per-node
transmit power constraint while the second can be equivalent
either to a per-node or to a per-link transmit power constraint
depending on the applied multiplexing technique.

In the literature, only few works e.g., [3]-[11], have ad-
dressed the problem of multiuser resource allocation for
communication systems utilizing HARQ, and none of them
considered individual power constraints, to the best of our
knowledge. In [3], a rate-adaptive optimization problem is
addressed where the objective is to determine user scheduling
and resource allocation that maximize the sum of the indi-
vidual information-theoretic data rates in an IR-HARQ based
network under the assumption of perfect CSI. The problem
is simplified by separately performing power control and
bandwidth assignment leading thus to a suboptimal solution.
The authors of [4] address the problem of average sum
transmit power minimization in a network using IR-HARQ
under maximum average delay constraints. Again, perfect CSI
is assumed and practical MCSs are not taken into account. In



2

[5] and [6], the system goodput is maximized with respect
to user selection and power and rate allocation for a system
employing Type-II HARQ and outdated CSIT. However, due
to the user selection, no more than one user can be scheduled
at any given time. Moreover, the system goodput is computed
using an information-theoretical approach that fails to account
for practical MCSs. This last limitation also applies to [7].
In [8], perfect CSIT and Type-I HARQ are considered along
with practical MCSs. Nevertheless, the proposed resource allo-
cation is suboptimal since subchannel assignment and power
allocation are not jointly optimized. A heuristic suboptimal
resource allocation scheme is proposed in [9] for multiuser
HARQ-based uplink communications in Single Carrier (SC)-
FDMA systems. In the context of cognitive radio, some works
have been devoted to resource allocation for secondary users
when HARQ is employed [10]. Finally, in [11], transmit
power minimization is done in presence of statistical CSIT
and practical MCS but only for Type-I HARQ and without
individual transmit power constraints. In this paper, our main
contribution is to address the previous problem in the context
of Type-II HARQ while also adding per-node or per-link
transmit power constraints. It is worth mentioning that the
extension from Type-I to Type-II HARQ is not straightforward
since the closed-form expressions for the performance metrics
of the latter are much more complicated. The same difficulty
arises from adding the individual power constraints.

It is worth noting that several works in the literature
(e.g., [12]-[15]) have addressed power and rate allocation
for HARQ schemes but in a single-user context where the
objective is to adapt transmit power and coding rate over the
different retransmissions of the same HARQ process. This
problem, while important, is not within the scope of our paper
since the gain is very small when no perfect CSIT is available
[12].

The rest of the article is organized as follows. The system
model is depicted in Section II. In Section III, the resource
allocation problem is mathematically formulated for both the
cases of per-node or per-link transmit power constraints. The
solution to these two problems is then analytically derived in
Sections IV and V, respectively. The issue of MCS selection is
next addressed in Section VI. Numerical results are presented
in Section VII, while conclusions are finally provided in
Section VIII.

II. SYSTEM MODEL

A. Channel model
We focus on a single-cluster network with K active nodes.

One of these nodes is the resource manager which performs
the proposed resource allocation algorithm. Each node (k ∈
{1, 2, . . . ,K}) has Ik ≥ 1 outgoing active links. From now on,
we use the couple (k, i) to designate the ith (i ∈ {1, . . . , Ik})
link of node k. Each of these

∑K
k=1 Ik links is considered

as a time-varying frequency-selective channel whose M time-
domain taps are Rayleigh distributed. It is assumed that OFDM
(with N subcarriers covering a total bandwidth of W Hz) is
employed and that channels remain constant over one OFDM
symbol but change independently between consecutive OFDM
symbols.

Let hk,i(j) = [hk,i(j, 0), . . . , hk,i(j,M − 1)]T be the
M -long channel impulse response of link (k, i) associated
with OFDM symbol j where the superscript (.)T stands
for the transposition operator. The multi-variate complex-
valued circular symmetric Gaussian distribution with mean a
and covariance matrix Σ is hereafter denoted by CN(a,Σ).
Let Hk,i(j) = [Hk,i(j, 0), . . . ,Hk,i(j,N − 1)]T be the
discrete Fourier transform of hk,i(j) i.e., Hk,i(j, n) =∑M−1
m=0 hk,i(j,m)e−2πı

nm
N for n = 0, 1, . . . , N − 1. The

received signal associated with OFDM symbol j for link (k, i)
at subcarrier n is

Yk,i(j, n) = Hk,i(j, n)Xk,i(j, n) + Zk,i(j, n) , (1)

where Xk,i(j, n) is the symbol transmitted at subcarrier n of
the jth OFDM symbol on link (k, i), and where Zk,i(j, n) ∼
CN(0, N0W/N) is an additive noise and N0 is the noise level
in the power spectral density. It is assumed that the time-
domain channel taps {hk,i(j,m)}j,0≤m≤M−1 are indepen-
dent random variables with variances ς2k,i,m that are constant
w.r.t. the OFDM symbol index j but which possibly vary
from tap to tap, i.e., hk,i(j) ∼ CN(0,Σk,i) with Σk,i

def
=

diagM×M (ς2k,i,0, . . . , ς
2
k,i,M−1). The subcarriers of a single

link are thus identically distributed as Hk,i(j, n) ∼ CN(0, ς2k,i)
where ς2k,i = Tr(Σk,i). We define the average gain-to-noise
ratio for link (k, i) as

Gk,i
def
=

E
[
|Hk,i(j, n)|2

]
N0

=
ς2k,i
N0

. (2)

B. The HARQ mechanism and other link-layer assumptions

At the Medium Access Layer (MAC), each active link (k, i)
receives an infinite stream of information bits coming from the
upper layer while arranged in packets of nb bits each. A Type-
II HARQ scheme is then used to transmit each information
packet in at most L transmissions. The content of each one
of these L transmissions is called a MAC Packet (MP).
Notice that the power used by the system does not depend
on the number of retransmissions really used by the HARQ
mechanism since there is always a MP to be sent. We assume
that the MPs produced by the different Ik links coming out
of a node k are multiplexed either i) by assigning them non-
overlapping subsets of subcarriers of each OFDM symbol, or
ii) by letting each link use all the subcarriers available to its
node till the end of transmission of its current MP before
passing them over to the next link of the node in a Round-
Robin TDM manner.

We examine two possible Type-II HARQ schemes: i) CC-
HARQ: The MP is obtained by encoding the information
packet with a Forward Error Correcting (FEC) code of rate
Rk,i. At the end of each transmission 1 ≤ l ≤ L, the receiver
combines the so-far received l MPs according to the maximum
ratio combining principle [16]. ii) IR-HARQ: The information
packet is firstly encoded by a FEC code of rate Rk,i/L (known
as the mother code). The resulting codeword is then split into
L MPs by following the rate compatible coding principle [17].
We assume identical lengths for the MPs. After the reception
of the lth MP, the receiver tries to decode the information
packet by concatenating the l received MPs.



3

At the physical layer, we assume that the symbols trans-
mitted on any link (k, i) are chosen from a 2mk,i -QAM
constellation. The MCS associated with link (k, i) can thus
be represented by the couple (mk,i, Rk,i).

Let Ek,i,l be the event that decoding the information packet
based on the first l MPs results in an error and define πk,i,l

def
=

P{Ek,i,l}. We assume that BICM along with a random SAS are
utilized by all the wireless links. If these two techniques are
well tuned to the coherence time of the channels, the links can
be considered as fast fading. Consequently, if Gray mapping
and convolutional codes are used, then we have

πk,i,l ≤ π̃k,i,l
def
=

gk,i,l

SNR
dk,i,l

k,i

, (3)

where gk,i,l is the smallest value that ensures the upper-bound
property. It can be determined using simulations and curve
fitting. Obviously, gk,i,l depends on the modulation order mk,i,
on the coding rate Rk,i and on the particular HARQ scheme in
use. Moreover the upper-bound in Eq. (3) is tight for medium-
to-high SNRs. The term dk,i,l corresponds to the diversity
order and is either i) the minimal Hamming distances of the
codes associated with transmissions l = 1, . . . , L in IR-HARQ
case or ii) equal to ldk,i,1 in CC-HARQ case [19, Section V].
Eq. (3) comes from either a straightforward adaptation of [18,
Eq.(65)] to frame error rate instead of bit error rate or a direct
application of [19, Eq.(21)]. A table that maps each MCS
(mk,i, Rk,i) to the set {(dk,i,l, gk,i,l)}l=1...L is assumed to be
available to the resource manager.

C. Power and bandwidth parameters
The resource manager is assumed to only know the average

gains Gk,i. Since each of these gains is subcarrier-independent,
we cannot decide which subset of subcarriers a link or a node
should use, but only how many. In the following, we denote
by nk (k ∈ {1, . . . ,K}) the number of subcarriers assigned to
node k. For a node that has only one outgoing link (Ik = 1),
the occupied portion of the bandwidth is γk

def
= nk

N . As for a
node k that has more than one link (Ik > 1), either OFDM or
TDM should be used to schedule transmission on these links,
as we mentioned in Section I. Denote by nk,i ≤ nk the number
of subcarriers assigned to link (k, i) out of the available nk
subcarriers and by γk,i the bandwidth proportion occupied by
the link. In the case where OFDM is used for link scheduling,
γk,i can be expressed as nk,i

N . As for the case where node k
uses Round-Robin TDM instead of OFDM, the nk subcarriers
of the node are available to each link (k, i) for 1/Ik of the
time. In other words, the proportion γk,i occupied by link (k, i)
of the available time-frequency units can be expressed as nk

IkN
.

Irrespective of the multiplexing method, γk,i can thus be seen
as the bandwidth parameter of link (k, i) to be optimized. For
the sake of tractability, we consider from now on that γk,i can
take any value in (0, 1).

Since Gk,i is subcarrier-independent, it is natural to transmit
with the same average power Pk,i

def
= E

[
|Xk,i(j, n)|2

]
on all

the nk,i subcarriers. Let Ek,i
def
=

Pk,i

W/N be the energy consumed
to transmit one symbol on one subcarrier of (k, i) and define
σ2
k,i

def
= N0W/N . Note that the energy consumed on link (k, i)

to send its part of the OFDM symbol is Nγk,iEk,i. As energy
is proportional to power, we refer to {Ek,i}1≤k≤K,1≤i≤Ik
as the transmit power parameters or shortly as the “transmit
powers” by abuse of terminology. Finally, each subcarrier of
(k, i) has an average signal-to-noise ratio (SNR) equal to

SNRk,i
def
=
ς2k,iPk,i

σ2
k,i

= Gk,iEk,i . (4)

III. RESOURCE ALLOCATION OPTIMIZATION PROBLEMS
WITH FIXED MCS

We consider for the moment that the MCSs of the different
links are fixed in advance. The selection of these MCSs is
dealt with in Section VI. Our goal is to minimize the total
average transmit power proportional to

∑K
k=1

∑Ik
i=1 γk,iEk,i

by jointly optimizing the power and the bandwidth parame-
ters {Ek,i, γk,i}1≤k≤K,1≤i≤Ik , while an individual maximum
allowable transmit power is respected and while a minimum
goodput η(0)k,i is guaranteed for each link (k, i). The goodput
corresponds to the average number per channel use of infor-
mation bits in successfully-decoded packets, and is denoted
for link (k, i) by ηk,i. Mathematically speaking, we have

ηk,i = lim
l→∞

number of successfully decoded bits up to l
number of channel uses up to l

= lim
l→∞

b(l)

l nb

mk,iRk,i

, (5)

where l designates with a slight abuse of notation the number
of MAC transmissions carried out so far, and b(l) is the total
number of information bits in the correctly decoded packets up
to the lth transmission. As for the transmit power constraint,
it should be made explicit depending on the relevant situation
among the following possible situations:

1) The main concern is to limit the long-term average
power of each node in order to maximize its battery life.
In case OFDM is used for link scheduling, we define
the long-term average power of a node as the mean of
its transmit power on a frame of Nf OFDM symbols
given by 1

NfNT
Nf
∑Ik
i=1 nk,iEk,i =

1
T

∑Ik
i=1 γk,iEk,i,

where T def
= 1/W and where Nf

∑Ik
i=1 nk,iEk,i is the

energy spent by node k during the transmission of the
NfNT -seconds long frame. As for the TDM case, we
take into account Round-Robin scheduling by defining
the long-term average power of a node as its mean
transmit power on a frame of IkNf OFDM symbols
equal to 1

Nf IkNT
Nf
∑Ik
i=1 nkEk,i =

1
T

∑Ik
i=1 γk,iEk,i,

where nkEk,i is the energy spent by node k during one
OFDM symbol assigned to link (k, i). Therefore, the
relevant long-term average power constraint is always a
per-node constraint given by

Ik∑
i=1

γk,iEk,i ≤ Q(0)
k . (6)

2) The main concern is that the short-term (per OFDM
symbol) average power of each node does not exceed
a certain level imposed by regulations and/or to avoid
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nonlinearities in the power amplifier. If a node k uses
OFDM to schedule its own links, the short-term average
power is given by 1

T

∑Ik
i=1 γk,iEk,i and the correspond-

ing constraint is the same as in Eq. (6). If TDM is
assumed instead, the short-term average power depends
on the current scheduled link and is given for link (k, i)
by 1

T γk,iEk,i. This leads to the following Ik per-link
constraints:

γk,iEk,i ≤ Q(0)
k ,∀i ∈ {1, . . . , Ik} . (7)

Therefore, the optimization issue of interest writes as follows.

Problem 1. The general optimization problem is:

min
γ1,1...γ1,I1 ,γK,1...γK,IK

,E1,1...E1,I1
,EK,1...EK,IK

K∑
k=1

Ik∑
i=1

γk,iEk,i

(8a)
subject to

Goodput constraints: ηk,i ≥ η(0)k,i , (8b)

∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik} ,

Bandwidth constraint:
K∑
k=1

Ik∑
i=1

γk,i ≤ 1 , (8c)

Power constraints: either Eq.(6) or Eq.(7), ∀k ∈ {1, . . . ,K} ,
(8d)

Positivity constraints: γk,i > 0, Ek,i > 0, (8e)
∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik} .

According to [16], we know that the goodput for any Type-
II HARQ writes as:

ηk,i = mk,iRk,iγk,i
1− qk,i,L

1 +
∑L−1
l=1 qk,i,l

, (9)

where qk,i,l
def
= P {Ek,i,1,Ek,i,2, . . . ,Ek,i,l} is the probabil-

ity that the first l transmissions of a HARQ process are
all received in error. The factor γk,i in the Right-Hand
Side (RHS) of Eq. (9) reflects the fact that the goodput is
proportional to the number of the assigned subcarriers. It
is difficult to get qk,i,l in closed-form. However, qk,i,l =
P {Ek,i,1,Ek,i,2, . . . ,Ek,i,l} ≤ P {Ek,i,l} = πk,i,l and πk,i,l
can furthermore be upper-bounded by π̃k,i,l which has an an-
alytical expression given in Eq. (3). Therefore, qk,i,l ≤ π̃k,i,l.
We have checked that this upper-bound is tight for practical
values of L and for medium-to-high SNR values. The goodput
ηk,i can thus be lower-bounded as follows:

ηk,i ≥ mk,iRk,iγk,i
1− π̃k,i,L

1 +
∑L−1
l=1 π̃k,i,l

. (10)

We thus slightly modify Problem 1 by replacing the Left-Hand
Side (LHS) of Eq. (8b) with the RHS of Eq. (10) and by using
the closed-form expression of π̃k,i,l. First, we focus on the case
with per-link transmit power constraints.

Problem 2. The optimization problem with per-link power

constraints becomes:

min
γ1,1...γ1,I1 ,γK,1...γK,IK

,E1,1...E1,I1
,EK,1...EK,IK

K∑
k=1

γk,iEk,i

(11a)
subject to

γk,i
1− gk,i,L/(Gk,iEk,i)dk,i,L

1 +
∑L−1
l=1 gk,i,l/(Gk,iEk,i)dk,i,l

≥
η
(0)
k,i

mk,iRk,i
, (11b)

∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik}
K∑
k=1

Ik∑
i=1

γk,i ≤ 1 , (11c)

γk,iEk,i ≤ Q(0)
k,i ,∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik} , (11d)

γk,i > 0, Ek,i > 0,∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik} . (11e)

It is quite obvious that Problem 2 is feasible if and only
if forcing each link (k, i) to consume a power γk,iEk,i =

Q
(0)
k,i results in a feasible problem. Setting Ek,i = Q

(0)
k,i/γk,i,

constraint (11b) writes as G
k,i,Q

(0)

k,i

(γk,i) ≥ 0 where

γ 7→ G
k,i,Q

(0)

k,i

(γ)
def
=

mk,iRk,iγ
1− gk,i,L/

Ä
Gk,iQ

(0)
k,i/γ

ädk,i,L

1 +
∑L−1
l=1 gk,i,l/

Ä
Gk,iQ

(0)
k,i/γ

ädk,i,l
− η(0)k,i .

(12)
It is easy to verify that G

k,i,Q
(0)

k,i

(0) < 0. Two cases are thus

possible. If G
k,i,Q

(0)

k,i

has no zeros on (0, 1], then G
k,i,Q

(0)

k,i

(γ) <

0,∀γ ∈ (0, 1], meaning that constraint (11b) cannot be
satisfied. Otherwise if G

k,i,Q
(0)

k,i

has a zero or more on (0, 1],
we should use the smallest of them to test the feasibility of
Problem 2. This leads to Lemma 1 where we defined:

γ
(0)

k,i,Q
(0)

k,i

def
=

{
+∞ , if G

k,i,Q
(0)

k,i

has no zeros on (0, 1] ,

the smallest zero of G
k,i,Q

(0)

k,i

, otherwise.
(13)

Lemma 1. Problem 2 is feasible if and only if∑K
k=1

∑Ik
i=1 γ

(0)

k,i,Q
(0)

k,i

≤ 1. Moreover, this inequality implies

that Slater’s condition holds.

Now, we turn our attention to the case with per-node
transmit power constraints.

Problem 3. The optimization problem with per-node power
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constraints becomes:

min
γ1,1...γ1,I1 ,γK,1...γK,IK

,E1,1...E1,I1
,EK,1...EK,IK

K∑
k=1

Ik∑
i=1

γk,iEk,i

(14a)
subject to

γk,i
1− gk,i,L/(Gk,iEk,i)dk,i,L

1 +
∑L−1
l=1 gk,i,l/(Gk,iEk,i)dk,i,l

≥
η
(0)
k,i

mk,iRk,i
, (14b)

∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik}
K∑
k=1

Ik∑
i=1

γk,i ≤ 1 , (14c)

Ik∑
i=1

γk,iEk,i ≤ Q(0)
k ,∀k ∈ {1, . . . ,K} , (14d)

γk,i > 0, Ek,i > 0,∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik} . (14e)

Next Lemma states that Problem 3 is feasible if and only if
we get a feasible problem by i) forcing each node k to consume
the maximum allowable power

∑Ik
i=1 γk,iEk,i = Q

(0)
k and by

ii) finding a combination (Qk,i
def
= γk,iEk,i)1≤i≤Ik of powers

on the outgoing links of each node k that sum up to Q(0)
k and

that result in a feasible resource allocation.

Lemma 2. Problem 3 is feasible iff∑K
k=1 min∑Ik

i=1
Qk,i=Q

(0)

k

∑Ik
i=1 γ

(0)
k,i,Qk,i

≤ 1, where γ
(0)
k,i,Qk,i

is defined as in Eq. (13). Moreover, this inequality implies
Slater’s condition.

Hereafter, we start with Problem 3 (related to per-node
constraints) since the solution of Problem 2 (related to per-
link constraints) is a special case of that of Problem 3.

IV. SOLVING THE PER-NODE POWER-CONSTRAINED
PROBLEM

One can remark that Problem 3 is a geometric program [20]
which means that all the involved functions (except Eq. (14e)
considered as an implicit constraint) are posynomials w.r.t.
{γk,i}k=1···K,i=1···Ik and {Ek,i}k=1··· ,K,i=1···Ik . Eq. (14a)
and Eq. (14c) are straightforwardly posynomials. Rewriting
Eq. (14b) leads to the following new expression of the con-
straint related to the goodput

η
(0)
k,i

mk,iRk,i
γ−1k,i +

L−1∑
l=1

η
(0)
k,i gk,i,l

mk,iRk,iG
dk,i,l

k,i

γ−1k,iE
−dk,i,l

k,i +

gk,i,L

G
dk,i,L

k,i

E
−dk,i,L

k,i ≤ 1,

(15)

∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik}. Clearly, the previous
constraint (which replaced Eq. (14b)) is also posynomial. It
is well-known that a geometric program can be transformed
into a convex optimization problem [20]. In our case, this can
be accomplished thanks to the change of variables γk,i = exk,i

and Ek,i = eyk,i for k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik}.
Consequently, Problem 3 can be viewed as a convex optimiza-
tion problem whose Karush–Kuhn–Tucker (KKT) conditions
provide a globally-optimal solution since Slater’s condition

holds if the condition in Lemma 2 is satisfied. Let µk,i, λ, νk be
the non-negative Lagrangian multipliers associated with con-
straints (14b), (14c), (14d) respectively and define functions
x 7→ fk,i(x) for any value x ∈ R∗+ of the SNR as

fk,i(x)
def
=

1 +
∑L−1
l=1 gk,i,l/x

dk,i,l

1− gk,i,L/xdk,i,L
. (16)

Note that the LHS of Eq. (14b) is equal to γk,i/fk,i (Gk,iEk,i)
and that fk,i is decreasing on

Ä
g
1/dk,i,L

k,i,L ,+∞
ä

. Here, g1/dk,i,L

k,i,L

is the smallest value that the SNR Gk,iEk,i can take while the
approximate goodput (the RHS of Eq. (10)) is non-negative.

Since the optimization problem at hand is convex in vari-
ables {xk,i, yk,i}k=1...K,i=1...Ik , the associated KKT condi-
tions should be first derived in these variables. In a second step,
they can be rewritten in the original variables {γk,i, Ek,i}k,i
giving hence rise to:

(1 + νk)γk,iEk,i

− µk,i
η
(0)
k,iγ

−1
k,i

mk,iRk,i

(
1 +

L−1∑
l=1

gk,i,l

(Gk,iEk,i)
dk,i,l

)
+ λγk,i = 0 ,

(17)
(1 + νk)γk,iEk,i =

µk,i

(
η
(0)
k,iγ

−1
k,i

mk,iRk,i

L−1∑
l=1

gk,i,ldk,i,l

(Gk,iEk,i)
dk,i,l

+
gk,i,Ldk,i,L

(Gk,iEk,i)
dk,i,L

)
,

(18)

µk,i

(
η
(0)
k,i

mk,iRk,i
− γk,i
fk,i (Gk,iEk,i)

)
= 0 , (19)

λ

(
K∑
k=1

Ik∑
i=1

γk,i − 1

)
= 0 , νk

(
Ik∑
i=1

γk,iEk,i −Q(0)
k

)
= 0 .

(20)
In the following, we manipulate the above equations to the end
of writing the resource allocation parameters Ek,i and γk,i as
functions of one multiplier, namely the multiplier λ associated
with the bandwidth constraint Eq. (14c), by eliminating µk,i
and νk. By referring to Eq. (14e), we note that γk,iEk,i > 0.
We also have 1+ νk > 0 because νk is a Lagrange multiplier.
We thus get from Eq. (18) that µk,i 6= 0, which means that
the constraint associated with the goodput (Eq. 14b) is always
active. Eq. (19) thus yields

γk,i =
η
(0)
k,i

mk,iRk,i
fk,i (Gk,iEk,i) . (21)

We can thus eliminate µk,i by plugging Eqs. (18) and (21)
into Eq. (17) to get

λ =
1

Gk,i
Fk,i (Gk,iEk,i)+

νk
Gk,i

(Fk,i (Gk,iEk,i) +Gk,iEk,i) ,

(22)
where we defined for any value x ∈

Ä
g
1/dk,i,L

k,i,L ,+∞
ä

of the
SNR Gk,iEk,i:

Fk,i(x)
def
=

x∑L−1

l=1
dk,i,lgk,i,l/x

dk,i,l

1+
∑L−1

l=1
gk,i,l/x

dk,i,l
+

dk,i,Lgk,i,L/x
dk,i,L

1−gk,i,L/x
dk,i,L

− x .

(23)
The following lemma summarizes the properties of function
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Fk,i that will be useful in the remaining derivations. Its proof
is provided in Appendix A.

Lemma 3. For any link (k, i) there exists a unique sk,i >

g
1/dk,i,L

k,i,L > 0 such that i) Fk,i(sk,i) = 0, ii) Fk,i(x) < 0 for
any x < sk,i, and iii) Fk,i is increasing from 0 to +∞ on
[sk,i,+∞) so that its inverse F−1k,i exists on [0,+∞) and is
increasing on its domain.

For the moment, we assume that a genie tells us the value
of the Lagrange multiplier λ. As we have done with the
multipliers µk,i, we proceed to eliminating νk. We first note
by referring to Eq. (23) that ∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik},
Gk,iEk,i + Fk,i (Gk,iEk,i) > 0 provided that Gk,iEk,i >
g
1/dk,i,L

k,i,L . Eq. (22) can thus be rewritten as:

νk =
Gk,1λ− Fk,1 (Gk,1Ek,1)
Gk,1Ek,1 + Fk,1 (Gk,1Ek,1)

= · · ·

· · · = Gk,Ikλ− Fk,Ik (Gk,IkEk,Ik)
Gk,IkEk,Ik + Fk,Ik (Gk,IkEk,Ik)

.

(24)

Now since the Lagrange multiplier νk in the LHS and all the
denominators in the RHS of Eq. (24) are non-negative, the
numerators should be non-negative too. We thus obtain the
following upper bound on the transmit power of any link (k, i):

Gk,iEk,i ≤ F−1k,i (Gk,iλ) ,∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik} .
(25)

Moreover, Eq. (24) allows us to establish Ik − 1 equalities
involving {Ek,i}1≤i≤Ik . These equalities suggest that the Ik
power parameters of any node k could be represented by one
variable, namely the transmit power of one of the Ik links.
We will show that this reference link should be chosen as the
link ik ∈ {1, . . . , Ik} satisfying

ik = arg max
i∈{1,...,Ik}

sk,i
Gk,i

. (26)

In order to compute the transmit powers Ek,i of a link i ∈
{1, . . . , Ik}\{ik} as a function of λ and the reference transmit
power Ek,ik , we refer to Eq. (24) to write:

Gk,ikλ+Gk,ikEk,ik
Fk,ik(Gk,ikEk,ik) +Gk,ikEk,ik

Fk,i(Gk,iEk,i)+

Gk,ikλ− Fk,ik(Gk,ikEk,ik)
Fk,ik(Gk,ikEk,ik) +Gk,ikEk,ik

Gk,iEk,i = Gk,iλ .

(27)

Define Xk,i,λ(Gk,ikEk,ik) as the solution (which is unique,
cf. Lemma 4) in variable X

def
= Gk,iEk,i to Eq. (27). Note that

Xk,ik,λ(Gk,ikEk,ik) = Gk,ikEk,ik . We thus can write:

Ek,i =
1

Gk,i
Xk,i,λ(Gk,ikEk,ik) ,∀i ∈ {1, . . . , Ik} . (28)

In the same way, parameters (γk,i)i=1...Ik can be obtained
thanks to Eq. (21) as

γk,i =
η
(0)
k,i

mk,iRk,i
fk,i (Xk,i,λ(Gk,ikEk,ik)) ,∀i ∈ {1, . . . , Ik} .

(29)
Denote by C(λ) the subset of nodes with an active transmit
power constraint. Due to Eqs. (28) and (29), we can rewrite

∑Ik
i=1 γk,iEk,i = Q

(0)
k for any node k ∈ C(λ) as:

Ik∑
i=1

η
(0)
k,i

mk,iRk,iGk,i
Xk,i,λ(Gk,ikEk,ik)

× fk,i (Xk,i,λ(Gk,ikEk,ik)) = Q
(0)
k ,∀k ∈ C(λ) .

(30)

Note that a sufficient and necessary condition for a node k to
be in C(λ) is that the above equation has a solution in variable
Ek,ik on

î
sk,ik/Gk,ik , F

−1
k,ik

(Gk,ikλ) /Gk,ik
ä

that we denote

as E(0)
k,ik

. Here, we require Gk,ikE
(0)
k,ik

< F−1k,ik
(Gk,ikλ) so that

the upper bound in Eq. (25) is respected. In other words, E(0)
k,ik

is the optimal transmit power on the reference link (k, ik) for
nodes k ∈ C(λ). The parameters Ek,i and γk,i on the other
links i ∈ {1, . . . , Ik} \ {ik} of these nodes can be simply
computed by setting Ek,ik = E

(0)
k,ik

in Eqs. (28) and (29).

As for nodes k ∈ C(λ) with inactive transmit power
constraints, it is straightforward to compute their resource
allocation parameters by plugging νk = 0 into Eq. (24) and
by referring to Eq. (21) to obtain:

Ek,i =
1

Gk,i
F−1k,i (Gk,iλ) ,

γk,i =
η
(0)
k,i

mk,iRk,i
fk,i(F

−1
k,i (Gk,iλ)) ,∀k ∈ C(λ) .

(31)

Putting all pieces together, the optimal transmit power, denoted
Ek,ik(λ), on the reference link of a general node k is given
by

Gk,ikEk,ik(λ)
def
=

Gk,ikE
(0)
k,ik

, if Eq.(30) has a solution on[
sk,ik

Gk,ik

, 1
Gk,ik

F−1k,ik
(Gk,ikλ)

)
,

F−1k,ik
(Gk,ikλ) , otherwise.

(32)

The above equation allows us to write C(λ) in the following
compact form:

C(λ) =

ß
k
∣∣∣λ > 1

Gk,ik
Fk,ik (Gk,ikEk,ik(λ))

™
. (33)

So far we managed to characterize the optimal solution to the
resource allocation problem in terms of one Lagrange multi-
plier (λ). We now turn our attention to the determination of
λ in order to obtain a practical resource allocation algorithm.
Such an algorithm would involve a line search to find the value
of λ. We therefore should extend the definition of quantities
that were so far only defined assuming λ is known to any
arbitrary value Λ. The first step is to make sure that Xk,i,Λ
(defined by Eq. (27) for Λ = λ) is still well defined for
any Λ ≥ 0. The following lemma (proven in Appendix B)
states that this is true thanks to the way we choose the
reference link ik (cf Eq. (26)). First let x = Gk,ikEk,ik
and X = Gk,iEk,i in Eq. (27) and note that we are only
interested in values sk,i ≤ X ≤ F−1k,i (Gk,iΛ) and sk,ik ≤
x ≤ F−1k,ik

(Gk,ikΛ) due to the upper bound in Eq. (25). Also
note that

î
sk,i, F

−1
k,i (Gk,iΛ)

ó
and
î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ó

are
not empty by direct application of Lemma 3.
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Lemma 4. For any Λ ≥ 0, any link (k, i) and any sk,ik ≤
x ≤ F−1k,ik

(Gk,ikΛ), the following equation in X has a unique
solution, denoted as Xk,i,Λ(x), on

î
sk,i, F

−1
k,i (Gk,iΛ)

ä
:

Gk,ikΛ+ x

Fk,ik(x) + x
Fk,i(X)+

Gk,ikΛ− Fk,ik(x)
Fk,ik(x) + x

X = Gk,iΛ . (34)

The second step is to verify that for any node k, Eq. (30)
still has a solution if we replace λ with an arbitrary value Λ.
First, we define Xk,i,∞(x) for any x ∈ [sk,ik , F

−1
k,ik

(Gk,ikΛ))

as the unique solution to Gk,ik
/Gk,i

Fk,ik
(x)+xFk,i(X)+

Gk,ik
/Gk,i

Fk,ik
(x)+xX = 1

on [sk,i,+∞) (obtained by letting Λ → +∞ in Eq. (34)).
Second, we define the following function on [sk,ik ,+∞) for
any given Λ ≥ 0:

Qk,Λ(x)
def
=

Ik∑
i=1

η
(0)
k,i

mk,iRk,iGk,i
Xk,i,Λ(x)fk,i (Xk,i,Λ(x)) .

(35)
Finally, we get the following lemma proven in Appendix C.

Lemma 5. For any node k ∈ {1, . . . ,K}, if

Qk,∞(sk,ik)
def
=

Ik∑
i=1

η
(0)
k,i

mk,iRk,iGk,i
Xk,i,∞(sk,ik)fk,i (Xk,i,∞(sk,ik)) ≤ Q

(0)
k ,

(36)
then there exists a unique Λ(0)

k ≥ 0 such that ∀Λ > Λ
(0)
k , the

following equation:

Qk,Λ(x) = Q
(0)
k (37)

has a solution in variable x on
î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ä

that
is unique and bounded with respect to Λ, while no solution
exists on the latter interval ∀Λ < Λ

(0)
k .

The above lemma implies that in settings satisfying in-
equality (36), a necessary condition for node k to have active
transmit power constraint is λ > Λ

(0)
k . This condition is also

sufficient. To see why, note that if we set Λ = λ > Λ
(0)
k ,

then due to the above lemma Eq. (37) will have a unique
solution x that belongs to

î
sk,ik , F

−1
k,ik

(Gk,ikλ)
ä

. Plugging
Ek,ik = x/Gk,ik in Eq. (24) hence leads to a strictly-positive
value for the multiplier νk. Therefore, the determination of
whether a node should or should not have an active power
constraint reduces to the search for the value of the multiplier
λ which is addressed later on. During this search, we define a
provisional transmit power Ek,ik(Λ) that generalizes Ek,ik(λ)
defined in Eq. (32) to any value of the search variable Λ as:

Gk,ikEk,ik(Λ)
def
=

the solution on
î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ä

to Eq. (37) ,

if Λ > Λ
(0)
k ,

F−1k,ik
(Gk,ikΛ) ,

if Λ ≤ Λ(0)
k .

(38)
When Λ = λ, it is clear that Ek,ik(λ) is equal to the optimal
transmit power on the reference link (k, ik) and that the

resource allocation parameters of the other links of node k
can be computed by setting Ek,ik = Ek,ik(λ) in Eqs. (28)
and (29).

The final step is to extend the definition given by Eq. (33)
of the subset C(λ) to any value Λ ≥ 0 to get C(Λ)

def
={

k
∣∣∣Gk,ikΛ > Fk,ik (Gk,ikEk,ik(Λ))

}
. Note that C(Λ) ={

k
∣∣∣Λ > Λ

(0)
k

}
due to Eq. (38). Also note that C(Λ) has a

“physical” meaning (as the subset of nodes whose transmit
power constraint should be active) only when Λ = λ. For any
other arbitrary value of Λ, C(Λ) serves as an intermediate
tool in the search for the optimal resource allocation. In
particular, C(Λ) = {1, . . . ,K} for Λ large enough since
Fk,ik (Gk,ikEk,ik(Λ)) is bounded ∀Λ ≥ 0 due to Lemma 5.
This means that increasing Λ has the effect of forcing more
nodes to consume all their maximum allowable transmit power
Q

(0)
k . Now define the following function on R+:

Γ (Λ)
def
=

∑
k∈C(Λ)

Ik∑
i=1

η
(0)
k,i

mk,iRk,i
fk,i (Xk,i,Λ(Gk,ikEk,ik(Λ)))+

∑
k∈C(Λ)

Ik∑
i=1

η
(0)
k,i

mk,iRk,i
fk,i
Ä
F−1k,i (Gk,iΛ)

ä
.

(39)
Note that if condition (36) holds for all nodes k, then Γ (Λ) is
well defined ∀Λ ≥ 0 thanks to Lemma 5. In particular, when
Λ = λ, Γ (λ) is the sum of the optimal bandwidth sharing
factors. In Appendix D, we prove that Γ is continuous on its
domain.

Lemma 5 inspires us to replace the feasibility condition
given by Lemma 2, which is difficult to test, with the following
more restrictive (but easier to verify) condition.

Assumption 1. The following two conditions are satisfied:

1) The inequality in Eq. (36) holds ∀k ∈ {1, . . . ,K}, i ∈
{1, . . . , Ik}.

2)

Γ∞
def
=

K∑
k=1

Ik∑
i=1

η
(0)
k,i

mk,iRk,i

× fk,i (Xk,i,∞ (Gk,ikEk,ik(+∞))) ≤ 1

.

In Appendix D we prove that Γ∞ = limΛ→+∞ Γ (Λ).
The sub-optimality of this feasibility condition is due to the
requirement that Eq. (37) has a solution for any Λ ≥ 0
and that

∑K
k=1

∑Ik
i=1 γk,i(Λ) ≤ 1 for Λ → ∞, instead

of requiring that these conditions hold only for Λ = λ.
Nonetheless, Assumption 1 was satisfied in all the feasible
settings encountered in the simulations, and violated in all the
infeasible ones. If Assumption 1 was not held, The KKT based
algorithm failed to work but any standard numerical algorithm
for convex optimization can be used.

Under Assumption 1, we know that function Γ (which is
continuous) tends to a value smaller than one as Λ → +∞.
Only one of the following two cases is thus possible. Either
Γ (0) ≤ 1, then the Lagrange multiplier λ is equal to zero.
Or Γ (0) > 1, meaning that the equation Γ (Λ) = 1 has at
least one solution. In this case, λ can be considered to be any
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such solution. We thus get the following theorem proven in
Appendix D.

Theorem 1. Let Assumption 1 hold true. The optimal solution
to Problem 3 is as follows.

1) If Γ (0) ≤ 1, then for each k ∈ C(0), Ek,i =
1

Gk,i
Xk,i,0 (Gk,ikEk,ik(0)), and for each k ∈ C(0),

Ek,i =
1

Gk,i
F−1k,i (0).

2) Else, for each k ∈ C(λ), Ek,i =
1

Gk,i
Xk,i,λ (Gk,ikEk,ik(λ)), and for each k ∈ C(λ),

Ek,i = 1
Gk,i

F−1k,i (Gk,iλ), with λ > 0 any solution in
R∗+ to Γ (Λ) = 1.

In both cases, γk,i =
η
(0)

k,i

mk,iRk,i
fk,i(Gk,iEk,i).

Thanks to Theorem 1, one can propose Algorithm 1 for
the computation of the optimal resource allocation parameters
{γk,i, Ek,i}k=1...K,i=1...Ik . In Algorithm 1, the fact that Λ(0)

k

Algorithm 1 Optimal resource allocation algorithm for Prob-
lem 3

for all k ∈ {1, . . . ,K} do
Λ
(0)
k ← the unique solution on R+ to

Qk,Λ
Ä
F−1k,i (Gk,iΛ)

ä
= Q

(0)
k

end for
Λ← 0
repeat
C(Λ)←

{
k
∣∣∣Λ > Λ

(0)
k

}
for all k ∈ C(Λ) do
Gk,ikEk,ik(Λ) ← the unique solution onî
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ä

to Eq. (37)
for all i ∈ {1, . . . , Ik} \ {ik} do
Ek,i ← 1

Gk,i
Xk,i,Λ(Gk,ikEk,ik(Λ)),

γk,i ←
η
(0)

k,i

mk,iRk,i
fk,i (Gk,iEk,i)

end for
end for
for all k ∈ C(Λ) do

for all i ∈ {1, . . . , Ik} do
Ek,i ← 1

Gk,i
F−1k,i (Gk,iΛ),

γk,i ←
η
(0)

k,i

mk,iRk,i
fk,i(Gk,iEk,i)

end for
end for
Increment Λ

until
∑K
k=1

∑Ik
i=1 γk,i ≤ 1

return {γk,i, Ek,i}k=1...K,i=1...Ik

defined in Lemma 5 is equal to the unique solution on R+

to Qk,Λ
Ä
F−1k,i (Gk,iΛ)

ä
= Q

(0)
k is proved in Appendix C.

Moreover, the size of the increment step should be a trade-
off between the speed of convergence on one side and the
precision of the resulting solution (λ and the associated
resource allocation parameters) on the other.

V. SOLVING THE PER-LINK POWER-CONSTRAINED
PROBLEM

As stated in Section III, Problem 2 can be seen as a special
case of Problem 3 applied to an equivalent network with K ′ def

=∑K
k=1 Ik one-link nodes obtained by a one-to-one mapping

from (k, i) (with Ik ≥ 1) to k′ ∈ {1, . . . ,K ′} (with I ′k′ = 1).
Interestingly, the approach developed in Section IV can be
simplified before being applied to solve Problem 2. The first
simplification comes from the fact that Lemma 4 is obviously
no longer needed. Moreover, the computation of the resource
allocation parameters for links with an active power constraint
is easier than in the previous section. Indeed, when I ′k′ =
1 for k′ ∈ {1, . . . ,K ′} in the equivalent network, Eq. (37)
associated with the corresponding link (k, i) in the original
network simplifies to

η
(0)
k,i

mk,iRk,iGk,i
xfk,i(x) = Q

(0)
k,i , (40)

which has a unique solution on [sk,i,+∞) equal to
Gk,iQ

(0)
k,i/γ

(0)

k,i,Q
(0)

k,i

(cf. Eq. (13)) provided that the feasibility

condition in Lemma 1 is satisfied (Assumption 1 is no longer
needed). The resource allocation parameters of links with
active transmit power constraints are thus given by γ

(0)

k,i,Q
(0)

k,i

(as defined above) and E
(0)
k,i

def
= Gk,iQ

(0)
k,i/γ

(0)

k,i,Q
(0)

k,i

. Note that

a necessary condition for a link (k, i) to have an active power
constraint is that E(0)

k,i does not violate inequality (25). This
condition is equivalent to λ > Λ

(0)
k,i , where

Λ
(0)
k,i

def
=

1

Gk,i
Fk,i
Ä
Gk,iE

(0)
k,i

ä
. (41)

This condition is also sufficient as it leads to a strictly-positive
νk,i in the per-link version of Eq. (24). It is thus useful to
define for any Λ ≥ 0 the following subset:

C̃(Λ)
def
=
{
(k, i)

∣∣∣k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik}, Λ > Λ
(0)
k,i

}
,

(42)
and the following function on R+:

Γ̃ (Λ)
def
=

∑
(k,i)∈C̃(Λ)

γ
(0)

k,i,Q
(0)

k,i

+
∑

(k,i)∈C̃(Λ)

η
(0)
k,i

mk,iRk,i
fk,i
Ä
F−1k,i (Gk,iΛ)

ä
.

(43)

When Λ = λ (the Lagrange multiplier associated with con-
straint (11c)), C̃(λ) is the subset of links whose transmit power
constraints should be active while Γ̃ (λ) is equal to the total
sum of the optimal bandwidth sharing factors. In Appendix E,
we prove that this function is continuous and decreasing
on its domain. Incorporating the above simplifications into
Theorem 1 leads to the following theorem.

Theorem 2. Let the feasibility condition in Lemma 1 hold.
The optimal solution to Problem 2 is as follows.

1) If Γ̃ (0) ≤ 1, then ∀(k, i) ∈ C̃(0), we have γk,i =
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γ
(0)

k,i,Q
(0)

k,i

and Ek,i = E
(0)
k,i , and ∀(k, i) ∈ C̃(0), Ek,i =

1
Gk,i

F−1k,i (0) and γk,i =
η
(0)

k,i

mk,iRk,i
fk,i(Gk,iEk,i).

2) Else, ∀(k, i) ∈ C̃(λ) we have γk,i = γ
(0)

k,i,Q
(0)

k,i

and Ek,i =

E
(0)
k,i , and ∀(k, i) ∈ C̃(λ), Ek,i = 1

Gk,i
F−1k,i (Gk,iλ) and

γk,i =
η
(0)

k,i

mk,iRk,i
fk,i(Gk,iEk,i), with λ > 0 the unique

solution in R∗+ to Γ̃ (Λ) = 1.

Note that λ as defined in Theorem 2 is unique due to
the fact that function Γ̃ is decreasing on R+ as opposed to
function Γ in Theorem 1 which is not necessarily monotone.
With Theorem 2 in hand, we propose Algorithm 2 for the
computation of the optimal resource allocation parameters
{γk,i, Ek,i}k=1...K,i=1...Ik .

Algorithm 2 Optimal resource allocation algorithm for Prob-
lem 2
Λ← 0
for all k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik} do

γ
(0)

k,i,Q
(0)

k,i

← the RHS of Eq. (13), E(0)
k,i ←

Q
(0)

k,i

γ
(0)

k,i,Q
(0)

k,i

,

Λ
(0)
k,i ←

1
Gk,i

Fk,i
Ä
Gk,iE

(0)
k,i

ä
end for
repeat
C̃(Λ)←

{
(k, i)

∣∣∣Λ > Λ
(0)
k,i

}
for all (k, i) ∈ C̃(Λ) do
Ek,i ← E

(0)
k,i ,

γk,i ← γ
(0)

k,i,Q
(0)

k,i

end for
for all (k, i) ∈ C̃(Λ) do
Ek,i ← 1

Gk,i
F−1k,i (Gk,iΛ),

γk,i ←
η
(0)

k,i

mk,iRk,i
fk,i (Gk,iEk,i)

end for
Increment Λ

until
∑K
k=1

∑Ik
i=1 γk,i ≤ 1

return {γk,i, Ek,i}k=1...K,i=1...Ik

VI. MCS SELECTION

Let M designate the set of indices of the available mod-
ulation schemes and R the set of coding rates of the avail-
able codes. When we fix in advance the MCS (m def

=

[m1,1, . . . ,mK,IK ]T and R
def
= [R1,1, . . . , RK,IK ]T) of the

different links, Algorithms 1 and 2 return the optimal solution
γ1,1, . . . , γK,IK , E1,1, . . . , EK,IK to their corresponding opti-
mization problems. Define Q∗T (m,R)

def
=
∑K
k=1

∑Ik
i=1 γk,iEk,i

as the minimal total transmit power when the corresponding
optimization problem is feasible. Otherwise, set Q∗T (m,R) =
+∞. The optimal selection of the MCSs in the network is the
solution to the following combinatorial optimization problem.

Problem 4. (m∗,R∗) = argmin(m,R)∈MK′×RK′ Q∗T (m,R),

where K ′
def
=
∑K
k=1 Ik .

The global solution to Problem 4 can be found by an
exhaustive search that becomes prohibitively costly in com-
putations even for moderate numbers of links. Instead, we
resort to the suboptimal but computationally-efficient greedy
MCS selection algorithm used in [11] and inspired by [22].
Let M and R be sorted such that M = {m1, . . . ,m|M|}
and R = {R1, . . . , R|R|} with m1 ≤ · · · ≤ m|M| and
R1 ≤ · · · ≤ R|R|. The idea behind the algorithm is to perform
MCS selection iteratively by changing the MCS of only one
link per iteration. This is done by assigning to each link the
next MCS in the ordered set M×R and by selecting the link
whose MCS modification results in the lowest sum transmit
power. This approach is greedy in the sense that it continues
while the so-obtained transmit power decreases, and stops
otherwise. In the following, k′ ≤ K ′ is used to index the K ′

links of the network. Let m(0) = [m(1), . . . ,m(K ′)]T and
R(0) = [R(1), . . . , R(K ′)]T be such that m(k′) = mjk′ and
R(k′) = Rpk′ with jk′ = pk′ = 1 for any k′ ∈ {1, . . . ,K ′}.
The proposed greedy approach is described by Algorithm 3
which runs for at most K ′|M||R| iterations.

Algorithm 3 Greedy approach to solving Problem 4

m←m(0), R← R(0)

repeat
Q∗T ← Q∗T (m,R)
(m∗,R∗)← (m,R)
for all k′ ∈ {1, . . . ,K ′} do

m(k′) ← m(k′) = mmin{jk′+1,|M|} and
jk′ ← min{jk′ + 1, |M|}
R(k′) ← R(k′) = Rmin{pk′+1,|R|} and
pk′ ← min{pk′ + 1, |R|}

end for
k′∗ ← arg min

1≤k′≤K′
min{Q∗T (m(k′),R),

Q∗T (m,R(k′)),Q∗T (m
(k′),R(k′))}

(m,R)← argmin{Q∗T (m(k′∗),R),

Q∗T (m,R(k′∗)),Q∗T (m
(k′∗),R(k′∗))}

until Q∗T < Q∗T (m,R)
return m∗,R∗

VII. SIMULATIONS

We considered a network with K = 5 active nodes with
Ik = I = 2 links each. The bandwidth is equal to W = 5
MHz centered around the carrier frequency f0 = 2400 MHz.
Each information packet is of length nb = 128 bits. The
distance Dk,i of link (k, i) is randomly drawn from a uniform
distribution on [100m, 1km]. The term ς2k,i follows a free-space
model so that ς2k,i = 1/ (4πf0Dk,i/c)

2, where c is the speed
of light in vacuum. For the sake of simplicity, each link has
the same target efficiency η(0) so that the required sum rate is
equal to IKη(0). Finally, we fix N0 = −170 dBm/Hz.

Hereafter, we assume all the links use the same MCS
i.e., mk,i = m,Rk,i = R,∀(k, i). The values of m and R
are chosen from Table I depending on the target efficiency.
The modulation is based on a m-QAM constellation with
m ∈ M

def
= {1, 2, 4, 6} while error control consists in a
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CC-HARQ based on the convolutional code given in [17]
with an initial rate equal respectively to 1/2 and 1. In
other words, R ∈ R

def
= {1/2, 1}. In all the cases, we

set L = 3. In Figure 1, we plot the sum transmit power

MCS name 1 2 3 4 5
m (bits) 1 2 4 6 4

R 1/2 1/2 1/2 1/2 1
max. sumrate

(Mbps) 2.5 5 10 15 20

WQ(0) 15 18 24 32 48
log10 gk,i,l
l = 1, 2, 3

(CC)

0.55
−0.22
−0.49

0.95
1.05
0.64

2.21
2.87
3.02

2.88
3.28
3.19

1.47
1.76
1.79

log10 gk,i,l
l = 1, 2, 3

(IR)

−0.40
−3.63
−5.89

1.60
−1.11
−2.76

4.92
2.23
1.55

6.51
3.80
2.90

2.75
4.90
4.03

Table I
THE MCSS, THE TRANSMIT POWER CONSTRAINTS AND THE CONSTANTS

gk,i,l USED IN SIMULATIONS

W
∑K
k=1

∑Ik
i=1 γk,iEk,i as obtained by Algorithm 2 with each

link subject to a transmit power constraint equal to WQ(0)

where Q(0) is set as given in Table I. The same table provides
the constants {gk,i,l}l=1...L for goodput computations using
Eq. (3). Each point was obtained using 100 Monte-Carlo
runs, and each subinterval in Figure 1 is associated with a
given MCS. For the sake of comparison, we also plot the
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Heuristic scheme with per-link power constraint Q(0) (plotted only when feasible)

Algorithm 2 with per-link power constraint Q(0)

Using the exact curves of qk,i,l
MCS5

MCS4

MCS3

MCS2

MCS1

Figure 1. Sum transmit power vs. sum target rate for the proposed algorithm
and the heuristic one when CC-HARQ is implemented and MCS is fixed in
advance.

total transmit power resulting from the following heuristic
resource allocation scheme. The first step of this scheme

consists in fixing γtrivial
k,i =

η
(0)

k,i
/(mk,iRk,i)∑K

l=1

∑Il
j=1

η
(0)

l,j
/(ml,jRl,j)

(which

trivially satisfies constraint (11c)) and in choosing Etrivial
k,i to

be equal to the minimal value such that constraint (11b) is
respected. If the resulting transmit power γtrivial

k0,i0
Etrivial
k0,i0

on some
link (k0, i0) violates constraint (11d), the second step of the
heuristic scheme consists increasing the bandwidth sharing
factor assigned to such links by setting γtrivial

k0,i0
= γ

(0)
k0,i0

(where
γ
(0)
k0,i0

is defined in Eq. (13)) and in accordingly reducing the
sharing factors of the other links (so that constraint (11c) is

still respected). Note that after performing the second step,
there is no guarantee that constraint (11b) is still respected on
the links whose sharing factors have been reduced. Roughly
speaking, the heuristic scheme fails half of the time in the
far-right part of each subinterval. In addition to this feasibility
issue, the advantage of using our algorithm over the heuristic
scheme in terms of total transmit power is clear from Figure 1.

Finally, we investigate in the same figure the potential
increase in the total transmit power due to the fact that the
proposed resource allocation algorithms are developed using
the upper bound qk,i,l ≤ π̃k,i,l (cf Eq. (3)). Therefore, a smaller
transmit power parameter Equasi-optimal

k,i associated with the
exact curves qk,i,l can be computed by solving the following
equation in variable E for each link (k, i):

η
(0)
k,i = mk,iRk,iγk,i

1− qk,i,L(Gk,iE)

1 +
∑L−1
l=1 qk,i,l(Gk,iE)

,

where {γk,i}(k,i) are the bandwidth parameters returned by
our resource allocation algorithms. We can see from Fig. 1
that the loss

∑K
k=1

∑Ik
i=1 γk,i

Ä
Ek,i − Equasi-optimal

k,i

ä
turns out

to be negligible for all practical values of the target sum data
rate.

In Figure 2, we plot the sum transmit power resulting
from Algorithm 3 under the per-link power constraint of
Table I applied to the IR-HARQ scheme based on the two
nested convolutional codes from [21] with an initial rate equal
respectively to 1/2 and 1. Here, the results are given for both
L = 3 and L = 4. From Fig. 2, we can see the significant
gain we get from the proposed MCS selection method with
respect to the case where the MCS is fixed trivially.

We also compute the best lower bound (under the assump-
tions made in Section II) on the sum transmit power obtained
by Algorithm 3. Since the wireless channels in our system
model are fast fading, the lower bound is reached by endowing
the links of the network with the possibility of achieving their
ergodic capacity. More precisely, we now assume that a data
rate of η(0)k,i bits/s/Hz is possible provided that:

Ck,i(γk,i, Ek,i)
def
= γk,iE [log2 (1 +Gk,iEk,iXe)] ≥ η(0)k,i

(44)
where Ck,i is the ergodic capacity associated with link (k, i)
and where the expectation is taken w.r.t. the unit-mean
exponentially-distributed random variable Xe. Under this ideal
assumption, we should modify Problem 2 by replacing con-
straint (11b) with Eq. (44). The optimal resource allocation
parameters can then be obtained by replacing fk,i(x) and
Fk,i(x) for any x ∈ R∗+ in Algorithm 2 with fe(x) =

1
E[log(1+xXe)]

and Fe(x) =
log(1+xXe)

E[Xe/(1+xXe)]
−x. In Figure 2, we

note that Algorithm 3, while suboptimal, significantly reduces
the optimality gap to the ergodic lower bound as compared
with the case where the MCSs are fixed in advance. Moreover,
setting L = 4 yields, as expected, a total transmit power that
is closer to the lower bound as compared to L = 3.

VIII. CONCLUSIONS

In this article, we proposed near-optimal resource allocation
algorithms to minimize sum power consumption in OFDMA-
based wireless networks which use Type-II HARQ schemes
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Greedy MCS selection (L = 3)
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Figure 2. Sum transmit power vs. sum target rate for the proposed algorithm
and the ergodic capacity based one when IR-HARQ is implemented and MCS
is optimized.

subject to per-link goodput constraints and two kinds of
individual transmit power limitations. Under the assumption
of statistical CSI and practical MCSs, our algorithms return
the optimal power and bandwidth parameters by resorting
to a tight approximation of the links’ goodput. Finally, a
computationally-efficient algorithm for MCS selection was
provided that, when coupled with the previous resource al-
location algorithms, yields significant reductions in the total
power emitted by the network.

APPENDIX A
PROOF OF LEMMA 3

For any k ∈ {1, . . . ,K}, i ∈ {1, . . . , Ik}, func-
tion Fk,i can be written ∀x > g

1/dk,i,L

k,i,L as Fk,i(x) =

x
(
1/
(
Fk,i(x) +

dk,i,Lgk,i,L/x
dk,i,L

1−gk,i,L/x
dk,i,L

)
− 1
)

with Fk,i(x)
def
=∑L−1

l=1
dk,i,lgk,i,l/x

dk,i,l

1+
∑L−1

l=1
gk,i,l/x

dk,i,l
. It is straightforward to show that x 7→

dk,i,Lgk,i,L/x
dk,i,L

1−gk,i,L/x
dk,i,L

is decreasing on
Ä
g
1/dk,i,L

k,i,L ,+∞
ä

. As for
the proof that Fk,i is decreasing on R∗+, we note that ∀x ∈ R∗+,

F′k,i(x) =

−
∑L−1
l=1

d2k,i,lgk,i,l

xdk,i,l+1 +
∑L−1
l,m=1

gk,i,lgk,i,mdk,i,l(dk,i,m−dk,i,l)

xdk,i,l+dk,i,m+1Ä
1 +

∑L−1
l=1

gk,i,l

xdk,i,l

ä2 .

(45)
The first term in the numerator of the RHS of Eq. (45) is
clearly negative. We now prove that the second term is negative
too. To that end, we define for any x > 0:

al,m = gk,i,lgk,i,m
dk,i,l(dk,i,m − dk,i,l)
xdk,i,l+dk,i,m+1

, 1 ≤ l,m ≤ L− 1 .

(46)
Note that the second term in the numerator of the RHS of
Eq. (45) is equal to

∑L−1
l,m=1 al,m and that al,l = 0. The

computation of this sum is easier if we introduce n def
= l+m:

L−1∑
l,m=1

al,m =
L−1∑
n=2

( ∑
l+m=n
l<m

al,m +
∑

l+m=n
l>m

al,m

)

+
2L−2∑
n=L

( ∑
l+m=n
l<m

al,m +
∑

l+m=n
l>m

al,m

)

=
L−1∑
n=2

( bn2 c∑
l=1

al,n−l +

bn2 c∑
m=1

an−m,m

)
+

2L−2∑
n=L

( L∑
m=bn2 c+1

an−m,m +
L∑

l=bn2 c+1

al,n−l

)

= −
L−1∑
n=2

bn2 c∑
j=1

gk,i,jgk,i,n−j
(dk,i,n−j − dk,i,j)2

xdk,i,j+dk,i,n−j+1

−
2L−2∑
n=L

L∑
j=bn2 c+1

gk,i,jgk,i,n−j
(dk,i,j − dk,i,n−j)2

xdk,i,j+dk,i,n−j+1

We thus conclude that
∑L−1
l,m=1 al,m < 0 and that as a result

F′k,i(x) < 0 for all x ∈ R∗+.
Putting all pieces together, function x 7→

1/
(
Fk,i(x) +

dk,i,Lgk,i,L/x
dk,i,L

1−gk,i,L/x
dk,i,L

)
− 1 is thus increasing

on
Ä
g
1/dk,i,L

k,i,L ,+∞
ä

from −1 to +∞. Therefore, there exists

sk,i > g
1/dk,i,L

k,i,L such that Fk,i(sk,i) = 0 and Fk,i(x) ≥ 0 for
all x ≥ sk,i.

APPENDIX B
PROOF OF LEMMA 4

For any x ∈
î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ó
, the LHS

of Eq. (34) as function of X increases onî
sk,i, F

−1
k,i (Gk,iΛ)

ó
from Gk,ik

Λ−Fk,ik
(x)

Fk,ik
(x)+x sk,i to

Gk,ik
Λ+x

Fk,ik
(x)+xGk,iΛ +

Gk,ik
Λ−Fk,ik

(x)

Fk,ik
(x)+x F−1k,i (Gk,iΛ) ≥ Gk,iΛ.

The last inequality holds because x ≤ F−1k,ik
(Gk,ikΛ) so that

Gk,ik
Λ+x

Fk,ik
(x)+x ≥ 1. A sufficient condition for Eq. (34) to have a

solution on
î
sk,i, F

−1
k,i (Gk,iΛ)

ó
is then:

Gk,ikΛ− Fk,ik(x)
Fk,ik(x) + x

sk,i ≤ Gk,iΛ,∀sk,ik ≤ x ≤ F
−1
k,ik

(Gk,ikΛ) .

(47)
Since x 7→ Gk,ik

Λ−Fk,ik
(x)

Fk,ik
(x)+x is decreasing onî

sk,ik , F
−1
k,ik

(Gk,ikΛ)
ó
, we only need to verify the

inequality in Eq. (47) at x = sk,ik : Gk,ik
Λ−Fk,ik

(sk,ik
)

Fk,ik
(sk,ik

)+sk,ik

sk,i =
Gk,ik

Λ

sk,ik

sk,i ≤ Gk,iΛ, where the last inequality holds since
ik = argmaxi∈{1,...,Ik}

sk,i

Gk,i
.

APPENDIX C
PROOF OF LEMMA 5

We need to show that for any k ∈ {1, . . . ,K}, the
function x 7→ Qk,Λ(x) defined by Eq. (35) is increas-
ing on

î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ó

for any Λ ≥ 0. For that
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sake, we first prove that X 7→ Xfk,i(X) is increasing
on
î
sk,i, F

−1
k,i (Gk,iΛ)

ó
for any i ∈ {1, . . . , Ik}. Indeed,

one can show after some manipulations that (Xfk,i(X))
′ =

fk,i(X)
Fk,i(X)+X

Fk,i(X), so that the derivative of X 7→ Xfk,i(X) is

positive on
Ä
sk,i, F

−1
k,i (Gk,iΛ)

ó
due to Lemma 3. The next

step is to note by referring to Eq. (34) that x 7→ Xk,i,Λ(x)

is increasing on
î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ó

for any Λ ≥ 0 and

that the image of
î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ó

w.r.t. this function

is
î
sk,i, F

−1
k,i (Gk,iΛ)

ó
. It follows that Qk,Λ(x) as defined in

Eq. (35) is increasing on
î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ó
. There is

hence at most one solution on the latter interval to Eq. (37)
i.e., to equation Qk,Λ(x) = Q

(0)
k . This solution exists if and

only if

Qk,Λ(sk,ik) ≤ Q
(0)
k & Qk,Λ

Ä
F−1k,ik

(Gk,ikΛ)
ä
≥ Q(0)

k .
(48)

Moreover, this solution x satisfies
η
(0)

k,ik

mk,ik
Rk,ik

Gk,ik

xfk,ik(x) ≤
Q

(0)
k so that it is bounded ∀Λ ≥ 0. Now note that Λ 7→

Qk,Λ
Ä
F−1k,ik

(Gk,ikΛ)
ä

is increasing on R+ and that it in-

creases from Qk,Λ(sk,ik) to +∞. As Qk,Λ(sk,ik) ≤ Q
(0)
k , there

exists a unique Λ(0)
k in R+ such that Qk,Λ

Ä
F−1k,ik

(Gk,ikΛ)
ä
=

Q
(0)
k . Note that the inequality Λ ≥ Λ

(0)
k is equivalent to

the second inequality in Eq. (48) due to the monotonicity
of function Λ 7→ Qk,Λ

Ä
F−1k,ik

(Gk,ikΛ)
ä

. We now want to
establish a condition that does not involve Λ for the first
inequality in Eq. (48) to hold. To that end, we note that Λ→
Xk,i,Λ(sk,ik) is increasing on R+ as Xk,i,Λ(sk,ik) is equal to
the unique solution in variable X on

î
sk,i, F

−1
k,i (Gk,iΛ)

ó
to

the equation
(
Gk,ik +

sk,ik

Λ

)
Fk,i(X) + Gk,ikX = sk,ikGk,i.

We can show by standard convergence arguments that the
increasing function Λ 7→ Xk,i,Λ(sk,ik) is continuous on R+

so that limΛ→+∞ Xk,i,Λ(sk,ik) = Xk,i,∞(sk,ik), Xk,i,∞(sk,ik)
being the unique solution on [sk,i,+∞] to the equation
Gk,ikFk,i(X) + Gk,ikX = sk,ikGk,i. It follows that ∀Λ ≥ 0,
Xk,i,Λ(sk,ik) ≤ Xk,i,∞(sk,ik) leading to:

Qk,Λ(sk,ik) =

Ik∑
i=1

η
(0)
k,i

mk,iRk,iGk,i
Xk,i,Λ(sk,ik)fk,i (Xk,i,Λ(sk,ik)) ≤

Ik∑
i=1

η
(0)
k,i

mk,iRk,iGk,i
Xk,i,∞(sk,ik)fk,i (Xk,i,∞(sk,ik))

def
=

Qk,∞(sk,ik) .

(49)

We thus conclude that
¶
Qk,∞(sk,ik) ≤ Q

(0)
k

©
implies¶

Qk,Λ(sk,ik) ≤ Q
(0)
k ,∀Λ ≥ 0

©
. In other words, Eq (36) im-

plies Eq. (48). This concludes the proof of Lemma 5.

APPENDIX D
PROOF OF THEOREM 1

We first prove that Γ (Λ) is continuous on R+. To
that end, note that for any link (k, i) and for any x ∈î
sk,ik , F

−1
k,ik

(Gk,ikΛ)
ä

, function Λ 7→ Xk,i,Λ(x) is continuous
on R+ by standard convergence arguments applied to Eq. (34).

Similar arguments can be used to prove that Ek,ik(Λ) defined
by Eq. (38) is continuous on [0, Λ

(0)
k ) and on (Λ

(0)
k ,+∞),

where Λ
(0)
k is defined in Lemma 5. We now show that it

is continuous at Λ = Λ
(0)
k . On one hand, it is clear from

Eq. (38) that lim
Λ↗Λ(0)

k

Gk,ikEk,ik(Λ) = F−1k,ik

Ä
Gk,ikΛ

(0)
k

ä
.

On the other hand, continuity of Λ 7→ Xk,i,Λ(x) can be used in
Eq. (36) to show that lim

Λ↘Λ(0)

k

Gk,ikEk,ik(Λ) is the unique

solution on
î
sk,ik , F

−1
k,ik

Ä
Gk,ikΛ

(0)
k

äó
to

Ik∑
i=1

η
(0)
k,i

mk,iRk,iGk,i
X
k,i,Λ

(0)

k

(x)fk,i

(
X
k,i,Λ

(0)

k

(x)
)
= Q

(0)
k .

(50)
Now by definition of Λ(0)

k (see Appendix C) we have

Ik∑
i=1

η
(0)
k,i

mk,iRk,iGk,i
X
k,i,Λ

(0)

k

Ä
F−1k,ik

Ä
Gk,ikΛ

(0)
k

ää
× fk,i

(
X
k,i,Λ

(0)

k

Ä
F−1k,ik

Ä
Gk,ikΛ

(0)
k

ää)
= Q

(0)
k .

(51)

Comparing Eqs. (50) and (51) and referring to the properties of
functions x 7→ Xk,i,Λ(x) and X 7→ Xfk,i(X) in Appendix C,
we get lim

Λ↘Λ(0)

k

Gk,ikEk,ik(Λ) = F−1k,ik

Ä
Gk,ikΛ

(0)
k

ä
=

lim
Λ↗Λ(0)

k

Gk,ikEk,ik(Λ). Now define kj (j ∈ {1, . . . ,K}) as
a one-to-one mapping from {1, . . . ,K} on itself that results
in a nondecreasing ordering of the values {Λ(0)

k }1≤k≤K i.e.,
Λ
(0)
k1
≤ . . . ≤ Λ(0)

kK
. Note that the subset C(Λ) does not change

as Λ changes inside any interval of the form
î
Λ
(0)
kj
, Λ

(0)
kj+1

ä
∀j ∈ {1, . . . ,K − 1}. Combining this with the fact that
functions fk,i(x), Fk,i(x) and Ek,ik(Λ) are continuous, we get
that Γ (Λ) is continuous on any interval

î
Λ
(0)
kj
, Λ

(0)
kj+1

ä
. Finally,

the continuity of Γ (Λ) at {Λ(0)
k }k=1...K is a direct result of

the fact that lim
Λ→Λ(0)

k

Gk,ikE
(0)
k,ik

(Λ) = F−1k,ik

Ä
Gk,ikΛ

(0)
k

ä
.

The second step is to prove that limΛ→+∞ Γ (Λ) = Γ∞,
where Γ∞ is defined in Assumption 1. This
can be done in a straightforward manner using
standard convergence arguments applied to Λ 7→∑K
k=1

∑Ik
i=1

η
(0)

k,i

mk,iRk,i
fk,i (Xk,i,Λ (Gk,ikEk,ik(Λ))). Now

recall that Γ∞ ≤ 1 provided that Assumption 1 is satisfied.
As a result, we conclude that one of the following two cases
holds.

Either Γ (0) ≤ 1, then the value of the Lagrange multiplier
associated with constraint (14c) is λ = 0. Consequently, the
subset of nodes with active transmit power constraints is C(0).
This means that for any k ∈ C(0), the optimal parameters
(Ek,ik , γk,ik) of the reference link ik can be obtained by
first finding the unique solution to Eq. (37) as dictated by
Lemma 5. The resource allocation parameters (Ek,i, γk,i) of
the other links of node k ∈ C(0) are obtained respectively by
Eq. (28) and Eq. (29) due to Lemma 4. As for nodes k ∈ C(0),

Ek,i =
1

Gk,i
F−1k,i (0) and γk,i =

η
(0)

k,i

mk,iRk,i
fk,i(F

−1
k,i (0)) due to

Eq. (31). Else, Γ (0) > 1. Since Γ is continuous and Γ∞ ≤ 1,
∃λ > 0 s.t. Γ (λ) = 1. In this case, the value of the multiplier
associated with constraint (14c) is λ. Therefore, for each
k ∈ C(λ), parameters (Ek,ik , γk,ik) are obtained by solving
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Eq. (37) (due to Lemma 5) and (Ek,i, γk,i)i∈{1,...,Ik}\{ik}
are given by Eqs. (28) and (29) (due to Lemma 4). As
for k ∈ C(λ), parameters (Ek,i, γk,i)i=1...Ik are given by
Eqs. (31).

APPENDIX E
BEHAVIOR OF FUNCTION Γ̃ (Λ) ON R+:

Let k′ ∈ {1, . . . ,K ′} be used to index the K ′ links
of the network. Define k′j as a one-to-one mapping from
{1, . . . ,K ′} on itself that results in a nondecreasing ordering
of the values {Λ(0)

k′ }1≤k′≤K′ defined by Eq. (41) i.e., Λ(0)
k′1
≤

. . . ≤ Λ
(0)
k′
K′

. Due to Eq. (42), subsets C̃(Λ) do not change

as Λ changes within any interval of the form
[
Λ
(0)
k′
j
, Λ

(0)
k′
j+1

)
∀1 ≤ j ≤ K ′− 1. The sum

∑
k′∈C̃(Λ) γ

(0)
k′ is thus constant on

any such interval. Next,
∑
k′∈C̃(Λ)

η
(0)

k′
mk′Rk′

fk′
(
F−1k′ (Gk′Λ)

)
is

continuous and decreasing on any interval [Λ(0)
k′
j
, Λ

(0)
k′
j+1

) since

fk′ is decreasing and F−1k′ is increasing on R∗+ and both are
continuous. Therefore, function Γ̃ (Λ) is piecewise continuous
decreasing on

[
0, Λ

(0)
k′
K′

)
. Moreover, it is continuous at the

points Λ(0)
k′1
, . . . , Λ

(0)
k′
K′

as a direct result of the continuity of

function Γ (Λ). Finally, Γ̃ (Λ) is constant over
[
Λ
(0)
k′
K′
,+∞

)
since C̃(Λ) = ∅ for any Λ ≥ Λ(0)

k′
K′

. Putting all pieces together,

we get that Γ̃ is continuous decreasing on R+.
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