

Next: About This Course Up: Multimedia Module No: CM0340 Previous: Multimedia
Module No: CM0340

Introduction to Multimedia

● About This Course
❍ Aims of Module
❍ Objectives of Module
❍ Syllabus Outline
❍ Recommended Course Books

● Introduction
❍ History of Multimedia Systems
❍ Multimedia/Hypermedia

■ What is Multimedia?
■ What is HyperText and HyperMedia?

❍ Multimedia Systems
■ Characteristics of a Multimedia System
■ Challenges for Multimedia Systems
■ Desirable Features for a Multimedia System
■ Components of a Multimedia System

❍ Applications
❍ Trends in Multimedia
❍ Further Reading/Exploration

Dave Marshall
10/4/2001

Next: Aims of Module Up: Introduction to Multimedia Previous: Introduction to
Multimedia

About This Course

● Aims of Module
● Objectives of Module
● Syllabus Outline
● Recommended Course Books

Dave Marshall
10/4/2001

Next: Objectives of Module Up: About This Course Previous: About This Course

Aims of Module
To give students a broad grounding in issue surrounding multimedia, including the role
of and design of multimedia Systems which incorporate digital audio, graphics and
video, underlying concepts and representations of sound, pictures and video, data
compression and transmission, integration of media, multimedia authoring, and delivery
of multimedia.

Dave Marshall
10/4/2001

Next: Syllabus Outline Up: About This Course Previous: Aims of Module

Objectives of Module
Students should be able to:

● Understand the relevance and underlying infrastructure of the multimedia
systems.

● Understand core multimedia technologies and standards (Digital Audio,
Graphics, Video, VR, data transmission/compression)

● Be aware of factors involved in multimedia systems performance, integration and
evaluation

Dave Marshall
10/4/2001

Next: Recommended Course Books Up: About This Course Previous: Objectives of
Module

Syllabus Outline
Topics in the module include the following:

1.
Introduction: Multimedia applications and requirements (e.g., overview of
multimedia systems, video-on-demand, interactive television, video
conferencing, hypermedia courseware, groupware, World Wide Web, and digital
libraries).

2.
Audio/Video fundamentals including analog and digital representations, human
perception, and audio/video equipment, applications.

3.
Audio and video compression including perceptual transform coders for
images/video (e.g., JPEG, MPEG, H.263, etc.), scalable coders (e.g., pyramid
coders), and perceptual audio encoders. Application and performance comparison
of various coding algorithms including hardware/software trade-offs. Image and
video processing applications and algorithms.

4.
Multimedia Programming Frameworks: Java for Quicktime, Java Media
Framework

Dave Marshall
10/4/2001

Next: Introduction Up: About This Course Previous: Syllabus Outline

Recommended Course Books
The following book is the core text for this module:

● Multimedia Communications: Applications, Networks, Protocols and Standards,
Fred Halsall, Addison Wesley, 2000 (ISBN 0-201-39818-4)

OR
● Networked Multimedia Systems, Raghavan and Tripathi, Prentice Hall, (ISBN 0-

13-210642)

The following books are highly recommended reading:

● Hypermedia and the Web: An Engineering Approach, D. Lowe and W. Hall, J.
Wiley and Sons, 1999 (ISBN 0-471-98312-8).

● Multimedia Systems, J.F.K, Buford, ACM Press, 1994 (ISBN 0-201-53258-1).
● Understanding Networked Multimedia, Fluckiger, Prentice Hall, (ISBN 0-13-

190992-4)
● Design for Multimedia Learning, Boyle, Prentice Hall, (ISBN 0-13-242215-8)
● Distributed Multimedia:Technologies, Applications, and Opportunities in the

Digital Information Industry (1st Edition) P.W. Agnew and A.S. Kellerman ,
Addison Wesley, 1996 (ISBN 0-201-76536-5)

● Multimedia Communication, Sloane, McGraw Hill, (ISBN 0-077092228)
● Virtual Reality Systems, J. Vince, Addison Wesley, 1995 (ISBN 0-201-87687-6)
● Encyclopedia of Graphics File Formats, Second Edition by James D. Murray and

William vanRyper, O'Reilly & Associates, 1996 (ISBN: 1-56592-161-5)

The following provide good reference material for parts of the module:

Multimedia Systems

● Hyperwave:The Next Generation Web Solution, H. Maurer, Addison Wesley,
1996 (ISBn 0-201-40346).

Digital Audio

● A programmer's Guide to Sound, T. Kientzle, Addison Wesley, 1997 (ISBN 0-
201-41972-6)

● Audio on the Web -- The official IUMA Guide, Patterson and Melcher, Peachpit

Press.
● The Art of Digital Audio, Watkinson, Focal/Butterworth-Heinmann.
● Synthesiser Basics, GPI Publications.
● Signal Processing: Principles and Applications, Brook and Wynne, Hodder and

Stoughton.
● Digital Signal Processing, Oppenheim and Schafer, Prentice Hall.

Digital Imaging/Graphics/Video

● Digital video processing, A.M. Tekalp, Prentice Hall PTR, 1995.
● Intro. to Computer Pictures, http://ac.dal.ca:80/ dong/image.htm from Allison

Zhang at the School of Library and Information Studies, Dalhousie University,
Halifax, N.S., Canada

● http://www.cica.indiana.edu/graphics/image.formats.html contains a
comprehensive list of various graphics/image file formats.

● Encyclopedia of Graphics File Formats, Second Edition by James D. Murray
and William vanRyper, 1996, O'Reilly & Associates.

Data Compression

● The Data Compression Book, Mark Nelson,M&T Books, 1995.
● Introduction to Data Compression, Khalid Sayood, Morgan Kaufmann, 1996.
● G.K. Wallace, The JPEG Still Picture Compression Standard

● CCITT, Recommendation H.261

● D. Le Gall, MPEG: A Video Compression Standard for Multimedia Applications

● K. Patel, et. al., Performance of a Software MPEG Video Decoder

● P. Cosman, et. al., Using Vector Quantization for Image Processing

Animation

● Animation on the Web, S. Wagstaff, Peachpit Press, 1999 (ISBN 0-201-69687)

Multimedia Authoring

● Creating and Designing Multimedia with Director, P. Petrik and B. Dubrovsky,
Prentice Hall, 1997 (ISBN 0-13-528985-8)

User Interface Design Issues

● Human Computer Interaction, A. Dix et al, Printice Hall, 1998 (ISBN 0-13-

239864)
● Designing the User Interface , B. Schneiderman, Addison Wesley, 1998 (ISBN 0-

201-694497)
● Human Computer Interaction, Preece et al, Addison Wesley, 1994, 0-201-62769-

8)

Multimedia Databases

● Multimedia Database Management Systems, B Prbhakaran, Kluwer, 1997, (ISBN
0-7923-9784-3).

Internet/WWW related Books

Teach Yourself Web Publishing with HTML 3.2 in 14 Days, Laura Lemay,
Sams.Net Publishing.

The Internet Unleashed, J. Ellsworth, B. Baron, et al., Sams.Net Publishing

WWW, Internet in General

● The Internet Complete Reference(2nd Ed.), H. Hahn, McGraw-Hill
● Webmaster in a Nutshell, S. Spainhour and V. Quercia, O'Reilly and

Associates Inc.
● Every Student's Guide to the World Wide Web, K. Pitter and R. Minato,

McGraw Hill
● Every Student's Guide to the World Wide Web (Macintosh Version), K.

Pitter and R. Minato, McGraw Hill

Internet -- Theory and Practice

● Demystifying TCP/IP, E. Taylor, Wordware Publishing Inc.

HTML BOOKS:

● HTML Sourcebook, I.S. Graham, Wiley and Sons
● HTML: The Definitive Guide, C. Musciano and B. Kennedy, O'Reilly and

Associates Inc.

CGI Scripts / Perl Programming BOOKS:

● Teach Yourself CGI Programming with Perl 5 in a Week, E. Herrmann,
Sams.Net

● CGI Developer's Guide, E.E. Kim, Sams.Net
● CGI Programming on the World Wide Web, S. Gundavaram, O'Reilly and

Associates Inc.
● Learning Perl, R.L. Schwartz, O'Reilly and Associates Inc.
● Programming Perl, L. Wall, T. Christiansen and R.L. Schwartz, O'Reilly and

Associates Inc.
● Perl 5 Desktop Reference, J. Vromans, O'Reilly and Associates Inc.

WWW Design Issues BOOKS:

● Designing with Style Sheets, Tables, and Frames, M.E. Holzschlag, Sams.Net
● HTML Style Sheets Quick Reference, R. Falla, Que
● 10 Minute Guide to HTML Style Sheets, C. Zacker, Que
● Teach Yourself Great Web Design in a Week, A. Vasquez-Peterson and P.

Chow, Sams.Net
● Designing for the Web, Jennifer Niederst, O'Reilly and Associates
● GIF Animation Studio: Animating Your Web Site, R. Koman, O'Reilly and

Associates

A comprehensive guide to all Internet related books is available at

the Unofficial Internet Book List WWW site (URL: http://www.savetz.com/booklist/)

Unofficial Internet Book List

Next: Introduction Up: About This Course Previous: Syllabus Outline
Dave Marshall
10/4/2001

http://www.savetz.com/booklist/

Next: History of Multimedia Systems Up: Introduction to Multimedia Previous:
Recommended Course Books

Introduction

● History of Multimedia Systems
● Multimedia/Hypermedia

❍ What is Multimedia?
❍ What is HyperText and HyperMedia?

● Multimedia Systems
❍ Characteristics of a Multimedia System
❍ Challenges for Multimedia Systems
❍ Desirable Features for a Multimedia System
❍ Components of a Multimedia System

● Applications
● Trends in Multimedia
● Further Reading/Exploration

Dave Marshall
10/4/2001

Next: Multimedia/Hypermedia Up: Introduction Previous: Introduction

History of Multimedia Systems
Newspaper were perhaps the first mass communication medium to employ Multimedia --
they used mostly text, graphics, and images.

In 1895, Gugliemo Marconi sent his first wireless radio transmission at Pontecchio,
Italy. A few years later (in 1901) he detected radio waves beamed across the Atlantic.
Initially invented for telegraph, radio is now a major medium for audio broadcasting.

Television was the new media for the 20th century. It brings the video and has since
changed the world of mass communications.

Some of the important events in relation to Multimedia in Computing include:

● 1945 - Bush wrote about Memex
● 1967 - Negroponte formed the Architecture Machine Group at MIT
● 1969 - Nelson & Van Dam hypertext editor at Brown
● Birth of The Internet
● 1971 - Email
● 1976 - Architecture Machine Group proposal to DARPA: Multiple Media
● 1980 - Lippman & Mohl: Aspen Movie Map
● 1983 - Backer: Electronic Book
● 1985 - Negroponte, Wiesner: opened MIT Media Lab
● 1989 - Tim Berners-Lee proposed the World Wide Web to CERN (European

Council for Nuclear Research)
● 1990 - K. Hooper Woolsey, Apple Multimedia Lab, 100 people, educ.
● 1991 - Apple Multimedia Lab: Visual Almanac, Classroom MM Kiosk
● 1992 - the first M-bone audio multicast on the Net
● 1993 - U. Illinois National Center for Supercomputing Applications: NCSA

Mosaic
● 1994 - Jim Clark and Marc Andreesen: Netscape
● 1995 - JAVA for platform-independent application development. Duke is the first

applet.
● 1996 - Microsoft, Internet Explorer.

Next: Multimedia/Hypermedia Up: Introduction Previous: Introduction
Dave Marshall

Next: What is Multimedia? Up: Introduction Previous: History of Multimedia Systems

Multimedia/Hypermedia

● What is Multimedia?
● What is HyperText and HyperMedia?

Dave Marshall
10/4/2001

Next: What is HyperText and Up: Multimedia/Hypermedia Previous:
Multimedia/Hypermedia

What is Multimedia?

Multimedia can have a many definitions these include:

Multimedia means that computer information can be represented through audio, video,
and animation in addition to traditional media (i.e., text, graphics drawings, images).

A good general definition is:

Multimedia is the field concerned with the computer-controlled integration of text,
graphics, drawings, still and moving images (Video), animation, audio, and any other
media where every type of information can be represented, stored, transmitted and
processed digitally.

A Multimedia Application is an Application which uses a collection of multiple media
sources e.g. text, graphics, images, sound/audio, animation and/or video.

Hypermedia can be considered as one of the multimedia applications.

Dave Marshall
10/4/2001

Next: Multimedia Systems Up: Multimedia/Hypermedia Previous: What is
Multimedia?

What is HyperText and HyperMedia?

Hypertext is a text which contains links to other texts. The term was invented by Ted
Nelson around 1965.

Hypertext is therefore usually non-linear (as indicated below).

Definition of Hypertext

HyperMedia is not constrained to be text-based. It can include other media, e.g.,
graphics, images, and especially the continuous media - sound and video. Apparently,
Ted Nelson was also the first to use this term.

http://www.cs.cf.ac.uk/Dave/Multimedia/hypertext.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/htdefn.gif

Definition of HyperMedia

The World Wide Web (WWW) is the best example of hypermedia applications.

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/hypermedia.gif

Next: Characteristics of a Multimedia Up: Introduction Previous: What is HyperText
and

Multimedia Systems
A Multimedia System is a system capable of processing multimedia data and
applications.

A Multimedia System is characterised by the processing, storage, generation,
manipulation and rendition of Multimedia information.

● Characteristics of a Multimedia System
● Challenges for Multimedia Systems
● Desirable Features for a Multimedia System
● Components of a Multimedia System

Dave Marshall
10/4/2001

Next: Challenges for Multimedia Systems Up: Multimedia Systems Previous:
Multimedia Systems

Characteristics of a Multimedia System

A Multimedia system has four basic characteristics:

● Multimedia systems must be computer controlled.
● Multimedia systems are integrated.
● The information they handle must be represented digitally.
● The interface to the final presentation of media is usually interactive.

Dave Marshall
10/4/2001

Next: Desirable Features for a Up: Multimedia Systems Previous: Characteristics of a
Multimedia

Challenges for Multimedia Systems

Supporting multimedia applications over a computer network renders the application
distributed. This will involve many special computing techniques -- discussed later.

Multimedia systems may have to render a variety of media at the same instant -- a
distinction from normal applications. There is a temporal relationship between many
forms of media (e.g. Video and Audio. There 2 are forms of problems here

● Sequencing within the media -- playing frames in correct order/time frame in
video

● Synchronisation -- inter-media scheduling (e.g. Video and Audio). Lip
synchronisation is clearly important for humans to watch playback of video and
audio and even animation and audio. Ever tried watching an out of (lip) sync film
for a long time?

The key issues multimedia systems need to deal with here are:

● How to represent and store temporal information.
● How to strictly maintain the temporal relationships on play back/retrieval
● What process are involved in the above.

Data has to represented digitally so many initial source of data needs to be digitise --
translated from analog source to digital representation. The will involve scanning
(graphics, still images), sampling (audio/video) although digital cameras now exist for
direct scene to digital capture of images and video.

The data is large several Mb easily for audio and video -- therefore storage, transfer
(bandwidth) and processing overheads are high. Data compression techniques very
common.

Next: Desirable Features for a Up: Multimedia Systems Previous: Characteristics of a
Multimedia
Dave Marshall
10/4/2001

Next: Components of a Multimedia Up: Multimedia Systems Previous: Challenges for
Multimedia Systems

Desirable Features for a Multimedia System

Given the above challenges the following feature a desirable (if not a prerequisite) for a
Multimedia System:

Very High Processing Power
-- needed to deal with large data processing and real time delivery of media.
Special hardware commonplace.

Multimedia Capable File System
-- needed to deliver real-time media -- e.g. Video/Audio Streaming. Special
Hardware/Software needed e.g RAID technology.

Data Representations/File Formats that support multimedia
-- Data representations/file formats should be easy to handle yet allow for
compression/decompression in real-time.

Efficient and High I/O
-- input and output to the file subsystem needs to be efficient and fast. Needs to
allow for real-time recording as well as playback of data. e.g. Direct to Disk
recording systems.

Special Operating System
-- to allow access to file system and process data efficiently and quickly. Needs
to support direct transfers to disk, real-time scheduling, fast interrupt processing,
I/O streaming etc.

Storage and Memory
-- large storage units (of the order of 50 -100 Gb or more) and large memory (50 -
100 Mb or more). Large Caches also required and frequently of Level 2 and 3
hierarchy for efficient management.

Network Support
-- Client-server systems common as distributed systems common.

Software Tools
-- user friendly tools needed to handle media, design and develop applications,
deliver media.

Next: Components of a Multimedia Up: Multimedia Systems Previous: Challenges for
Multimedia Systems
Dave Marshall
10/4/2001

Next: Applications Up: Multimedia Systems Previous: Desirable Features for a

Components of a Multimedia System

Now let us consider the Components (Hardware and Software) required for a
multimedia system:

Capture devices
-- Video Camera, Video Recorder, Audio Microphone, Keyboards, mice,
graphics tablets, 3D input devices, tactile sensors, VR devices.
Digitising/Sampling Hardware

Storage Devices
-- Hard disks, CD-ROMs, Jaz/Zip drives, DVD, etc

Communication Networks
-- Ethernet, Token Ring, FDDI, ATM, Intranets, Internets.

Computer Systems
-- Multimedia Desktop machines, Workstations, MPEG/VIDEO/DSP Hardware

Display Devices
-- CD-quality speakers, HDTV,SVGA, Hi-Res monitors, Colour printers etc.

Dave Marshall
10/4/2001

Next: Trends in Multimedia Up: Introduction Previous: Components of a Multimedia

Applications
Examples of Multimedia Applications include:

● World Wide Web
● Hypermedia courseware
● Video conferencing
● Video-on-demand
● Interactive TV
● Groupware
● Home shopping
● Games
● Virtual reality
● Digital video editing and production systems
● Multimedia Database systems

Dave Marshall
10/4/2001

Next: Further Reading/Exploration Up: Introduction Previous: Applications

Trends in Multimedia
Current big applications areas in Multimedia include:

World Wide Web
-- Hypermedia systems -- embrace nearly all multimedia technologies and
application areas. Ever increasing popularity.

MBone
-- Multicast Backbone: Equivalent of conventional TV and Radio on the Internet.

Enabling Technologies
-- developing at a rapid rate to support ever increasing need for Multimedia.
Carrier, Switching, Protocol, Application, Coding/Compression, Database,
Processing, and System Integration Technologies at the forefront of this.

Dave Marshall
10/4/2001

Next: Multimedia Authoring Up: Introduction Previous: Trends in Multimedia

Further Reading/Exploration
Try some good sources for locating internet multimedia examples on the Internet

For example:

● WebMuseum, Paris
● Audio Net
● BBC Web Site
● Index of Multimedia Information Sources

Dave Marshall
10/4/2001

http://metalab.unc.edu/wm/
http://www.audionet.com/
http://www.bbc.co.uk/
http://viswiz.gmd.de/MultimediaInfo/

Next: Multimedia Authoring:Systems and Applications Up: Multimedia Module No:
CM0340 Previous: Further Reading/Exploration

Multimedia Authoring

● Multimedia Authoring:Systems and Applications
❍ What is an Authoring System?

■ Why should you use an authoring system?
❍ Multimedia Authoring Paradigms
❍ Multimedia Programming vs Multimedia Authoring
❍ Issues in Multimedia Applications Design

■ Content Design
■ 2.1.1 Scripting (writing)
■ 2.1.2 Graphics (illustrating)
■ 2.1.3 Animation (wiggling)
■ 2.1.4 Audio (hearing)
■ 2.1.5 Interactivity (interacting)

■ Technical Design
■ Visual Design

❍ Storyboarding
❍ Overview of Multimedia Software Tools

■ Digital Audio
■ Music Sequencing and Notation
■ Image/Graphics Editing
■ Image/Graphics Editing
■ Animation
■ Multimedia Authoring

❍ Further Information
● Multimedia Programming:Scripting (Lingo)

❍ Director programming/Lingo Scripting
❍ Director Basics
❍ Overview and Definitions
❍ The Score and the Stage
❍ Using The Score
❍ The playback head

❍ Channels
❍ Frames
❍ Sprites
❍ Cast members
❍ Lingo
❍ Markers
❍ Editing Frames
❍ Identifying Frames with Lingo
❍ Lingo Scripting
❍ When does Lingo run?
❍ The Lingo language
❍ Dot Syntax
❍ Parentheses
❍ Character spaces
❍ Comments
❍ Optional keywords and abbreviated commands
❍ Literal Values
❍ Identifying cast members and casts
❍ Lingo operators
❍ Lingo Lists
❍ Types of Scripts
❍ Messages and Events
❍ Director Example 1: Simple Animation
❍ Director Example 2:Importing media
❍ Director Example 3:Simple Lingo Scripting
❍ Director Example 4:Controlling Navigation with Lingo

● Multimedia Programming:Tagging (SMIL)
❍ What it is SMIL?

■ SMIL support
❍ Running SMIL Applications

■ Using Quicktime
■ Using RealPlayer G2
■ Using the SOJA applet
■ another SMILE viewer:GRINS

❍ Let us begin to SMIL -- SMIL Authoring
❍ SMIL Syntax Overview

■ Basic Layout
■ SMIL Layout

■ Window settings
■ Positioning Media

■ The Region tag

■ The img tag
■ Relative Position Example
■ Overlaying Regions
■ Support for Other Media

❍ fitting media to regions
■ Synchronisation

■ Adding a duration of time to media -- dur
■ Delaying Media -- the begin tag
■ Sequencing Media -- the seq tag
■ Parallel Media -- the par tag
■ Synchronisation Example 1: Planets Soundtrack
■ Synchronisation Example 2: Slides 'N' Sound

■ SMIL Events
■ begin events
■ The switch Tag

❍ SMIL ON

Dave Marshall
10/4/2001

Next: What is an Authoring Up: Multimedia Authoring Previous: Multimedia
Authoring

Multimedia Authoring:Systems
and Applications

● What is an Authoring System?
❍ Why should you use an authoring system?

● Multimedia Authoring Paradigms
● Multimedia Programming vs Multimedia Authoring
● Issues in Multimedia Applications Design

❍ Content Design
■ 2.1.1 Scripting (writing)

■ Rules for good writing:
■ 2.1.2 Graphics (illustrating)

■ Graphics Styles
■ 2.1.3 Animation (wiggling)
■ 2.1.4 Audio (hearing)

■ Types of Audio in Multimedia Applications:
■ 2.1.5 Interactivity (interacting)

■ Types of Interactive Multimedia Applications:
❍ Technical Design
❍ Visual Design

● Storyboarding
● Overview of Multimedia Software Tools

❍ Digital Audio
❍ Music Sequencing and Notation
❍ Image/Graphics Editing
❍ Image/Graphics Editing
❍ Animation
❍ Multimedia Authoring

● Further Information

Next: Why should you use Up: Multimedia Authoring:Systems and Applications
Previous: Multimedia Authoring:Systems and Applications

What is an Authoring System?
An Authoring System is a program which has pre-programmed elements for the
development of interactive multimedia software titles. Authoring systems vary widely in
orientation, capabilities, and learning curve. There is no such thing (at this time) as a
completely point-and-click automated authoring system; some knowledge of heuristic
thinking and algorithm design is necessary. Whether you realize it or not, authoring is
actually just a speeded-up form of programming; you don't need to know the intricacies
of a programming language, or worse, an API, but you do need to understand how
programs work.

● Why should you use an authoring system?

Dave Marshall
10/4/2001

Next: Multimedia Authoring Paradigms Up: What is an Authoring Previous: What is
an Authoring

Why should you use an authoring system?

It generally takes about 1/8th the time to develop an interactive multimedia project, such
as a CBT (Computer Based Training) program, in an authoring system as opposed to
programming it in compiled code. This means 1/8 the cost of programmer time and
likely increased re-use of code (assuming that you pass this project's code to the next
CBT project, and they use a similar or identical authoring system). However, the content
creation (graphics, text, video, audio, animation, etc.) is not generally affected by the
choice of an authoring system; any production time gains here result from accelerated
prototyping, not from the choice of an authoring system over a compiled language.

Dave Marshall
10/4/2001

Next: Multimedia Programming vs Multimedia Up: Multimedia Authoring:Systems and Applications Previous: Why
should you use

Multimedia Authoring Paradigms
The authoring paradigm, or authoring metaphor, is the methodology by which the authoring system accomplishes its
task.

There are various paradigms, including:

Scripting Language
-- the Scripting paradigm is the authoring method closest in form to traditional programming. The paradigm is
that of a programming language, which specifies (by filename) multimedia elements, sequencing, hotspots,
synchronization, etc. A powerful, object-oriented scripting language is usually the centerpiece of such a system;
in-program editing of elements (still graphics, video, audio, etc.) tends to be minimal or non-existent. Scripting
languages do vary; check out how much the language is object-based or object-oriented. The scripting paradigm
tends to be longer in development time (it takes longer to code an individual interaction), but generally more
powerful interactivity is possible. Since most Scripting languages are interpreted, instead of compiled, the
runtime speed gains over other authoring methods are minimal. The media handling can vary widely; check out
your system with your contributing package formats carefully. The Apple's HyperTalk for HyperCard,
Assymetrix's OpenScript for ToolBook and Lingo scripting language of Macromedia Director are examples of a
Multimedia scripting language.

Here is an example lingo script to jump to a frame

global gNavSprite

on exitFrame
 go the frame
 play sprite gNavSprite
end

Iconic/Flow Control
-- This tends to be the speediest (in development time) authoring style; it is best suited for rapid prototyping and
short-development time projects. Many of these tools are also optimized for developing Computer-Based
Training (CBT). The core of the paradigm is the Icon Palette, containing the possible functions/interactions of a
program, and the Flow Line, which shows the actual links between the icons. These programs tend to be the
slowest runtimes, because each interaction carries with it all of its possible permutations; the higher end
packages, such as Authorware (Fig. 2.1)or IconAuthor, are extremely powerful and suffer least from runtime
speed problems.

Macromedia Authorware Iconic/Flow Control Examples

Frame
-- The Frame paradigm is similar to the Iconic/Flow Control paradigm in that it usually incorporates an icon
palette; however, the links drawn between icons are conceptual and do not always represent the actual flow of
the program. This is a very fast development system, but requires a good auto-debugging function, as it is
visually un-debuggable. The best of these have bundled compiled-language scripting, such as Quest (whose
scripting language is C) or Apple Media Kit.

Card/Scripting
-- The Card/Scripting paradigm provides a great deal of power (via the incorporated scripting language) but
suffers from the index-card structure. It is excellently suited for Hypertext applications, and supremely suited for
navigation intensive (a la Cyan's "MYST" game) applications. Such programs are easily extensible via XCMDs
and DLLs; they are widely used for shareware applications. The best applications allow all objects (including
individual graphic elements) to be scripted; many entertainment applications are prototyped in a card/scripting
system prior to compiled-language coding.

Cast/Score/Scripting

http://www.cs.cf.ac.uk/Dave/Multimedia/authorware.gif

-- The Cast/Score/Scripting paradigm uses a music score as its primary authoring metaphor; the synchronous
elements are shown in various horizontal tracks with simultaneity shown via the vertical columns. The true
power of this metaphor lies in the ability to script the behavior of each of the cast members. The most popular
member of this paradigm is Director, which is used in the creation of many commercial applications. These
programs are best suited for animation-intensive or synchronized media applications; they are easily extensible
to handle other functions (such as hypertext) via XOBJs, XCMDs, and DLLs.

Macromedia Director uses this method and examples can be found in Figs 2.2-- 2.4

Macromedia Director Score Window

Macromedia Director Cast Window

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_score.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dir_cast.gif

Macromedia Director Script Window

Hierarchical Object
-- The Hierarchical Object paradigm uses a object metaphor (like OOP) which is visually represented by
embedded objects and iconic properties. Although the learning curve is non-trivial, the visual representation of
objects can make very complicated constructions possible.

Hypermedia Linkage
-- The Hypermedia Linkage paradigm is similar to the Frame paradigm in that it shows conceptual links between
elements; however, it lacks the Frame paradigm's visual linkage metaphor.

Tagging
-- The Tagging paradigm uses tags in text files (for instance, SGML/HTML, SMIL (Synchronised Media
Integration Language), VRML, 3DML and WinHelp) to link pages, provide interactivity and integrate
multimedia elements.

Next: Multimedia Programming vs Multimedia Up: Multimedia Authoring:Systems and Applications Previous: Why
should you use
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_script.gif

Next: Issues in Multimedia Applications Up: Multimedia Authoring:Systems and
Applications Previous: Multimedia Authoring Paradigms

Multimedia Programming vs
Multimedia Authoring
It should be noted that a distinction should be made between Programming and
Authoring.

Authoring involves the assembly and bringing togther of Multimedia with possiby high
level graphical interface design and some high level scripting.

Programming involves low level assembly and construction and control of Multimedia
and involves real languages like C and Java.

Later in this course will will study Java programming in Quicktime and the Java Media
Framework.

Quicktime may also be programmed in C.

Dave Marshall
10/4/2001

Next: Content Design Up: Multimedia Authoring:Systems and Applications Previous:
Multimedia Programming vs Multimedia

Issues in Multimedia Applications
Design
There are various issues in Multimedia authoring below we summarise issues involved
in Multimedia content and technical design.

● Content Design
❍ 2.1.1 Scripting (writing)

■ Rules for good writing:
❍ 2.1.2 Graphics (illustrating)

■ Graphics Styles
❍ 2.1.3 Animation (wiggling)
❍ 2.1.4 Audio (hearing)

■ Types of Audio in Multimedia Applications:
❍ 2.1.5 Interactivity (interacting)

■ Types of Interactive Multimedia Applications:
● Technical Design
● Visual Design

Dave Marshall
10/4/2001

Next: 2.1.1 Scripting (writing) Up: Issues in Multimedia Applications Previous: Issues
in Multimedia Applications

Content Design

Content design deals with:

● What to say, what vehicle to use.

"In multimedia, there are five ways to format and deliver your message. You can write
it, illustrate it, wiggle it, hear it, and interact with it."

● 2.1.1 Scripting (writing)
❍ Rules for good writing:

● 2.1.2 Graphics (illustrating)
❍ Graphics Styles

● 2.1.3 Animation (wiggling)
● 2.1.4 Audio (hearing)

❍ Types of Audio in Multimedia Applications:
● 2.1.5 Interactivity (interacting)

❍ Types of Interactive Multimedia Applications:

Dave Marshall
10/4/2001

Next: Rules for good writing: Up: Content Design Previous: Content Design

2.1.1 Scripting (writing)

● Rules for good writing:

Dave Marshall
10/4/2001

Next: 2.1.2 Graphics (illustrating) Up: 2.1.1 Scripting (writing) Previous: 2.1.1
Scripting (writing)

Rules for good writing:

1.
Understand your audience and correctly address them.

2.
Keep your writing as simple as possible. (e.g., write out the full message(s) first,
then shorten it.)

3.
Make sure technologies used complement each other.

Dave Marshall
10/4/2001

Next: Graphics Styles Up: Content Design Previous: Rules for good writing:

2.1.2 Graphics (illustrating)

● Make use of pictures to effectively deliver your messages.

● Create your own (draw, (color) scanner, PhotoCD, ...), or keep "copy files" of art
works. - "Cavemen did it first."

● Graphics Styles

Dave Marshall
10/4/2001

Next: 2.1.3 Animation (wiggling) Up: 2.1.2 Graphics (illustrating) Previous: 2.1.2
Graphics (illustrating)

Graphics Styles

● fonts

● colors

❍ pastels
❍ earth-colors
❍ metallic
❍ primary color
❍ neon color

Dave Marshall
10/4/2001

Next: 2.1.4 Audio (hearing) Up: Content Design Previous: Graphics Styles

2.1.3 Animation (wiggling)

1.
Types of Animation

❍ Character Animation - humanise an object

e.g., a toothbrush, a car, a coke bottle, etc.

Factors in choosing a character

■ Emotion - Is it happy, sad, funny, sloppy, ...?
■ Movement - Is it fast, slow, bumpy, ...?
■ Visual style - Is its color/texture consistent with the rest?
■ Copyright - "Don't use Mickey before checking with Walt."
■ Adequacy - e.g., Does it provide various poses (can't make a

broomstick sit!)

❍ Highlights and Sparkles

e.g., to pop a word in/out of the screen, to sparkle a logo -> to draw
attention

❍ Moving Text

e.g., put up one character at a time like a typewriter e.g., "pulsing" - the
word grows/shrinks (or changes color) a few times

Note: Do not slowly move entire line of text, they are not readable.
Instead, for example, slide the bullets in and out.

❍ Video - live video or digitized video

+: more powerful than still images

+: often easier to obtain than graphics animation

-: takes a lot of disk space

-: sometimes needs special hardware

2.
When to Animate

"A leaf doesn't flutter if the wind doesn't blow."Only animate when it has a
specific purpose

❍ Enhance emotional impact

e.g., dove softly flapping its wings -> peace

e.g., air bag explosion + dummy movements -> car crash.

❍ Make a point

e.g., show insertion of a memory chip onto the motherboard (much better
than a diagram) e.g., Microsoft Golf (instructional)

❍ Improve information delivery

e.g., "pulsing" words (in and out of screen) adds emphasis

❍ Indicate passage of time

e.g., clock/hourglass -> program still running e.g., animated text -> to
prompt for interaction/response

❍ Provide a transition to next subsection

■ Wipes - e.g., L-to-R, T-D, B-U, diagonal, iris round, center to
edge, etc.

■ Dissolve - the current image distorts into an unrecognizable form
before the next clear image appears, e.g., boxy dissolve, cross
dissolve, etc.

■ Fade - a metaphor for a complete change of scene

■ Cut - immediate change to next image, e.g., for making story
points using close-up ** Cuts are easy to detect in "video
segmentation"

Next: 2.1.4 Audio (hearing) Up: Content Design Previous: Graphics Styles
Dave Marshall
10/4/2001

Next: Types of Audio in Up: Content Design Previous: 2.1.3 Animation (wiggling)

2.1.4 Audio (hearing)

● Types of Audio in Multimedia Applications:

Dave Marshall
10/4/2001

Next: 2.1.5 Interactivity (interacting) Up: 2.1.4 Audio (hearing) Previous: 2.1.4 Audio
(hearing)

Types of Audio in Multimedia Applications:

1.
Music - set the mood of the presentation, enhance the emotion, illustrate points

2.
Sound effects - to make specific points, e.g., squeaky doors, explosions, wind, ...

3.
Narration - most direct message, often effective

Dave Marshall
10/4/2001

Next: Types of Interactive Multimedia Up: Content Design Previous: Types of Audio
in

2.1.5 Interactivity (interacting)

● interactive multimedia systems!

● people remember 70% of what they interact with (according to late 1980s study)

● Types of Interactive Multimedia Applications:

Dave Marshall
10/4/2001

Next: Technical Design Up: 2.1.5 Interactivity (interacting) Previous: 2.1.5
Interactivity (interacting)

Types of Interactive Multimedia Applications:

1.
Menu driven programs/presentations

- often a hierarchical structure (main menu, sub-menus, ...)

2.
Hypermedia

+: less structured, cross-links between subsections of the same subject -> non-
linear, quick access to information +: easier for introducing more multimedia
features, e.g., more interesting "buttons"

-: could sometimes get lost in navigating the hypermedia

3.
Simulations / Performance-dependent Simulations

- e.g., Games - SimCity, Flight Simulators

Dave Marshall
10/4/2001

Next: Visual Design Up: Issues in Multimedia Applications Previous: Types of
Interactive Multimedia

Technical Design

Technologicical factors may limit the ambition of your mutlimedia presentation:

● Technical parameters that affect the design and delivery of multimedia
applications

Video Mode Resolution Colors
 ---------- -------------- --------
 CGA 320 x 200 4
 MCGA 320 x 200 256
 EGA 640 x 350 16
 VGA 640 x 480 256
 S-VGA 1,024 x 768 $>$= 256
 S-VGA 1,280 x 1,024 $>$= 256
 .
 .
 .
 16-bit color --$>$ 65536 colors
 24-bit color --$>$ 16.7 million colors

1.
Video Mode and Computer Platform

PC <-> Macintosh

There are many "portable", "cross-platform" software and "run-time modules",
but many of them lose quality/performance during the translation.

2.
Memory and Disk Space Requirement

Rapid progress in hardware alleviates the problem, but software is too "greedy",
especially the multimedia ones.

3.
Delivery

❍ Live Presentation

Short checking list for hardware/software requirements:

■ type of graphics card
■ video memory (1 MB, 2 MB, 4 MB, etc.)
■ access time of hard disk (important for real-time video)
■ type of sound card (support for General MIDI)
■ audio-video software

❍ Delivery by diskette

-: Small in size, slow to install

❍ Delivery by CD-ROM

+: Large capacity -: Access time of CD-ROM drives is longer than hard-
disk drives

❍ Electronic Delivery (ftp, www, etc.)

- depends on baud rate, network connection, and monthly bill

Dave Marshall
10/4/2001

Next: Storyboarding Up: Issues in Multimedia Applications Previous: Technical
Design

Visual Design

Here we summarise factors that should be considers in the visual design of a multimedia
presentation:

1.
Themes and Styles

- A multimedia presentation should have a consistent theme/style, it should not
be disjointed and cluttered with multiple themes.

- The choice of theme/style depends on the styles and emotions of your audience.

Some Possible Themes:

❍ Cartoon theme

+: interesting / entertaining -: must be consistent with the character's
personality

❍ Traditional theme - straightforward

+: simple, often informative

-: not as interesting

❍ High tech theme - contemporary computer art work (morphing, texture
mapping, metal texture, explosions, ...)

+: attractive, easy to animate

❍ Technical theme - include blueprints, 3D models of the product, ... e.g.,
start with a drawing, then transformed into a rendered image.

+: shows adequate technical information

+: gives impression of solid design and construction

Color Schemes and Art Styles

❍ Natural and floral

(outdoor scenes, e.g., mountains, lakes, ...) -> getting back to nature

❍ Oil paints, watercolours, colored pencils, pastels.

- these art styles can be combined with e.g., cartoon or high tech themes

2.
Pace and Running length

A few guidelines:

❍ Allow a block of text to be slowly read twice.

❍ Transition time should be an indication of real-time.

■ dissolve - time delay, scene change
■ cut - two views of same scene at same time, or abrupt scene change

❍ Running length

■ self running presentation: 2-3 minutes
■ limited interaction: 5-6 minutes
■ complete analytical, hands-on demo: < 15 minutes
■ with questions, discussions: > 30 minutes

** build in breaks for long presentations

3.
Basic Layout

(a) Title (b) Action area (c) Narration (d) Dialog (e) Interactive controls

❍ make sure that the information delivery path in the layout is smooth, not
irregular/jumpy

❍ use headlines/subtitles, additional shapes, buttons, fonts, backgrounds and
textures to enhance the visual appearance.

Next: Storyboarding Up: Issues in Multimedia Applications Previous: Technical
Design
Dave Marshall
10/4/2001

Next: Overview of Multimedia Software Up: Multimedia Authoring:Systems and
Applications Previous: Visual Design

Storyboarding
The concept of storyboarding has been by animators and their like for many years.

Storyboarding is used to help plan the general organisation or content of a presentation
by recording and organizing ideas on index cards, or placed on board/wall. The
storyboard evolves as the media are collected and organised: new ideas and refinements
to the presentation are

Dave Marshall
10/4/2001

Next: Digital Audio Up: Multimedia Authoring:Systems and Applications Previous:
Storyboarding

Overview of Multimedia Software
Tools

● Digital Audio
● Music Sequencing and Notation
● Image/Graphics Editing
● Image/Graphics Editing
● Animation
● Multimedia Authoring

Dave Marshall
10/4/2001

Next: Music Sequencing and Notation Up: Overview of Multimedia Software Previous: Overview of Multimedia
Software

Digital Audio

Macromedia Soundedit -- Edits a variety of different format audio files, apply a variety of effects (Fig 2.5)

Macromedia Soundedit Main and Control Windows and Effects Menu

CoolEdit -- Edits a variety of different format audio files

Many Public domain tools on the Web.

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/soundedit.gif

Next: Image/Graphics Editing Up: Overview of Multimedia Software Previous: Digital Audio

Music Sequencing and Notation

Cakewalk

● Supports General MIDI
● Provides several editing views (staff, piano roll, event list) and Virtual Piano
● Can insert WAV files and Windows MCI commands (animation and video) into tracks

Cubase

● A better software than Cakewalk Express
● Intuitive Interface to arrange and play Music (Figs 2.6 and 2.7)
● Wide Variety of editing tools including Audio (Figs 2.8 and 2.9

Cubase Arrange Window (Main)

Cubase Transport Bar Window --- Emulates a Tape Recorder Interface

http://www.cs.cf.ac.uk/Dave/Multimedia/cubase_arrange.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/cubase_transport.gif

Cubase Audio Window

Cubase Audio Editing Window with Editing Functions

● Allows printing of notation sheets

http://www.cs.cf.ac.uk/Dave/Multimedia/cubase_audio.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/cubase_wave.gif

Cubase Score Editing Window

Logic Audio

● Cubase Competitor, similar functionality

Marc of the Unicorn Performer

● Cubase/Logic Audio Competitor, similar functionality

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/cubase_score.gif

Next: Image/Graphics Editing Up: Overview of Multimedia Software Previous: Music
Sequencing and Notation

Image/Graphics Editing

Adobe Photoshop

● Allows layers of images, graphics and text
● Includes many graphics drawing and painting tools
● Sophisticate lighting effects filter
● A good graphics, image processing and manipulation tool

Adobe Premiere

● Provides large number (up to 99) of video and audio tracks, superimpositions and
virtual clips

● Supports various transitions, filters and motions for clips
● A reasonable desktop video editing tool

Macromedia Freehand

● Graphics drawing editing package

Many other editors in public domain and commercially

Dave Marshall
10/4/2001

Next: Animation Up: Overview of Multimedia Software Previous: Image/Graphics
Editing

Image/Graphics Editing

Many commercial packages available

● Adobe Premier
● Videoshop
● Avid Cinema
● SGI MovieMaker

Dave Marshall
10/4/2001

Next: Multimedia Authoring Up: Overview of Multimedia Software Previous:
Image/Graphics Editing

Animation

Many packages available including:

● Avid SoftImage
● Animated Gif building packages e.g. GifBuilder

Dave Marshall
10/4/2001

Next: Further Information Up: Overview of Multimedia Software Previous: Animation

Multimedia Authoring

- Tools for making a complete multimedia presentation where users usually have a lot of
interactive controls.

Macromedia Director

● Movie metaphor (the cast includes bitmapped sprites, scripts, music, sounds, and
palettes, etc.)

● Can accept almost any bitmapped file formats
● Lingo script language with own debugger allows more control including external

devices, e.g., VCRs and video disk players
● Ready for building more interactivities (buttons, etc.)
● Currently in version 7.0, this popular general market product follows the

cast/score/scripting paradigm, which makes it the tool of choice for animation
content. Its roots as a cel- and sprite-animation program are unmistakable; and its
inclusion of Lingo, its object-based scripting language, has made it the animation-
capable program to beat. The AfterBurner compression Xtra creates Shockwave
files, allowing Web playback.

Authorware

● Professional multimedia authoring tool
● Supports interactive applications with hyperlinks, drag-and-drop controls, and

integrated animation
● Compatibility between files produced from PC version and MAC version

Other authoring tools include:

● Microcosm : Multicosm, Ltd. ; DOS, Windows Microcosm is a Hypermedia
Linkage authoring system.

● Question Mark : Question Mark Computing Ltd ; DOS, Mac, Windows; WWW
(via Perception) Question Mark is optimized for Electronic Assessment
production.

● Emblaze Creator : Geo International ; JavaScript, Mac, Windows95, WWW.

Emblaze Creator 2.5 is a cast/score/scripting tool which is designed for Web-
based playback of interactive multimedia.

● Flash : Macromedia ; Mac, Windows95, NT, WWW (via Flash Player).

Flash 3.0 is a cast/score/scripting tool, which primarily uses vector graphics (and
can create vector graphics from imported bitmaps). It is optimized for Web
delivery, and is especially common for banner adds and small interactive web
deliverables.

● HyperCard : Apple Computer ; Mac, WWW (via LiveCard!).

HyperCard is a card/scripting authoring system currently in version 2.4.1. It runs
natively on both 68K and PowerMacintosh machines, and is widely used because
of its easy availability at a low price. Its largest drawback is the lack of integrated
color; current color implementation is via the ColorTools XCMD set (included)
or via third-party XCMDs.

● HyperGASP : Caliban Mindwear.

HyperGASP is a card/scripting authoring system currently in version 3.0; the
newest version no longer requires HyperCard. Supports export to HTML for Web
authoring.

● HyperStudio ; Roger Wagner Publishing ; Mac, Windows, WWW (via
HyperStudio plug-in).

HyperStudio is a card/scripting paradigm authoring system, optimized for and
focussed on the educational market.

● IconAuthor : Asymetrix ; Windows, NT, Solaris, UNIX, WWW (via Windows).

IconAuthor follows the iconic/flow control paradigm. It is notable for its
SmartObject editor, which tags content files (still graphics, RTF text, etc.) for
interactivity. It has the option to either embed content files or leave them external
in specified directories. The biggest strength of this program is its included data
handling, which makes it unparalleled for CBT data tracking. The latest version
should also provide WWW porting of existing content. Avoid its internal "Move
Object" path animation feature due to jerky response - use a .FLC or .AVI instead

Next: Further Information Up: Overview of Multimedia Software Previous: Animation
Dave Marshall
10/4/2001

Next: Multimedia Programming:Scripting (Lingo) Up: Multimedia Authoring:Systems
and Applications Previous: Multimedia Authoring

Further Information
See Chapter 12 Multimedia Presentation and Authoring pages 285-303, Multimedia
Systems, J.F.K, Buford, ACM Press, 1994 (ISBN 0-201-53258-1).

See also:

● Mutlimedia Frequently Asked Question
● StoryBoarding Links
● Director Web

Dave Marshall
10/4/2001

http://www.tiac.net/users/jasiglar/MMASFAQ.HTML
http://hibp.ecse.rpi.edu/~connor/education/storyboard.html
http://www.mcli.dist.maricopa.edu/director/

Next: Director programming/Lingo Scripting Up: Multimedia Authoring Previous:
Further Information

Multimedia
Programming:Scripting (Lingo)
In the last chapter we covered many Multimedia Authoring paradigms. Some of these
basically involve only graphical programming. However, there is always a limit to how
much can be achieved this ways, and so we must resort to scripting or hard
programming.

We will examine two of these programming paradigms a little further in the coming 2
chapters:

● Scripting -- we will overview the Director Authoring systems and in particular
it's LINGO scripting language

● Tagging -- we will overview SMIL an extension of XML for synchronised media
integration.

● Director programming/Lingo Scripting
● Director Basics
● Overview and Definitions
● The Score and the Stage
● Using The Score
● The playback head
● Channels
● Frames
● Sprites
● Cast members
● Lingo
● Markers
● Editing Frames
● Identifying Frames with Lingo
● Lingo Scripting
● When does Lingo run?

● The Lingo language
● Dot Syntax
● Parentheses
● Character spaces
● Comments
● Optional keywords and abbreviated commands
● Literal Values
● Identifying cast members and casts
● Lingo operators
● Lingo Lists
● Types of Scripts
● Messages and Events
● Director Example 1: Simple Animation
● Director Example 2:Importing media
● Director Example 3:Simple Lingo Scripting
● Director Example 4:Controlling Navigation with Lingo

Dave Marshall
10/4/2001

Next: Director Basics Up: Multimedia Programming:Scripting (Lingo) Previous:
Multimedia Programming:Scripting (Lingo)

Director programming/Lingo
Scripting
This section provides a very brief overview of Basic ideas of Director programming
based on the Cast/Score/Scripting paradigm.

This section is essentially a precise of Director's own manual pages. You should consult:

● Macromedia Director 7: Using Director Manual -- In Library
● Macromedia Director 7: Lingo Dictionary Manual -- In Library
● Macromedia Director: Application Help -- Select Help from within the Director

application. This is very thorough resource of information.
● Macromedia Director Guided tours -- see Help menu option.
● A variety of web sites contain director tutorials, hints and information:

❍ Director Web: http://www.mcli.dist.maricopa.edu/director/
❍ Macromedia Director Support Center:

http://www.macromedia.com/support/director/
❍ An excellent set of Basic Director tutorial may be found at:

http://www.fbe.unsw.edu.au/subjects/BENV/1043/tutorials.htm
❍ The book Creating and Designing Multimedia with Director, P. Petrik

and B. Dubrovsky, Prentice Hall, 1997 (ISBN 0-13-528985-8) is also
worth investigating.

Dave Marshall
10/4/2001

Next: Overview and Definitions Up: Multimedia Programming:Scripting (Lingo)
Previous: Director programming/Lingo Scripting

Director Basics

Dave Marshall
10/4/2001

Next: The Score and the Up: Multimedia Programming:Scripting (Lingo) Previous: Director Basics

Overview and Definitions
The Basic commodity in Director is the Director Movie:

Director movies are interactive multimedia pieces that can include animation, sound, text, digital video, and many other
types of media. A movie can be as small and simple as an animated logo or as complex as an online chat room or game.

You're probably familiar with Director movies in the Shockwave movie format, which play in web browsers.

A movie may link to external media or be one of a series of movies that refer to each other. Director's interactivity lets
the movie respond to events and change in specified ways.

Director divides lengths of time into a series of frames, similar to the frames in a celluloid movie.

When creating and editing movies, you typically work in the four key windows that make up Director's work area:

the Stage
, the rectangular area where the movie plays(Fig. 3.1):

Macromedia Director stage Window

the Score
, where the movie is assembled(Fig. 3.2);

Macromedia Director Score Window

one or more Cast windows

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_score.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dir_score.gif

, where the movie's media elements are assembled (Fig. 3.3);

Macromedia Director Cast Window

and
the Control Panel

, which controls how the movie plays back(Fig. 3.4).

Macromedia Director Control Panel

To create a new movie:

● Choose File > New > Movie.

Next: The Score and the Up: Multimedia Programming:Scripting (Lingo) Previous: Director Basics
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_cast.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dir_score.gif

Next: Using The Score Up: Multimedia Programming:Scripting (Lingo) Previous:
Overview and Definitions

The Score and the Stage
The Score coordinates the movie's media, determining when images appear and sounds
play. Special channels control the movie's tempo, sound, and color palettes. The Score
also assigns scripts (Lingo instructions) that specify what the movie does when certain
events occur in the movie (more on this shortly).

The Stage is the visible portion of a movie. Use the Stage to determine where media
appears. Working together, the Score's settings and controls create a dynamic, high-
quality interactive piece that plays in a web page or as a stand-alone application directly
on the user's local computer.

Movie properties specify properties that affect the entire movie, such as how colors are
defined, the size and location of the Stage, the number of channels in the Score,
copyright information, and font mapping.

Use the Movie > Properties command to set these settings. These settings apply only to
the current movie, whereas the settings you choose from File > Preferences apply to
every movie. See manuals for exact properties and parameters etc.|

Dave Marshall
10/4/2001

Next: The playback head Up: Multimedia Programming:Scripting (Lingo) Previous:
The Score and the

Using The Score
The Score organizes and controls a movie's content over time in channels. The most
important components of the Score are channels, frames, and the playback head.

You can control the Score by zooming to reduce or magnify your view and by
displaying multiple Score windows. You can also control the Score's appearance using
preference settings.

To display the Score:

● Choose Window > Score.

Dave Marshall
10/4/2001

Next: Channels Up: Multimedia Programming:Scripting (Lingo) Previous: Using The
Score

The playback head
The playback head moves through the Score to show what frame is currently displayed
on the Stage. The playback head moves to any frame you click in the Score. (See
Fig 3.6)

Dave Marshall
10/4/2001

Next: Frames Up: Multimedia Programming:Scripting (Lingo) Previous: The playback
head

Channels
Channels are the rows in the Score that contain sprites for controlling media. Sprite
channels are numbered and contain the sprites that control all the visible media in the
movie. Special effects channels at the top of Score contain behaviors as well as controls
for the tempo, palettes, transitions, and sounds. The Score displays channels in the order
shown in Fig. 3.5.

Macromedia Director Channel Display

The channel at the very top of the Score contains markers that identify places in the
Score, such as the beginning of a new scene. Markers are useful for making quick jumps
to certain locations in a movie.

The Score can include up to 1000 channels. Most movies contain a much smaller
number. To improve a movie's performance in the authoring environment and during
playback, you should not use many more channels than necessary. Use Movie Properties
to control the number of channels in the Score for the current movie.

Use the button at the left of any channel to hide its contents on the Stage or to disable
the contents if they are not visible sprites. When you turn off a special effects channel,
the channel's data has no effect on the movie. Turn Score channels off when testing
performance or working on complex overlapping animations.

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_channel.gif

Next: Frames Up: Multimedia Programming:Scripting (Lingo) Previous: The playback
head
Dave Marshall
10/4/2001

Next: Sprites Up: Multimedia Programming:Scripting (Lingo) Previous: Channels

Frames
Frames are represented by the numbers listed horizontally in the sprite and special
effects channels. A frame is a single step in the movie, like the frames in a traditional
film. Setting the number of frames displayed per second sets the movie's playback
speed;

Macromedia Director Frame Playback

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_frame.gif

Next: Cast members Up: Multimedia Programming:Scripting (Lingo) Previous: Frames

Sprites
Sprites are objects that control when, where, and how media appears in a movie. The
media assigned to sprites are cast members.

Director organizes cast members in libraries called casts.

Creating a Director movie consists largely of defining where sprites appear on the
Stage, when they appear in the movie, how they behave, and what their properties are.
You work with sprites on the Stage and in the Score to change where and how cast
members appear in the movie.

Dave Marshall
10/4/2001

Next: Lingo Up: Multimedia Programming:Scripting (Lingo) Previous: Sprites

Cast members
Cast members are the media that make up a movie. They can include bitmap images,
text, vector shapes, sounds, Flash movies, digital videos, and more.

You can create cast members directly in Director or import existing media.

Dave Marshall
10/4/2001

Next: Markers Up: Multimedia Programming:Scripting (Lingo) Previous: Cast
members

Lingo
Lingo, Director's scripting language, adds interactivity to a movie. Often Lingo
accomplishes the same tasks-such as moving sprites on the Stage or playing sounds-that
you can accomplish using Director's interface.

Much of Lingo's usefulness, however, is in the flexibility it brings to a movie. Instead of
playing a series of frames exactly as the Score dictates, Lingo can control the movie in
response to specific conditions and events.

For example, whether a sprite moves can depend on whether the user clicks a specific
button; when a sound plays can depend on how much of the sound has already streamed
from the Internet.

Behaviors are pre-existing sets of Lingo instructions. Attaching behaviors to sprites and
frames lets you add Lingo's interactivity without writing Lingo scripts yourself.

If you prefer writing scripts to using Director's interface and behaviors, Lingo provides
an alternative way to implement common Director features; for example, you can use
Lingo to create animation, stream movies from the web, perform navigation, format text,
and respond to user actions with the keyboard and mouse.

Writing Lingo also lets you do some things that the Score alone can't do. For example,
Lingo's lists let you create and manage data arrays, and Lingo operators let you perform
mathematical operations and combine strings of text. You can also write your own
behaviors that perform tasks beyond those possible with the behaviors that you already
have available.

Next: Markers Up: Multimedia Programming:Scripting (Lingo) Previous: Cast
members
Dave Marshall
10/4/2001

Next: Editing Frames Up: Multimedia Programming:Scripting (Lingo) Previous: Lingo

Markers
Markers identify fixed locations at a particular frame in a movie. Markers are vital to
navigation in movies. Using Lingo or draggable behaviors, you can instantly move the
playback head to any marker frame.

This is useful when jumping to new scenes from a menu or looping while cast members
download from the web. Markers are also useful while authoring to advance quickly to
the next scene.

Once you've marked a frame in the Score, you can use the marker name in your
behaviors or scripts to refer to exact frames. Marker names remain constant no matter
how you edit the Score. They are more reliable to use as navigation references than
frame numbers, which can change if you insert or delete frames in the Score.

Use the Markers window to write comments associated with markers you set in the
Score and to move the playback head to a particular marker.

To create a marker:

● Click the markers channel to create a marker. A text insertion point appears to the
right of the marker.

● Type a short name for the marker.

To delete a marker:

● Drag the marker up or down and out of the markers channel.

To jump to markers while authoring:

There are a few ways to do this:

● Click the Next and Previous Marker buttons on the left side of the marker
channel.

● Press the 4 and 6 keys on the numeric keypad to cycle backward and forward
through markers.

● Choose the name of a marker from the Markers menu.

Macromedia Director Markers

Next: Editing Frames Up: Multimedia Programming:Scripting (Lingo) Previous: Lingo
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_markers.gif

Next: Identifying Frames with Lingo Up: Multimedia Programming:Scripting (Lingo)
Previous: Markers

Editing Frames
You can select a range of frames in the Score and then copy, delete, or paste all the
contents of the selected frames. When you select frames, any sprite within the range is
selected, even if it extends beyond the range. You can add new frames to a movie at any
time.

To move or delete all the contents of a range of frames:

● Double-click and drag in the frame channel to select frames.
● Choose Edit > Cut or Edit > Copy, or press Delete.

If you cut or delete the selected frames, Director removes the frames and closes
up the empty space.

● To paste copied frames, select any frame and choose Edit > Paste.

Note: To delete a single frame, choose Insert > Remove Frame.

To add new frames:

● Select a frame in the Score.
● Choose Insert > Frames.
● Enter the number of frames to insert.

The new frames appear to the right of the selected frame. If there are sprites in
the frames you select, they are tweened or extended.

Dave Marshall
10/4/2001

Next: Lingo Scripting Up: Multimedia Programming:Scripting (Lingo) Previous:
Editing Frames

Identifying Frames with Lingo
If you are writing scripts, use these Lingo terms to refer to frames in a movie:

● The function the frame refers to the current frame.
● The frame number or the frame marker label refers to a specific frame. For

example, frame 60 indicates frame 60.
● The keyword loop refers to the marker at the beginning of the current segment.

If the current frame has a marker, loop refers to the current frame; if not, loop
refers to the first marker before the current frame.

● The word next or previous refers to the next marker or the marker before the
current scene, respectively.

● The term the frame followed by a minus or plus sign and the number of
frames before or after the current frame refers to a frame that's a specific number
of frames before or after the current frame. For example, the frame - 20 refers to
the frame 20 frames before the current frame.

● The function marker() with the number of markers used as the parameter
refers to the marker that's a specific number of markers before or after the current
frame. For example, marker(-1) gives the previous marker. If the frame is
marked, marker(0) gives the current frame; if not, marker(0) gives the
name of the previous marker.

● The word movie followed by the movie name refers to the beginning of another
movie. For example,

movie "Navigation"

refers to the beginning of the Navigation movie.
● The word frame plus a frame identifier, the word of, the word movie, and

the movie name refers to a specific frame in another movie; for example,

frame 15 of movie "Navigation"

refers to frame 15 of the Navigation movie.

Next: Lingo Scripting Up: Multimedia Programming:Scripting (Lingo) Previous:

Editing Frames
Dave Marshall
10/4/2001

Next: When does Lingo run? Up: Multimedia Programming:Scripting (Lingo)
Previous: Identifying Frames with Lingo

Lingo Scripting
Lingo, Director's scripting language, adds interactivity to a movie. Use Lingo to control
a movie in response to specific conditions and events. For example, Lingo can play a
sound after a specified amount of the sound has streamed from the Internet.

Use the Script window (Fig. 3.8) to write and edit scripts. (Window > Script or
Command-O will display this window

Macromedia Director Script Window

For an a very good introduction to scripting, see the Lingo basics tutorial movie and
online help..

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_script.gif

Next: The Lingo language Up: Multimedia Programming:Scripting (Lingo) Previous:
Lingo Scripting

When does Lingo run?
When an event occurs, Director generates a message that describes the event. For
example, when the user types at the keyboard, a movie stops, a sprite starts, or the
playback head enters a frame, these actions are events and generate event messages.

Handlers contain groups of Lingo statements that run when a specific event occurs in a
movie. Each handler begins with the word on followed by the message that the handler
is set to respond to. The last line of the handler is the word end; you can repeat the
handler's name after end, but this is optional.

For example, the mouseDown message indicates that the user clicked the mouse button.
A handler that started with the line on mouseDown contains Lingo statements that run
when the handler receives a mouseDown message. Whether the handler receives the
message depends on which objects the handler is attached to in the movie.

Director contains handlers within scripts. Attach a set of handlers to an object by
attaching the handlers' script to the object.

Dave Marshall
10/4/2001

Next: Dot Syntax Up: Multimedia Programming:Scripting (Lingo) Previous: When
does Lingo run?

The Lingo language
Just like any scripting language, Lingo has certain elements that you use and rules that
you follow.

Lingo terms fall into seven categories:

● commands -- terms that instruct a movie to do something while the movie is
playing. For example, go to sends the playback head to a specific frame, marker,
or another movie.

● properties -- attributes that define an object. For examplecolorDepthpth is a
property of a bitmap cast member,

● functions -- terms that return a value. For example, the date function returns the
current date set in the computer. The key function returns the key that was
pressed last. Parentheses occur at the end of a function,

● keywords -- reserved words that have a special meaning. For example, end
indicates the end of a handler,

● events,
● constants -- elements that don't change. For example, the constants TAB,

EMPTY, and RETURN always have the same meaning, and
● operators -- terms that calculate a new value from one or more values. For

example, the add operator (+) adds two or more values together to produce a new
value.

A Lingo statement is any valid instruction that Director can execute.

An expression is any part of a statement, meant to be taken as a whole, that produces a
value.

For example, 2 + 2 is an expression but is not a valid statement all by itself.

The line go to frame 23 is a statement -- go to is the command, and frame 23
is the expression that produces the value that the command requires to execute the
instruction.

Lingo supports a variety of data types:

● references to sprites and cast members,

● (Boolean) values: TRUE and FALSE ,
● strings,
● constants,
● integers, and
● floating-point numbers.

Scripts can use variables to store, update, and retrieve values as the movie plays. Use the
equals operator (=) or the set command to assign values to variables or change the
values of many properties.

Use if...then, case, and repeat loop structures to set up statements so that
they run when specific conditions exist.

For example, you can create an if...then structure that tests whether text has
finished downloading from the Internet and then attempts to format the text if it has.

Director always executes Lingo statements in a handler starting with the first statement
and continuing in order until it reaches the final statement or a statement that instructs
Lingo to go somewhere else.

Some statements that send Lingo to somewhere other than the next statement are repeat
loops, ifŠthenŠelse structures, the exit command, the return function, and handler
names placed within scripts. The order in which statements are executed affects the
order in which you should place statements. For example, if you write a statement that
requires some calculated value, you need to put the statement that calculates the value
first. For instance, in the following example, the first statement adds two numbers, and
the second assigns them to a field cast member to be displayed on the Stage:

x = 2 + 2
put x into member "The Answer"

Next: Dot Syntax Up: Multimedia Programming:Scripting (Lingo) Previous: When
does Lingo run?
Dave Marshall
10/4/2001

Next: Parentheses Up: Multimedia Programming:Scripting (Lingo) Previous: The
Lingo language

Dot Syntax
Use dot syntax to express the properties or functions related to an object or to specify a
chunk within a text object. An dot syntax expression begins with the name of the object,
followed by a period (dot), and then the property, function, or chunk that you want to
specify.

For example, the loc sprite property indicates a sprite's horizontal and vertical position
on the Stage. The expression sprite(15).loc refers to the loc property of
sprite 15. As another example, the number cast member property specifies a cast
member's number.

The expression member("Hot Button").number refers to the cast member
number of the Hot Button cast member. Expressing a function related to an object
follows the same pattern. For example, the pointInHyperLink text sprite function
reports whether a specific point is within a hyperlink in a text sprite.

In addition to the syntax demonstrated in the Lingo Dictionary, you can use the dot
syntax textSpriteObject.pointInHyperlink to express this function.

For chunks of text, include terms after the dot to refer to more specific items within text.
For example, the expression member("News Items").paragraph(1) refers to
the first paragraph of the text cast member News Items.

The expression member("News Items").paragraph(1).line(1) refers to
the first line in the first paragraph.

Next: Parentheses Up: Multimedia Programming:Scripting (Lingo) Previous: The
Lingo language
Dave Marshall
10/4/2001

Next: Character spaces Up: Multimedia Programming:Scripting (Lingo) Previous: Dot
Syntax

Parentheses
Functions that return values require parentheses. When you define functions in handlers,
you need to include parentheses in the calling statement.

Use parentheses after the keywords sprite or member to identify the object's identifier:

for example, member("Jason Jones-Hughes")

. You can also use parentheses to override Lingo's order of precedence or to make your
Lingo statements easier to read.

Dave Marshall
10/4/2001

Next: Comments Up: Multimedia Programming:Scripting (Lingo) Previous:
Parentheses

Character spaces
Words within expressions and statements are separated by spaces. Lingo ignores extra
spaces. In strings of characters surrounded by quotation marks, spaces are treated as
characters.

If you want spaces in a string, you must insert them explicitly.

Uppercase and lowercase letters Lingo is not case sensitive-you can use uppercase and
lowercase letters however you want. For example, the following statements are
equivalent:

member ("Cat").hilite = TRUE
Set the hiLite of member "cat" to True
set the hilite of member "Cat" to True
SET THE HILITE OF MEMBER "CAT" TO TRUE
Set The Hilite Of Member "Cat" To True

However, it's a good habit to follow script writing conventions, such as the ones that are
used in this book, to make it is easier to identify names of handlers, variables, and cast
members when reading Lingo code.

Dave Marshall
10/4/2001

Next: Optional keywords and abbreviated Up: Multimedia Programming:Scripting
(Lingo) Previous: Character spaces

Comments
Comments in scripts are preceded by double hyphens (-). You can place a comment on
its own line or after any statement. Lingo ignores any text following the double hyphen
on the same line.

Comments can consist of anything you want, such as notes about a particular script or
handler or notes about a statement whose purpose might not be obvious. Comments
make it easier for you or someone else to understand a procedure after you've been away
from it for a while. Use the Comment and Uncomment buttons in the Script window to
enter and remove comments easily.

Dave Marshall
10/4/2001

Next: Literal Values Up: Multimedia Programming:Scripting (Lingo) Previous:
Comments

Optional keywords and
abbreviated commands
You can abbreviate some Lingo statements. Abbreviated versions of a command are
easier to enter but may be less readable than the longer versions. The go command is a
good example. All the following statements are equivalent. The last one takes the fewest
number of keystrokes.

go to frame "This Marker"
go to "This Marker"
go "This Marker"

It is good practice to use the same abbreviations throughout a movie.

Dave Marshall
10/4/2001

Next: Identifying cast members and Up: Multimedia Programming:Scripting (Lingo)
Previous: Optional keywords and abbreviated

Literal Values
A literal value is any part of a statement or expression that is to be used exactly as it is,
rather than as a variable or a Lingo element.

Literal values that you encounter in Lingo are character strings, integers, decimal
numbers, cast member names, cast member numbers, symbols, and constants.

Note: The value function can convert a string into a numerical value. The string function
can convert a numerical value into a string.

Each type of literal value has its own rules.

Strings are characters that Lingo treats as characters instead of as variables. Strings must
be enclosed in double quotation marks. For example, in the statement

member ("Greeting").text = "Hello"

``Hello'' and ``Greeting'' are both strings. ``Hello'' is the actual string being put into a
text cast member; ``Greeting'' is the actual name of the cast member.

Similarly, if you test a string, double quotation marks must surround each string, as in
the following example:

if "Hello Mr. Jones" contains "Hello" then soundHandler

Lingo treats spaces at the beginning or end of a string as a literal part of the string. The
following expression includes a space after the word to:

put "My thoughts amount to "

Director works with integers between -2,147,483,648 and +2,147,483,647. (For numbers
outside of this range, use floating-point numbers.) Enter integers without using commas.
Use a minus (-) sign for negative numbers. You can convert a decimal number to an
integer by using the integer() function. For example, the statement

set theNumber = integer(3.9)

rounds off the decimal number 3.9 and converts it to the integer 4.

Some Lingo commands and functions require integers for their parameters. See the entry
for the specific Lingo element for more information.

A decimal number, is what Lingo refers to as a floating-point number. The
floatPrecision property controls the number of decimal places used to display
these numbers. (However, Director always uses the complete number in calculations.)
See the floatPrecision for information about setting the number of decimal places
used for decimal numbers. You can also use exponential notation with decimal numbers:
for example, -1.1234e-100 or 123.4e+9. You can convert an integer or string to a
decimal number by using the float() function. For example, the statement

set theNumber = float(3)

stores the value 3.0 in the variable.

Next: Identifying cast members and Up: Multimedia Programming:Scripting (Lingo)
Previous: Optional keywords and abbreviated
Dave Marshall
10/4/2001

Next: Lingo operators Up: Multimedia Programming:Scripting (Lingo) Previous:
Literal Values

Identifying cast members and
casts
Lingo refers to a cast member by using the term member followed by a cast member
name or number in parentheses. If more than one cast member has the same name,
Director uses the lowest numbered cast member in the lowest numbered cast. (Cast
member names are strings and follow the same syntax rules as other strings.) An
alternative syntax is the term member without parentheses, followed by the cast
member name or number.

For example, the following all refer to cast member 50, which has the name
Jason_Jones-Hughes:

member("Jason_Jones-Hughes")
member(50)
member "Jason_Jones-Hughes"
member 50

Use an optional second parameter to specify the cast member's cast. If more than one
cast contains a cast member with the same name, you must also specify the cast. If you
identify a cast member by its cast member number, you must also specify the cast. To
specify a cast when using member without parentheses, include the term of castLib
followed by the cast's name or number.

When the cast member's name is unique in the movie, the cast's name isn't required, but
you can include it for clarity. For example, the following statements refer to cast member
50, which is named Jason_Jones-Hughes, in castLib 4, which is named
Wales_Player:

member(50, 4)
member 50 of castLib 4
member("Jason_Jones-Hughes", 4)
member "Jason_Jones-Hughes" of castLib 4
member(50, "Wales_Player")
member 50 of castLib "Wales_Player"
member("Jason_Jones-Hughes", "Wales_Player")
member "Jason_Jones-Hughes" of castLib "Wales_Player"

If more than one cast member has the same name and you use the name in a script
without specifying the cast or cast member number, Lingo uses the first (lowest
numbered) cast member in the lowest numbered cast that has the specified name.

A symbol is a string or other value that begins with the pound sign (#). Symbols are user-
defined constants. Comparisons using symbols can usually be performed very quickly,
providing more efficient code. For example, the statement

userLevel = #novice

runs more quickly than the statement

userLevel = "novice"

Symbols can't contain spaces or punctuation. Convert a string to a symbol by using the
symbol() function. Convert a symbol back to a string by using the string() function.

A constant is a named value whose content never changes. For example, TRUE, VOID,
and EMPTY are constants because their values are always the same. The constants
BACKSPACE, ENTER, QUOTE, RETURN, SPACE, and TAB refer to keyboard
characters. For example, to test whether the user is pressing the Enter key, use the
following statement:

if the key = ENTER then beep

Next: Lingo operators Up: Multimedia Programming:Scripting (Lingo) Previous:
Literal Values
Dave Marshall
10/4/2001

Next: Lingo Lists Up: Multimedia Programming:Scripting (Lingo) Previous:
Identifying cast members and

Lingo operators
Operators are elements that tell Lingo how to combine, compare, or modify the values of
an expression. They include:

● Arithmetic operators (such as +, -, /, and *)
● Comparison operators (for example, +, >, and >=), which compare two

arguments
● Logical operators (not, and, or), which combine simple conditions into compound

ones
● String operators (& and &&), which join strings of characters

Dave Marshall
10/4/2001

Next: Types of Scripts Up: Multimedia Programming:Scripting (Lingo) Previous:
Lingo operators

Lingo Lists
In Lingo, Lists provide an efficient way to track and update an array of data such as a
series of names or the values assigned to a set of variables.

Lists are basically a set of elements separated by commas. Lingo encloses the set of
values in square brackets. A simple example of a list is a list of numbers such as [1,
4, 2].

Lingo can create, retrieve, add to, reorder, sort, or substitute a list's contents. Director
offers two types of lists:

Linear lists
-- In which each element is a single value. For example, this list is a simple set of
numbers:

[100, 150, 300, 350]

Property lists
-- In which each element contains two values separated by a colon. The first
value is a property. The second value is the value associated with that property.

For example, this list could be a sprite's Stage coordinates, with a value for each
one:

[#left:100, #top:150, #right:300, #bottom:350]

Lingo has many functions that operate on lists. You can display lists (put), find list
lengths (count()), find largest and smallest elements in the list (max(), min()),
add and delete items in a list (append, add,), copy (duplicate()), and
sort lists. See the Lingo dictionary for complete details..

Next: Types of Scripts Up: Multimedia Programming:Scripting (Lingo) Previous:
Lingo operators
Dave Marshall

10/4/2001

Next: Messages and Events Up: Multimedia Programming:Scripting (Lingo) Previous:
Lingo Lists

Types of Scripts
Director uses four types of scripts.

Behaviors
-- Behaviors are attached to sprites or frames in the Score. Behaviors assigned to
sprites are sprite behaviors. Behaviors assigned to a frame's behavior channel are
frame behaviors. Director includes a set of behaviors that are already written.
Using Lingo, you can create additional behaviors for your specific needs.
Behaviors are script cast members that appear in a Cast window. The Cast
window thumbnail for each behavior contains a behavior icon in the lower-right
corner.

Behavior Icon

All behaviors appear in the Sprite Inspector's Behavior pop-up menu. (Other
types of scripts don't appear in the Behavior pop-up menu.) Attach behaviors to
sprites or frames in two ways:

❍ Drag a behavior from a cast to a sprite or frame in the Score or on the
Stage.

❍ Select the sprites or frames that you're attaching the behavior to and then
choose the behavior from the Behavior pop-up menu.

You can attach the same behavior to more than one location in the Score. When
you edit a behavior, the edited version is applied everywhere the behavior is
attached in the Score.

Movie scripts
Movie scripts are available to the entire movie, regardless of which frame the
movie is in or which sprites the user is interacting with. When a movie plays in a
window or as a linked movie, a movie script is available only to its own movie.
In addition to responding to events such as key presses and mouse clicks, movie
scripts can control what happens when a movie starts, stops, or pauses. Handlers
in a movie script can be called from other scripts in the movie as the movie plays.

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_behavior.gif

Movie scripts are cast members that appear in a Cast window. A movie script
icon appears in the lower-right corner of the movie script's Cast window
thumbnail.

Movie script icon

Parent scripts
Parent scripts are special scripts that contain Lingo used to create child objects.
Parent scripts are cast members that appear in a Cast window. A parent script
icon appears in the lower-right corner of the Cast window thumbnail:

Parent script icon

Scripts attached to cast members
Scripts attached to cast members are attached directly to a cast member,
independent of the Score. Whenever the cast member is assigned to a sprite, the
cast member's script is available. Unlike movie scripts, parent scripts, and
behaviors, cast member scripts don't appear in the Cast window. Open scripts
attached to cast members by clicking Script in the cast member's Cast Member
Properties dialog box or by selecting a cast member in the Cast window and then
clicking the Script button. You can also open a cast member script from the
Script window.

Script button

If Show Cast Member Script Icons is selected in the Cast Window Preferences
dialog box, cast members that have a script attached display a small Script icon in
the lower-left corner of their thumbnails in the Cast window.

Next: Messages and Events Up: Multimedia Programming:Scripting (Lingo) Previous:
Lingo Lists
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_moviescript.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dir_parentscript.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dir_scriptbutton.gif

Next: Director Example 1: Simple Up: Multimedia Programming:Scripting (Lingo)
Previous: Types of Scripts

Messages and Events
To run the appropriate set of Lingo statements at the right time, Director must determine
what is occurring in the movie and which Lingo to run in response to specific events.

Director sends messages to indicate when specific events occur in a movie, such as
when sprites are clicked, keyboard keys are pressed, a movie starts, the playback head
enters or exits a frame, or a script returns a certain result.

Handlers contain instructions that run when a specific message is received. The handler's
name begins with the word on followed by the message name. When an object receives
a message that corresponds to a handler attached to the object, Director runs the Lingo
statements within the handler. For example, a handler named on enterFrame that is
attached to a frame runs when the playback head enters the frame.

Most common events that occur in a movie have built-in message names. See the
following categories in the Lingo Dictionary for the built-in messages that describe
events:

● Keyboard and mouse events.
● Frame events.
● Browser and Internet events.
● Sprite events.
● Movie in a window events.
● Movie events.
● Synchronizing media events.
● Idle events.
● Timeout events.
● Authoring behavior events.

You can also define your own messages and corresponding handler names. A custom
message can call another script, another handler, or the statement's own handler. When
the called handler stops executing, the handler that called it resumes. Director can send a
custom message from any location. The message is first available to handlers in the
script from which the message was sent. If no handler is found, the message is available
to movie scripts. If more than one movie script contains a handler for the message, the
handler in the movie script that has the lowest cast member number is executed. A
custom handler name must:

● Start with a letter
● Include alphanumeric characters only (no special characters or punctuation)
● Consist of one word or multiple words connected by an underscore-no spaces are

allowed
● Not be the same as the name of a predefined Lingo element

Using Lingo keywords for handler names can create confusion. Although it is possible
to explicitly replace or extend the functionality of a Lingo element by using it as a
handler name, this should be done only in certain advanced situations. When you have
multiple handlers with similar functions, it is useful to give them names that have
similar beginnings so they appear together in an alphabetical listing, such as the listing
displayed by the Find Handler option in the Edit menu.

Director follows a definite order when sending messages about events that occur during
the course of a movie. When the movie first starts, events occur in the following order:

● prepareMovie.
● beginSprite. This event occurs when the playback head enters a sprite span.
● prepareFrame. Immediately after the prepareFrame event, Director plays

sounds, draws sprites, and performs any transitions or palette effects. This event
occurs before the enterFrame event. An on prepareFrame handler is a
good location for Lingo that you want to run before the frame draws.

● startMovie. This event occurs in the first frame that plays.

When Director plays a frame, events occur in this order:

● beginSprite. This event occurs only if new sprites begin in the frame.
● stepFrame.
● prepareFrame. Immediately after the prepareFrame event, Director plays

sounds, draws sprites, and performs any transitions or palette effects. This event
occurs before the enterframe event.

● enterFrame. After enterFrame and before exitFrame, Director handles
any time delays required by the tempo setting, idle events, and keyboard and
mouse events.

● exitFrame.
● endSprite. This event occurs only if the playback head exits a sprites in the

frame.

When a movie stops, events occur in this order:

● endSprite. This event occurs only if sprites currently exist in the movie.
● stopMovie.

A movie can contain more than one handler for the same message. Director manages
this situation by sending the message to objects in a definite order.

The general order in which messages are sent to objects is as follows:

● Messages are sent first to behaviors attached to a sprite involved in the event. If a
sprite has more than one behavior attached to it, behaviors respond to the
message in the order in which they were attached to the sprite.

● Messages are sent next to a script attached to the cast member assigned to the
sprite.

● Messages are then sent to behaviors attached to the current frame.
● Messages are sent last to movie scripts.

When a message reaches a script that contains a handler corresponding to the message,
Director executes the handler's instructions.

After a handler intercepts a message, the message doesn't automatically pass on to the
remaining locations. (You can use the pass command to override this default rule and
pass the message to other objects.) If no matching handler is found after the message
passes to all possible locations, Director ignores the message.

The exact order of objects to which Director sends a message depends on the message.
See the message's Lingo Dictionary entry for details about the sequence of objects to
which Director sends specific messages.

You can place handlers in any type of script. However, the following are some useful
guidelines for many common situations:

● To set up a handler that affects a specific sprite or runs in response to an
action on a specific sprite:

Put the handler in a behavior attached to the sprite.
● To set up a handler that should be available any time that the movie is in that

frame:

Put the handler in a frame script attached to the frame.

For example, to have a handler respond to a mouse click while the playback head
is in a frame, regardless of where the click occurs, place an on mouseDown or
on mouseUp handler in the frame script rather than a sprite script.

● To set up a handler that runs in response to an event that affects a cast
member, regardless of which sprites use the cast member:

Put the handler in a cast member script.
● To set up a handler that runs in response to messages about events anywhere

in the movie:

Put the handler in a movie script.

A script can contain multiple handlers. It's a good idea to group related handlers
in a single place, though, for easier maintenance.

Next: Director Example 1: Simple Up: Multimedia Programming:Scripting (Lingo)
Previous: Types of Scripts
Dave Marshall
10/4/2001

Next: Director Example 2:Importing media Up: Multimedia Programming:Scripting (Lingo) Previous: Messages
and Events

Director Example 1: Simple Animation
This example does not employ any scripting. It illustrates how easy it is to create a basic animation where a cast
member (a ball graphic) is placed at different locations in the scene. We also introduce some features of Director
that we have not yet met (these should be fairly straightforward to understand). Note: there are still many features
of Director we will have not touched.

example1.dcr

Download This Example

● Shockwave Movie
● Director Movie

The following steps achieve a simple bouncing ball animation along a path:

1.
Let us begin by creating a new movie and setting the Stage size:

❍ Start a New movie: File >New >Movie (Shortcut = Command+N)
❍ Choose Modify >Movie >Properties. In stage size, choose 640 x 480.

http://www.cs.cf.ac.uk/Dave/Multimedia/example1.dcr
http://www.cs.cf.ac.uk/Dave/Multimedia/example1.dir

2.
Now let us create a ball, using a the vector shape tool:

❍ Choose Window >Vector Shape (Shortcut = Command+Shift+V)

Macromedia Director Vector Shape Window
❍ Click the filled ellipse button.
❍ Draw an ellipse (circle) about the size of the Vector Shape Window - don't worry about being exact,

we will be changing the size of it later.
❍ Click on the Gradient fill button. This fills the ellipse with the default colours, which happen to be a

light grey to red (unless someone has changed it on your computer).
❍ To change the colours, click the colour box on the left side of the Gradient colour control and choose

a sky blue from the colour menu. You will notice the Fill colour chip changes too. Change the colour
on the right side of the Gradient Colours to a dark blue.

❍ Change the Gradient type pull-down menu at the top of your window from Linear to Radial.
❍ Change the Stroke Colour to white - notice how the outline of the ellipse disappears.

3.
Now let us change a few other properties of this ellipse - for us to compare these changes, we will make a
copy of this cast member.

❍ Close the Vector Shape window.
❍ In the Cast Window, select the ellipse. Choose Edit >Duplicate (Shortcut = Command+D). A copy of

the cast member is produced in the next available cast slot. Double click the new cast, which opens it
in the Vector Shape Tool.

❍ Change the Cycles to 3 and the Spread to 200. Click the Previous Cast button and compare the 2
ellipses. Experiment with different cycles and spreads to get an idea of what they mean.

❍ Name the latest ellipse to 'bouncing ball' - this can either be done at in the Vector Shape window or
the Cast Member Window.

4.
Now we are going to animate the ball.

❍ Drag 'bouncing ball' from the cast member window to the stage. You could drag and drop it straight
into the score, which would automatically centre it on the stage.

❍ You will notice the sprite (the object that appears in the score) is extended over 20 frames. This is a
default setting that we can change. Drag the right end of the sprite to frame 40.

❍ Click anywhere in the middle of the sprite to select it. We are now going to resize the ellipse. Click
on the top of the stage window to make it active. Press Shift and while still holding down, click on a
corner handle of the spite and drag it in to make it smaller. Holding down Shift lets us resize the

http://www.cs.cf.ac.uk/Dave/Multimedia/vector.gif

object in proportion to its original dimensions. Resize the sprite to approximately the size shown in
diagram 2, and move it to the left side of the stage.

❍ Click on frame 40 in channel 1 (the end of the sprite), hold down Option and shift and drag the ellipse
to the right end of the stage. (Holding down shift restricts the movement to 90 degrees). With Option
selected You will notice a line being drawn on the stage - this is the animation path. Rewind and play
the movie to see what you made.

❍ To curve the path, we are going to insert keyframes within the sprite. Click on frame 10 of the sprite
and choose Insert >Keyframe (Shortcut = Command+Option+K) Create keyframes at frame 20 and
30.

❍ You will notice at each keyframe, a circle appears on the path shown on the stage. Click on the
keyframe 10 circle and drag it up. Do the same with keyframe 30, producing a path similar to that
shown below. Rewind and play the movie.

Curving the Ball's Path

5.
Save the movie as example1.dir.

Further Animation

1. Shrinking the ball

● (Optional) Click on keyframe 40 in the score and drag it to frame 60, notice how all the keyframes spread
out proportionally.

● (Optional) Click on the keyframes in the score and adjust the path if you feel like it.
● While moving the keyframes, resize the balls so they slowly get smaller. Notice while you resize the balls,

the path changes and you will need to edit the path again.
● Rewind and play the movie.
● Save your movie as example2.dir

2. Animating sprite colour

● Working still with example1.dir.
● Click on the keyframes in the score, and change the Foreground colour chip to different colours.
● Changing the foreground colour (refer to Fig 3.15) is like putting a coloured film over your object. The

resulting colour is a mixture of the object's original colour and the 'film'. For this reason, light colours work
better than dark colours for this effect..

http://www.cs.cf.ac.uk/Dave/Multimedia/anim_ball.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/example2.html
http://www.cs.cf.ac.uk/Dave/Multimedia/example2.dir
http://www.cs.cf.ac.uk/Dave/Multimedia/example3.html

Macromedia Director Score Property Selection
● Rewind and play the movie.
● Save as example3.dir

3. Animating sprite transparency --- Making the Ball Disappear

● Open example1.dir
● Click on the keyframes in the score, and change the Blend Transparency (refer to Fig 3.15) to 100, 75, 50,

25, 0 for the consecutive keyframes.
● Rewind and play the movie.
● Save as example4.dir

4. Animating sprite shape --- Deforming The Ball

● Open example2.dir
● Click on the keyframes in the score, and change the Skew Angle (refer to Fig 3.15) to 0, 20, 40, 60 and 80

for the consecutive keyframes.
● Rewind and play the movie
● Save as example5.dir

Next:Director Example 2:Importing mediaUp:Multimedia Programming:Scripting (Lingo)Previous:Messages and
Events
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/sprite_props.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/example3.dir
http://www.cs.cf.ac.uk/Dave/Multimedia/example4.html
http://www.cs.cf.ac.uk/Dave/Multimedia/example4.dir
http://www.cs.cf.ac.uk/Dave/Multimedia/example5.html
http://www.cs.cf.ac.uk/Dave/Multimedia/example3.dir

Next: Director Example 3:Simple Lingo Up: Multimedia Programming:Scripting (Lingo)
Previous: Director Example 1: Simple

Director Example 2:Importing media
To import multimedia data there are two basic ways:

● Choose File > Import ...
● Drag and drop source media into a cast member location.

The first method is useful for importing batches of data (e.g. Several image sequences. The latter is
clearly very intuitive.

Example: Simple Image import and Manipulation

● Drag an image into a spare cast member.
● Drag this cast member to the Score
● Manipulate as for a vector item above.
● Examples:

❍ ex_dave_roll.dir

sets up some keyframes and alters the rotation of the image
❍ ex_dave_sq.dir

alters the skew angle

Example: Falling Over Movie, ex_dave_movie.dir

Download This Example

● Shockwave Movie
● Director Movie

http://www.cs.cf.ac.uk/Dave/Multimedia/ex_dave_roll.html
http://www.cs.cf.ac.uk/Dave/Multimedia/ex_dave_sq.html
http://www.cs.cf.ac.uk/Dave/Multimedia/ex_dave_movie.dcr
http://www.cs.cf.ac.uk/Dave/Multimedia/ex_dave_movie.dir

● Several Gif images depicting sequence exist on disk.
● Choose File > Import
● Select items you wish to import by double-clicking or pressing the Add button (Fig. 3.16).

Macromedia Director Import Window

● Click on the Import Button
● Several new cast members should be added

Falling Cast Members

● Set looping on and play

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_import.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dir_fall.gif

4.Example: Pinching Movie Movie

To obtain other graphical effects external packages such as photoshop may be used.

● Photoshop has been used to set a pinch effect of varying degree for an image.
● Import images as above
● We now need to reverse the image set to obtain a smooth back and forth animation:

❍ Select the sprite sequence in the score by clicking anywhere in the middle of the
sprite sequence- press Command+C (Copy), then click on the frame just after the
sprite sequence and press Command+V (Paste).

❍ Click on this second sprite sequence and choose Modify > Reverse Sequence.
❍ Select the 2 sprites by pressing Shift and clicking on both. Choose Modify > Join

Sprites.
● Rewind and play the movie.

Next: Director Example 3:Simple Lingo Up: Multimedia Programming:Scripting (Lingo)
Previous: Director Example 1: Simple
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/ex_dave_pinch.html

Next: Director Example 4:Controlling Navigation Up: Multimedia
Programming:Scripting (Lingo) Previous: Director Example 2:Importing media

Director Example 3:Simple Lingo
Scripting
Here we illustrate the basic mechanism of scripting in Director by developing and
extending a very basic example: Making a button beep and attaching a message to a
button

Download This Example

● Shockwave Movie
● Director Movie

Making the a button beep

● Open a new movie.
● Turn the looping on in the control panel.
● Open the tool palette.

http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex1.dcr
http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex1.dir

Macromedia Director Director Tool Palette

● Click the push button icon.
● Draw a button on the stage, and type in button (a very original name).
● Press Ctrl+click the button in the cast window and choose cast member script.

Macromedia Director Script Cast Member Window

● Director writes the first and last line for us, add a beep command so the script
look like this:

 on mouseUp
 beep
 end

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_tool.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dir_castmem.gif

● Close the window.
● Rewind and play the movie.
● Click the button a few times.

To pop up a message box on button press (and still beep)

Download This Example

● Shockwave Movie
● Director Movie

● Reopen the cast member script.
● Change the text so it now reads.

 on mouseUp
 beep
 alert "Button Pressed"
 end

● Close the window.
● Play the movie and click the button.

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex2.dcr
http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex2.dir

Next: Multimedia Programming:Tagging (SMIL) Up: Multimedia Programming:Scripting (Lingo) Previous:
Director Example 3:Simple Lingo

Director Example 4:Controlling Navigation
with Lingo
We begin we a preassembled Director movie:

example2.dcr

Download This Example

● Shockwave Movie
● Director Movie

● Open lingo_ex.3.1.dir
● Play the movie and to see it does.

We are first going to create a loop the frame script:

http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex.3.2.dcr
http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex.3.2.dir

● The scripting window appears. Change the text so it now reads.

 on exitFrame
 go the frame
 end

This frame script tells Director to keep playing the same frame.
● Pressing down Alt, drag the frame script to frame 24.

Now We will create some markers

As we have mentioned in above Director allows you to mark certain frames in your movie so they can be
identified by buttons and links.

● Click in the marking channel in frame 1, as soon as you click a marker is created with text naming it as
New Marker. Type in scene1 over this text.

● Create markers at frame 10 and 20, naming them scene2 and scene3 respectively. You can delete a
marker by clicking the triangle and dragging it below the marker channel.

● Create a cast member script for the next button which reads:

 on mouseUp
 go to next
 end

The go to next command tells Director to go to the next consecutive marker in the score.
● Create a cast member script for the back button which reads:

 on mouseUp
 go to previous
 end

The go to previous command tells Director to go to the previous marker in the score.
● Right click on the next button cast member, go to cast member properties, then check the Highlight when

Clicked option. Do the same for the back button.
● Play the movie, click on the buttons and see how they work.
● Save the movie.

Now We will create some sprite scripts:

Sometimes a button will behave one way in one part of the movie and another way in a different part of the
movie. That's when we use sprite scripts.

● Click on frame 10 of channel 6 (the next button) this sprite and choose Modify > Split Sprite. Do the same
at frame 20.

● Select the first sprite sequence in channel 6 and select new behaviour from the behaviour pull-down in the
score.

● A script window will pop up. Type go to "scene2" in the command area. This command tells
Director to send the movie to marker "scene2".

Using the Behaviour Inspector (Fig. 3.20):

Another way to write a sprite script - using the Behaviour Inspector.

● elect the second sprite sequence in channel 6.
● Open the Behaviour Inspector window - click the diamond shaped icon next to the behaviour pull-down

menu.

Macromedia Director Behaviour Inspector Window

● Expand the behaviour inspector window, so you can see events and actions. Click on the little triangle
pointing to the right, when the window expands the triangle will point down.

● Click the + icon at the top left of the window and select new behaviour from the pull-down.
● Give the behaviour a name, I called mine next2.
● Under Events click the + icon and choose mouseUp from the menu.
● Under Actions click the + icon and choose Navigation > Go to marker then find scene3 on the list

(Fig. 3.20)

You may realise that we now have 2 scripts attached to a single object - a cast member script as well as a sprite
script. Sprite scripts take priority over cast member scripts so in our case the cast member script will be ignored.

Using Lingo play/ play do to record actions:

Sometimes you may want only part an image to be linked instead of the whole object. That's when we use
invisible buttons. Invisible buttons aren't magical objects, they are just shape cast members with an invisible
border.

● Click on frame 1 of channel 8.
● Open the Tool palette window.
● Click on the no line button.
● Click on the rectangle button and draw a rectangle on the stage around the 1 button.
● Attach a sprite script to this shape with the command play "scene1".
● Extend the sprite sequence so it covers frame 1 to 24.
● Drag the invisible shape from the cast to the score and place it over the 2 button.
● Attach a sprite script to this sprite with the command play "scene2".
● Extend the sprite sequence so it covers frame 1 to 24.
● Repeat the steps placing the sprite over the 3 button and adding the command play "scene3".

We used a different command for the above scripts. The play command is similar to the go to command but
with play,

● Director records every time a play is initiated,
● keeping track of the users' path through the movie.
● You can move back on along this path by using the play done command.

http://www.cs.cf.ac.uk/Dave/Multimedia/dir_beinsp.gif

● Select the sprite sequence in channel 5.
● Attach a sprite script reading

 on mouseUp
 play done
 end

● Rewind, play the movie, click all the 1, 2, 3 buttons in various orders, click the back button also and
observe the

● Save your movie.

You can see the completed example in lingo_ex3.2.dir

● Shockwave Movie
● Director Movie

Next: Multimedia Programming:Tagging (SMIL) Up: Multimedia Programming:Scripting (Lingo) Previous:
Director Example 3:Simple Lingo
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex.3.2.dcr
http://www.cs.cf.ac.uk/Dave/Multimedia/lingo_ex.3.2.dir

Next: What it is SMIL? Up: Multimedia Authoring Previous: Director Example
4:Controlling Navigation

Multimedia Programming:Tagging
(SMIL)
In the last chapter we looked at scripting programming paradigms for multimedia.

In this chapter we will study Tagging

● We will overview SMIL an extension of XML for synchronised media
integration.

● What it is SMIL?
❍ SMIL support

● Running SMIL Applications
❍ Using Quicktime
❍ Using RealPlayer G2
❍ Using the SOJA applet
❍ another SMILE viewer:GRINS

● Let us begin to SMIL -- SMIL Authoring
● SMIL Syntax Overview

❍ Basic Layout
❍ SMIL Layout

■ Window settings
❍ Positioning Media

■ The Region tag
■ The img tag
■ Relative Position Example
■ Overlaying Regions
■ Support for Other Media

● fitting media to regions
❍ Synchronisation

■ Adding a duration of time to media -- dur

■ Delaying Media -- the begin tag
■ Sequencing Media -- the seq tag
■ Parallel Media -- the par tag
■ Synchronisation Example 1: Planets Soundtrack
■ Synchronisation Example 2: Slides 'N' Sound

❍ SMIL Events
■ begin events
■ The switch Tag

● SMIL ON

Dave Marshall
10/4/2001

Next: SMIL support Up: Multimedia Programming:Tagging (SMIL) Previous:
Multimedia Programming:Tagging (SMIL)

What it is SMIL?
Synchronized Multimedia Integration Language (SMIL) is to synchronized multimedia
what HTML is to hyperlinked text. Pronounced smile, SMIL is a simple, vendor-neutral
markup language designed to let Web builders of all skill levels schedule audio, video,
text, and graphics files across a timeline without having to master development tools or
complex programming languages.

Whilst the SMIL language is a powerful tool for creating synchronized multimedia
presentations on the web over low bandwidth connections. It is mainly meant to work
with linear presentations where several types of media can be synchronized to one
timeline. It does not work well with non-linear presentations and its ability to skip
around in the timeline is buggy at best. However, for slideshow style mixed media
presentations it the best the web has to offer.

For instance, with just a text editor and a few lines of HTML-like tags, SMIL lets Web
builders specify such actions as

● play audio file A five seconds after video file B starts and then show image file
C.

SMIL marks a significant step toward making it easy to create low-bandwidth, TV-like
content on the Web. It offers a new level of control over synchronized multimedia by
allowing individual components of a presentation to be choreographed across a timeline
in relation to each other. It also lets you control the layout, appearance, and exit time of
each file.

What makes SMIL different from other multimedia presentation tools is that instead of
forcing each component into a single video file, the text-based SMIL file merely
references each file by its URL. Since the media files exist outside of the SMIL file, they
retain their individual file sizes; there's no file-size bloat to slow download times.

SMIL's text-based format also makes multimedia presentations easy to edit. If you want
to change when an audio component within a complex presentation begins, you can just
edit the SMIL file. You don't have to rebuild the entire presentation from scratch.

As an application of XML, SMIL supports hyperlinks, which makes it the first Web-
specific multimedia language to offer true interactivity.

● SMIL support

Next: SMIL support Up: Multimedia Programming:Tagging (SMIL) Previous:
Multimedia Programming:Tagging (SMIL)
Dave Marshall
10/4/2001

Next: Running SMIL Applications Up: What it is SMIL? Previous: What it is SMIL?

SMIL support

The W3C recommended SMIL in June 1998, but that doesn't mean it will be universally
supported across the Web. Quicktime 4.0 supports SMIL (1999)

All emerging standards have opponents, and SMIL is no exception.

No Web browser currently supports SMIL, and Microsoft and Netscape have no plans
to support the standard anytime soon. In fact, even though Microsoft helped develop the
SMIL 1.0 specification, Microsoft now says SMIL is not mature enough to support,
claiming it overlaps with several other technologies, such as Dynamic HTML and the
Document Object Model. (Microsoft's streaming media player NetShow does not
support SMIL either).

Probably the real reason Microsoft stopped SMILing was the fact that Microsoft, along
with Macromedia and Compaq, submitted (March 1998) its own synchronized
multimedia proposal to the W3C, called HTML+TIME (Timed Interactive Multimedia
Extensions for HTML). This proposal claims to address SMIL's limitations:

● SMIL is a data interchange format for media authoring tools and players
● SMIL does not include a means to apply the ideas to HTML and Web browsers.

However, SMIL does have an active following on the Web. RealNetworks' RealPlayer,
the most common streaming media player on the Web with 85 percent of the market,
supports SMIL in its G2 player.

Major media companies such as CNN Interactive, Fox News, the History Channel, and
dozens of others have already begun to offer SMIL-based content via its RealPlayer G2.

Many other SMIL-compliant players, authoring tools, and servers are also becoming
available.

Next: Running SMIL Applications Up: What it is SMIL? Previous: What it is SMIL?
Dave Marshall
10/4/2001

Next: Using Quicktime Up: Multimedia Programming:Tagging (SMIL) Previous:
SMIL support

Running SMIL Applications
For this course there are basically three ways to run SMIL applications (two use the a
Java Applet) so there are basically two SMIL supported mediums:

Quicktime
-- supported since Quicktime Version 4.0.

RealPlayer G2
-- integrated SMIL support

Web Browser
-- use the SOJA SMIL applet viewer with html wrapper

Applet Viewer
-- use the SOJA SMIL applet viewer with html wrapper

You will need to use both as RealPlayer and SOJA support different media (see below
and Section 4.4.3).

● Using Quicktime
● Using RealPlayer G2
● Using the SOJA applet
● another SMILE viewer:GRINS

Dave Marshall
10/4/2001

Next: Using RealPlayer G2 Up: Running SMIL Applications Previous: Running SMIL
Applications

Using Quicktime

Load the SMIL file into a Quicktime plug-in (confgure Browser helper app or mime
type) or the Quicktime movie player.

Dave Marshall
10/4/2001

Next: Using the SOJA applet Up: Running SMIL Applications Previous: Using
Quicktime

Using RealPlayer G2

The RealPlayer G2 is installed on the applications HD in the RealPlayer folder.

Real player supports lots of file format and can use plugins. The main supported formats
are:

● Real formats: RealText, RealAudio, etc...
● Images: GIF, JPEG
● Audio: AU, WAV, MIDI, etc...

To run SMIL files

Real Player uses streaming to render presentations.

The player works better when calling a SMIL file given by a Real Server, rather than
from an HTTP one.

You can also open a local SMIL file or drag a SMIL file onto the RealPlayer G2
Application

Dave Marshall
10/4/2001

Next: another SMILE viewer:GRINS Up: Running SMIL Applications Previous: Using
RealPlayer G2

Using the SOJA applet

SOJA stands for SMIL Output in Java Applet. It was written by HELIO in 1998.

HELIO is a French association based in Melun, France. The player is free and can be
downloaded from

Helio Web Site

SOJA is an applet that render SMIL in a web page or in a separate window. It supports
the following formats:

● Images: GIF, JPEG
● Audio: AU and AUZ (AU zipped) -- SUN Audio files
● Text: plain text

SOJA does not use streaming. HELIO chose to store media before rendering them. You
have to wait until each of them has properly been loaded but the presentation will never
be stopped.

Running SOJA

To run SMIL through an applet you have to

● call the applet from an HTML file:

<APPLET CODE="org.helio.soja.SojaApplet.class"
 ARCHIVE="soja.jar" CODEBASE="../"
 WIDTH="600" HEIGHT="300">
 <PARAM NAME="source" VALUE="cardiff_eg.smil">
 <PARAM NAME="bgcolor" VALUE="#000066">
 </APPLET>

.
● the SOJA (soja.jar) archive is located in the SMIL folder on the

Macintoshes.
● You may need to alter the CODEBASE attribute for your own applications
● The PARAM NAME="source" VALUE="MY_SMILFILE.smil" is how the

http://www.cs.cf.ac.uk/www.helio.org

file is called.

There are plenty of HTML SMIL/applet wrapper example files in the SMIL demos
folder.

RUNNING APPLETS

This should be easy to do

● Run the html file through a java enabled browser
● Use Apple Applet Runner

❍ uses MAC OS Runtime Java (Java 1.2)
❍ less fat for SMIL applications (we do really need Web connection for our

examples)
❍ Efficient JAVA and MAC OS run.
❍ Located in Apple Extras:Mac OS Runtime For Java folder
❍ TO RUN: Drag files on to application, OR
❍ TO RUN: Open file from within application

Next: another SMILE viewer:GRINS Up: Running SMIL Applications Previous: Using
RealPlayer G2
Dave Marshall
10/4/2001

Next: Let us begin to Up: Running SMIL Applications Previous: Using the SOJA
applet

another SMILE viewer:GRINS

This viewer is NOT available for this course but you may wish to investigate it.

GRINS stands for Graphical Interface for SMIL. It can be found at

CWI Web Site

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/www.cwi.nl

Next: SMIL Syntax Overview Up: Multimedia Programming:Tagging (SMIL)
Previous: another SMILE viewer:GRINS

Let us begin to SMIL -- SMIL
Authoring
The notes here are essentially summaries of the SMIL Specification and tutorials
available at the WWW3 consortium web site:

● http://WDVL.com/Authoring/Languages/XML/SMIL/Intro/smil.html
● http://www.w3.org/TR/REC-smil

A SMIL document is a special kind of XML 1.0 document:

Extensible Markup Language (XML) is a human-readable, machine-understandable,
general syntax for describing hierarchical data, applicable to a wide range of
applications (databases, e-commerce, Java, web development, searching, etc.). XML is
an ISO compliant subset of SGML (Standard Generalized Markup Language). XML is
extensible because it is a metalanguage, which enables someone to write a Document
Type Definition (DTD) like HTML 4.0 and define the rules of the language so the
document can be interpreted by the document receiver. The purpose of XML is to
provide an easy to use subset of SGML that allows for custom tags to be processed.
Custom tags will enable the definition, transmission and interpretation of data structures
between organizations.

Further information on XML may be found at:

● Extensible Markup Language (XML) 1.0T. Bray, J. Paoli, C.M. Sperberg-
McQueen

Dave Marshall
10/4/2001

http://wdvl.com/Authoring/Languages/XML/SMIL/Intro/smil.html
http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/REC-xml/

Next: Basic Layout Up: Multimedia Programming:Tagging (SMIL) Previous: Let us
begin to

SMIL Syntax Overview
SMIL files are usually named with .smi or .smil extensions

● Basic Layout
● SMIL Layout

❍ Window settings
● Positioning Media

❍ The Region tag
❍ The img tag
❍ Relative Position Example
❍ Overlaying Regions
❍ Support for Other Media

Dave Marshall
10/4/2001

Next: SMIL Layout Up: SMIL Syntax Overview Previous: SMIL Syntax Overview

Basic Layout

The basic Layout of a SMIL Documents is as follows:

<smil>
 <head>
 <meta name="copyright" content="Your Name" />
 <layout>
 <!-- layout tags -->
 </layout>
 </head>
 <body>
 <!-- media and synchronization tags -->
 </body>
</smil>

A source begins with <smil> and ends with </smil>.

Note that SMIL, like XML but unlike HTML, is case sensitive

<smil>
[...]
</smil>

SMIL documents have two parts: head and body. Each of them must have <smil> as a
parent.

<smil>
 <head>
 [...]
 </head>
 <body>
 [...]
 </body>
</smil>

Some tags, such as meta can have a slash at their end:

[...]

 <head>
 <meta name="copyright" content="Your Name" />
 </head>
[...]

This is because SMIL is XML-based.

Some tags are written:

● <tag> ... </tag>
● <tag />

Dave Marshall
10/4/2001

Next: Window settings Up: SMIL Syntax Overview Previous: Basic Layout

SMIL Layout

Everything concerning layout (including window settings) is stored between the
<layout> and the </layout> tags in the header as shown in the above section.

A variety of Layout Tags define the presentation layout:

 <smil>
 <head>
<layout>
 <!-- layout tags -->
 </layout>
......

● Window settings

Dave Marshall
10/4/2001

Next: Positioning Media Up: SMIL Layout Previous: SMIL Layout

Window settings

You can set width and height for the window in which your presentation will be
rendered with <root-layout>.

The following source will create a window with a 300x200 pixels dimension and also
sets the background to be white.

 <layout>
 <root-layout width="300" height="200"
 background-color="white" />
 </layout>

Dave Marshall
10/4/2001

Next: The Region tag Up: SMIL Syntax Overview Previous: Window settings

Positioning Media

It is really easy to position media with SMIL.

You can position media in 2 ways:

Absolute Positioning
-- Media are located with offsets from the origin -- the upper left corner of the
window.

Relative Positioning
-- Media are located relative to the window's dimensions.

We define position with a <region> tag

● The Region tag
● The img tag
● Relative Position Example
● Overlaying Regions
● Support for Other Media

Dave Marshall
10/4/2001

Next: The img tag Up: Positioning Media Previous: Positioning Media

The Region tag

--

To insert a media within our presentation we use the <region> tag. we must specify
the region (the place) where it will be displayed. Let's say we want to insert the
Cardiff icon (533x250 pixels) at 30 pixels from the left border and at 25 pixels from
the top border.

We must also assign an id that identifies the region.

The header becomes:

 <smil>
 <head>
 <layout>
 <root-layout width="600" height="300"
 background-color="white" />
 <region id="cardiff_icon" left="30" top="25"
 width="533" height="250" />
 </layout>
 </head>

Dave Marshall
10/4/2001

Next: Relative Position Example Up: Positioning Media Previous: The Region tag

The img tag

To insert the Cardiff icon in the region called "cardiff_icon", we use the tag as shown in the source below.

Note that the region attribute is a pointer to the <region> tag.

 <smil>
 <head>
 <layout>
 <root-layout width="600" height="300"
 background-color="white" />
 <region id="cardiff_icon" left="30" top="25"
 width="533" height="250" />
 </layout>
 </head>
 <body>
 <img src="cardiff.gif" alt="The Cardiff icon"
 region="cardiff_icon" />
 </body>
 </smil>

This produces the following output:

Simple Cardiff Image Placement in SMIL

Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/cardiff_soja.gif

Next: Overlaying Regions Up: Positioning Media Previous: The img tag

Relative Position Example

if you wish to display the Cardiff icon at 10% from the left border and at 5% from the
top border, modify the previous source and replace the left and top attributes.

 <smil>
 <head>
 <layout>
 <root-layout width="600" height="600"
 background-color="white" />
 <region id="cardiff_icon" left="10%" top="5%"
 width="533" height="250" />
 </layout>
 </head>
 <body>
 <img src="cardiff.gif" alt="The Cardiff icon"
 region="cardiff_icon" />
 </body>
 </smil>

Dave Marshall
10/4/2001

Next: Support for Other Media Up: Positioning Media Previous: Relative Position Example

Overlaying Regions

We have just seen how to position a media along x and y axes (left and top).

What if two regions overlap?

● Which one should be displayed on top ?

The following code points out the problem:

<smil>
 <head>
 <layout>
 <root-layout width="300" height="200" background-color="white" />
 <region id="region_1" left="50" top="50" width="150" height="125" />
 <region id="region_2" left="25" top="25" width="100" height="100" />
 </layout>
 </head>
 <body>
 <par>
 <text src="text1.txt" region="region_1" />
 <text src="text2.txt" region="region_2" />
 </par>
 </body>
</smil>

To ensure that one region is over the other, add z-index attribute to <region>.

When two region overlay:

● the one with the greater z-index is on top.
● If both regions have the same z-index, the first rendered one is below the other.

In the following code, we add z-index to region_1 and region_2:

<smil>
 <head>
 <layout>
 <root-layout width="300" height="200" background-color="white" />
 <region id="region_1" left="50" top="50" width="150"
 height="125" z-index="2"/>
 <region id="region_2" left="25" top="25" width="100"
 height="100" z-index="1"/>
 </layout>
 </head>
 <body>
 <par>
 <text src="text1.txt" region="region_1" />

 <text src="text2.txt" region="region_2" />
 </par>
 </body>
</smil>

Dave Marshall
10/4/2001

Next: fitting media to regions Up: Positioning Media Previous: Overlaying Regions

Support for Other Media

 We have used images and text media in previous presentations but other media can be
introduced within SMIL.

Given the non-standard support for SMIL media support depends on the player
implementation. The table below sum-up what can be seen and the corresponding tag:

Media SMIL Tag RealPlayer G2 GRiNS Soja

GIF img OK OK OK

JPEG img OK OK OK

Wav audio OK OK -

.au Audio audio OK OK OK

.auz Audio Zipped audio - - OK

MP3 audio OK - -

Plain text text OK OK OK

Real text textstream OK - -

Real movie video OK - -

AVI video OK OK -

MPEG video OK OK -

MOV video OK - -

Next: fitting media to regions Up: Positioning Media Previous: Overlaying Regions
Dave Marshall
10/4/2001

Next: Synchronisation Up: Multimedia Programming:Tagging (SMIL) Previous:
Support for Other Media

fitting media to regions
You can set the fit attribute of the <region> tag to force media to be resized etc.

The following values are valid for fit:

● fill -- make media grow and fill the area.
● meet -- make media grow (without any distortion) until it meets the region

frontier.
● slice -- media grows (without distortion) and fill entirely its region.
● scroll -- if media is bigger than its region area gets scrolled.
● hidden -- don't show media

Obviously you set the value like this:

<region id="region_1"
 fit="fill" />

● Synchronisation
❍ Adding a duration of time to media -- dur
❍ Delaying Media -- the begin tag
❍ Sequencing Media -- the seq tag
❍ Parallel Media -- the par tag
❍ Synchronisation Example 1: Planets Soundtrack
❍ Synchronisation Example 2: Slides 'N' Sound

● SMIL Events
❍ begin events
❍ The switch Tag

Dave Marshall

10/4/2001

Next: Adding a duration of Up: fitting media to regions Previous: fitting media to
regions

Synchronisation

There are two basic ways in which we may want to play media:

● play several media one after the other,
● how to play several media in parallel.

In order to do this we need to add synchronisation:

● we will need to add time parameter to media elements,

● Adding a duration of time to media -- dur
● Delaying Media -- the begin tag
● Sequencing Media -- the seq tag
● Parallel Media -- the par tag
● Synchronisation Example 1: Planets Soundtrack
● Synchronisation Example 2: Slides 'N' Sound

Dave Marshall
10/4/2001

Next: Delaying Media Up: Synchronisation Previous: Synchronisation

Adding a duration of time to media -- dur

To add a duration of time to a media element simply specify a dur attribute parameter
in an appropriate media tag:

.....
<body>
 <img src="cardiff.gif" alt="The Cardiff icon"
 region="cardiff_icon" dur="6s" />
</body>
.....

Dave Marshall
10/4/2001

Next: Sequencing Media Up: Synchronisation Previous: Adding a duration of

Delaying Media -- the begin tag

To specify a delay i.e when to begin set the begin attribute parameter in an
appropriate media tag:

If you add begin="2s" in the cardiff image tag, you will see that the Cardiff icon will
appear 2 seconds after the document began and will remain during 6 other seconds.
Have a look at the source:

.....
<body>
 <body>
 <img src="cardiff.gif" alt="The Cardiff icon"
 region="cardiff_icon" dur="6s" begin="2s" />
</body>
.....

Dave Marshall
10/4/2001

Next: Parallel Media Up: Synchronisation Previous: Delaying Media

Sequencing Media -- the seq tag

Now that we have some basic control over individual media let's see how we play them
together.

The <seq> tag is used to define a sequence of media.

● The media are executed one after each other:

.....
<seq>
 <img src="img1.gif"
 region="reg1" dur="6s" />
 <img src="img2.gif"
 region="reg2" dur="4s" begin="1s" />
</seq>
.....

So the setting 1s makes the img2.gif icon appear 1 second after img1.gif.

Dave Marshall
10/4/2001

Next: Synchronisation Example 1: Planets Up: Synchronisation Previous: Sequencing
Media

Parallel Media -- the par tag

We use the <par> to play media at the same time:

<par>
 <img src="cardiff.gif" alt="The cardiff icon"
 region="cardiff_icon" dur="6s" />
 <audio src="music.au" alt="Some Music"
 dur="6s" />
</par>

This will display an image and play some music along with it.

Dave Marshall
10/4/2001

Next: Synchronisation Example 2: Slides Up: Synchronisation Previous: Parallel Media

Synchronisation Example 1: Planets Soundtrack

The following SMIL code plays on long soundtrack along with as series of images.

Essentially:

● The audio file and
● image sequences are played in parallel
● The Images are run in sequence with no break (begin = 0s)

The files are stored on the MACINTOSHES in the Multimedia Lab (in the SMIL folder) as follows:

● planets.html -- call smil source (below) with the SOJA applet. This demo uses zipped (SUN)
audio files (.auz) which are not supported by RealPlayer.

● planets.smil -- smil source (listed below),

<smil>
 <head>
 <layout>
 <root-layout height="400" width="600" background-color="#000000" title="Dreaming
out Loud"/>
 <region id="satfam" width="564" height="400" top="0" left="0" background-
color="#000000" z-index="2" />
 <region id="jupfam" width="349" height="400" top="0" left="251" background-
color="#000000" z-index="2" />
 <region id="redsun" width="400" height="400" top="0" left="100" background-
color="#000000" z-index="2" />
 <region id="ngc3918" width="484" height="400" top="0" left="58" background-
color="#000000" z-index="2" />
 <region id="lagoon1" width="394" height="396" top="2" left="103" background-
color="#000000" z-index="2" />
 <region id="lagoon2" width="436" height="308" top="46" left="82" background-
color="#000000" z-index="2" />
 <region id="m33" width="371" height="400" top="0" left="114" background-
color="#000000" z-index="2" />
 <region id="orion" width="371" height="400" top="0" left="114" background-
color="#000000" z-index="2" />
 <region id="hubble5" width="455" height="400" top="0" left="72" background-
color="#000000" z-index="2" />

 <region id="pillars" width="409" height="400" top="0" left="0" background-
color="#000000" z-index="2" />

 <region id="blank" width="191" height="400" top="0" left="409" background-
color="#ffffff" z-index="2" />
 <region id="music" width="100" height="25" top="30" left="453" background-
color="#ffffff" z-index="3" />
 <region id="dreamland" width="150" height="25" top="55" left="453" background-
color="#ffffff" z-index="3"/>
 <region id="by1" width="100" height="25" top="80" left="453" background-
color="#ffffff" z-index="3" />
 <region id="don" width="100" height="25" top="105" left="453" background-
color="#ffffff" z-index="3" />

 <region id="images" width="100" height="25" top="140" left="453" background-
color="#ffffff" z-index="3" />

 <region id="nasa" width="100" height="25" top="165" left="453" background-
color="#ffffff" z-index="3" />

 <region id="smil" width="100" height="25" top="200" left="453" background-
color="#ffffff" z-index="3" />
 <region id="by2" width="100" height="25" top="225" left="453" background-
color="#ffffff" z-index="3" />
 <region id="me" width="100" height="25" top="250" left="453" background-
color="#ffffff" z-index="3" />
 <region id="jose" width="100" height="25" top="250" left="453" background-
color="#ffffff" z-index="3" />

 <region id="title" width="125" height="25" top="40" left="237" background-
color="#ffffff" z-index="2" />
 </layout>
 </head>

 <body>
 <par>
 <audio src="media/dreamworldb.auz" dur="61.90s" begin="3.00s" system-
bitrate="14000" />
 <seq>

 <par>

 <img src="media/blank.gif" region="blank" begin="2.00s" end="50.00s"
/>
 <text src="media/music.txt" region="music" begin="3.00s" end="50.00s" />
 <text src="media/dreamland.txt" region="dreamland" begin="4.00s" end="50.00s"
/>
 <text src="media/by.txt" region="by1" begin="7.00s" end="50.00s" />
 <text src="media/don.txt" region="don" begin="8.00s" end="50.00s" />

 <text src="media/images.txt" region="images" begin="14.00s" end="50.00s" />
 <text src="media/nasa.txt" region="nasa" begin="15.00s" end="50.00s" />

 <text src="media/smil.txt" region="smil" begin="18.00s" end="50.00s" />
 <text src="media/by.txt" region="by2" begin="19.00s" end="50.00s" />
 <text src="media/me.txt" region="me" begin="20.00s" dur="3.00s" />
 <text src="media/jose.txt" region="jose" begin="23.00s" end="50.00s" />
 </par>
 <text src="media/title.txt" region="title" begin="3.00s" end="25.00s" />
 </seq>
 </par>
 </body>
 </smil>

Dave Marshall
10/4/2001

Next: SMIL Events Up: Synchronisation Previous: Synchronisation Example 1: Planets

Synchronisation Example 2: Slides 'N' Sound

Dr John Rosbottom of Plymouth Univ has come up with a novel way of giving lectures.

This has

● one long sequence of
● parallel pairs of images and audio files

Try out the online version:

http://www.dis.port.ac.uk/~johnr/lal2/start.htm

You may examine the files on the Macintoshes in the Multimedia lab (in SMIL folder)

● slides_n_sound.smil -- smil source (listed below), play with RealPlayer G2. NOTE: This
demo uses real audio files which are not supported by SOJA:

<smil>
<head>
<layout>
<root-layout height="400" width="600" background-color="#000000" title="Slides and
Sound"/>
</layout>
</head>
 <body>

 <seq>
 <par>
 <audio src="audio/leconlec.rm" dur="24s" title="slide 1"/>

 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="24s" clip-end="51s" dur="27s"
title="slide 2"/>

 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="51s" clip-end="67s" dur="16s"
title="slide 3"/>

 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="67s" clip-end="116s" dur="49s"
title="slide 4"/>

 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="116s" clip-end="186s" dur="70s"

http://www.dis.port.ac.uk/~johnr/lal2/start.htm

title="slide 5"/>
 <img src="slides/img005.GIF" clip-begin="116s" clip-end="186s" dur="70s"
title="slide 5"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="186s" clip-end="290s" dur="104s"
title="slide 6"/>
 <img src="slides/img006.GIF" clip-begin="186s" clip-end="290s" dur="104s"
title="slide 6"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="290s" clip-end="357s" dur="67s"
title="The Second Reason"/>
 <img src="slides/img007.GIF" clip-begin="290s" clip-end="357s" dur="67s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="357s" clip-end="373s" dur="16s"
title="The Second Reason"/>
 <img src="slides/img008.GIF" clip-begin="357s" clip-end="373s" dur="16s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="373s" clip-end="466s" dur="93s"
title="The Second Reason"/>
 <img src="slides/img009.GIF" clip-begin="373s" clip-end="466s" dur="93s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="466s" clip-end="497s" dur="31s"
title="The Second Reason"/>
 <img src="slides/img010.GIF" clip-begin="466s" clip-end="497s" dur="31s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="497s" clip-end="518s" dur="21s"
title="The Second Reason"/>
 <img src="slides/img011.GIF" clip-begin="497s" clip-end="518s" dur="21s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="518s" clip-end="536s" dur="18s"
title="The Second Reason"/>
 <img src="slides/img012.GIF" clip-begin="518s" clip-end="536s" dur="18s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="536s" clip-end="553s" dur="17s"
title="The Second Reason"/>
 <img src="slides/img013.GIF" clip-begin="536s" clip-end="553s" dur="17s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="553s" clip-end="562s" dur="9s"
title="The Second Reason"/>
 <img src="slides/img014.GIF" clip-begin="553s" clip-end="562s" dur="9s"

title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="562s" clip-end="568s" dur="6s"
title="The Second Reason"/>
 <img src="slides/img015.GIF" clip-begin="562s" clip-end="568s" dur="6s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="568s" clip-end="578s" dur="10s"
title="The Second Reason"/>
 <img src="slides/img016.GIF" clip-begin="568s" clip-end="578s" dur="10s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="578s" clip-end="610s" dur="32s"
title="The Second Reason"/>
 <img src="slides/img017.GIF" clip-begin="578s" clip-end="610s" dur="32s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="610s" clip-end="634s" dur="24s"
title="The Second Reason"/>
 <img src="slides/img018.GIF" clip-begin="610s" clip-end="634s" dur="24s"
title="The Second Reason"/>
 </par>

 <par>
 <audio src="audio/leconlec.rm" clip-begin="634s" clip-end="673s" dur="39s"
title="Slide 19"/>
 <img src="slides/img019.GIF" clip-begin="634s" clip-end="673s" dur="39s"
title="Slide 19"/>
 </par>

 <img src="slides/img006.GIF" fill="freeze" title="And finally..."
 author="Abbas Mavani (dis80047@port.ac.uk)"
 copyright="Everything is so copyright protected (c)1999"/>

 <!-- kept this in to remind me that you can have single things
 <audio src="audio/AbbasTest.rm" dur="50.5s"/>
 -->
 </seq>

 </body>
</smil>

Dave Marshall
10/4/2001

Next: begin events Up: fitting media to regions Previous: Synchronisation Example 2:
Slides

SMIL Events

Smiles supports event based synchronisation:

● begin events
● The switch Tag

Dave Marshall
10/4/2001

Next: The switch Tag Up: SMIL Events Previous: SMIL Events

begin events

When a media begins, it sends a begin event. If another media waits for this event, it
catches it. To make a media wait to an event, one of its synchronisation attributes (begin
or end) should be written as follows:

<!-- if you want tag to start when
 another tag begins -->
<tag begin="id(specifiedId)(begin)" />

<!-- if you want tag to start 3s after
 another tag begins -->
<tag begin="id(specifiedId)(3s)" />

<!-- if you want tag to start when
 another tag ends -->
<tag begin="id(specifiedId)(end)" />

For example:

 <body>
 <par>

 <img src="cardiff.gif" region="cardiff"
 id="cf" begin="4s" />

 <img src="next.gif" region="next"
 begin="id(cf)(2s)" />

 </par>
 </body>

will make the next.gif image begin 2s after cardiff.gif begins.

Dave Marshall
10/4/2001

Next: SMIL ON Up: SMIL Events Previous: begin events

The switch Tag

The syntax for the switch tag is:

<switch>
 <!-- child1 testAttributes1 -->
 <!-- child2 testAttributes2 -->
 <!-- child3 testAttributes3 -->
</switch>

The rule is:

● The first of the <switch> tag children whose test attributes are all evaluated to
TRUE is executed.

● A tag with no test attributes is evaluated to TRUE.
● See SMIL reference for list of valid test attributes

For example you may wish to provide presentations in english or welsh:

 <body>
 <switch>

 <!-- English only -->
 <par system-language="en">

 < audio src ="english.au" />
 </par>

 <!-- Welsh only -->
 <par system-language="cy">

 <audio src ="cymraeg.au" />
 </par>

somewhere in code you will (or it will be set) set the system-language

Dave Marshall

10/4/2001

Next: Multimedia Technology Up: Multimedia Programming:Tagging (SMIL)
Previous: The switch Tag

SMIL ON
Please refer to online sources and the SMIL reference handout for further SMIL
features.

Some good online SMIL resources include:

● Synchronized Multimedia
● Slides and SOund
● Content Creation and Programmer's Guide
● The CWI SMIL Page
● SMIL
● Synchronized Multimedia
● Jeff Rule's Dynamic HTML and SMIL Site
● SMIL syntax validator
● Synchronized Multimedia Integration Language
● CNET Builder.com - Web Authoring - Emerging Web standards - Synchronized

Multimedia Integration Language (SMIL): multimedia made easy
● SMIL Tutorial
● Just SMIL: News

Dave Marshall
10/4/2001

http://www.w3.org/AudioVideo/
http://www.dis.port.ac.uk/~johnr/lal2/start.htm
http://www.real.com/devzone/library/creating/index.html
http://www.cwi.nl/SMIL/
http://indy.cs.concordia.ca/smil/
http://www.w3.org/AudioVideo/
http://www.ruleweb.com/dhtml/smil.html
http://dejavu.cs.vu.nl/~symm/validator/
http://www.w3.org/TR/REC-smil/
http://www.builder.com/Authoring/Standards/ss01.html
http://www.builder.com/Authoring/Standards/ss01.html
http://www.helio.org/products/smil/tutorial/
http://smw.internet.com/smil/news/

Next: Multimedia Systems Technology Up: Multimedia Module No: CM0340
Previous: SMIL ON

Multimedia Technology

● Multimedia Systems Technology
❍ Discrete v continuous media
❍ Analog and Digital Signals
❍ Input Devices and Storage

■ Text and Static Data
■ Graphics
■ Images
■ Audio
■ Video

❍ Output Devices
❍ Storage Media

■ High performance I/O
■ Basic Storage
■ RAID -- Redundant Array of Inexpensive Disks
■ Optical Storage
■ CD Storage

■ CD Standards
■ DVD

■ What are the features of DVD-Video?
■ Quality of DVD-Video
■ What are the disadvantages of DVD?
■ Compatibility of DVD
■ Sizes and capacities of DVD
■ DVD video details
■ DVD audio
■ Interactive DVD features

■ DVD and computers
■ Further Information

Dave Marshall
10/4/2001

Next: Discrete v continuous media Up: Multimedia Technology Previous: Multimedia
Technology

Multimedia Systems Technology

● Discrete v continuous media
● Analog and Digital Signals
● Input Devices and Storage

❍ Text and Static Data
❍ Graphics
❍ Images
❍ Audio
❍ Video

● Output Devices
● Storage Media

❍ High performance I/O
❍ Basic Storage
❍ RAID -- Redundant Array of Inexpensive Disks
❍ Optical Storage
❍ CD Storage

■ CD Standards
❍ DVD

■ What are the features of DVD-Video?
■ Quality of DVD-Video
■ What are the disadvantages of DVD?
■ Compatibility of DVD
■ Sizes and capacities of DVD
■ DVD video details
■ DVD audio
■ Interactive DVD features

❍ DVD and computers
■ Further Information

Dave Marshall
10/4/2001

Next: Analog and Digital Signals Up: Multimedia Systems Technology Previous:
Multimedia Systems Technology

Discrete v continuous media
Multimedia systems deal with the generation, manipulation, storage, presentation, and
communication of information in digital form.

The data may be in a variety of formats: text, graphics, images, audio, video.

A majority of this data is large and the different media may need synchronisation -- the
data may have temporal relationships as an integral property.

Some media is time independent or static or discrete media: normal data, text, single
images, graphics are examples.

Video, animation and audio are examples of continuous media.

Dave Marshall
10/4/2001

Next: Input Devices and Storage Up: Multimedia Systems Technology Previous:
Discrete v continuous media

Analog and Digital Signals
We will discuss the mechanism and issues involved in transforming signals from analog-
digital in Chapter 6. Here we will introduce some basic definitions before overviewing
the technology required to perform such tasks.

The world we sense is full of analog signal, electrical sensors such as transducers,
thermocouples, microphones convert the medium they sense into electrical signals.
These are usually continuous and still analog. These analog signals must be converted or
digitised into discrete digital signals that computer can readily deal with.

Special hardware devices called Analog-to-Digital converters perform this task.

For playback Digital-to-Analog must perform a converse operation.

Note that Text, Graphics and some images are generated directly by computer and do
not require digitising: they are generated directly in binary format.

Handwritten text would have to digitised either by electronic pen sensing of scanning of
paper based form.

Dave Marshall
10/4/2001

Next: Text and Static Data Up: Multimedia Systems Technology Previous: Analog and
Digital Signals

Input Devices and Storage
Let us now consider each media in turn and summarise how it may be input into a
Multimedia system. We also briefly analyse the basic storage requirements for each type
of data. We do not yet consider any effect of compression on the files. Note that storage
requirements a large for many forms of media.

● Text and Static Data
● Graphics
● Images
● Audio
● Video

Dave Marshall
10/4/2001

Next: Graphics Up: Input Devices and Storage Previous: Input Devices and Storage

Text and Static Data

The sources of this media are the keyboard, floppies, disks and tapes. Text files are
usually stored and input character by character. Files may contain raw text or formatted
text e.g HTML, Rich Text Format (RTF) or a program language source (C, Pascal, etc..

Even though to data medium does not include any temporal constraints there may be an
natural implied sequence e.g. HTML format sequence, Sequence of C program
statements.

The basic storage of text is 1 byte per character (text or format character). For other
forms of data e.g. Spreadsheet files some formats may store format as text (with
formatting) others may use binary encoding.

Even the the storage requirements of this data is never high when data is stored on disk
small files may take larger disk storage requirements due to block and sector sizes of
disk partitions.

Dave Marshall
10/4/2001

Next: Images Up: Input Devices and Storage Previous: Text and Static Data

Graphics

Graphics are usually constructed by the composition of primitive objects such as lines,
polygons, circles, curves and arcs. Graphics are usually generated by a graphics editor
program (e.g. Freehand) or automatically by a program (e.g. Postscript usually generated
this way). Graphics are usually editable or revisable (unlike Images).

Graphics input devices include: keyboard (for text and cursor control), mouse, trackball
or graphics tablet.

Graphics files may adhere to a graphics standard (OpenGL, PHIGS, GKS) Text may
need to stored also. Graphics files usually store the primitive assembly and do not take
up a very high overhead.

Dave Marshall
10/4/2001

Next: Audio Up: Input Devices and Storage Previous: Graphics

Images

Images are still pictures which (uncompressed) are represented as a bitmap (a grid of
pixels).

Images may be generated by programs similar to graphics or animation programs. But
images may be scanned for photographs or pictures using a digital scanner or from a
digital camera. Some Video cameras allow for still image capture also. Analog sources
will require digitising.

Images may be stored at 1 bit per pixel (Black and White), 8 Bits per pixel (Grey Scale,
Colour Map) or 24 Bits per pixel (True Colour) (See Chapter 6).

Thus a 512x512 Grey scale image takes up 1/4 Mb, a 512x512 24 bit image takes 3/4
Mb with no compression. This overhead soon increases with image size so compression
is commonly applied (See Chapter 7)

Dave Marshall
10/4/2001

Next: Video Up: Input Devices and Storage Previous: Images

Audio

Audio signals are continuous analog signals. They are first captured by a microphones
and then digitised and store -- usually compressed as CD quality audio requires 16-bit
sampling at 44.1 KHz (There are other audio sampling rates -- Chapter 6). So 1 Minute
of Mono CD quality audio requires 60*44100*2 Bytes which is approximately 5 Mb.

Dave Marshall
10/4/2001

Next: Output Devices Up: Input Devices and Storage Previous: Audio

Video

Analog Video is usually captured by a video camera and then digitised. There are a
variety of video (analog and digital) formats (Chapter 6)

Raw video can be regarded as being a series of single images. There are typically 25, 30
or 50 frames per second. Therefore a 512x512 size monochrome video images take
25*0.25 = 6.25Mb for a minute to store uncompressed. Digital video clearly needs to be
compressed.

Dave Marshall
10/4/2001

Next: Storage Media Up: Multimedia Systems Technology Previous: Video

Output Devices
The output devices for a basic multimedia system include

● A High Resolution Colour Monitor
● CD Quality Audio Output
● Colour Printer
● Video Output to save Multimedia presentations to (Analog) Video Tape, CD-

ROM DVD.
● Audio Recorder (DAT, DVD, CD-ROM, (Analog) Cassette)
● Storage Medium (Hard Disk, Removable Drives, CD-ROM) -- see next section.

Dave Marshall
10/4/2001

Next: High performance I/O Up: Multimedia Systems Technology Previous: Output
Devices

Storage Media
Let us first recap the major problems that affect storage media:

● Large volume of date
● Real time delivery
● Data format
● Storage Medium
● Retrieval mechanisms

First two factors are the real issues that storage media have to deal and we have
discussed these factors already. Due to the volume of data the Data format will include
compression (see Chapters 6 and 7).

The type of storage medium and underlying retrieval mechanism will affect how the
media is stored and delivered. Ultimately any system will have to deliver high
performance I/O. We discuss this issue next before going on to discuss actual
Multimedia storage devices.

● High performance I/O
● Basic Storage
● RAID -- Redundant Array of Inexpensive Disks
● Optical Storage
● CD Storage

❍ CD Standards
● DVD

❍ What are the features of DVD-Video?
❍ Quality of DVD-Video
❍ What are the disadvantages of DVD?
❍ Compatibility of DVD
❍ Sizes and capacities of DVD
❍ DVD video details

❍ DVD audio
❍ Interactive DVD features

● DVD and computers
❍ Further Information

Dave Marshall
10/4/2001

Next: Basic Storage Up: Storage Media Previous: Storage Media

High performance I/O

There are four factors that influence I/O performance:

Data
-- Data is high volume, maybe continuous and may require contiguous storage.
Direct relationship between size of data and how long it takes to handle.
Compression and also distributed storage (See RAID technology (Section 5.5.3
below).

Data Storage
-- The strategy for data storage depends of the storage hardware and the nature of
the data. The following storage parameters affect how data is stored:

❍ Storage Capacity
❍ Read and Write Operations of hardware
❍ Unit of transfer of Read and Write
❍ Physical organisation of storage units
❍ Read/Write heads, Cylinders per disk, Tracks per cylinder, Sectors per

Track
❍ Read time
❍ Seek time

Data Transfer
-- Depend how data generated and written to disk, and in what sequence it needs
to retrieved. Writing/Generation of Multimedia data is usually sequential e.g.
streaming digital audio/video direct to disk. Individual data (e.g. audio/video file)
usually streamed.

RAID architecture can be employed to accomplish high I/O rates by exploiting
parallel disk access (Section 5.5.3)

Operating System Support
-- Scheduling of processes when I/O is initiated. Time critical operations can
adopt special procedures. Direct disk transfer operations free up CPU/Operating
system space.

Next: Basic Storage Up: Storage Media Previous: Storage Media
Dave Marshall

Next: RAID Redundant Up: Storage Media Previous: High performance I/O

Basic Storage

Basic storage units have problems dealing with large multimedia data

● Single Hard Drives -- SCSI/IDE Drives. So called AV (Audio-Visual) drives,
which avoid thermal recalibration between read/writes, are suitable for desktop
multimedia. New drives are fast enough for direct to disk audio and video
capture. But not adequate for commercial/professional Multimedia. Employed in
RAID architectures (Section 5.5.3)

● Removable Media -- Jaz/Zip Drives, CD-ROM, DVD. Conventional (dying out?)
floppies not adequate due 1.4 Mb capacity. Other media usually ok for backup
but usually suffer from worse performance than single hard drives.

Next: Optical Storage Up: Storage Media Previous: Basic Storage

RAID -- Redundant Array of Inexpensive Disks

This concept of RAID has been developed to fulfill the needs of current multimedia and other data hungry application
programs, and which require fault tolerance to be built into the storage device. Further, techniques of parallel processing are
also suitable to exploiting the benefits of such an arrangement of hard disks.

Raid technology offers some significant advantages as a storage medium:

● Affordable alternative to mass storage
● High throughput and reliability

The cost per megabyte of a disk has been constantly dropping, with smaller drives playing a larger role in this improvement.
Although larger disks can store more data, it is generally more power effective to use small diameter disks (as less power
consumption is needed to spin the smaller disks). Also, as smaller drives have fewer cylinders, seek distances are
correspondingly lower. Following this general trend, a new candidate for mass storage has appeared on the market, based on the
same technology as magnetic disks, but with a new organisation. These are arrays of small and inexpensive disks placed
together, based on the idea that disk throughput can be increased by having many disk drives with many heads operating in
parallel. The distribution of data over multiple disks automatically forces access to several disks at one time improving
throughput. Disk arrays are therefore obtained by placing small disks together to obtain the performance of more expensive
high end disks.

The key components of a RAID System are:

● Set of disk drives, disk arrays, viewed by user as one or more logical drives.
● Data may be distributed across drives
● Redundancy added in order to allow for disk failure

Disk arrays can be used to store large amounts of data, have high I/O rates and take less power per megabyte (when compared

to high end disks) due to their size, but they have very poor reliability .

What do you think is the reason of this low reliability?

As more devices are added, reliability deteriorates (N devices generally have the reliability of a single device).

Files stored on arrays may be striped across multiple spindles. Since a high capacity is available due to the availability of more
disks, it is possible to create redundancy within the system, so that if a disk fails the contents of a file may be reconstructed
from the redundant information. This off course leads to a penalty in capacity (when storing redundant information) and in
bandwidth (to update the disk). Four main techniques are available to overcome the lack of reliability of arrays:

● Mirroring or shadowing of the contents of disk, which can be a capacity kill approach to the problem. Each disk within
the array is mirrored and a write operation performs a write on two disks - resulting in a 100% capacity overhead. Reads
to disks may however be optimised. This solution is aimed at high bandwidth, high availability environments.

● Horizontal Hamming Codes: A special means to reconstruct information using an error correction encoding technique.
This may be an overkill, as it is complex to compute over a number of disks.

● Parity and Reed-Soloman Codes: Also an error correction coding mechanism. Parity may be computed in a number of
ways, either horizontally across disks or through the use of an interleaved parity block. Parity information also has to be
stored on disk, leading to a 33% capacity cost for parity. Use of wider arrays reduces the capacity cost, but leads to a
decrease

in the expected availability and increased reconstruction times. This approach is generally aimed at high bandwidth
scientific applications (such as image processing).

● Failure Prediction: There is no capacity overhead in this technique, though it is controversial in nature, as its use cannot
be justified if all errors or failures can be forecast correctly.

http://www.cs.cf.ac.uk/Dave/Multimedia/footnode.html#952

Each disk within the array needs to have its own I/O controller, but interaction with a host computer may be mediated through
an array controller as shown in figure 5.1.

A disk array link to the host processor

It may also be possible to combine the disks together to produce a collection of devices, where each vertical array is now the
unit of data redundancy. Such an arrangement is called an orthogonal RAID and shown in figure 5.2; other arrangements of
disks are also possible.

Orthogonal RAID

Figure 5.3 identifies disk performance for a number of machines and operating systems. The Convex supercomputer seems to
provide the best performance in terms of throughput (or megabytes transferred per second) based on a 32KB read operation due
to the use of a RAID disk. The figure also illustrates transfer rate dependencies between hardware and the particular operating
system being used.

http://www.cs.cf.ac.uk/Dave/Multimedia/array.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/array2.gif

Orthogonal RAID

There are now 8 levels of RAID technology, with each level providing a greater amount of resilience then the lower levels:

Level 0: Disk Striping
-- distributing data across multiple drives. Level 0 is an independent array without parity redundancy that accesses data
across all drives in the array in a block format. To accomplish this, the first data block is read/written from/to the first
disk in the array, the second block from/to the second disk, and so on. RAID 0 only addresses improved data throughput,
disk capacity and disk performance. In RAID 0 data is striped across the various drives present. Although striping can
improve performance on request rates, it does not provide fault tolerance. If a single disk fails, the entire system fails.
This would therefore be equivalent to storing the complete set of data on a single drive, though with a lower access rate.

Level 1: Disk Mirroring
-- Level 1 focusses on fault tolerancing and involves a second duplicate write to a mirror

disk each time a write request is made. The write is performed automatically and is transparent to the user, application
and system. The mirror disk contains an exact replica of the data on the actual disk. Data is recoverable if a drive fails
and may be recoverable if both drives fail. The biggest disadvantage is that only half of the disk capacity is available for
storage. Also, capacity can only be expanded in pairs of drives.

Of the RAID levels, level 1 provides the highest data availability since two complete copies of all information are
maintained. In addition, read performance may be enhanced if the array controller allows simultaneous reads from both
members of a mirrored pair. During writes, there will be a minor performance penalty when compared to writing to a
single disk. Higher availability will be achieved if both disks in a mirror pair are on separate I/O busses.

Level 2: Bit Interleaving and HEC Parity
-- Level 2 stripes data to a group of disks using a bite stripe. A Hamming code symbol for each data stripe is stored on
the check disk. This code can correct as well as detect data errors and permits data recovery without complete
duplication of data. This RAID level is also sometimes referred to as Level 0+1. It combines the benefits of both striping
and Level 1 - with both high availability and high performance. It can be tuned for either a request rate intensive or
transfer rate intensive environment. Level 2 arrays sector-stripe data across groups of drives, with some drives being
dedicated to storing Error Checking and Correction (ECC) information within each sector. However, since most disk
drives today embed ECC information within each sector as standard, Level 2 offers no significant advantages over Level
3 architecture. At the present time there are no manufacturers of Level 2 arrays.

http://www.cs.cf.ac.uk/Dave/Multimedia/array2.gif

Orthogonal RAID

Level 3: Bit Interleaving with XOR Parity
-- Level 3 is a striped parallel array where data is distributed by bit or byte. One drive in the array provides data
protection by storing a parity check byte for each data stripe.

Level 3 has the advantage over lower RAID levels in that the ratio of check disk capacity to data disk capacity decreases
as the number of data drives increases. It has parallel data paths and therefore offers high transfer rate performance for
applications that transfer large files. Array capacity can be expanded in single drive or group increments. With Level 3,
data chunks are much smaller than the average I/O size and the disk spindles are synchronised to enhance throughput in
transfer rate intensive environments. Level 3 is well suited for CAD/CAM or imaging type applications.

Level 4: Block Interleaving with XOR Parity
-- In Level 4 parity is interleaved at the sector or transfer level. As with Level 3, a single drive is used to store redundant
data using a parity check byte for each data stripe.

Level 4 offers high read performance and good write performance. Level 4 is a general solution, especially where the
ratio of reads to writes is high. This makes Level 4 a good choice for small block transfers, which are typical for
transaction processing applications. Write performance is low because the parity drive has to be written for each data
write. Thus the parity drive becomes a performance bottleneck when multiple parity write I/Os are required. In this
instance, Level 5 is a better solution because parity information is spiralled across all available disk drives. Level 4
systems are almost never implemented mainly because it offers no significant advantages over Level 5.

Level 5: Block Interleaving with Parity Distribution
-- Level 5 combines the throughput of block interleaved data

striping of Level 0 with the parity reconstruction mechanism of Level 3 without requiring an extra parity drive. In Level
5, both parity and data are striped across a set of disks. Data chunks are much larger than the average I/O size. Disks are
able to satisfy requests independently which provides high read performance in a request-rate intensive environment.
Since parity information is used, a Level 5 stripe can withstand a single disk failure without losing data or access to data.

Level 5's strength lies in handling large numbers of small files. It allows improved I/O transfer performance because the
parity drive bottleneck of Level 4 is eliminated. While Level 5 is more cost effective because a separate parity drive is
not used, write performance suffers. In graphic art and imaging applications, the weakness of Level 5 versus Level 3 is
the write penalty from the striped parity information. In Level 3 there is no write penalty. Level 5 is usually seen in

http://www.cs.cf.ac.uk/Dave/Multimedia/raids.gif

applications with large numbers of small read/write calls. Level 5 offers higher capacity utilisation when the array has
less than 7 drives. With a full array, utilisation is about equal between Level 3 and 5.

Level 6: Fault Tolerant System
-- additional error recovery. This is an improvement of Level 5. Disks are considered to be in a matrix formation and
parity is generated for each row and column of the matrix. Multidimensional parity is then computed and distributed
among the disks in the matrix.

Level 6 became a common feature in many systems but the advent of Level 7 has led to the abandonment of Level 6 in
many cases.

Level 7: Heterogeneous System
-- Fast access across whole system. Level 7 allows each individual drive to access data as fast as possible by
incorporating a few crucial features:

❍ Each I/O drive is connected to high speed data bus which posses a central cache store capable of supporting
multiple host I/O paths.

❍ A real time process-oriented OS is embedded into the disk array architecture -- frees up drives, allowing
independent drive head operation. Substantial improvement.

❍ All parity checking and check/microprocessor/bus/cache control logic embedded in this OS.
❍ OS designed to support multiple host interfaces -- other RAID levels support only one.
❍ Additional ability to reconstruct data in the event of dependent drive failure increased due to separate

cache/device control, and secondary, tertiary and beyond parity calculation -- up to four simultaneous disk
failures supported.

❍ Dynamic Mapping used. In conventional storage a block of data, once created, is written to fixed memory
location. All operations then rewrite data back to this location. In Dynamic Memory this constraint is freed and
new write locations logged and mapped. This frees additional disk accesses and the potential for a bottleneck.

These First 6 RAID levels are illustrated in Figure 5.4, where each circle represents a single disk drive, and arrows represent
data flows.

Next: CD Storage Up: Storage Media Previous: RAID Redundant

Optical Storage

Optical storage has been the most popular storage medium in the multimedia context
due its compact size, high density recording, easy handling and low cost per MB.

CD is the most common and we discuss this below. Laser disc and recently DVD are
also popular.

Next: CD Standards Up: Storage Media Previous: Optical Storage

CD Storage

There a now various formats of CD:

In the beginning, there was CD-DA (Compact Disc-Digital Audio), or standard music
CDs. CD-DA moved onto CD-ROM when people realized that you could store a whole
bunch of computer data on a 12cm optical disk (650mb). CD-ROM drives are simply
another kind of digital storage media for computers, albeit read-only. They are
peripherals just like hard disks and floppy drives. (Incidentally, the convention is that
when referring to magnetic media, it is spelled disc. Optical media like CDs, LaserDisc,
and all the other formats I'm about to explain are spelled disc.)

CD-I (Compact Disc-Interactive) came next. This is a consumer electronics format that
uses the optical disk in combination with a computer to provide a home entertainment
system that delivers music, graphics, text, animation, and video in the living room.
Unlike a CD-ROM drive, a CD-I player is a standalone system that requires no external
computer. It plugs directly into a TV and stereo system and comes with a remote control
to allow the user to interact with software programs sold on disks. It looks and feels
much like a CD player except that you get images as well as music out of it and you can
actively control what happens. In fact, it is a CD-DA player and all of your standard
music CDs will play on a CD-I player; there is just no video in that case.

Next came CD-ROM/XA (eXtended Architecture). Now we go back to computer
peripherals - a CD-ROM drive but with some of the compressed audio capabilities found
in a CD-I player (called ADPCM). This allows interleaving of audio and other data so
that an XA drive can play audio and display pictures (or other things) simultaneously.
There is special hardware in an XA drive controller to handle the audio playback. This
format came from a desire to inject some of the features of CD-I back into the
professional market.

Now, along comes the idea from Kodak for Photo CD - digital pictures on compact disk.
They teamed up with Philips to develop the standard for Photo CD disks. At this point, a
new problem enters the picture, if you'll pardon the expression. All of the disk formats
mentioned so far are read-only; there is no way for anyone but the producer of one of
these disks to store his/her own content on the disk - that is, to write to it. But there
already existed a technology called WORM (Write Once Read Many). This is an optical
disk that can be written to, but exactly once. You can burn data on it, but once burned
the data can not be erased, although it can then be used like a CD-ROM disk and read
forever. (Depending on your definition of forever, of course.)

CD-ROM, CD-ROM/XA, and CD-I disks are normally mastered, as opposed to burned.
That means that one master copy is made and then hundreds, or thousands, or millions
(if you're lucky enough to need that many) of replicates are pressed from the master.
This process is much cheaper than burning for quantities above a few dozen or so.
Generally, disk pressing plants can handle all of these formats as the underlying
technology is the same; the only difference is in the data and disk format.

The reason that WORM technology was critical for Photo CD is obvious - the content of
these disks is not determined by the manufacturer or publisher. For Photo CD, each disk
will be different - a roll or few rolls of film per disk from a customer.

Kodak and Philips wanted Photo CD disks to be playable on both computer peripherals
for desktop publishing uses AND on a consumer device for home viewing. For the
former, CD-ROM/XA was chosen as a carrier and for the latter CD-I, which was already
designed as a consumer electronics device, and dedicated Photo CD players. This desire
for a hybrid disk, or one with multi-platform compatibility, led to the development of the
CD-I Bridge disk format. A Bridge disk is one that is readable on both a CD-I player and
a CD-ROM/XA drive.

This Bridge format is the reason there is so much confusion about CD-ROM drives for
Photo CD. A drive that supports Photo CD must be a CD-ROM/XA drive that is also
Bridge-compatible. (The technical description of Bridge disks calls for supporting
certain kinds of sectors identified by form and mode bits, which is what you usually hear
instead of the Bridge disk label.) That almost completes the picture, except for the
concept of sessions.

Although a WORM disk can only be written to once, it is not necessary to write, or burn,
the entire disk all at once. You can burn the disk initially with, say, a few hundred
megabytes of data, and then go back later and burn some more data onto it. Of course,
each burn must be to a virgin part of the disk; once a spot on the disk is burned, it can
not be re-burned. Each burn operation is referred to as a session, and a drive or disk that
supports this multiple burning operation is called multisession.

Originally, all WORMs were single session only. That is, you could not go back and add
data to a WORM disk once it was burned, even if it was not full. For Photo CD, they
wanted the consumer to be able to add more pictures to an existing disk as additional
rolls of film were processed. So the extension of WORM technology to multisession was
developed and adopted for the Bridge disk format. This required hardware changes to
CD-ROM/XA drives and that is why there are a fair number of single session XA drives
on the market and multisession ones appearing more and more.

A single session drive can read a multisession disk, but it can only read the contents of
the first session that was burned. Incidentally, all Philips CD-I players are multisession,
although all current CD-I disks have only a single session on them.

The capacity of a CD-ROM is 620-700 Mbs depending on CD material, Drives that read
and write the CD-ROMS. 650 Mb (74 Mins) is a typical write once CD-ROM size.

● CD Standards

Next: DVD Up: CD Storage Previous: CD Storage

CD Standards

There are several CD standard for different types of media:

Red Book
-- Digital Audio: Most Music CDs.

Yellow Book
-- CD-ROM: Model 1 - computer data, Model 2 - compress audio/video data.

Green Book
-- CD-I

Orange Book
-- write once CDs

Blue Book
-- LaserDisc

Next: What are the features Up: Storage Media Previous: CD Standards

DVD

DVD, which stands for Digital Video Disc, Digital Versatile Disc, or nothing,
depending on whom you ask, is the next generation of optical disc storage technology.

DVD has become a major new medium for a whole host of multimedia system:

It's essentially a bigger, faster CD that can hold video as well as audio and computer
data. DVD aims to encompass home entertainment, computers, and business information
with a single digital format, eventually replacing audio CD, videotape, laserdisc, CD-
ROM, and perhaps even video game cartridges. DVD has widespread support from all
major electronics companies, all major computer hardware companies, and most major
movie and music studios, which is unprecedented and says much for its chances of
success (or, pessimistically, the likelihood of it being forced down our throats).

It's important to understand the difference between DVD-Video and DVD-ROM. DVD-
Video (often simply called DVD) holds video programs and is played in a DVD player
hooked up to a TV. DVD-ROM holds computer data and is read by a DVD-ROM drive
hooked up to a computer. The difference is similar to that between Audio CD and CD-
ROM. DVD-ROM also includes future variations that are recordable one time (DVD-R)
or many times (DVD-RAM). Most people expect DVD-ROM to be initially much more
successful than DVD-Video. Most new computers with DVD-ROM drives will also be
able to play DVD-Videos.

There's also a DVD-Audio format. The technical specifications for DVD-Audio are not
yet determined.

● What are the features of DVD-Video?
● Quality of DVD-Video
● What are the disadvantages of DVD?
● Compatibility of DVD
● Sizes and capacities of DVD
● DVD video details
● DVD audio

● Interactive DVD features

Next: Quality of DVD-Video Up: DVD Previous: DVD

What are the features of DVD-Video?

The main features of DVD include:

● Over 2 hours of high-quality digital video (over 8 on a double-sided, dual-layer
disc).

● Support for widescreen movies on standard or widescreen TVs (4:3 and 16:9
aspect ratios).

● Up to 8 tracks of digital audio (for multiple languages), each with as many as 8
channels.

● Up to 32 subtitle/karaoke tracks.
● Automatic seamless branching of video (for multiple story lines or ratings on one

disc).
● Up to 9 camera angles (different viewpoints can be selected during playback).
● Menus and simple interactive features (for games, quizzes, etc.).
● Multilingual identifying text for title name, album name, song name, cast, crew,

etc.
● Instant rewind and fast forward, including search to title, chapter, track, and

timecode.
● Durability (no wear from playing, only from physical damage).
● Not susceptible to magnetic fields. Resistant to heat.
● Compact size (easy to handle and store, players can be portable, replication is

cheaper).

Note: Most discs do not contain all features (multiple audio/subtitle tracks, seamless
branching, parental control, etc.). Some discs may not allow searching or skipping.

Most players support a standard set of features:

● Language choice (for automatic selection of video scenes, audio tracks, subtitle
tracks, and menus) which must be supported by additional content on the disc.
Some players include additional features:

● Special effects playback: freeze, step, slow, fast, and scan (no reverse play or
reverse step).

● Parental lock (for denying playback of discs or scenes with objectionable
material) which again must be supported by additional content on the disc. Some
players include additional features

● Programmability (playback of selected sections in a desired sequence).
● Random play and repeat play.
● Digital audio output (PCM stereo and Dolby-Digital).

● Compatibility with audio CDs.
● Component (YUV or RGB) output for highest-quality picture.
● Compatibility with Video CDs.
● Six-channel analog output from internal audio decoder.
● Compatibility with laserdiscs and CDVs.
● Reverse single frame stepping.
● RF output (for TVs with no direct video input).
● Multilingual on-screen display.

Next: What are the disadvantages Up: DVD Previous: What are the features

Quality of DVD-Video

DVD has the capability to produce near-studio-quality video and better-than-CD-quality
audio. DVD is vastly superior to videotape and generally better than laserdisc. However,
quality depends on many production factors. Until compression experience and
technology improves we will occasionally see DVDs that are inferior to laserdiscs. Also,
since large amounts of video have already been encoded for Video CD using MPEG-1, a
few low-budget DVDs will use that format (which is no better than VHS) instead of
higher-quality MPEG-2 (See Chapters 6 and 7)

DVD video is compressed from digital studio master tapes to MPEG-2 format. This is a
lossy compression (see Chapter 7) which removes redundant information (such as
sections of the picture that don't change) and information that's not readily perceptible
by the human eye. The resulting video, especially when it is complex or changing
quickly, may sometimes contain artifacts such as blockiness, fuzziness, and video noise
depending on the processing quality and amount of compression (Chapter 7). At average
rates of 3.5 Mbps (million bits/second), artifacts may be occasionally noticeable. Higher
data rates result in higher quality, with almost no perceptible difference from the original
master at rates above 6 Mbps. As MPEG compression technology improves, better
quality is being achieved at lower rates.

Some DVD demos have visible artifacts such as color banding, blurriness, shimmering,
missing detail, and even effects such as a face which floats behind the rest of the moving
picture. This is sometimes caused by poor MPEG encoding, but is just as often caused
by a poorly adjusted TV or by sloppy digital noise reduction prior to encoding. The Free
Willy and Twister excerpts on the Panasonic demo disc are good examples of this. In
any case, bad demos are not an indication that DVD quality is bad, since other demos
show no artifacts or other problems. Bad demos are simply an indication of how bad
DVD can be if not properly processed and correctly reproduced. Early demos were
shown on prototype players based on prerelease hardware and firmware. Many demo
discs were rushed through the encoding process in order to be distributed as quickly as
possible. Contrary to popular opinion, and as stupid as it may seem, these demos are not
carefully tweaked to show DVD at its best. Also, most salespeople are incapable of
properly adjusting a television set. Most TVs have the sharpness set too high for the
clarity of DVD. This exaggerates high-frequency video and causes distortion, just as the
treble control set too high for a CD causes it to sound harsh. DVD video has exceptional
color fidelity, so muddy or washed-out colors are almost always a problem in the
display, not in the DVD player or disc.

DVD audio quality is excellent. One of DVD's audio formats is LPCM (linear pulse

code modulation) with sampling sizes and rates higher than audio CD. Alternately, audio
for most movies is stored as discrete multi-channel surround sound using Dolby Digital
or MPEG-2 audio compression similar to the surround sound formats used in theaters.
As with video, audio quality depends on how well the encoding was done. Most audio
on DVD will be in Dolby Digital format, which is close to CD quality.

The final assessment of DVD quality is in the hands of consumers. Most initial reports
consistently rate it better than laserdisc. No one can guarantee the quality of DVD, just
as no one should dismiss it based on demos or hearsay. In the end it's a matter of
individual perception.

Next: Compatibility of DVD Up: DVD Previous: Quality of DVD-Video

What are the disadvantages of DVD?

Despite several positive attributes mentioned above there are some potential
disadvantages of DVD:

● It will take years for movies and software to become widely available.
● It can't record (yet).
● It has built-in copy protection and regional lockout.
● It uses digital compression. Poorly compressed audio or video may be blocky,

fuzzy, harsh,
● or vague.
● The audio downmix process for stereo/Dolby Surround can reduce dynamic

range.
● It doesn't fully support HDTV.
● Some DVD players and drives may not be able to read CD-Rs.
● First-generation DVD players and drives can't read DVD-RAM discs.
● Current players can't play in reverse at normal speed.

Next: Sizes and capacities of Up: DVD Previous: What are the disadvantages

Compatibility of DVD

DVD is compatible with most other optical media storage (but there is a distinction
between DVD and DVD-ROM below:

● CD audio (CD-DA) -- All DVD players and drives will read audio CDs (Red
Book). This is not actually required by the DVD spec, but so far all
manufacturers have stated that their DVD hardware will read CDs. On the other
hand, you can't play a DVD in a CD player. (The pits are smaller, the tracks are
closer together, the data layer is a different distance from the surface, the
modulation is different, the error correction coding is new, etc.)

● CD-ROM is compatible with DVD-ROM -- All DVD-ROM drives will read CD-
ROMs (Yellow Book). However, DVD-ROMs are not readable by CD-ROM
drives.

● CD-R maybe compatible with DVD-ROM -- The problem is that CD-Rs (Orange
Book Part II) are invisible to DVD laser wavelength because the dye used in CD-
Rs doesn't reflect the beam. This problem is being addressed in many ways. Sony
has developed a twin-laser pickup in which one laser is used for reading DVDs
and the other for reading CDs and CD-Rs. Samsung has also announced dual-
laser using a holographic annular masked lens. These solutions provide complete
backwards compatibility with millions of CD-R discs. Philips has also stated that
its DVD-ROM drives will read CD-Rs. In addition, new CD-R Type II blanks
that will work with CD-ROM and DVD are supposedly in development. In the
meantime, some first-generation DVD-ROM drives and many first-generation
DVD-Video players will not read CD-R media.

● Is CD-RW is compatible with DVD -- CD-Rewritable (Orange Book Part III)
discs can not be read by existing CD-ROM drives and CD players. CD-RW has a
lower reflectivity difference, requiring automatic-gain-control (AGC) circuitry.
The new MultiRead standard addresses this and some DVD manufacturers have
already suggested they will support it. Supposedly the optical circuitry of DVD-
ROM drives and DVD players is good enough to read CD-RW. CD-RW does not
have the invisibility problem of CD-R .

● Video CD maybe compatible with DVD -- It's not required by the DVD spec, but
it's trivial to support the White Book standard since any MPEG-2 decoder can
also decode MPEG-1 from a Video CD. Panasonic, RCA, Samsung, and Sony
models play Video CDs. Japanese Pioneer models play Video CDs but American
models don't. Toshiba players don't play Video CDs

VCD resolution is 352x288 for PAL and 352x240 for NTSC. The way most
DVD players and Video CD players deal with the difference is to chop off the
extra lines or add blank lines. When playing PAL VCDs, the Panasonic and RCA

NTSC players apparently cut the entire 48 lines (17bottom and none off the top.
The Sony looks better. [Does anyone know if it cuts 24 lines off the top and the
bottom, or if it scales the full picture to fit?]

Most DVD-ROM computers will be able to play Video CDs (with the right
software), since its already possible with current-model CD-ROM computers.

Note: Many Asian VCDs achieve two soundtracks by putting one language on
the left channel and another on the right. They will be mixed together into babel
on a stereo system unless you adjust the balance to get only one channel.

● Photo CD is NOT compatible with DVD -- DVD players could support Photo
CD with a few extra chips and a license from Kodak. No one has announced such
a player. Most DVD-ROM drives will read Photo CDs (if they read CD-Rs) since
it's trivial to support the XA and Orange Book multisession standards. The more
important question is, ``Does the OS or application support Photo CD''

● CD-I NOT compatible with DVD -- Most DVD players will not play CD-I
(Green Book) discs. However, Philips has announced that it will make a DVD
player that supports CD-I. Some people expect Philips to create a DVD-I format
in attempt to breathe a little more life into CD-I (and recover a bit more of the
billion or so dollars they've invested in it).

● Enhanced CD is compatible with DVD -- DVD players will play music from
Enhanced Music CDs (Blue Book, CD Plus, CD Extra), and DVD-ROM drives
will play music and read data from Enhanced CDs. Older ECD formats such as
mixed mode and track zero (pregap, hidden track) should also be compatible, but
there may be a problem with DVD-ROM drivers skipping track zero (as has been
the case with some new CD-ROM drivers).

● Laserdisc is NOT compatible with DVD -- Standard DVD players will not play
laserdiscs, and you can't play a DVD disc on any standard laserdisc player.
(Laserdisc uses analog video, DVD uses digital video; they are very different
formats.)

However, Pioneer and Samsung have announced combo players that will play
laserdiscs and DVDs (and also CDVs and audio CDs). Denon is rumored to have
an LD/DVD player in the works also.

Next: DVD video details Up: DVD Previous: Compatibility of DVD

Sizes and capacities of DVD

There are many variations on the DVD theme. There are two physical sizes: 12 cm (4.7 inches) and
8 cm (3.1 inches), both 1.2 mm thick. These are the same form factors as CD. A DVD disc can be
single-sided or double-sided. Each side can have one or two layers of data. The amount of video a
disc can hold depends on how much audio accompanies it and how heavily the video and audio are
compressed. The oft-quoted figure of 133 minutes is apocryphal: a DVD with only one audio track
easily holds over 160 minutes, and a single layer can actually hold up to 9 hours of video and audio
if it's compressed to VHS quality.

At a rough average rate of 4.7 Mbps (3.5 Mbps for video, 1.2 Mbps for three 5.1-channel
soundtracks), a single-layer DVD holds around 135 minutes. A two-hour movie with three
soundtracks can average 5.2 Mbps. A dual-layer disc can hold a two-hour movie at an average of
9.5 Mbps (very close to the 10.08 Mbps limit).

Capacities of DVD:

For reference, a CD-ROM holds about 650 MB (megabytes), which is 0.64 GB (gigabytes) or 0.68
G bytes (billion bytes). In the list below, SS/DS means single-/double-sided, SL/DL means single-
/dual-layer, GB means gigabytes (230), G means billions of bytes (109).

DVD-5 (12cm, SS/SL): 4.38 GB (4.7 G) of data, over 2 hours of video
DVD-9(12cm, SS/DL): 7.95 GB (8.5 G), about 4 hours
DVD-10 (12cm, DS/SL): 8.75 GB (9.4 G), about 4.5 hours
DVD-18 (12cm, DS/DL): 15.90 GB (17 G), over 8 hours
DVD-1? (8cm, SS/SL): 1.36 (1.4 G), about half an hour
DVD-2? (8cm, SS/DL): 2.48 GB (2.7 G), about 1.3 hours
DVD-3? (8cm, DS/SL): 2.72 GB (2.9 G), about 1.4 hours
DVD-4? (8cm, DS/DL): 4.95 GB (5.3 G), about 2.5 hours
DVD-R (12cm, SS/SL): 3.68 GB (3.95 G)
DVD-R (12cm, DS/SL): 7.38 GB (7.9 G)
DVD-R (8cm, SS/SL): 1.15 GB (1.23 G)
DVD-R (8cm, DS/SL): 2.29 GB (2.46 G)
DVD-RAM (12cm, SS/SL): 2.40 GB (2.58 G)
DVD-RAM (12cm, DS/SL): 4.80 GB (5.16 G)

Note: It takes about two gigabytes to store one hour of average video (Chapter 6).

The increase in capacity from CD-ROM is due to:

● smaller pit length (2.08x) (Fig.(5.5),

● tighter tracks (2.16x),
● slightly larger data area (1.02x),
● slightly larger data area (1.02x),

DVD vs CD-ROM Pit Length

● discs single or double sided
● another data layer added to each side creating a potential for four layers of data per disc

(Fig. 5.6)

DVD layers

● more efficient channel bit modulation (1.06x),
● more efficient error correction (1.32x),
● less sector overhead (1.06x). Total increase for a single layer is about 7 times a standard CD-

ROM. There's a slightly different explanation at
http://www.mpeg.org/MPEG/DVD/General/Gain.html

http://www.cs.cf.ac.uk/Dave/Multimedia/cddvd.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/dvdpits.gif
http://www.mpeg.org/MPEG/DVD/General/Gain.html

The capacity of a dual-layer disc is slightly less than double that of a single-layer disc. The laser has
to read through the outer layer to the inner layer (a distance of 20 to 70 microns). To reduce inter-
layer crosstalk, the minimum pit length of both layers is increased from .4 um to .44 um. In
addition, the reference scanning velocity is slightly faster - 3.84 m/s, as opposed to 3.49 m/s for
single layer discs. Bigger pits, spaced farther apart, are easier to read correctly and are less
susceptible to jitter. Bigger pits and fewer of them mean reduced capacity per layer.

Next: DVD audio Up: DVD Previous: Sizes and capacities of

DVD video details

We will look at the details of video and audio in general in Chapter 6 and compression
(MPEG formats) in Chapter 7. These concepts are mentioned below and will be
explained in further detail in these later chapters.

DVD-Video is an application of DVD-ROM. DVD-Video is also an application of
MPEG-2. This means the DVD format defines subsets of these standards to be applied
in practice as DVD-Video. DVD-ROM can contain any desired digital information, but
DVD-Video is limited to certain data types designed for television reproduction.

A disc has one track (stream) of MPEG-2 constant bit rate (CBR) or variable bit rate
(VBR) compressed digital video. A limited version of MPEG-2 Main Profile at Main
Level (MP@ML) is used. MPEG-1 CBR and VBR video is also allowed. 525/60
(NTSC, 29.97 interlaced frames/sec) and 625/50 (PAL, 25 interlaced frames/sec) video
systems are supported. Coded frame rates of 24 fps progressive or interlaced from film,
25 fps interlaced from PAL video, and 29.97 fps interlaced from NTSC video are
supported. In the case of 24 fps source, the encoder embeds MPEG-2 repeat_first_field
flags into the video stream to make the decoder either perform 3-2 pulldown for 60
(59.94) Hz displays or 2-2 pulldown (with 4displays. In other words, the player doesn't
really know what the encoded rate is, it simply follows the MPEG-2 encoder's
instructions to arrive at the predetermined display rate of 25 fps or 29.97 fps. (No
current players convert from PAL to NTSC or NTSC to PAL.) See the Chapter 7 for
more information on MPEG-2 video.

Picture dimensions are max 720x480 (29.97 frames/sec) or 720x576 (25 frames/sec).
Pictures are subsampled from 4:2:2 ITU-R 601 down to 4:2:0, allocating an average of
12 bits/pixel. (Color depth is still 24 bits, since color samples are shared across 4 pixels.)
The uncompressed source is 124.416 Mbps for video source (720x480x12x30 or
720x576x12x25), or either 99.533 or 119.439 Mbps for film source (720x480x12x24 or
720x576x12x24). Using the traditional (and rather subjective) television measurement of
lines of horizontal resolution DVD can have 540 lines on a standard TV (720/(4/3)) and
405 on a widescreen TV (720/(16/9)). In practice, most DVD players provide about 500
lines because of filtering. VHS has about 230 (172 w/s) lines and laserdisc has about 425
(318 w/s).

Different players use different numbers of bits for the video digital-to-analog converter.
(Sony and Toshiba use 10 bits, Pioneer and Panasonic use 9 bits.) This has nothing to do
with the MPEG decoding process. It provides more headroom and more analog signal
levels which supposedly give a better picture.

Maximum video bitrate is 9.8 Mbps. The average bitrate is 3.5 but depends entirely on
the length, quality, amount of audio, etc. This is a 36:1 reduction from uncompressed
124 Mbps (or a 28:1 reduction from 100 Mbps film source). Raw channel data is read
off the disc at a constant 26.16 Mbps. After 8/16 demodulation it's down to 13.08 Mbps.
After error correction the user data stream goes into the track buffer at a constant 11.08
Mbps. The track buffer feeds system stream data out at a variable rate of up to 10.08
Mbps. After system overhead, the maximum rate of combined elementary streams
(audio + video + subpicture) is 10.08. MPEG-1 video rate is limited to 1.856 Mbps with
a typical rate of 1.15 Mbps.

Still frames (encoded as MPEG-2 I-frames) are supported and can be displayed for a
specific amount of time or indefinitely. These are generally used for menus. Still frames
can be accompanied by audio.

A disc also can have up to 32 subpicture streams that overlay the video for subtitles,
captions for the hard of hearing, captions for children, karaoke, menus, simple
animation, etc. These are full-screen, run-length-encoded bitmaps limited to four pixel
types. For each group of subpictures, four colors are selected from a palette of 16 (from
the YCrCb gamut), and four contrast values are selected out of 16 levels from
transparent to opaque. Subpicture display command sequences can be used to create
effects such as scroll, move, color/highlight, and fade. The maximum subpicture data
rate is 3.36 Mbps, with a maximum size per frame of 53220 bytes.

Video can be stored on a DVD in 4:3 format (standard TV shape) or 16:9 (widescreen).
The 16:9 format is anamorphic, meaning the picture is squeezed horizontally to fit a 4:3
rectangle then unsqueezed during playback. DVD players can output video in four
different ways:

● full frame (4:3 video for 4:3 display)
● letterbox (16:9 video for 4:3 display)
● pan and scan (16:9 video for 4:3 display)
● widescreen (16:9 video for 16:9 display)

Video stored in 4:3 format is not changed by the player. It will appear normally on a
standard 4:3 display. Widescreen systems will either enlarge it or add black bars to the
sides. 4:3 video may have been formatted in various ways before being transferred to
DVD. For example, it may have been letterboxed to hold video with a wider shape. Or it
may have been panned and scanned from film composed for a wider theatrical
presentation. All formatting done to the video prior to it being stored on the disc is
transparent to the player. It merely reproduces the signal in standard form.

For automatic letterbox mode, the player creates black bars at the top and the bottom of
the picture (60 lines each for NTSC, 72 for PAL). This leaves 3/4 of the height
remaining, creating a shorter but wider rectangle. In order to fit this shorter rectangle,
the picture is squeezed vertically using a letterbox filter that combines every 4 lines into

3. This compensates for the original horizontal squeezing, resulting in the movie being
shown in its full width. The vertical resolution is reduced from 480 lines to 360.

For automatic pan and scan mode, the video is unsqueezed to 16:9 and a portion of the
image is shown at full height on a 4:3 screen by following a `center of interest' offset
that's encoded in the video stream according to the preferences of the people who
transferred the film to video. The pan and scan window is 75% of the full width, which
reduces the horizontal pixels from 720 to 540. The pan and scan window can only travel
laterally. This does not duplicate a true pan and scan process in which the window can
also travel up and down and zoom in and out. Therefore, most DVD producers choose to
put a separate pan and scan version on the disc in addition to the widescreen version.

For widescreen mode, the anamorphic video is stretched back out by widescreen
equipment to its original width. If anamorphic video is shown on a standard 4:3 display,
people will look like they have been on a crash diet. Widescreen mode is complicated
because most movies today are shot with a soft matte. (The cinematographer has two
sets of frame marks in her viewfinder, one for 1.33 (4:3) and one for 1.85, so she can
allow for both formats). A few movies are even wider, such as the 2.35 ratio of
Panavision. Since most movies are wider than 1.78 (16:9), one of at least 4 methods
must be used during transfer to make it fit the 1.78 rectangle: 1) add additional thin
black bars to the top and bottom; 2) include a small amount of extra picture at the top
and bottom from the soft matte area; 3) crop the sides; 4) pan and scan with a 1.78
window. With the first two methods, the difference between 1.85 and 1.78 is so small
that the letterbox bars or extra picture are hidden in the overscan area of most
televisions. Nevertheless, and especially with 2.35 movies, many DVD producers put
16:9 source on one side (or layer) of the disc and 4:3 source on the other. This way the
full-frame version of the film can be used for a horizontal and vertical pan and scan, and
zoom process with no letterbox bars and no reduction in resolution.

Anamorphosis causes no problems with line doublers, which simply double the lines
before they are stretched out by the widescreen display.

For anamorphic video, the pixels are fatter. Different pixel aspect ratios (none of them
square) are used for each aspect ratio and resolution. 720-pixel and 704-pixel sizes have
the same aspect ratio because the first includes overscan. Note that conventional values
of 1.0950 and 0.9157 are for height/width (and are tweaked to match scanning rates).
The table below uses less-confusing width/height values (y/x * h/w).

 720x480 720x576
 704x480 704x486 352x480 352x576
4:3 0.909 1.091 1.818 2.182
16:9 1.212 1.455 2.424 2.909

Playback of widescreen material can be restricted. Programs can be marked for the
following display modes:

● 4:3 full frame
● 4:3 LB (for automatically setting letterbox expand mode on widescreen TV)
● 16:9 LB only (player not allowed to pan and scan on 4:3 TV)
● 16:9 PS only (player not allowed to letterbox on 4:3 TV)
● 16:9 LB or PS (viewer can select pan and scan or letterbox on 4:3 TV)

Next: Interactive DVD features Up: DVD Previous: DVD video details

DVD audio

The DVD-Audio format is not yet specified. The International Steering Committee
announced it expects to have a final draft specification by December 1997. This means
DVD-Audio products may show up around 1999.

The following details are for audio tracks on DVD-Video. Some DVD manufacturers
such as Pioneer are developing audio-only players using the DVD-Video format.

A disc can have up to 8 audio tracks (streams). Each track can be in one of three formats:

● Dolby Digital (formerly AC-3): 1 to 5.1 channels
● MPEG-2 audio: 1 to 5.1 or 7.1 channels
● PCM: 1 to 8 channels.

Two additional optional formats are supported: DTS and SDDS. Both require external
decoders.

The .1 refers to a low-frequency effects (LFE) channel that connects to a subwoofer.
This channel carries an emphasized bass audio signal.

All five audio formats support karaoke mode, which has two channels for stereo (L and
R) plus an optional guide melody channel (M) and two optional vocal channels (V1 and
V2).

Discs containing 525/60 (NTSC) video must use PCM or Dolby Digital on at least one
track. Discs containing 625/50 (PAL/SECAM) video must use PCM or MPEG audio on
at least one track. Additional tracks may be in any format. The DVD Forum has clarified
that only stereo MPEG audio is mandatory for 625/50 discs, while multichannel MPEG-
2 audio is recommended. Since multichannel MPEG-2 decoders are not yet available,
most 625/50 discs include Dolby Digital audio.

For stereo output (analog or digital), all NTSC players and all PAL players (so far) have
a built-in Dolby Digital decoder which downmixes from 5.1 channels (if present on the
disc) to Dolby Surround stereo (i.e., 5 channels are matrixed into 2 channels to be
decoded to 4 by an external Dolby Pro Logic processor). Both Dolby Digital and MPEG-
2 support 2-channel Dolby Surround as the source in cases where the disc producer can't
or doesn't want to remix the original onto discrete channels. This means that a DVD
labelled as having Dolby Digital sound may only use the L/R channels for surround or
plain stereo. Even movies with old monophonic soundtracks may use Dolby Digital -

but only 1 or 2 channels.

The downmix process does not include the LFE channel and may compress the dynamic
range in order to improve dialog audibility and keep the sound from becoming muddy on
average home audio systems. This can result in reduced sound quality on high-end audio
systems. Some players have the option to turn off the dynamic range compression. The
downmix is auditioned when the disc is prepared, and if the result is not acceptable the
audio may be tweaked or a separate L/R Dolby Surround track may be added.
Experience has shown that minor tweaking is sometimes required to make the dialog
more audible within the limited dynamic range of a home stereo system, but that a
separate track is not usually necessary. If surround audio is important to you, you will
hear significantly better results from multichannel discs if you have a Dolby Digital
system.

Linear PCM is uncompressed (lossless) digital audio, the same format used on CDs. It
can be sampled at 48 or 96 kHz with 16, 20, or 24 bits/sample. (Audio CD is limited to
44.1 kHz at 16 bits.) There can be from 1 to 8 channels. The maximum bitrate is 6.144
Mbps, which limits sample rates and bit sizes with 5 or more channels. It's generally felt
that the 96 dB dynamic range of 16 bits or even the 120 dB range of 20 bits combined
with a frequency response of up to 22,000 Hz from 48 kHz sampling is adequate for high-
fidelity sound reproduction. However, additional bits and higher sampling rates are
useful in studio work, noise shaping, advanced digital processing, and three-dimensional
sound field reproduction. DVD players are required to support all the variations of
LPCM, but some of them may subsample 96 kHz down to 48 kHz, and some may not
use all 20 or 24 bits. The signal provided on the digital output for external digital-to-
analog converters may be limited to less than 96 kHz or less than 24 bits.

Dolby Digital is multi-channel digital audio, compressed using AC-3 coding technology
from original PCM with a sample rate of 48 kHz at 16 bits. The bitrate is 64 kbps to 448
kbps, with 384 being the normal rate for 5.1 channels and 192 being the normal rate for
stereo (with or without surround encoding). The channel combinations are
(front/surround): 1/0, 1+1/0 (dual mono), 2/0, 3/0, 2/1, 3/1, 2/2, and 3/2. The LFE
channel is optional with all 8 combinations.

MPEG audio is multi-channel digital audio, compressed from original PCM format with
sample rate of 48 kHz at 16 bits. Both MPEG-1 and MPEG-2 formats are supported. The
variable bitrate is 32 kbps to 912 kbps, with 384 being the normal average rate. MPEG-1
is limited to 384 kbps. Channel combinations are (front/surround): 1/0, 2/0, 2/1, 2/2, 3/0,
3/1, 3/2, and 5/2. The LFE channel is optional with all combinations. The 7.1 channel
format adds left-center and right-center channels, but will probably be rare for home use.
MPEG-2 surround channels are in an extension stream matrixed onto the MPEG-1 stereo
channels, which makes MPEG-2 audio backwards compatible with MPEG-1 hardware
(an MPEG-1 system will only see the two stereo channels.)

DTS is an optional multi-channel (5.1) digital audio format, compressed from PCM at
48 kHz. The data rate is from 64 kbps to 1536 kbps. Channel combinations are

(front/surround): 1/0, 2/0, 3/0, 2/1, 2/2, 3/2. The LFE channel is optional with all 6
combinations.

SDDS is an optional multi-channel (5.1 or 7.1) digital audio format, compressed from
PCM at 48 kHz. The data rate can go up to 1280 kbps.

A DVD-5 with only one surround stereo audio stream (at 192 kbps) can hold over 55
hours of audio. A DVD-18 can hold over 200 hours.

Next: DVD and computers Up: DVD Previous: DVD audio

Interactive DVD features

DVD-Video players (and software DVD-Video navigators) support a command set that
provides rudimentary interactivity. The main feature is menus, which are present on
almost all discs to allow content selection and feature control. Each menu has a still-
frame graphic and up to 36 highlightable, rectangular buttons (only 12 if widescreen,
letterbox, and pan and scan modes are used). Remote control units have four arrow keys
for selecting onscreen buttons, plus numeric keys, select key, menu key, and return key.
Additional remote functions may include freeze, step, slow, fast, scan, next, previous,
audio select, subtitle select, camera angle select, play mode select, search to program,
search to part of title (chapter), search to time, and search to camera angle. Any of these
features can be disabled by the producer of the disc.

Additional features of the command set include simple math (add, subtract, multiply,
divide, modulo, random), bitwise and, bitwise or, bitwise xor, plus comparisons (equal,
greater than, etc.), and register loading, moving, and swapping. There are 24 system
registers for information such as language code, audio and subpicture settings, and
parental level. There are 16 general registers for command use. A countdown timer is
also provided. Commands can branch or jump to other commands. Commands can also
control player settings, jump to different parts of the disc, and control presentation of
audio, video, subpicture, camera angles, etc.

DVD-V content is broken into titles (movies or albums), and parts of titles (chapters or
songs). Titles are made up of cells linked together by one or more program chains
(PGC). A PGC can be defined as sequential play, random play (may repeat), or shuffle
play (random order but no repeats). Individual cells may be used by more than one PGC,
which is how parental management and seamless branching are accomplished: different
PGCs define different sequences through mostly the same material.

Additional material for camera angles and seamless branching is interleaved together in
small chunks. The player jumps from chunk to chunk, skipping over unused angles or
branches, to stitch together the seamless video. Since angles are stored separately, they
have no direct effect on the bitrate but they do affect the playing time. Adding 1 camera
angle for a program roughly doubles the amount of space it requires (and cuts the
playing time in half).

Next: Further Information Up: Storage Media Previous: Interactive DVD features

DVD and computers

SO far we have focussed on the media representation and standard DVD players. DVD
and DVD-ROM in particular is beginning to have a huge impact on computers.

For a computer to employ DVD it must have the following features:

In addition to a DVD-ROM drive, you must have extra hardware to decode MPEG-2
video and Dolby Digital/MPEG-2/PCM audio. The computer operating system or
playback system must support regional codes and be licensed to decrypt copy-protected
movies. You may also need software that can read the MicroUDF format used to store
DVD data files and interpret the DVD control codes. It's estimated that 10-30% of new
computers with DVD-ROM drives will include decoder hardware, and that most of the
remaining DVD-ROM computers will include movie playback software.

Some DVD-Videos and many DVD-ROMs will use video encoded using MPEG-1
instead of MPEG-2. Many existing computers have MPEG-1 hardware built in or are
able to decode MPEG-1 with software.

CompCore Multimedia and Mediamatics make software to play DVD-Video movies
(SoftDVD, DVD Express). Both require at least a 233 MHz Pentium MMX with AGP
and an IDE/SCSI DVD-ROM drive with bus mastering DMA support to achieve about
20 frame/sec film rates (or better than 300 MHz for 30 frame/sec video), and can decrypt
copy-protected movies. Oak's software requires hardware support. The software
navigators support most DVD-Video features (menus, subpictures, etc.) and can emulate
a DVD-Video remote control.

CompCore, Mediamatics, and Oak Technology have defined standards to allow certain
MPEG decoding tasks to be performed by hardware on a video card and the remainder
by software. Video graphics controllers with this feature are being called DVD MPEG-2
accelerated. (The Mediamatics standard is called MVCCA.)

If you have at least a 433 MHz Alpha workstation you'll be able to play DVD movies at
full 30 fps in software.

DVD-ROM Drives:

Most DVD-ROM drives have a seek time of 150-200 ms, access time of 200-250 ms, and
data transfer rate of 1.3 MB/s (11.08*106/8/220) with burst transfer rates of up to 12
MB/s or higher. The data transfer rate from DVD-ROM discs is roughly equivalent to a

9x CD-ROM drive. DVD spin rate is about 3 times faster than CD, so when reading CD-
ROMs, some DVD-ROM drives transfer data at 3x speed while others are faster. 2x and
3x DVD-ROM drives are already in the works. Hitachi is shipping samples of a 2x DVD-
ROM drive which also reads CDs at 20x.

Connectivity is similar to that of CD-ROM drives: EIDE (ATAPI), SCSI-2, etc. All
DVD-ROM drives have audio connections for playing audio CDs. No DVD-ROM drives
have been announced with DVD audio or video outputs (which would require internal
audio/video decoding hardware).

DVD-ROMs use a MicroUDF/ISO 9660 bridge file system. The OSTA UDF file system
will eventually replace the ISO 9660 system of CD-ROMs, but the bridge format
provides backwards compatibility until operating systems support UDF.

Recordable DVD-ROM: DVD-R and DVD-RAM:

There are two recordable versions of DVD-ROM: DVD-R (record once) and DVD-RAM
(erase and record many times), with capacities of 3.95 and 2.58 G bytes. Both
specifications have been published. DVD-R and DVD-RAM are not currently usable for
home video recording.

DVD-R uses organic dye polymer technology like CD-R and is compatible with almost
all DVD drives. The technology will improve to support 4.7 G bytes in 1 to 2 years,
which is crucial for desktop DVD-ROM and DVD-Video production.

● Further Information

Next: Multimedia Data Up: DVD and computers Previous: DVD and computers

Further Information

Further information on DVD can be obtained from:

http://www.dvddigital.com/

In fact this section is heavily based on the FAQs section at

http://www.dvddigital.com/facts/

http://www.dvddigital.com/
http://www.dvddigital.com/facts

Next: Multimedia Data Representations Up: Multimedia Module No: CM0340
Previous: Further Information

Multimedia Data

● Multimedia Data Representations
❍ Basics of Digital Audio

■ Application of Digital Audio -- Selected Examples
■ Digitization of Sound
■ Digitizing Audio
■ Computer Manipulation of Sound
■ Sample Rates and Bit Size
■ Nyquist's Sampling Theorem
■ Implications of Sample Rate and Bit Size
■ Typical Audio Formats
■ Delivering Audio over a Network

■ Streaming Audio
❍ Synthetic Sounds
❍ Introduction to MIDI (Musical Instrument Digital Interface)

■ Components of a MIDI System
■ Hardware Aspects of MIDI
■ MIDI Messages
■ General MIDI

■ Additional MIDI Specifications
■ Digital Audio and MIDI
■ Digital Audio, Synthesis, Midi and Compression -- MPEG 4

Structured Audio
■ MPEG 4 Structured Audio
■ Further Reading/Information for Digital Audio and Midi

❍ Graphic/Image File Formats
■ Graphic/Image Data Structures

■ Monochrome/Bit-Map Images
■ Gray-scale Images

■ 8-bit Colour Images
■ 24-bit Colour Images

■ Standard System Independent Formats
■ GIF (GIF87a, GIF89a)
■ JPEG
■ TIFF
■ Graphics Animation Files
■ Postscript/Encapsulated Postscript

■ System Dependent Formats
■ Microsoft Windows: BMP
■ Macintosh: PAINT and PICT
■ X-windows: XBM

■ Further Reading/Information
❍ Colour in Image and Video

■ Basics of Colour
■ Light and Spectra
■ The Human Retina
■ Cones and Perception

■ CIE Chromaticity Diagram
■ CRT Displays

■ Colour Image and Video Representations
■ Conversion between RGB and CMY:

■ Summary of Colour
❍ Basics of Video

■ Types of Colour Video Signals
■ Analog Video
■ Digital Video
■ Chroma Subsampling

■ CCIR Standards for Digital Video
■ ATSC Digital Television Standard

■ Further Reading/Information
● Video and Audio Compression

❍ Classifying Compression Algorithms
■ What is Compression?

❍ Lossless Compression Algorithms (Repetitive Sequence Suppression)
■ Simple Repetition Suppresion
■ Run-length Encoding

❍ Lossless Compression Algorithms (Pattern Substitution)
❍ Lossless Compression Algorithms (Entropy Encoding)

■ Basics of Information Theory
■ The Shannon-Fano Algorithm

■ Huffman Coding
■ Huffman Coding of Images
■ Adaptive Huffman Coding
■ Arithmetic Coding
■ Lempel-Ziv-Welch (LZW) Algorithm
■ Entropy Encoding Summary
■ Further Reading/Information

❍ Source Coding Techniques
■ Transform Coding

■ A simple transform coding example
■ Frequency Domain Methods

■ 1D Example
■ 2D (Image) Example
■ What do frequencies mean in an image?
■ How can transforms into the Frequecny Domain Help?

■ Fourier Theory
■ 1D Case
■ 2D Case
■ The Discrete Fourier Transform (DFT)
■ Compression
■ Relationship between DCT and FFT

■ The Discrete Cosine Transform (DCT)
■ Differential Encoding
■ Vector Quantisation

❍ JPEG Compression
■ Quantization

■ Uniform quantization
■ Quantization Tables

■ Zig-zag Scan
■ Differential Pulse Code Modulation (DPCM) on DC component
■ Run Length Encode (RLE) on AC components
■ Entropy Coding
■ Summary of the JPEG bitstream
■ Practical JPEG Compression
■ Further Reading

❍ Video Compression
❍ H. 261 Compression

■ Overview of H.261
■ Intra Frame Coding
■ Inter-frame (P-frame) Coding
■ The H.261 Bitstream Structure

■ Hard Problems in H.261
■ Motion Vector Search
■ Propagation of Errors
■ Bit-rate Control

❍ MPEG Compression
■ MPEG Video

■ MPEG Video Layers
■ B-Frames
■ Motion Estimation
■ Coding of Predicted Frames:Coding Residual Errors
■ Differences from H.261

■ The MPEG Video Bitstream
■ Decoding MPEG Video in Software

■ Intra Frame Decoding
■ Non-Intra Frame Decoding
■ MPEG-2, MPEG-3, and MPEG-4

■ Further Reading/Information
❍ Audio Compression

■ Simple Audio Compression Methods
■ Psychoacoustics

■ Human hearing and voice
■ Frequency Masking
■ Critical Bands
■ Temporal masking
■ Summary

■ MPEG Audio Compression
■ Some facts
■ Steps in algorithm:
■ Example:
■ MPEG Layers
■ Effectiveness of MPEG audio

■ Streaming Audio (and video)
■ Further Exploration

● Multimedia Integration, Interaction and Interchange
❍ Integrating Multimedia
❍ Interactive Multimedia
❍ Multimedia Interchange
❍ Quicktime

■ Introduction
■ Quicktime Support of Media Formats
■ QuickTime Concepts

■ The QuickTime Architecture
■ QuickTime Components
■ Quicktime File Format
■ Further Information

❍ Open Media Framework Interchange (OMFI) Format
❍ Multimedia and Hypermedia Information Encoding Expert Group

(MHEG)
■ The family of MHEG standards
■ MHEG-5 overview
■ MHEG Programming Principles
■ Interaction within a Scene
■ Availability; Running Status
■ Interactibles
■ Visual Representation
■ Object Sharing Between Scenes
■ Object Encoding
■ Conformance
■ MHEG Coding Examples
■ An MHEG Player Java Applet -- Futher MHEG Examples

■ Running the MHEG Engine
■ MHEG Example -- The Simple MHEG Presentation
■ MHEG Example -- The Demo MHEG Presentation
■ More Examples

■ Relationships to Major Standards
■ MHEG Implementation
■ MHEG Future
■ Further Reading/Information

Dave Marshall
10/4/2001

Next: Basics of Digital Audio Up: Multimedia Data Previous: Multimedia Data

Multimedia Data Representations
 In this chapter we focus on the underlying representations of common forms of media
Audio, Graphics and Video. In the next chapter we focus on compression techniques as
we shortly understand why these data can be large in storage size (even when
compressed).

The topics we consider here are specifically:

● Digital Audio
● Sampling/Digitisation
● Compression (Details of Compression algorithms Next Chapter)
● Graphics/Image Formats
● Digital Video (Basics of Video end of this chapter but more on Didgiatl Video in

next Chapter as it so closely entwined with Compression)

● Basics of Digital Audio
❍ Application of Digital Audio -- Selected Examples
❍ Digitization of Sound
❍ Digitizing Audio
❍ Computer Manipulation of Sound
❍ Sample Rates and Bit Size
❍ Nyquist's Sampling Theorem
❍ Implications of Sample Rate and Bit Size
❍ Typical Audio Formats
❍ Delivering Audio over a Network

■ Streaming Audio
● Synthetic Sounds
● Introduction to MIDI (Musical Instrument Digital Interface)

❍ Components of a MIDI System
❍ Hardware Aspects of MIDI
❍ MIDI Messages
❍ General MIDI

■ Additional MIDI Specifications

❍ Digital Audio and MIDI
❍ Digital Audio, Synthesis, Midi and Compression -- MPEG 4 Structured

Audio
❍ MPEG 4 Structured Audio
❍ Further Reading/Information for Digital Audio and Midi

● Graphic/Image File Formats
❍ Graphic/Image Data Structures

■ Monochrome/Bit-Map Images
■ Gray-scale Images
■ 8-bit Colour Images
■ 24-bit Colour Images

❍ Standard System Independent Formats
■ GIF (GIF87a, GIF89a)
■ JPEG
■ TIFF
■ Graphics Animation Files
■ Postscript/Encapsulated Postscript

❍ System Dependent Formats
■ Microsoft Windows: BMP
■ Macintosh: PAINT and PICT
■ X-windows: XBM

❍ Further Reading/Information
● Colour in Image and Video

❍ Basics of Colour
■ Light and Spectra
■ The Human Retina
■ Cones and Perception

❍ CIE Chromaticity Diagram
■ CRT Displays

❍ Colour Image and Video Representations
■ Conversion between RGB and CMY:

❍ Summary of Colour
● Basics of Video

❍ Types of Colour Video Signals
❍ Analog Video
❍ Digital Video
❍ Chroma Subsampling

■ CCIR Standards for Digital Video
■ ATSC Digital Television Standard

❍ Further Reading/Information

Dave Marshall
10/4/2001

Next: Application of Digital Audio Up: Multimedia Data Representations Previous:
Multimedia Data Representations

Basics of Digital Audio

● Application of Digital Audio -- Selected Examples
● Digitization of Sound
● Digitizing Audio
● Computer Manipulation of Sound
● Sample Rates and Bit Size
● Nyquist's Sampling Theorem
● Implications of Sample Rate and Bit Size
● Typical Audio Formats
● Delivering Audio over a Network

❍ Streaming Audio

Dave Marshall
10/4/2001

Next: Digitization of Sound Up: Basics of Digital Audio Previous: Basics of Digital
Audio

Application of Digital Audio -- Selected
Examples

Music Production

❍ Hard Disk Recording
❍ Sound Synthesis
❍ Samplers
❍ Effects Processing

Video
- Audio Important Element: Music and Effects

Web
-- Many uses on Web

❍ Spice up Web Pages
❍ Listen to Cds
❍ Listen to Web Radio

Many More Uses
-- try and think of some?

Dave Marshall
10/4/2001

Next: Digitizing Audio Up: Basics of Digital Audio Previous: Application of Digital Audio

Digitization of Sound

Let us first analyse what a sound actually is:

● Sound is a continuous wave that travels through the air
● The wave is made up of pressure differences. Sound is detected by measuring the pressure

level at a location.
● Sound waves have normal wave properties (reflection, refraction, diffraction, etc.).

A variety of sound sources:

Source
-- Generates Sound

❍ Air Pressure changes
❍ Electrical -- Loud Speaker
❍ Acoustic -- Direct Pressure Variations

The destination receives (sensed the sound wave pressure changes) and has to deal with
accordingly:

Destination
-- Receives Sound

❍ Electrical -- Microphone produces electric signal
❍ Ears -- Responds to pressure hear sound

Sound is required input into a computer: it needs to sampled or digitised:

● Microphones, video cameras produce analog signals (continuous-valued voltages) as
illustrated in Fig 6.1

Continuous Analog Waveform

● To get audio or video into a computer, we have to digitize it (convert it into a stream of
numbers) Need to convert Analog-to-Digital -- Specialised Hardware

● So, we have to understand discrete sampling (both time and voltage)

● Sampling - divide the horizontal axis (the time dimension) into discrete pieces. Uniform
sampling is ubiquitous.

● Quantization - divide the vertical axis (signal strength) into pieces. Sometimes, a non-
linear function is applied.

❍ 8 bit quantization divides the vertical axis into 256 levels. 16 bit gives you 65536
levels.

Continuous Analog Waveform

Next: Digitizing Audio Up: Basics of Digital Audio Previous: Application of Digital Audio
Dave Marshall
10/4/2001

Next: Computer Manipulation of Sound Up: Basics of Digital Audio Previous:
Digitization of Sound

Digitizing Audio

That is the basic idea of digitizing a sound unfortunately things are (practically
speaking) not so simple.

● Questions for producing digital audio (Analog-to-Digital Conversion):

1.
How often do you need to sample the signal?

2.
How good is the signal?

3.
How is audio data formatted?

Dave Marshall
10/4/2001

Next: Sample Rates and Bit Up: Basics of Digital Audio Previous: Digitizing Audio

Computer Manipulation of Sound

Once Digitised processing the digital sound is essentially straightforward although it
depends on the processing you wish to do (e.g. volume is easier to code than accuarte
reverb)

Essentially they all operate on the 1-D array of digitised samples, typical examples
include:

● Volume
● Cross-Fading
● Looping
● Echo/Reverb/Delay
● Filtering
● Signal Analysis

Soundedit Demos

● Volume
● Cross-Fading
● Looping
● Echo/Reverb/Delay
● Filtering

Dave Marshall
10/4/2001

Next: Nyquist's Sampling Theorem Up: Basics of Digital Audio Previous: Computer
Manipulation of Sound

Sample Rates and Bit Size

How do we store each sample value (Quantisation)?

8 Bit Value
(0-255)

16 Bit Value
(Integer) (0-65535)

How many Samples to take?

11.025 KHz
-- Speech (Telephone 8KHz)

22.05 KHz
-- Low Grade Audio
(WWW Audio, AM Radio)

44.1 KHz
-- CD Quality

Dave Marshall
10/4/2001

Next: Implications of Sample Rate Up: Basics of Digital Audio Previous: Sample Rates and Bit

Nyquist's Sampling Theorem

● Suppose we are sampling a sine wave (Fig 6.3. How often do we need to sample it to figure
out its frequency?

A Sine Wave

● If we sample at 1 time per cycle, we can think it's a constant (Fig 6.4)

Sampling at 1 time per cycle

● If we sample at 1.5 times per cycle, we can think it's a lower frequency sine wave (Fig. 6.6)

Sampling at 1.5 times per cycle

● Now if we sample at twice the sample frequency, i.e Nyquist Rate, we start to make some
progress. An alternative way of viewing thr waveform (re)genereation is to think of straight
lines joining up the peaks of the samples. In this case (at these sample points) we see we get a
sawtooth wave that begins to start crudely approximating a sine wave

Sampling at 2 times per cycle

● Nyquist rate -- For lossless digitization, the sampling rate should be at least twice the
maximum frequency responses. Indeed many times more the better.

Sampling at many times per cycle

Dave Marshall
10/4/2001

Next: Typical Audio Formats Up: Basics of Digital Audio Previous: Nyquist's Sampling Theorem

Implications of Sample Rate and Bit Size

Affects Quality of Audio

● Ears do not respond to sound in a linear fashion
● Decibel (dB) a logarithmic measurement of sound
● 16-Bit has a signal-to-noise ratio of 98 dB -- virtually inaudible
● 8-bit has a signal-to-noise ratio of 50 dB
● Therefore, 8-bit is roughly 8 times as noisy

❍ 6 dB increment is twice as loud

Signal to Noise Ratio (SNR)

● In any analog system, some of the voltage is what you want to measure (signal), and some of it is
random fluctuations (noise).

● Ratio of the power of the two is called the signal to noise ratio (SNR). SNR is a measure of the quality of
the signal.

● SNR is usually measured in decibels (dB).

● Typically 8 bits or 16 bits.

● Each bit adds about 6 dB of resolution, so 16 bits => 96 dB.

● Samples are typically stored as raw numbers (linear format), or as logarithms (u-law (or A-law in
Europe)).

❍ Logarithmic representation approximates perceptual uniformity.

Affects Size of Data

There is therfore is a trade off between Audio Quality vs. Data Rate

Some typical applications of sample bit size and sample rate are listed below:

Quality Sample Rate Bits per Mono/ Data Rate Frequency
 (KHz) Sample Stereo (Uncompressed) Band
--------- ----------- -------- -------- ----------------- -----------
-

Telephone 8 8 Mono 8 KBytes/sec 200-3,400
Hz

AM Radio 11.025 8 Mono 11.0 KBytes/sec

FM Radio 22.050 16 Stereo 88.2 KBytes/sec

CD 44.1 16 Stereo 176.4 KBytes/sec 20-20,000
Hz

DAT 48 16 Stereo 192.0 KBytes/sec 20-20,000
Hz

AUDIO DEMO: Comparison of Sample Rate
and Bit Size
Click on the file links below to audibly hear the difference in the sampling rates/bit sizes indicated for each file
type:

File Type File Size (all mono)

44Hz 16 bit 3.5 Mb

44KHz 8-bit 13.Mb

22 KHz 16-bit 740 Kb

22KHz 8-Bit 424 Kb

11KHz 8-bit 120 K

● Telephone uses u-law encoding, others use linear. So the dynamic range of digital telephone signals is
effectively 13 bits rather than 8 bits.

● CD quality stereo sound -> 10.6 MB / min.

Practical Implications of Nyquist Sampling Theory

● Must (low pass) filter signal before sampling:

http://www.cs.cf.ac.uk/Dave/Multimedia/audio/44k-16bit.aiff
http://www.cs.cf.ac.uk/Dave/Multimedia/audio/44k-8bit.aiff
http://www.cs.cf.ac.uk/Dave/Multimedia/audio/22K-16bit.aiff
http://www.cs.cf.ac.uk/Dave/Multimedia/audio/22k-8bit.aiff
http://www.cs.cf.ac.uk/Dave/Multimedia/audio/11k-8bit.aiff

Practical Implication of Nyquist;Must Low Pass Filter Signal before Sampling

● Otherwise strange artifacts from high frequency signals appear and are audible.

We'll finish off with a question: Why are CD Sample Rates 44.1 KHz?

The answer should be obvious if you have paid attention to the above notes (Answer in Lecture).

Next: Typical Audio Formats Up: Basics of Digital Audio Previous: Nyquist's Sampling Theorem
Dave Marshall
10/4/2001

Next: Delivering Audio over a Up: Basics of Digital Audio Previous: Implications of
Sample Rate

Typical Audio Formats

● Popular audio file formats include .au (Unix workstations), .aiff (MAC, SGI),
.wav (PC, DEC workstations)

● A simple and widely used audio compression method is Adaptive Delta Pulse
Code Modulation (ADPCM). Based on past samples, it predicts the next sample
and encodes the difference between the actual value and the predicted value.

Dave Marshall
10/4/2001

Next: Streaming Audio Up: Basics of Digital Audio Previous: Typical Audio Formats

Delivering Audio over a Network

● Trade off between desired fidelity and file size
● Bandwidth Considerations for Web and other media.
● Compress Files:

❍ Could affect live transmission on Web

● Streaming Audio

Dave Marshall
10/4/2001

Next: Synthetic Sounds Up: Delivering Audio over a Previous: Delivering Audio over
a

Streaming Audio

● Buffered Data:
❍ Trick get data to destination before it's needed
❍ Temporarily store in memory (Buffer)
❍ Server keeps feeding the buffer
❍ Client Application reads buffer

● Needs Reliable Connection, moderately fast too.
● Specialised client, Steaming Audio Protocol (PNM for real audio).

Dave Marshall
10/4/2001

Next: Introduction to MIDI (Musical Up: Multimedia Data Representations Previous:
Streaming Audio

Synthetic Sounds
● FM (Frequency Modulation) Synthesis - used in low-end Sound Blaster cards,

OPL-4 chip, Yamaha DX Synthesiser range popular in Early 1980's.

● Wavetable synthesis - wavetable generated from sound waves of real instruments
● Modern Synthesiser use a mixture of sample and synthesis.

Dave Marshall
10/4/2001

Next: Components of a MIDI Up: Multimedia Data Representations Previous:
Synthetic Sounds

Introduction to MIDI (Musical
Instrument Digital Interface)
Definition of MIDI: a protocol that enables computer, synthesizers, keyboards, and
other musical device to communicate with each other.

● Components of a MIDI System
● Hardware Aspects of MIDI
● MIDI Messages
● General MIDI

❍ Additional MIDI Specifications
● Digital Audio and MIDI
● Digital Audio, Synthesis, Midi and Compression -- MPEG 4 Structured Audio
● MPEG 4 Structured Audio
● Further Reading/Information for Digital Audio and Midi

Dave Marshall
10/4/2001

Next: Hardware Aspects of MIDI Up: Introduction to MIDI (Musical Previous:
Introduction to MIDI (Musical

Components of a MIDI System

Synthesizer:

● It is a sound generator (various pitch, loudness, tone colour).
● A good (musician's) synthesizer often has a microprocessor, keyboard, control

panels, memory, etc.

Sequencer:

● It can be a stand-alone unit or a software program for a personal computer. (It
used to be a storage server for MIDI data. Nowadays it is more a software music
editor on the computer.

● It has one or more MIDI INs and MIDI OUTs.

Track:

● Track in sequencer is used to organize the recordings.
● Tracks can be turned on or off on recording or playing back.

Channel:

● MIDI channels are used to separate information in a MIDI system.
● There are 16 MIDI channels in one cable.
● Channel numbers are coded into each MIDI message.

Timbre:

● The quality of the sound, e.g., flute sound, cello sound, etc.
● Multitimbral - capable of playing many different sounds at the same time (e.g.,

piano, brass, drums, etc.)

Pitch:

● musical note that the instrument plays

Voice:

● Voice is the portion of the synthesizer that produces sound.
● Synthesizers can have many (12, 20, 24, 36, etc.) voices.
● Each voice works independently and simultaneously to produce sounds of

different timbre and pitch.

Patch:

● the control settings that define a particular timbre.

Next: Hardware Aspects of MIDI Up: Introduction to MIDI (Musical Previous:
Introduction to MIDI (Musical
Dave Marshall
10/4/2001

Next: MIDI Messages Up: Introduction to MIDI (Musical Previous: Components of a
MIDI

Hardware Aspects of MIDI

MIDI connectors:

- three 5-pin ports found on the back of every MIDI unit

● MIDI IN: the connector via which the device receives all MIDI data.
● MIDI OUT: the connector through which the device transmits all the MIDI data it

generates itself.
● MIDI THROUGH: the connector by which the device echoes the data receives

from MIDI IN.

Note: It is only the MIDI IN data that is echoed by MIDI through. All the data generated
by device itself is sent through MIDI OUT.

Figure 6.9 illustrates a typical setup where:

A Typical MIDI Sequencer Setup

● MIDI OUT of synthesizer is connected to MIDI IN of sequencer.
● MIDI OUT of sequencer is connected to MIDI IN of synthesizer and through to

each of the additional sound modules.
● During recording, the keyboard-equipped synthesizer is used to send MIDI

message to the sequencer, which records them.
● During play back: messages are send out from the sequencer to the sound modules

and the synthesizer which will play back the music.

Dave Marshall
10/4/2001

Next: General MIDI Up: Introduction to MIDI (Musical Previous: Hardware Aspects of MIDI

MIDI Messages

MIDI messages are used by MIDI devices to communicate with each other.

Structure of MIDI messages:

● MIDI message includes a status byte and up to two data bytes.
● Status byte

❍ The most significant bit of status byte is set to 1.
❍ The 4 low-order bits identify which channel it belongs to (four bits produce 16 possible

channels).
❍ The 3 remaining bits identify the message.

● The most significant bit of data byte is set to 0.

Classification of MIDI messages:

 ----- voice messages
 ---- channel messages -----|
 | ----- mode messages
 |
MIDI messages ----|
 | ---- common messages
 ----- system messages -----|---- real-time messages
 ---- exclusive messages

A. Channel messages:

- messages that are transmitted on individual channels rather that globally to all devices in the MIDI network.

A.1. Channel voice messages:

● Instruct the receiving instrument to assign particular sounds to its voice
● Turn notes on and off
● Alter the sound of the currently active note or notes

Voice Message Status Byte Data Byte1 Data Byte2
------------- ----------- ----------------- -----------------
Note off 8x Key number Note Off
velocity
Note on 9x Key number Note on velocity
Polyphonic Key Pressure Ax Key number Amount of
pressure
Control Change Bx Controller number Controller value
Program Change Cx Program number None
Channel Pressure Dx Pressure value None
Pitch Bend Ex MSB LSB

Notes: `x' in status byte hex value stands for a channel number.

Example: a Note On message is followed by two bytes, one to identify the note, and on to specify the velocity.

To play note number 80 with maximum velocity on channel 13, the MIDI device would send these three
hexadecimal byte values: 9C 50 7F

A.2. Channel mode messages: - Channel mode messages are a special case of the Control Change message (Bx
or 1011nnnn). The difference between a Control message and a Channel Mode message, which share the same
status byte value, is in the first data byte. Data byte values 121 through 127 have been reserved in the Control
Change message for the channel mode messages.

● Channel mode messages determine how an instrument will process MIDI voice messages.

1st Data Byte Description Meaning of 2nd Data Byte
------------- ---------------------- ------------------------
 79 Reset all controllers None; set to 0
 7A Local control 0 = off; 127 = on
 7B All notes off None; set to 0
 7C Omni mode off None; set to 0
 7D Omni mode on None; set to 0
 7E Mono mode on (Poly mode off) **
 7F Poly mode on (Mono mode off) None; set to 0

** if value = 0 then the number of channels used is determined by the receiver; all other values set a specific
number of channels, beginning with the current basic channel.

B. System Messages:

● System messages carry information that is not channel specific, such as timing signal for
synchronization, positioning information in pre-recorded MIDI sequences, and detailed setup
information for the destination device.

B.1. System real-time messages:

● messages related to synchronization

System Real-Time Message Status Byte
------------------------ -----------
Timing Clock F8
Start Sequence FA
Continue Sequence FB
Stop Sequence FC
Active Sensing FE
System Reset FF

B.2. System common messages:

● contain the following unrelated messages

System Common Message Status Byte Number of Data Bytes
--------------------- ----------- --------------------
MIDI Timing Code F1 1
Song Position Pointer F2 2
Song Select F3 1
Tune Request F6 None

B.3. System exclusive message:

● (a) Messages related to things that cannot be standardized, (b) addition to the original MIDI
specification.

● It is just a stream of bytes, all with their high bits set to 0, bracketed by a pair of system exclusive start
and end messages (F0 and F7).

Next: General MIDI Up: Introduction to MIDI (Musical Previous: Hardware Aspects of MIDI
Dave Marshall
10/4/2001

Next: Additional MIDI Specifications Up: Introduction to MIDI (Musical Previous:
MIDI Messages

General MIDI

● MIDI + Instrument Patch Map + Percussion Key Map -> a piece of MIDI music
sounds the same anywhere it is played

❍ Instrument patch map is a standard program list consisting of 128 patch
types.

❍ Percussion map specifies 47 percussion sounds.
❍ Key-based percussion is always transmitted on MIDI channel 10.

● Requirements for General MIDI Compatibility:
❍ Support all 16 channels.
❍ Each channel can play a different instrument/program (multitimbral).
❍ Each channel can play many voices (polyphony).
❍ Minimum of 24 fully dynamically allocated voices.

● Additional MIDI Specifications

Dave Marshall
10/4/2001

Next: Digital Audio and MIDI Up: General MIDI Previous: General MIDI

Additional MIDI Specifications

General MIDI Instrument Patch Map

Prog No. Instrument Prog No. Instrument
-------------------------- -----------------------------------
 (1-8 PIANO) (9-16 CHROM PERCUSSION)
1 Acoustic Grand 9 Celesta
2 Bright Acoustic 10 Glockenspiel
3 Electric Grand 11 Music Box
4 Honky-Tonk 12 Vibraphone
5 Electric Piano 1 13 Marimba
6 Electric Piano 2 14 Xylophone
7 Harpsichord 15 Tubular Bells
8 Clav 16 Dulcimer

 (17-24 ORGAN) (25-32 GUITAR)
17 Drawbar Organ 25 Acoustic Guitar(nylon)
18 Percussive Organ 26 Acoustic Guitar(steel)
19 Rock Organ 27 Electric Guitar(jazz)
20 Church Organ 28 Electric Guitar(clean)
21 Reed Organ 29 Electric Guitar(muted)
22 Accoridan 30 Overdriven Guitar
23 Harmonica 31 Distortion Guitar
24 Tango Accordian 32 Guitar Harmonics

 (33-40 BASS) (41-48 STRINGS)
33 Acoustic Bass 41 Violin
34 Electric Bass(finger) 42 Viola
35 Electric Bass(pick) 43 Cello
36 Fretless Bass 44 Contrabass
37 Slap Bass 1 45 Tremolo Strings
38 Slap Bass 2 46 Pizzicato Strings
39 Synth Bass 1 47 Orchestral Strings
40 Synth Bass 2 48 Timpani

 (49-56 ENSEMBLE) (57-64 BRASS)
49 String Ensemble 1 57 Trumpet
50 String Ensemble 2 58 Trombone
51 SynthStrings 1 59 Tuba
52 SynthStrings 2 60 Muted Trumpet
53 Choir Aahs 61 French Horn
54 Voice Oohs 62 Brass Section
55 Synth Voice 63 SynthBrass 1
56 Orchestra Hit 64 SynthBrass 2
 (65-72 REED) (73-80 PIPE)
65 Soprano Sax 73 Piccolo
66 Alto Sax 74 Flute

67 Tenor Sax 75 Recorder
68 Baritone Sax 76 Pan Flute
69 Oboe 77 Blown Bottle
70 English Horn 78 Skakuhachi
71 Bassoon 79 Whistle
72 Clarinet 80 Ocarina

 (81-88 SYNTH LEAD) (89-96 SYNTH PAD)
81 Lead 1 (square) 89 Pad 1 (new age)
82 Lead 2 (sawtooth) 90 Pad 2 (warm)
83 Lead 3 (calliope) 91 Pad 3 (polysynth)
84 Lead 4 (chiff) 92 Pad 4 (choir)
85 Lead 5 (charang) 93 Pad 5 (bowed)
86 Lead 6 (voice) 94 Pad 6 (metallic)
87 Lead 7 (fifths) 95 Pad 7 (halo)
88 Lead 8 (bass+lead) 96 Pad 8 (sweep)

 (97-104 SYNTH EFFECTS) (105-112 ETHNIC)
 97 FX 1 (rain) 105 Sitar
 98 FX 2 (soundtrack) 106 Banjo
 99 FX 3 (crystal) 107 Shamisen
100 FX 4 (atmosphere) 108 Koto
101 FX 5 (brightness) 109 Kalimba
102 FX 6 (goblins) 110 Bagpipe
103 FX 7 (echoes) 111 Fiddle
104 FX 8 (sci-fi) 112 Shanai

 (113-120 PERCUSSIVE) (121-128 SOUND EFFECTS)
113 Tinkle Bell 121 Guitar Fret Noise
114 Agogo 122 Breath Noise
115 Steel Drums 123 Seashore
116 Woodblock 124 Bird Tweet
117 Taiko Drum 125 Telephone Ring
118 Melodic Tom 126 Helicopter
119 Synth Drum 127 Applause
120 Reverse Cymbal 128 Gunshot

General MIDI Percussion Key Map

MIDI Key Drum Sound MIDI Key Drum Sound
-------- ---------- ---------- ----------

 35 Acoustic Bass Drum 59 Ride Cymbal 2
 36 Bass Drum 1 60 Hi Bongo
 37 Side Stick 61 Low Bongo
 38 Acoustic Snare 62 Mute Hi Conga
 39 Hand Clap 63 Open Hi Conga
 40 Electric Snare 64 Low Conga
 41 Low Floor Tom 65 High Timbale
 42 Closed Hi-Hat 66 Low Timbale
 43 High Floor Tom 67 High Agogo
 44 Pedal Hi-Hat 68 Low Agogo
 45 Low Tom 69 Cabasa

 46 Open Hi-Hat 70 Maracas
 47 Low-Mid Tom 71 Short Whistle
 48 Hi-Mid Tom 72 Long Whistle
 49 Crash Cymbal 1 73 Short Guiro
 50 High Tom 74 Long Guiro
 51 Ride Cymbal 1 75 Claves
 52 Chinese Cymbal 76 Hi Wood Block
 53 Ride Bell 77 Low Wood Block
 54 Tambourine 78 Mute Cuica
 55 Splash Cymbal 79 Open Cuica
 56 Cowbell 80 Mute Triangle
 57 Crash Cymbal 2 81 Open Triangle
 58 Vibraslap

Dave Marshall
10/4/2001

Next: Digital Audio, Synthesis, Midi Up: Introduction to MIDI (Musical Previous:
Additional MIDI Specifications

Digital Audio and MIDI

There are many application os DIgital Audio and Midi being used together:

● Modern Recording Studio -- Hard Disk Recording and MIDI
❍ Analog Sounds (Live Vocals, Guitar, Sax etc) -- DISK
❍ Keyboards, Drums, Samples, Loops Effects -- MIDI

● Sound Generators: use a mix of
❍ Synthesis
❍ Samples

● Samplers -- Digitise (Sample) Sound then
❍ Playback
❍ Loop (beats)
❍ Simulate Musical Instruments

Dave Marshall
10/4/2001

Next: MPEG 4 Structured Audio Up: Introduction to MIDI (Musical Previous: Digital
Audio and MIDI

Digital Audio, Synthesis, Midi and
Compression -- MPEG 4 Structured Audio

● We have seen the need for compression already in Digital Audio -- Large Data
Files

● Basic Ideas of compression (see next Chapter) used as integral part of audio
format -- MP3, real audio etc.

● Mpeg-4 audio -- actually combines compression synthesis and midi to have a
massive impact on compression.

● Midi, Synthesis encode what note to play and how to play it with a small number
of parameters -- Much greater reduction than simply having some encoded bits of
audio.

● Responsibility to create audio delegated to generation side.

Dave Marshall
10/4/2001

Next: Further Reading/Information for Digital Up: Introduction to MIDI (Musical
Previous: Digital Audio, Synthesis, Midi

MPEG 4 Structured Audio

MPEG-4 covers the the whole range of digital audio:

● from very low bit rate speech
● to full bandwidth high quality audio
● built in anti-piracy measures
● Structured Audio

Structured Audio Tools

MPEG-4 comprises of 6 Structured Audio tools are:

SAOL
, the Structured Audio Orchestra Language

SASL
, the Structured Audio Score Language

SASBF
, the Structured Audio Sample Bank Format

a set of MIDI semantics
which describes how to control SAOL with MIDI

a scheduler
, which describes how to take the above parts and create sound

the AudioBIFS
part of BIFS, which lets you make audio soundtracks in MPEG-4 using a variety
of tools and effects-processing techniques

Very briefly each of the above tools have a specific function

SAOL (Structured Audio Orchestra Language)

SAOL is pronounced like the English word "sail" and is the central part of the
Structured Audio toolset. It is a new software-synthesis language; it was specifically
designed it for use in MPEG-4. You can think of SAOL as a language for describing
synthesizers; a program, or instrument, in SAOL corresponds to the circuits on the
inside of a particular hardware synthesizer.

SAOL is not based on any particular method of synthesis. It is general and flexible

enough that any known method of synthesis can be described in SAOL. Examples of
FM synthesis, physical-modeling synthesis, sampling synthesis, granular synthesis,
subtractive synthesis, FOF synthesis, and hybrids of all of these in SAOL.

There's a page on using MIDI to control SAOL available at

http://sound.media.mit.edu/mpeg4-old/

SASL (Structured Audio Score Language)

SASL is a very simple language that was created for MPEG-4 to control the synthesizers
specified by SAOL instruments. A SASL program, or score, contains instructions that
tell SAOL what notes to play, how loud to play them, what tempo to play them at, how
long they last, and how to control them (vary them while they're playing).

SASL is like MIDI in some ways, but doesn't suffer from MIDI's restrictions on
temporal resolution or bandwidth. It also has a more sophisticated controller structure
than MIDI; since in SAOL, you can write controllers to do anything, you need to be able
to flexibly control them in SASL.

SASL is simpler (or more "lightweight") than many other score protocols. It doesn't
have any facilities for looping, sections, repeats, expression evaluation, or some other
things. Most SASL scores will be created by automatic tools, and so it's easy to make
those tools map from the intent of the composer ("repeat this block") to the particular
arrangement of events that implement the intent.

SASBF (Structured Audio Sample Bank Format)

SASBF (pronounces "sazz-biff"!!!) is a format for efficiently transmitting banks of
sound samples to be used in wavetable, or sampling, synthesis. The format is being re-
examined right now in hopes of making it at least partly compatible with the MIDI
Downloaded Sounds (DLS) format.

The most active participants in this activity are E-Mu Systems and the MIDI
Manufacturers Association (MMA).

MIDI Semantics

As well as controlling synthesis with SASL scripts, it can be controlled with MIDI files
and scores in MPEG-4. MIDI is today's most commonly used representation for music
score data, and many sophisticated authoring tools (such as sequencers) work with
MIDI.

The MIDI syntax is external to the MPEG-4 Structured Audio standard; only references

http://sound.media.mit.edu/mpeg4-old/

to the MIDI Manufacturers Association's definition in the standard. But in order to make
the MIDI controls work right in the MPEG context, some semantics (what the
instructions "mean") have been redefined in MPEG-4. The new semantics are carefully
defined as part of the MPEG-4 specification.

Scheduler

The scheduler is the "guts" of the Structured Audio definition. It's a set of carefully
defined and somewhat complicated instructions that specify how SAOL is used to create
sound when it is driven by MIDI or SASL. It's in the style of "when this instruction
arrives, you have to remember this, then execute this program, then do this other thing".

This component of Structured Audio is crucial but very dull unless you're a developer
who wants to implement a SAOL system.

AudioBIFS

BIFS is the MPEG-4 Binary Format for Scene Description. It's the component of
MPEG-4 Systems which is used to describe how the different "objects" in a structured
media scene fit together. To explain this a little more: in MPEG-4, the video clips,
sounds, animations, and other pieces each have special formats to describe them. But to
have something to show, we need to put the pieces together - the background goes in the
back, this video clip attaches to the side of this "virtual TV" object, the sound should
sound like it's coming from the speaker over there. BIFS lets you describe how to put the
pieces together.

AudioBIFS is a major piece of MPEG-4 that has designed for specifying the mixing and
post-production of audio scenes as they're played back. Using AudioBIFS, we can
specify how the voice-track is mixed with the background music, and that it fades out
after 10 seconds and this other music comes in and has a nice reverb on it.

BIFS is generally based on the Virtual Reality Modeling Language (VRML) (See Later
in Course), but has extended capabilities for streaming and mixing audio and video data
into a virtual-reality scene. The AudioBIFS functions are very advanced compared to
VRML's sound model, which is rather simple, and are being tentatively considered for
use in a future version of VRML.

In MPEG-4, AudioBIFS allows you to describe a sound as the combination of a number
of sound objects. These sound objects may be coded using different coders (for example,
CELP-coded voice and synthetic background music), and combined together in many
ways. We can mix sounds together, or apply special filters and other processing
functions written in SAOL.

Like the rest of BIFS, AudioBIFS is based on a scene graph. However, unlike in visual
BIFS, the nodes in the AudioBIFS scene graph don't represent a bunch of objects which

are presented to the user. Each AudioBIFS sound subgraph represents one sound object
which is created by mixing and processing the elementary sound streams on which it is
based.

For example, Fig 6.10 audio subgraph which shows how a simple sound is created from
three elementary sound streams:

AudioBIFS Subgraph

Each of the rectangles show a node in the audio scene subgraph. Each node has a certain
function, like mixing some sounds together, or delaying a sound, or doing some effects-
processing. The arrows along the bottom represent the three elementary sound streams
which make up the sound object. Each sound stream can be coded a different way. For
example, we might code the piano sound with the Structured Audio decoder, the bass
sound with the MPEG-4 Parametric HILN coder, and the vocal track with the MPEG-4
CELP coder.

These three sound streams are just like a "multitrack" recording of the final music sound
object. The sound of each instrument is represented separately, then the scene graph
mixes them all together. The processing in the audio subgraph is like a "data-flow"
diagram. The sounds flow from the streams at the bottom, up through the nodes, and
turn into a single sound at the top.

This single, final sound can be put into an audiovisual scene: it can be given a 3-D
spatial location, moved around, and so on.

There's a page on AudioBIFS available at

http://www.risc.rockwell.com/349/343/MPEG4/

http://www.cs.cf.ac.uk/Dave/Multimedia/AudioBIFS.gif
http://www.risc.rockwell.com/349/343/MPEG4/

Next: Further Reading/Information for Digital Up: Introduction to MIDI (Musical
Previous: Digital Audio, Synthesis, Midi
Dave Marshall
10/4/2001

Next: Graphic/Image File Formats Up: Introduction to MIDI (Musical Previous:
MPEG 4 Structured Audio

Further Reading/Information for Digital
Audio and Midi

Some good texts on these areas include:

● A programmer's Guide to Sound, T. Kientzle, Addison Wesley, 1997 (ISBN 0-
201-41972-6)

● Audio on the Web -- The official IUMA Guide, Patterson and Melcher, Peachpit
Press.

● The Art of Digital Audio, Watkinson, Focal/Butterworth-Heinmann.
● Synthesiser Basics, GPI Publications.
● Signal Processing: Principles and Applications, Brook and Wynne, Hodder and

Stoughton.
● Digital Signal Processing, Oppenheim and Schafer, Prentice Hall.
● E. D. Scheirer, "Structured audio and effects processing in the MPEG-4

multimedia standard", ACM Multimedia Systems, in press.
● B. L. Vercoe, W. G. Gardner, E. D. Scheirer, "Structured Audio: Creation,

transmission, and rendering of parametric sound representations", Proc. IEEE, in
press.

Try some good sources for locating Digital Audio/internet sound/music materials at

● Digital Audio on the Web
● Audio File Formats
● Harmony Central: MIDI Tools and Resources - excellent resource. full

documentation of the MIDI specification, guides to making a MIDI interface,
links to development tools, keyboard specific resources and more.

● Exploring Midi. Excellent Midi/Audio Information Resource.
● MIDI Farm - hub for MIDI on the Web. Includes their own HTML

newsletter.
● MIDIWeb - resources for the MIDI community.
● MIDIWorld

● Andre's MIDI Page - files and utilities.
● AWEsome MIDI - source of files, awe 32, awe 64 patches/utilities and related

software and tools.
● Best of MIDI - dedicated to the definitions and standards of MIDI and of course,

http://www.interactive-media.com/presentations/AUDWEB2/
http://esewww.essex.ac.uk/~djmrob/filetypes.html
http://www.harmony-central.com/MIDI/
http://nuinfo.nwu.edu/musicschool/links/projects/midi/expmidiindex.html
http://www.midifarm.com/
http://www.midiweb.com/
http://midiworld.com/
http://www.webruler.com/andre/
http://www.cyberway.com.sg/~cheewee/
http://www.student.wau.nl/~olivier/midi/index.htm

MIDI files.
● Charles Belov's MIDI Tips
● Computer Karaoke - Karaoke on your computer
● Great MIDI Conspiracy - find out why MIDI sites are shutting down.
● Grinding Wall - MIDI Vault of the Forge - renditions and remakes of various

genres of the underground.
● Günter Nagler's MIDI Utilities - MIDI converters with C++ source code,

executable for PC (MSDOS and Windows95) midi format 1<->0 conversion,
error check, file repairs, etc.

● Introduction to MIDI - wondering what MIDI is? Here you go.
● Jim's MIDI Links - arranged by artist (135+) in the following genres. rock,

alternative, pop, r&b, rap, dance, hard rock, and metal.
● Jon's Amazing MIDI Quiz Thingy - guess the name of the show/film from the

crappy MIDI version of it's title song.
● Macintosh MIDI User's Internet Guide
● MIDI Archive, The - documentation, synth patches, MIDI programmes and

utilities, information on MIDI and much more.
● MIDI Business On-Line - source for midi files and information and resources

related to the enjoyment and making of midi files.
● MIDI Connection - links and mailing lists concerning sounds and information

files for synths and samplers.
● MIDI Explorer Search Engine - finds rare songs or organizes all versions of a

popular tune.
● MIDI Guitar - Info & resources for guitar synthesizers.
● MIDI Land - discussion board.
● MIDI Mania - Betty's MIDI Page - original MIDI compositions and lots of

interesting links to other MIDI sites.
● MIDI Music for Worship - A resource page for people using MIDI Music for

worship services with or without musicians.
● MIDI Music Web Site - files, glossary, explanation of MIDI, tools, shareware,

MPEG 3 information and much more.
● MIDI Technical Fanatic's Brainwashing Center - tutorials about MIDI and audio,

technical/programming info, files, software, etc.
● MIDI Tips for Webmeisters - explains the realities of embedding MIDI files in a

web page.
● MIDI Universe - a midi-seeking robot has been exploring the MIDI Universe.

Universal questions such as the largest stellar sites, the most duplicated stars and
more are answered.

● MIDI Zone - home of MidiSeek, a midi search engine. Also includes more files
than we have space to mention.

● MIDI4U - place to expand your MIDI collection.
● MIDIbase - searchable database for midi and computer-music related websites.

Hardware, software, events, education, events, midi-files, sounds, techno,

http://www.cabelov.com/midi/midi.shtml
http://www.teleport.com/~labrat/karaoke.shtml
http://shouthouse.com/midi_conspiracy.cfm
http://members.xoom.com/enclave/wall.html
http://www2.iicm.edu/Cpub
http://www.eeb.ele.tue.nl/midi/intro.html
http://www.geocities.com/SunsetStrip/6356/frame.html
http://homepages.iol.ie/~thedeans/quiz/quiz.htm
http://www.aitech.ac.jp./~ckelly/mmuig.html
http://www.cs.ruu.nl/pub/MIDI/
http://midibiz.w1.com/
http://www.serve.com/papisi/
http://www.musicrobot.com/
http://www.epix.net/~joelc/midi_git.html
http://www.joe.pair.com/midi/
http://www.ping.at/users/akainz/midimani.htm
http://www.epix.net/~joelc/midihymn.html
http://www.quicknet.se/home/q-112005/dan.htm
http://www.borg.com/~jglatt/
http://www.cabelov.com/midi/miditipw.shtml
http://www.geocities.com/SiliconValley/Way/1013/
http://www.midizone.com/
http://midi4u.coma.fsb.hr/
http://www.midibase.com/

ambient, etc.
● MIDIs-R-Us - bands, cartoons, t.v., movies and much more.
● Moolly's MIDI Page - explains what MIDI is, techniques, connecting MIDI to a

PC, and more.
● Name that MIDI - name five MIDI songs and have your name put up on the

MIDI Hall of Fame board.
● Pianocorder to MIDI Project - Description of a project to digitally convert

Pianocorder tapes into MIDI files.
● Project Beethoven - collection of MIDIs written without the use of hearing,

written by various composers around the internet.
● TidBITS Guide to MIDI and the Macintosh
● Twin Cities MIDI - MIDI-users contact list, providing names and URL's of other

MIDI users on the internet, as well as a special Macintosh MIDI section.
● Ultimate MIDI Page - includes explanatory information about midi as well as an

extensive index of other midi sites.

MPEG 4 Pages:

● --- Main MPEG 4 Audio Page
● --- MPEG 4 Home Page
● --- MPEG FAQ's
● --- MPEG 4 Useful Links
● --- MPEG 4 Page

Dave Marshall
10/4/2001

http://www.web-park.com/Midis-R-Us/
http://user.chollian.net/~moolly/midi00.htm
http://members.aol.com/le67/pubpage12.html
http://www.tsoft.com/~mfontana/pc2mid/
http://www.midiforum.com/chops/pb/
http://www.leeds.ac.uk/music/Info/MacMIDI/Contents.html
http://members.aol.com/dstevens/tcmidi/index.htm
http://www.ultimatemidi.com/
http://sound.media.mit.edu/mpeg4/audio/
http://sound.media.mit.edu/~eds/mpeg4/
http://sound.media.mit.edu/mpeg4-old/
http://sound.media.mit.edu/mpeg4/links.html
http://153.96.172.2/amm/techinf/mpeg4/scalable.html

Next: Graphic/Image Data Structures Up: Multimedia Data Representations Previous:
Further Reading/Information for Digital

Graphic/Image File Formats
This section introduces some of the most common graphics and image file formats.
Some of them are restricted to particular hardware/operating system platforms, others
are cross-platform independent formats. While not all formats are cross-platform, there
are conversion applications that will recognize and translate formats from other systems.

The document (http://www.cica.indiana.edu/graphics/image.formats.html) by CICA at
Indiana Univ. provides a fairly comprehensive listing of various formats.

Most image formats incorporate some variation of a compression technique due to the
large storage size of image files. Compression techniques can be classified into either
lossless or lossy. We will study various video and audio compression techniques in the
Next Chapter.

● Graphic/Image Data Structures
❍ Monochrome/Bit-Map Images
❍ Gray-scale Images
❍ 8-bit Colour Images
❍ 24-bit Colour Images

● Standard System Independent Formats
❍ GIF (GIF87a, GIF89a)
❍ JPEG
❍ TIFF
❍ Graphics Animation Files
❍ Postscript/Encapsulated Postscript

● System Dependent Formats
❍ Microsoft Windows: BMP
❍ Macintosh: PAINT and PICT
❍ X-windows: XBM

● Further Reading/Information

Dave Marshall
10/4/2001

Next: Monochrome/Bit-Map Images Up: Graphic/Image File Formats Previous:
Graphic/Image File Formats

Graphic/Image Data Structures

A digital image consists of many picture elements, termed pixels. The number of pixels
that compose a monitor image determine the quality of the image (resolution). Higher
resolution always yields better quality.

A bit-map representation stores the graphic/image data in the same manner that the
computer monitor contents are stored in video memory.

● Monochrome/Bit-Map Images
● Gray-scale Images
● 8-bit Colour Images
● 24-bit Colour Images

Dave Marshall
10/4/2001

Next: Gray-scale Images Up: Graphic/Image Data Structures Previous: Graphic/Image
Data Structures

Monochrome/Bit-Map Images

An example 1 bit monochrome image is illustrated in Fig. 6.11 where:

Sample Monochrome Bit-Map Image

● Each pixel is stored as a single bit (0 or 1)

● A 640 x 480 monochrome image requires 37.5 KB of storage.

● Dithering is often used for displaying monochrome images

Dave Marshall
10/4/2001

Next: 8-bit Colour Images Up: Graphic/Image Data Structures Previous:
Monochrome/Bit-Map Images

Gray-scale Images

An example gray-scale image is illustrated in Fig. 6.12 where:

Example of a Gray-scale Bit-map Image

● Each pixel is usually stored as a byte (value between 0 to 255)

● A 640 x 480 greyscale image requires over 300 KB of storage.

Dave Marshall
10/4/2001

Next: 24-bit Colour Images Up: Graphic/Image Data Structures Previous: Gray-scale
Images

8-bit Colour Images

An example 8-bit colour image is illustrated in Fig. 6.13 where:

Example of 8-Bit Colour Image

● One byte for each pixel

● Supports 256 out of the millions s possible, acceptable colour quality

● Requires Colour Look-Up Tables (LUTs)

● A 640 x 480 8-bit colour image requires 307.2 KB of storage (the same as 8-bit
greyscale)

Dave Marshall
10/4/2001

Next: Standard System Independent Formats Up: Graphic/Image Data Structures
Previous: 8-bit Colour Images

24-bit Colour Images

An example 24-bit colour image is illustrated in Fig. 6.14 where:

Example of 24-Bit Colour Image

● Each pixel is represented by three bytes (e.g., RGB)

● Supports 256 x 256 x 256 possible combined colours (16,777,216)

● A 640 x 480 24-bit colour image would require 921.6 KB of storage

● Most 24-bit images are 32-bit images, the extra byte of data for each pixel is used
to store an alpha value representing special effect information

Dave Marshall
10/4/2001

Next: GIF (GIF87a, GIF89a) Up: Graphic/Image File Formats Previous: 24-bit Colour
Images

Standard System Independent Formats

The following brief format descriptions are the most commonly used formats. Follow
some of the document links for more descriptions.

● GIF (GIF87a, GIF89a)
● JPEG
● TIFF
● Graphics Animation Files
● Postscript/Encapsulated Postscript

Dave Marshall
10/4/2001

Next: JPEG Up: Standard System Independent Formats Previous: Standard System
Independent Formats

GIF (GIF87a, GIF89a)

● Graphics Interchange Format (GIF) devised by the UNISYS Corp. and
Compuserve, initially for transmitting graphical images over phone lines via
modems

● Uses the Lempel-Ziv Welch algorithm (a form of Huffman Coding), modified
slightly for image scan line packets (line grouping of pixels)

● Limited to only 8-bit (256) colour images, suitable for images with few
distinctive colours (e.g., graphics drawing)

● Supports interlacing

Dave Marshall
10/4/2001

Next: TIFF Up: Standard System Independent Formats Previous: GIF (GIF87a,
GIF89a)

JPEG

● A standard for photographic image compression created by the Joint
Photographics Experts Group

● Takes advantage of limitations in the human vision system to achieve high rates
of compression

● Lossy compression which allows user to set the desired level of
quality/compression

● Detailed discussions in next chapter on compression.

Dave Marshall
10/4/2001

Next: Graphics Animation Files Up: Standard System Independent Formats Previous:
JPEG

TIFF

● Tagged Image File Format (TIFF), stores many different types of images (e.g.,
monochrome, greyscale, 8-bit & 24-bit RGB, etc.) -> tagged

● Developed by the Aldus Corp. in the 1980's and later supported by the Microsoft

● TIFF is a lossless format (when not utilizing the new JPEG tag which allows for
JPEG compression)

● It does not provide any major advantages over JPEG and is not as user-
controllable it appears to be declining in popularity

Dave Marshall
10/4/2001

Next: Postscript/Encapsulated Postscript Up: Standard System Independent Formats
Previous: TIFF

Graphics Animation Files

● FLC - main animation or moving picture file format, originally created by
Animation Pro

● FLI - similar to FLC

● GL - better quality moving pictures, usually large file sizes

Dave Marshall
10/4/2001

Next: System Dependent Formats Up: Standard System Independent Formats Previous:
Graphics Animation Files

Postscript/Encapsulated Postscript

● A typesetting language which includes text as well as vector/structured graphics
and bit-mapped images

● Used in several popular graphics programs (Illustrator, FreeHand)

● Does not provide compression, files are often large

Dave Marshall
10/4/2001

Next: Microsoft Windows: BMP Up: Graphic/Image File Formats Previous:
Postscript/Encapsulated Postscript

System Dependent Formats

Many graphical/imaging applications create their own file format particular to the
systems they are executed upon. The following are a few popular system dependent
formats:

● Microsoft Windows: BMP
● Macintosh: PAINT and PICT
● X-windows: XBM

Dave Marshall
10/4/2001

Next: Macintosh: PAINT and PICT Up: System Dependent Formats Previous: System
Dependent Formats

Microsoft Windows: BMP

● A system standard graphics file format for Microsoft Windows

● Used in PC Paintbrush and other programs

● It is capable of storing 24-bit bitmap images

Dave Marshall
10/4/2001

Next: X-windows: XBM Up: System Dependent Formats Previous: Microsoft
Windows: BMP

Macintosh: PAINT and PICT

● PAINT was originally used in MacPaint program, initially only for 1-bit
monochrome images.

● PICT format is used in MacDraw (a vector based drawing program) for storing
structured graphics

Dave Marshall
10/4/2001

Next: Further Reading/Information Up: System Dependent Formats Previous:
Macintosh: PAINT and PICT

X-windows: XBM

● Primary graphics format for the X Window system

● Supports 24-bit colour bitmap

● Many public domain graphic editors, e.g., xv

● Used in X Windows for storing icons, pixmaps, backdrops, etc.

Dave Marshall
10/4/2001

Next: Colour in Image and Up: Graphic/Image File Formats Previous: X-windows:
XBM

Further Reading/Information

● Intro. to Computer Picturesfrom Allison Zhang at the School of Library and
Information Studies, Dalhousie University, Halifax, N.S., Canada

● Image File Formats

Dave Marshall
10/4/2001

http://ac.dal.ca/~dong/image.htm
http://www.cica.indiana.edu/graphics/image.formats.html

Next: Basics of Colour Up: Multimedia Data Representations Previous: Further
Reading/Information

Colour in Image and Video

● Basics of Colour
❍ Light and Spectra
❍ The Human Retina
❍ Cones and Perception

● CIE Chromaticity Diagram
❍ CRT Displays

● Colour Image and Video Representations
❍ Conversion between RGB and CMY:

● Summary of Colour

Dave Marshall
10/4/2001

Next: Light and Spectra Up: Colour in Image and Previous: Colour in Image and

Basics of Colour

● Light and Spectra
● The Human Retina
● Cones and Perception

Next: The Human Retina Up: Basics of Colour Previous: Basics of Colour

Light and Spectra

● Visible light is an electromagnetic wave in the 400nm - 700 nm range.

● Most light we see is not one wavelength, it's a combination of many wavelengths (Fig. 6.15).

Light Wavelengths

● The profile above is called a spectra.

Next: Cones and Perception Up: Basics of Colour Previous: Light and Spectra

The Human Retina

● The eye is basically just a camera

● Each neuron is either a rod or a cone. Rods are not sensitive to colour.

Next: CIE Chromaticity Diagram Up: Basics of Colour Previous: The Human Retina

Cones and Perception

● Cones come in 3 types: red, green and blue. Each responds differently to various frequencies of light. The
following figure shows the spectral-response functions of the cones and the luminous-efficiency function
of the human eye (Fig. 6.16.

Cones and Luminous-efficiency Function of the Human Eye

● The profile above is called a spectra.

● The colour signal to the brain comes from the response of the 3 cones to the spectra being observed
(Fig 6.17). That is, the signal consists of 3 numbers:

where E is the light and S are the sensitivity functions.

● A colour can be specified as the sum of three colours. So colours form a 3 dimensional vector space.

● The following figure shows the amounts of three primaries needed to match all the wavelengths of the
visible spectrum (Fig. refspectrum).

Wavelengths of the Visible Spectrum

● The negative value indicates that some colours cannot be exactly produced by adding up the primaries.

Next: CRT Displays Up: Colour in Image and Previous: Cones and Perception

CIE Chromaticity Diagram

Does a set of primaries exist that span the space with only positive coefficients?

● Yes, but no pure colours.

● In 1931, the CIE defined three standard primaries (X, Y, Z) . The Y primary was intentionally
chosen to be identical to the luminous-efficiency function of human eyes.

Reproducing Visible Colour

● Figure 6.19 shows the amounts of X, Y, Z needed to exactly reproduce any visible colour via
the formulae:

● All visible colours are in a horseshoe shaped cone in the X-Y-Z space. Consider the plane

X+Y+Z=1 and project it onto the X-Y plane, we get the CIE chromaticity diagram as shown in
Fig. 6.20.

CIE Chromaticity Diagram

● The edges represent the pure colours (sine waves at the appropriate frequency)

● White (a blackbody radiating at 6447 kelvin) is at the dot

● When added, any two colours (points on the CIE diagram) produce a point on the line between
them.

L*a*b (Lab) Colour Model

● A refined CIE model, named CIE L*a*b in 1976

● Luminance: L Chrominance: a - ranges from green to red, b - ranges from blue to yellow
(Fig, 6.21)

LAB Colour Model

● Used by Photoshop

● CRT Displays

Next: Colour Image and Video Up: CIE Chromaticity Diagram Previous: CIE
Chromaticity Diagram

CRT Displays

● CRT displays have three phosphors (RGB) which produce a combination of
wavelengths when excited with electrons (Fig. 6.22).

RGB Colour Display

● The gamut of colours is all colours that can be reproduced using the three
primaries

● The gamut of an colour monitor is smaller than the CIE (LAB) colour gamut on
the CIE diagram.

Next: Conversion between RGB and Up: Colour in Image and Previous: CRT Displays

Colour Image and Video Representations

● A black and white image is a 2-D array of integers.

● A colour image is a 2-D array of (R,G,B) integer triplets. These triplets encode how much the
corresponding phosphor should be excited in devices such as a monitor.

● Example is shown in Fig 6.23.

Display of a Colour Cube

Beside the RGB representation, YIQ and YUV are the two commonly used in video.

YIQ Colour Space

● YIQ is used in colour TV broadcasting, it is downward compatible with B/W TV.

● Y (luminance) is the CIE Y primary.

Y = 0.299R + 0.587G + 0.114B

● the other two vectors:

I = 0.596R - 0.275G - 0.321B Q = 0.212R - 0.528G + 0.311B

● The YIQ transform:

YIQ Transform of a colour image

● I is red-orange axis, Q is roughly orthogonal to I.

● Eye is most sensitive to Y, next to I, next to Q. In NTSC, 4 MHz is allocated to Y, 1.5 MHz to I, 0.6
MHz to Q.

● An Example YIQ Decomposition is shown in Fig. 6.24.

Example YIQ Decomposition

CCIR 601 (YUV)

● Established in 1982 to build digital video standard

● Video is represented by a sequence of fields (odd and even lines). Two fields make a frame.

● Works in PAL (50 fields/sec) or NTSC (60 fields/sec)

● Uses the Y, Cr, Cb colour space (also called YUV) Y = 0.299R + 0.587G + 0.114B Cr = R - Y Cb =
B - Y

● The YCrCb (YUV) Transform:

● CCIR 601 also defines other image parameters, e.g. for NTSC, Luminance (Y) image size = 720 x
243 at 60 fields per second Chrominance image size = 360 x 243 at 60 fields per second

● An example YCrCb Decomposition is shown in Fig. 6.25

YCrCb Decomposition of a colour image

The CMY Colour Model

● Cyan, Magenta, and Yellow (CMY) are complementary colours of RGB (Fig. 6.26). They can be
used as Subtractive Primaries.

● CMY model is mostly used in printing devices where the colour pigments on the paper absorb certain
colours (e.g., no red light reflected from cyan ink).

The RGB and CMY Cubes

● Conversion between RGB and CMY:

Next: Summary of Colour Up: Colour Image and Video Previous: Colour Image and
Video

Conversion between RGB and CMY:

- e.g., convert White from (1, 1, 1) in RGB to (0, 0, 0) in CMY.

● Sometimes, an alternative CMYK model (K stands for Black) is used in colour
printing (e.g., to produce darker black than simply mixing CMY). where

Next: Basics of Video Up: Colour in Image and Previous: Conversion between RGB
and

Summary of Colour

● Colour images are encoded as triplets of values.

● Three common systems of encoding in video are RGB, YIQ, and YCrCb.

● Besides the hardware-oriented colour models (i.e., RGB, CMY, YIQ, YUV),
HSB (Hue, Saturation, and Brightness, e.g., used in Photoshop) and HLS (Hue,
Lightness, and Saturation) are also commonly used.

● YIQ uses properties of the human eye to prioritize information. Y is the black
and white (luminance) image, I and Q are the colour (chrominance) images.
YUV uses similar idea.

● CCIR 601 is a standard for digital video that specifies image size, and decimates
the chrominance images (for 4:2:2 video).

Next: Types of Colour Video Up: Multimedia Data Representations Previous:
Summary of Colour

Basics of Video

● Types of Colour Video Signals
● Analog Video
● Digital Video
● Chroma Subsampling

❍ CCIR Standards for Digital Video
❍ ATSC Digital Television Standard

● Further Reading/Information

Next: Analog Video Up: Basics of Video Previous: Basics of Video

Types of Colour Video Signals

● Component video - each primary is sent as a separate video signal.

❍ The primaries can either be RGB or a luminance-chrominance
transformation of them (e.g., YIQ, YUV).

❍ Best colour reproduction

❍ Requires more bandwidth and good synchronization of the three
components

● Composite video - colour (chrominance) and luminance signals are mixed into a
single carrier wave. Some interference between the two signals is inevitable.

● S-Video (Separated video, e.g., in S-VHS) - a compromise between component
analog video and the composite video. It uses two lines, one for luminance and
another for composite chrominance signal.

Next: Digital Video Up: Basics of Video Previous: Types of Colour Video

Analog Video

The following figures (Fig. 6.27 and 6.28) are from A.M. Tekalp, Digital video processing,
Prentice Hall PTR, 1995.

Raster Scanning

NTSC Signal

NTSC Video

● 525 scan lines per frame, 30 frames per second (or be exact, 29.97 fps, 33.37 msec/frame)

● Aspect ratio 4:3

● Interlaced, each frame is divided into 2 fields, 262.5 lines/field

● 20 lines reserved for control information at the beginning of each field (Fig. 6.29)

❍ So a maximum of 485 lines of visible data
❍ Laserdisc and S-VHS have actual resolution of 420 lines
❍ Ordinary TV - 320 lines

● Each line takes 63.5 microseconds to scan. Horizontal retrace takes 10 microseconds (with 5
microseconds horizontal synch pulse embedded), so the active line time is 53.5
microseconds.

Digital Video Rasters

● Colour representation:

❍ NTSC uses YIQ colour model.
❍ composite = Y + I cos(Fsc t) + Q sin(Fsc t), where Fsc is the frequency of colour

subcarrier
❍ Eye is most sensitive to Y, next to I, next to Q. In NTSC, 4 MHz is allocated to Y,

1.5 MHz to I, 0.6 MHz to Q.

PAL Video

● 625 scan lines per frame, 25 frames per second (40 msec/frame)

● Aspect ratio 4:3

● Interlaced, each frame is divided into 2 fields, 312.5 lines/field

● Colour representation:
❍ PAL uses YUV (YCbCr) colour model
❍ composite = Y + 0.492 x U sin(Fsc t) + 0.877 x V cos(Fsc t)
❍ In component analog video, U and V signals are lowpass filtered to about half the

bandwidth of Y.

Next: Chroma Subsampling Up: Basics of Video Previous: Analog Video

Digital Video

● Advantages:
❍ Direct random access -> good for nonlinear video editing
❍ No problem for repeated recording
❍ No need for blanking and sync pulse

● Almost all digital video uses component video

Next: CCIR Standards for Digital Up: Basics of Video Previous: Digital Video

Chroma Subsampling

● How to decimate for chrominance (Fig. 6.30)?

Chroma Subsampling

● 4:2:2 -> Horizontally subsampled colour signals by a factor of 2. Each pixel is two bytes, e.g., (Cb0,
Y0)(Cr0, Y1)(Cb2, Y2)(Cr2, Y3)(Cb4, Y4) ...

● 4:1:1 -> Horizontally subsampled by a factor of 4

● 4:2:0 -> Subsampled in both the horizontal and vertical axes by a factor of 2 between pixels as shown in
the Fig. 6.30.

● 4:1:1 and 4:2:0 are mostly used in JPEG and MPEG (see Chapter 4).

● CCIR Standards for Digital Video
● ATSC Digital Television Standard

Next: ATSC Digital Television Standard Up: Chroma Subsampling Previous: Chroma
Subsampling

CCIR Standards for Digital Video

(CCIR - Consultative Committee for International Radio)

 CCIR 601 CCIR 601 CIF QCIF
 525/60 625/50
 NTSC PAL/SECAM NTSC
-------------------- ----------- ----------- ----------- -----------
Luminance resolution 720 x 485 720 x 576 352 x 240 176 x 120
Chrominance resolut. 360 x 485 360 x 576 176 x 120 88 x 60
Colour Subsampling 4:2:2 4:2:2
Fields/sec 60 50 30 30
Interlacing Yes Yes No No

● CCIR 601 uses interlaced scan, so each field only has half as much vertical resolution
(e.g., 243 lines in NTSC). The CCIR 601 (NTSC) data rate is 165 Mbps.

● CIF (Common Intermediate Format) is introduced to as an acceptable temporary
standard. It delivers about the VHS quality. CIF uses progressive (non-interlaced) scan.

Next: Further Reading/Information Up: Chroma Subsampling Previous: CCIR
Standards for Digital

ATSC Digital Television Standard

(ATSC - Advanced Television Systems Committee) The ATSC Digital Television
Standard was recommended to be adopted as the Advanced TV broadcasting standard
by the FCC Advisory Committee on Advanced Television Service on November 28,
1995. It covers the standard for HDTV (High Definition TV).

Video Format

The video scanning formats supported by the ATSC Digital Television Standard are
shown in the following table.

Vertical Lines Horizontal Pixels Aspect Ratio Picture Rate

1080 1920 16:9 60I 30P 24P

720 1280 16:9 60P 30P 24P

480 704 16:9 & 4:3 60I 60P 30P 24P

480 640 4:3 60I 60P 30P 24P

● The aspect ratio for HDTV is 16:9 as opposed to 4:3 in NTSC, PAL, and
SECAM. (A 33% increase in horizontal dimension.)

● In the picture rate column, the "I" means interlaced scan, and the
"P" means progressive (non-interlaced) scan.

● Both NTSC rates and integer rates are supported (i.e., 60.00, 59.94, 30.00, 29.97,
24.00, and 23.98).

Next: Video and Audio Compression Up: Basics of Video Previous: ATSC Digital
Television Standard

Further Reading/Information

A good text on this area is:

Digital video processing, A.M. Tekalp, Prentice Hall PTR, 1995.

Interesting Web sites include:

● Homepage of the Advanced Television Systems Committee (ATSC)
● MHEG Home Page
● HDTV Web Page.

http://www.atsc.org/
http://www.prz.tu-berlin.de/~joe/mheg/mheg_mon/index.htm
http://www.hdtv.net/

Next: Classifying Compression Algorithms Up: Multimedia Data Previous: Further
Reading/Information

Video and Audio Compression
 Video and Audio files are very large beasts. Unless we develop and maintain very high
bandwidth networks (Gigabytes per second or more) we have to compress to data.

Relying on higher bandwidths is not a good option -- M25 Syndrome: Traffic needs ever
increases and will adapt to swamp current limit whatever this is.

As we will compression becomes part of the representation or coding scheme which
have become popular audio, image and video formats.

We will first study basic compression algorithms and then go on to study some actual
coding formats.

● Classifying Compression Algorithms
❍ What is Compression?

● Lossless Compression Algorithms (Repetitive Sequence Suppression)
❍ Simple Repetition Suppresion
❍ Run-length Encoding

● Lossless Compression Algorithms (Pattern Substitution)
● Lossless Compression Algorithms (Entropy Encoding)

❍ Basics of Information Theory
❍ The Shannon-Fano Algorithm
❍ Huffman Coding
❍ Huffman Coding of Images
❍ Adaptive Huffman Coding
❍ Arithmetic Coding
❍ Lempel-Ziv-Welch (LZW) Algorithm
❍ Entropy Encoding Summary
❍ Further Reading/Information

● Source Coding Techniques

❍ Transform Coding
■ A simple transform coding example

❍ Frequency Domain Methods
■ 1D Example
■ 2D (Image) Example
■ What do frequencies mean in an image?
■ How can transforms into the Frequecny Domain Help?

❍ Fourier Theory
■ 1D Case
■ 2D Case
■ The Discrete Fourier Transform (DFT)
■ Compression
■ Relationship between DCT and FFT

❍ The Discrete Cosine Transform (DCT)
❍ Differential Encoding
❍ Vector Quantisation

● JPEG Compression
❍ Quantization

■ Uniform quantization
■ Quantization Tables

❍ Zig-zag Scan
❍ Differential Pulse Code Modulation (DPCM) on DC component
❍ Run Length Encode (RLE) on AC components
❍ Entropy Coding
❍ Summary of the JPEG bitstream
❍ Practical JPEG Compression
❍ Further Reading

● Video Compression
● H. 261 Compression

❍ Overview of H.261
❍ Intra Frame Coding
❍ Inter-frame (P-frame) Coding
❍ The H.261 Bitstream Structure
❍ Hard Problems in H.261

■ Motion Vector Search
■ Propagation of Errors
■ Bit-rate Control

● MPEG Compression
❍ MPEG Video

■ MPEG Video Layers
■ B-Frames

■ Motion Estimation
■ Coding of Predicted Frames:Coding Residual Errors
■ Differences from H.261

❍ The MPEG Video Bitstream
❍ Decoding MPEG Video in Software

■ Intra Frame Decoding
■ Non-Intra Frame Decoding
■ MPEG-2, MPEG-3, and MPEG-4

❍ Further Reading/Information
● Audio Compression

❍ Simple Audio Compression Methods
❍ Psychoacoustics

■ Human hearing and voice
■ Frequency Masking
■ Critical Bands
■ Temporal masking
■ Summary

❍ MPEG Audio Compression
■ Some facts
■ Steps in algorithm:
■ Example:
■ MPEG Layers
■ Effectiveness of MPEG audio

❍ Streaming Audio (and video)
❍ Further Exploration

Next: What is Compression? Up: Video and Audio Compression Previous: Video and
Audio Compression

Classifying Compression
Algorithms
We can classify compression by the why it employs redundancy or by the method it
compresses the data.

● What is Compression?

Next: Lossless Compression Algorithms (Repetitive Up: Classifying Compression
Algorithms Previous: Classifying Compression Algorithms

What is Compression?

Compression basically employs redundancy in the data:

● Temporal -- in 1D data, 1D signals, Audio etc.
● Spatial -- correlation between neighbouring pixels or data items
● Spectral -- correlation between colour or luminescence components. This uses the

frequency domain to exploit relationships between frequency of change in data.
● psycho-visual -- exploit perceptual properties of the human visual system.

Compression can be categorised in two broad ways:

Lossless Compression
-- where data is compressed and can be reconstituted (uncompressed) without
loss of detail or information. These are referred to as bit-preserving or reversible
compression systems also.

Lossy Compression
-- where the aim is to obtain the best possible fidelity for a given bit-rate or
minimizing the bit-rate to achieve a given fidelity measure. Video and audio
compression techniques are most suited to this form of compression.

If an image is compressed it clearly needs to uncompressed (decoded) before it can
viewed/listened to. Some processing of data may be possible in encoded form however.

Lossless compression frequently involves some form of entropy encoding and are based
in information theoretic techniques (Fig. 7.1)

Lossy compression use source encoding techniques that may involve transform
encoding, differential encoding or vector quantisation (Fig. 7.1).

Classification of Coding Techniques

We now address common coding methods of each type in turn:

Next: Simple Repetition Suppresion Up: Video and Audio Compression Previous:
What is Compression?

Lossless Compression Algorithms
(Repetitive Sequence
Suppression)
These methods are fairly straight forward to understand and implement. Their simplicity
is their downfall in terms of attaining the best compression ratios. However, the methods
have their applications, as mentioned below:

● Simple Repetition Suppresion
● Run-length Encoding

Next: Run-length Encoding Up: Lossless Compression Algorithms (Repetitive
Previous: Lossless Compression Algorithms (Repetitive

Simple Repetition Suppresion

If in a sequence a series on n successive tokens appears we can replace these with a
token and a count number of occurences. We usually need to have a special flag to
denote when the repated token appears

For Example

89400000000000000000000000000000000

we can replace with

894f32

where f is the flag for zero.

Compression savings depend on the content of the data.

Applications of this simple compression technique include:

● Suppression of zero's in a file (Zero Length Supression)

❍ Silence in audio data, Pauses in conversation etc.
❍ Bitmaps
❍ Blanks in text or program source files
❍ Backgrounds in images

● other regular image or data tokens

Next: Lossless Compression Algorithms (Pattern Up: Lossless Compression Algorithms
(Repetitive Previous: Simple Repetition Suppresion

Run-length Encoding

This encoding method is frequently applied to images (or pixels in a scan line). It is a
small compression component used in JPEG compression (Section 7.6).

In this instance, sequences of image elements are mapped to pairs

 where ci represent image intensity or colour and li the

length of the ith run of pixels (Not dissimilar to zero length supression above).

For example:

Original Sequence:

111122233333311112222

can be encoded as:

(1,4),(2,3),(3,6),(1,4),(2,4)

The savings are dependent on the data. In the worst case (Random Noise) encoding is
more heavy than original file: 2*integer rather 1* integer if data is represented as
integers.

Next: Lossless Compression Algorithms (Entropy Up: Video and Audio Compression
Previous: Run-length Encoding

Lossless Compression Algorithms
(Pattern Substitution)
This is a simple form of statistical encoding.

Here we substitue a frequently repeating pattern(s) with a code. The code is shorter than
than pattern giving us compression.

A simple Pattern Substitution scheme could employ predefined code (for example
replace all occurrences of `The' with the code '&').

More typically tokens are assigned to according to frequency of occurrenc of patterns:

● Count occurrence of tokens
● Sort in Descending order
● Assign some symbols to highest count tokens

A predefined symbol table may used ie assign code i to token i.

However, it is more usual to dynamically assign codes to tokens. The entropy encoding
schemes below basically attempt to decide the optimum assignment of codes to achieve
the best compression.

Next: Basics of Information Theory Up: Video and Audio Compression Previous:
Lossless Compression Algorithms (Pattern

Lossless Compression Algorithms
(Entropy Encoding)
Lossless compression frequently involves some form of entropy encoding and are based
in information theoretic techniques, Shannon is father of information theory and we
briefly summarise information theory below before looking at specific entropy encoding
methods.

● Basics of Information Theory
● The Shannon-Fano Algorithm
● Huffman Coding
● Huffman Coding of Images
● Adaptive Huffman Coding
● Arithmetic Coding
● Lempel-Ziv-Welch (LZW) Algorithm
● Entropy Encoding Summary
● Further Reading/Information

Next: The Shannon-Fano Algorithm Up: Lossless Compression Algorithms (Entropy
Previous: Lossless Compression Algorithms (Entropy

Basics of Information Theory

According to Shannon, the entropy of an information source S is defined as:

where pi is the probability that symbol Si in S will occur.

● indicates the amount of information contained in Si, i.e., the number of

bits needed to code Si.

● For example, in an image with uniform distribution of gray-level intensity, i.e. pi

= 1/256, then the number of bits needed to code each gray level is 8 bits. The
entropy of this image is 8.

● Q: How about an image in which half of the pixels are white (I = 220) and half
are black (I = 10)?

Next: Huffman Coding Up: Lossless Compression Algorithms (Entropy Previous: Basics of
Information Theory

The Shannon-Fano Algorithm

This is a basic information theoretic algorithm. A simple example will be used to illustrate the
algorithm:

 Symbol A B C D E

 Count 15 7 6 6 5

Encoding for the Shannon-Fano Algorithm:

● A top-down approach

1. Sort symbols according to their frequencies/probabilities, e.g., ABCDE.

2. Recursively divide into two parts, each with approx. same number of counts.

 Symbol Count log(1/p) Code Subtotal (# of bits)
 ------ ----- -------- --------- --------------------
 A 15 1.38 00 30
 B 7 2.48 01 14
 C 6 2.70 10 12
 D 6 2.70 110 18
 E 5 2.96 111 15
 TOTAL (# of bits): 89

Next: Huffman Coding of Images Up: Lossless Compression Algorithms (Entropy Previous:
The Shannon-Fano Algorithm

Huffman Coding

Huffman coding is based on the frequency of occurance of a data item (pixel in images). The
principle is to use a lower number of bits to encode the data that occurs more frequently. Codes
are stored in a Code Book which may be constructed for each image or a set of images. In all
cases the code book plus encoded data must be transmitted to enable decoding.

The Huffman algorithm is now briefly summarised:

● A bottom-up approach

1. Initialization: Put all nodes in an OPEN list, keep it sorted at all times (e.g., ABCDE).

2. Repeat until the OPEN list has only one node left:

(a) From OPEN pick two nodes having the lowest frequencies/probabilities, create a parent node
of them.

(b) Assign the sum of the children's frequencies/probabilities to the parent node and insert it into
OPEN.

(c) Assign code 0, 1 to the two branches of the tree, and delete the children from OPEN.

 Symbol Count log(1/p) Code Subtotal (# of bits)
 ------ ----- -------- --------- --------------------
 A 15 1.38 0 15
 B 7 2.48 100 21
 C 6 2.70 101 18
 D 6 2.70 110 18
 E 5 2.96 111 15

 TOTAL (# of bits): 87

The following points are worth noting about the above algorithm:

● Decoding for the above two algorithms is trivial as long as the coding table (the statistics)
is sent before the data. (There is a bit overhead for sending this, negligible if the data file
is big.)

● Unique Prefix Property: no code is a prefix to any other code (all symbols are at the leaf
nodes) -> great for decoder, unambiguous.

● If prior statistics are available and accurate, then Huffman coding is very good.

In the above example:

Number of bits needed for Huffman Coding is: 87 / 39 = 2.23

Next: Adaptive Huffman Coding Up: Lossless Compression Algorithms (Entropy
Previous: Huffman Coding

Huffman Coding of Images

In order to encode images:

● Divide image up into 8x8 blocks
● Each block is a symbol to be coded
● compute Huffman codes for set of block
● Encode blocks accordingly

Next: Arithmetic Coding Up: Lossless Compression Algorithms (Entropy Previous: Huffman Coding of Images

Adaptive Huffman Coding

The basic Huffman algorithm has been extended, for the following reasons:

(a) The previous algorithms require the statistical knowledge which is often not available (e.g., live audio, video).

(b) Even when it is available, it could be a heavy overhead especially when many tables had to be sent when a non-
order0 model is used, i.e. taking into account the impact of the previous symbol to the probability of the current
symbol (e.g., "qu" often come together, ...).

The solution is to use adaptive algorithms. As an example, the Adaptive Huffman Coding is examined below. The
idea is however applicable to other adaptive compression algorithms.

ENCODER DECODER
------- -------

Initialize_model(); Initialize_model();
while ((c = getc (input)) != eof) while ((c = decode (input)) !=
eof)
 { {
 encode (c, output); putc (c, output);
 update_model (c); update_model (c);
 } }

}

● The key is to have both encoder and decoder to use exactly the same initialization and update_model routines.

● update_model does two things: (a) increment the count, (b) update the Huffman tree (Fig 7.2).

❍ During the updates, the Huffman tree will be maintained its sibling property, i.e. the nodes (internal
and leaf) are arranged in order of increasing weights (see figure).

❍ When swapping is necessary, the farthest node with weight W is swapped with the node whose weight
has just been increased to W+1. Note: If the node with weight W has a subtree beneath it, then the
subtree will go with it.

❍ The Huffman tree could look very different after node swapping (Fig 7.2), e.g., in the third tree, node
A is again swapped and becomes the #5 node. It is now encoded using only 2 bits.

Note: Code for a particular symbol changes during the adaptive coding process.

Next: Lempel-Ziv-Welch (LZW) Algorithm Up: Lossless Compression Algorithms (Entropy
Previous: Adaptive Huffman Coding

Arithmetic Coding

Huffman coding and the like use an integer number (k) of bits for each symbol, hence k is never less
than 1. Sometimes, e.g., when sending a 1-bit image, compression becomes impossible.

● Idea: Suppose alphabet was

X, Y

and

 prob(X) = 2/3
 prob(Y) = 1/3

● If we are only concerned with encoding length 2 messages, then we can map all possible
messages to intervals in the range [0..1]:

● To encode message, just send enough bits of a binary fraction that uniquely specifies the
interval.

● Similarly, we can map all possible length 3 messages to intervals in the range [0..1]:

● Q: How to encode X Y X X Y X ?

Q: What about an alphabet with 26 symbols, or 256 symbols, ...?

● In general, number of bits is determined by the size of the interval.

Examples:

❍ first interval is 8/27, needs 2 bits -> 2/3 bit per symbol (X)

❍ last interval is 1/27, need 5 bits

● In general, need bits to represent interval of size p. Approaches optimal encoding as

message length got to infinity.

● Problem: how to determine probabilities?

❍ Simple idea is to use adaptive model: Start with guess of symbol frequencies. Update
frequency with each new symbol.

❍ Another idea is to take account of intersymbol probabilities, e.g., Prediction by Partial
Matching.

● Implementation Notes: Can be CPU and memory intensive; patented.

Next: Entropy Encoding Summary Up: Lossless Compression Algorithms (Entropy
Previous: Arithmetic Coding

Lempel-Ziv-Welch (LZW) Algorithm

The LZW algorithm is a very common compression technique.

Suppose we want to encode the Oxford Concise English dictionary which contains about
159,000 entries. Why not just transmit each word as an 18 bit number?

Problems:

● Too many bits,
● everyone needs a dictionary,
● only works for English text.
● Solution: Find a way to build the dictionary adaptively.

● Original methods due to Ziv and Lempel in 1977 and 1978. Terry Welch
improved the scheme in 1984 (called LZW compression).

● It is used in UNIX compress -- 1D token stream (similar to below)
● It used in GIF comprerssion -- 2D window tokens (treat image as with Huffman

Coding Above).

Reference: Terry A. Welch, "A Technique for High Performance Data Compression",
IEEE Computer, Vol. 17, No. 6, 1984, pp. 8-19.

The LZW Compression Algorithm can summarised as follows:

 w = NIL;
 while (read a character k)
 {
 if wk exists in the dictionary
 w = wk;
 else
 add wk to the dictionary;
 output the code for w;
 w = k;
 }

● Original LZW used dictionary with 4K entries, first 256 (0-255) are ASCII
codes.

Example:

Input string is "^WED^WE^WEE^WEB^WET".

 w k output index symbol

 NIL ^
 ^ W ^ 256 ^W
 W E W 257 WE
 E D E 258 ED
 D ^ D 259 D^
 ^ W
 ^W E 256 260 ^WE
 E ^ E 261 E^
 ^ W
 ^W E
 ^WE E 260 262 ^WEE
 E ^
 E^ W 261 263 E^W
 W E
 WE B 257 264 WEB
 B ^ B 265 B^
 ^ W
 ^W E
 ^WE T 260 266 ^WET
 T EOF T

● A 19-symbol input has been reduced to 7-symbol plus 5-code output. Each
code/symbol will need more than 8 bits, say 9 bits.

● Usually, compression doesn't start until a large number of bytes (e.g., > 100) are
read in.

The LZW Decompression Algorithm is as follows:

 read a character k;
 output k;
 w = k;
 while (read a character k)
 /* k could be a character or a code. */
 {
 entry = dictionary entry for k;
 output entry;
 add w + entry[0] to dictionary;

 w = entry;
 }

Example (continued):

Input string is "^WED<256>E<260><261><257>B<260>T".

 w k output index symbol

 ^ ^
 ^ W W 256 ^W
 W E E 257 WE
 E D D 258 ED
 D <256> ^W 259 D^
 <256> E E 260 ^WE
 E <260> ^WE 261 E^
 <260> <261> E^ 262 ^WEE
 <261> <257> WE 263 E^W
 <257> B B 264 WEB
 B <260> ^WE 265 B^
 <260> T T 266 ^WET

● Problem: What if we run out of dictionary space?

❍ Solution 1: Keep track of unused entries and use LRU

❍ Solution 2: Monitor compression performance and flush dictionary when
performance is poor.

● Implementation Note: LZW can be made really fast; it grabs a fixed number of
bits from input stream, so bit parsing is very easy. Table lookup is automatic.

Next: Further Reading/Information Up: Lossless Compression Algorithms (Entropy
Previous: Lempel-Ziv-Welch (LZW) Algorithm

Entropy Encoding Summary

● Huffman maps fixed length symbols to variable length codes. Optimal only when
symbol probabilities are powers of 2.

● Arithmetic maps entire message to real number range based on statistics.
Theoretically optimal for long messages, but optimality depends on data model.
Also can be CPU/memory intensive.

● Lempel-Ziv-Welch is a dictionary-based compression method. It maps a variable
number of symbols to a fixed length code.

● Adaptive algorithms do not need a priori estimation of probabilities, they are
more useful in real applications.

Next: Source Coding Techniques Up: Lossless Compression Algorithms (Entropy
Previous: Entropy Encoding Summary

Further Reading/Information

Two good text books:

● The Data Compression Book, Mark Nelson,M&T Books, 1995.
● Introduction to Data Compression, Khalid Sayood, Morgan Kaufmann, 1996.

Next: Transform Coding Up: Video and Audio Compression Previous: Further
Reading/Information

Source Coding Techniques
Source coding is based on the content of the original signal is also called semantic-
based coding

High compression rates may be high but a price of loss of information. Good
compression rates make be achieved with source encoding with lossless or little loss of
information.

There are three broad methods that exist:

● Transform Coding
❍ A simple transform coding example

● Frequency Domain Methods
❍ 1D Example
❍ 2D (Image) Example
❍ What do frequencies mean in an image?
❍ How can transforms into the Frequecny Domain Help?

● Fourier Theory
❍ 1D Case
❍ 2D Case
❍ The Discrete Fourier Transform (DFT)
❍ Compression
❍ Relationship between DCT and FFT

● The Discrete Cosine Transform (DCT)
● Differential Encoding
● Vector Quantisation

Next: A simple transform coding Up: Source Coding Techniques Previous: Source
Coding Techniques

Transform Coding

● A simple transform coding example

Next: Frequency Domain Methods Up: Transform Coding Previous: Transform Coding

A simple transform coding example

A Simple Transform Encoding procedure maybe described by the following steps for a
2x2 block of monochrome pixels:

1.
Take top left pixel as the base value for the block, pixel A.

2.
Calculate three other transformed values by taking the difference between these
(respective) pixels and pixel A, i.e. B-A, C-A, D-A.

3.
Store the base pixel and the differences as the values of the transform.

Given the above we can easily for the forward transform:

and the inverse transform is:

The above transform scheme may be used to compress data by exploiting redundancy in
the data:

Any Redundancy in the data has been transformed to values, Xi. So We can compress

the data by using fewer bits to represent the differences. I.e if we use 8 bits per pixel
then the 2x2 block uses 32 bits/ If we keep 8 bits for the base pixel, X0, and assign 4 bits
for each difference then we only use 20 bits. Which is better than an average 5 bits/pixel

Example

Consider the following 4x4 image block:

120 130

125 120

then we get:

We can then compress these values by taking less bits to represent the data.

However for practical purposes such a simple scheme as outlined above is not sufficient
for compression:

● It is Too Simple
● Needs to operate on larger blocks (typically 8x8 min)
● Calculation is also too simple and from above we see that simple encoding of

differences for large values will result in loss of information -- v poor losses
possible here 4 bits per pixel = values 0-15 unsigned, -7 - 7 signed so either
quantise in multiples of 255/max value or massive overflow!!

However, More advance transform encoding techniques are very common (See
JPEG/MPEG below). Frequncy Domain methods such as Fourier Transform and (more
commonly) Discrete Cosine Transforms (DCT) compression techniques fall into this
category. We no consider these methods in general and then specifically.

Next: 1D Example Up: Source Coding Techniques Previous: A simple transform
coding

Frequency Domain Methods

Frequency domains can be obtained through the transformation from one (Time or
Spatial) domain to the other (Frequency) via

● Discrete Cosine Transform,
● Fourier Transform etc.

● 1D Example
● 2D (Image) Example
● What do frequencies mean in an image?
● How can transforms into the Frequecny Domain Help?

Next: 2D (Image) Example Up: Frequency Domain Methods Previous: Frequency
Domain Methods

1D Example

Lets consider a 1D (e.g. Audio) example to see what the different domains mean:

Consider a complicated sound such as the noise of a car horn. We can describe this
sound in two related ways:

● sample the amplitude of the sound many times a second, which gives an
approximation to the sound as a function of time.

● analyse the sound in terms of the pitches of the notes, or frequencies, which make
the sound up, recording the amplitude of each frequency.

In the example below (Fig) we have a signal that consists of a sinusoidal wave at 8
Hz. 8Hz means that wave is completing 8 cycles in 1 second and is the frequency of that
wave. From the frequency domain we can see that the composition of our signal is one
wave (one peak) occurring with a frequency of 8Hz with a magnitude/fraction of 1.0 i.e.
it is the whole signal.

Relationship between Time and Frequency Domain

Next: What do frequencies mean Up: Frequency Domain Methods Previous: 1D
Example

2D (Image) Example

Now images are no more complex really:

Similarly brightness along a line can be recorded as a set of values measured at equally
spaced distances apart, or equivalently, at a set of spatial frequency values.

Each of these frequency values is referred to as a frequency component.

An image is a two-dimensional array of pixel measurements on a uniform grid.

This information be described in terms of a two-dimensional grid of spatial frequencies.

A given frequency component now specifies what contribution is made by data which is
changing with specified x and y direction spatial frequencies.

Next: How can transforms into Up: Frequency Domain Methods Previous: 2D (Image)
Example

What do frequencies mean in an image?

If an image has large values at high frequency components then the data is changing
rapidly on a short distance scale. e.g. a page of text

If the image has large low frequency components then the large scale features of the
picture are more important. e.g. a single fairly simple object which occupies most of the
image.

For colour images, The measure (now a 2D matrix) of the frequency content is with
regard to colour/chrominance: this shows if values are changing rapidly or slowly.
Where the fraction, or value in the frequency matrix is low, the colour is changing
gradually. Now the human eye is insensitive to gradual changes in colour and sensitive
to intensity. So we can ignore gradual changes in colour and throw away data without
the human eye noticing, we hope.

Next: Fourier Theory Up: Frequency Domain Methods Previous: What do frequencies mean

How can transforms into the Frequecny Domain Help?

Any function (signal) can be decomposed into purely sinusoidal components (sine waves of different size/shape) which when added together make up our original signal.

In the example below (Fig 7.4) we have a square wave signal that has been decomposed by the Fourier Transform to render its sinusoidal components. Only the first few sine wave components are shown here. You can see that a the Square wave form will be roughly
approximated if you add up the sinusoidal components.

DFT of a Square Wave

Thus Transforming a signal into the frequency domain allows us to see what sine waves make up our signal e.g. One part sinusoidal wave at 50 Hz and two parts sinusoidal waves at 200 Hz.

More complex signals will give more complex graphs but the idea is exactly the same. The graph of the frequency domain is called the frequency spectrum.

An easy way to visualise what is happening is to think of a graphic equaliser on a stereo (Fig 7.5).

A Graphic Equaliser

The bars on the left are the frequency spectrum of the sound that you are listening to. The bars go up and down depending on the type of sound that you are listening to. It is pretty obvious that the accumulation of these make up the whole. The bars on the right are used to
increase and decrease the sound at particular frequencies, denoted by the numbers (Hz). The lower frequencies, on the left, are for bass and the higher frequencies on the right are treble.

This is directly related to our example before. The bars show how much of the signal is made up of sinusoidal waves at that frequency. When all the waves are added together in their correct proportions that original sound is regenerated.

Next: Fourier Theory Up: Frequency Domain Methods Previous: What do frequencies mean
Dave Marshall
10/4/2001

Next: 1D Case Up: Source Coding Techniques Previous: How can transforms into

Fourier Theory

In order to fully comprehend the DCT will do a basic study of the Fourier theory and the
Fourier transform first.

Whilst the DCT is ultimately used in multimedia compression it is easier to perhaps
comprehend how such compression methods work by studying Fourier theory, from
which the DCT is actually derived.

The tool which converts a spatial (real space) description of an image into one in terms
of its frequency components is called the Fourier transform

The new version is usually referred to as the Fourier space description of the image.

The corresponding inverse transformation which turns a Fourier space description back
into a real space one is called the inverse Fourier transform.

● 1D Case
● 2D Case
● The Discrete Fourier Transform (DFT)
● Compression
● Relationship between DCT and FFT

Next: 2D Case Up: Fourier Theory Previous: Fourier Theory

1D Case

Considering a continuous function f(x) of a single variable x representing distance.

The Fourier transform of that function is denoted F(u), where u represents spatial
frequency is defined by

(1)

Note: In general F(u) will be a complex quantity even though the original data is purely
real.

The meaning of this is that not only is the magnitude of each frequency present
important, but that its phase relationship is too.

The inverse Fourier transform for regenerating f(x) from F(u) is given by

(2)

which is rather similar, except that the exponential term has the opposite sign.

Let's see how we compute a Fourier Transform: consider a particular function f(x)
defined as

(3)

shown in Fig. 7.6.

A top hat function

So its Fourier transform is:

In this case F(u) is purely real, which is a consequence of the original data being
symmetric in x and -x. A graph of F(u) is shown in Fig. 7.7. This function is often
referred to as the Sinc function.

Fourier transform of a top hat function

Next: The Discrete Fourier Transform Up: Fourier Theory Previous: 1D Case

2D Case

If f(x,y) is a function, for example the brightness in an image, its Fourier transform is
given by

(4)

and the inverse transform, as might be expected, is

(5)

Next: Compression Up: Fourier Theory Previous: 2D Case

The Discrete Fourier Transform (DFT)

Images and Digital Audio are digitised !!

Thus, we need a discrete formulation of the Fourier transform, which takes such
regularly spaced data values, and returns the value of the Fourier transform for a set of
values in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a summation, to give the
discrete Fourier transform or DFT for short.

In 1D it is convenient now to assume that x goes up in steps of 1, and that there are N
samples, at values of x from to N-1.

So the DFT takes the form

(6)

while the inverse DFT is

(7)

NOTE: Minor changes from the continuous case are a factor of 1/N in the exponential
terms, and also the factor 1/N in front of the forward transform which does not appear in
the inverse transform.

The 2D DFT works is similar. So for an grid in x and y we have

(8)

and

(9)

Often N=M, and it is then it is more convenient to redefine F(u,v) by multiplying it by a
factor of N, so that the forward and inverse transforms are more symmetrical:

(10)

and

(11)

Next: Relationship between DCT and Up: Fourier Theory Previous: The Discrete
Fourier Transform

Compression

How do we achieve compression:

● Low pass filter -- ignore high frequency noise components
● Only store lower frequency components
● High Pass Filter -- Spot Gradual Changes
● If changes to low Eye does not respond so ignore?

Where do put threshold to cut off?

Next: The Discrete Cosine Transform Up: Fourier Theory Previous: Compression

Relationship between DCT and FFT

DCT (Discrete Cosine Transform) is actually a cut-down version of the FFT:

● Only the real part of FFT
● Computationally simpler than FFT
● DCT -- Effective for Multimedia Compression
● DCT MUCH more commonly used.

Next: Differential Encoding Up: Source Coding Techniques Previous: Relationship between DCT and

The Discrete Cosine Transform (DCT)

 The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub-bands) of differing
importance (with respect to the image's visual quality). The DCT is similar to the discrete Fourier transform:
it transforms a signal or image from the spatial domain to the frequency domain (Fig 7.8).

DCT Encoding

The general equation for a 1D (N data items) DCT is defined by the following equation:

and the corresponding inverse 1D DCT transform is simple F-1(u), i.e.:

where

The general equation for a 2D (N by M image) DCT is defined by the following equation:

and the corresponding inverse 2D DCT transform is simple F-1(u,v), i.e.:

where

The basic operation of the DCT is as follows:

● The input image is N by M;
● f(i,j) is the intensity of the pixel in row i and column j;
● F(u,v) is the DCT coefficient in row k1 and column k2 of the DCT matrix.

● For most images, much of the signal energy lies at low frequencies; these appear in the upper left
corner of the DCT.

● Compression is achieved since the lower right values represent higher frequencies, and are often small
- small enough to be neglected with little visible distortion.

● The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray scale level;
● 8 bit pixels have levels from 0 to 255.

● Therefore an 8 point DCT would be:

where

Question: What is F[0,0]?

answer: They define DC and AC components.
● The output array of DCT coefficients contains integers; these can range from -1024 to 1023.

● It is computationally easier to implement and more efficient to regard the DCT as a set of basis
functions which given a known input array size (8 x 8) can be precomputed and stored. This involves
simply computing values for a convolution mask (8 x8 window) that get applied (summ values x
pixelthe window overlap with image apply window accros all rows/columns of image). The values as
simply calculated from the DCT formula. The 64 (8 x 8) DCT basis functions are illustrated in Fig 7.9.

DCT basis functions

● Why DCT not FFT?

DCT is similar to the Fast Fourier Transform (FFT), but can approximate lines well with fewer
coefficients (Fig 7.10)

DCT/FFT Comparison

● Computing the 2D DCT

❍ Factoring reduces problem to a series of 1D DCTs (Fig 7.11):

■ apply 1D DCT (Vertically) to Columns
■ apply 1D DCT (Horizontally) to resultant Vertical DCT above.
■ or alternatively Horizontal to Vertical.

The equations are given by:

❍ Most software implementations use fixed point arithmetic. Some fast implementations
approximate coefficients so all multiplies are shifts and adds.

❍ World record is 11 multiplies and 29 adds. (C. Loeffler, A. Ligtenberg and G. Moschytz,
"Practical Fast 1-D DCT Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
Speech, and Signal Processing 1989 (ICASSP `89), pp. 988-991)

Next: Vector Quantisation Up: Source Coding Techniques Previous: The Discrete
Cosine Transform

Differential Encoding

Simple example of transform coding mentioned earlier and instance of this approach.

Here:

● The difference between the actual value of a sample and a prediction of that
values is encoded.

● Also known as predictive encoding.
● Example of technique include: differential pulse code modulation, delta

modulation and adaptive pulse code modulation -- differ in prediction part.
● Suitable where successive signal samples do not differ much, but are not zero.

E.g. Video -- difference between frames, some audio signals.
● Differential pulse code modulation (DPCM) simple prediction:

fpredict(ti) = factual(ti-1)

i.e. a simple Markov model where current value is the predict next value.

So we simply need to encode:

If successive sample are close to each other we only need to encode first sample
with a large number of bits:

Actual Data: 9 10 7 6

Predicted Data: 0 9 10 7

: +9, +1, -3, -1.

● Delta modulation is a special case of DPCM: Same predictor function, coding
error is a single bit or digit that indicates the current sample should be increased
or decreased by a step.

Not Suitable for rapidly changing signals.
● Adaptive pulse code modulation -- Fuller Markov model: data is extracted from

a function of a series of previous values: E.g. Average of last n samples.
Characteristics of sample better preserved.

Next: JPEG Compression Up: Source Coding Techniques Previous: Differential
Encoding

Vector Quantisation

The basic outline of this approach is:

● Data stream divided into (1D or 2D square) blocks -- vectors
● A table or code book is used to find a pattern for each block.
● Code book can be dynamically constructed or predefined.
● Each pattern for block encoded as a look value in table
● Compression achieved as data is effectively subsampled and coded at this level.

Next: Quantization Up: Video and Audio Compression Previous: Vector Quantisation

JPEG Compression
 What is JPEG?

● "Joint Photographic Expert Group" -- an international standard in 1992.

● Works with colour and greyscale images, Many applications e.g., satellite,
medical, ...

JPEG compression involves the following:

● Encoding (Fig 7.12)

JPEG Encoding

● Decoding - Reverse the order for encoding

The Major Steps in JPEG Coding involve:

● DCT (Discrete Cosine Transformation)

● Quantization

● Zigzag Scan

● DPCM on DC component

● RLE on AC Components

● Entropy Coding

The DCT has already been introduced (Section 7.5.4) we now summarise the other
steps.

● Quantization
❍ Uniform quantization
❍ Quantization Tables

● Zig-zag Scan
● Differential Pulse Code Modulation (DPCM) on DC component
● Run Length Encode (RLE) on AC components
● Entropy Coding
● Summary of the JPEG bitstream
● Practical JPEG Compression
● Further Reading

Next: Uniform quantization Up: JPEG Compression Previous: JPEG Compression

Quantization

Why do we need to quantise:

● To throw out bits

● Example: 101101 = 45 (6 bits).

Truncate to 4 bits: 1011 = 11.

Truncate to 3 bits: 101 = 5.

● Quantization error is the main source of the Lossy Compression.

● Uniform quantization
● Quantization Tables

Next: Quantization Tables Up: Quantization Previous: Quantization

Uniform quantization

● Divide by constant N and round result (N = 4 or 8 in examples above).

● Non powers-of-two gives fine control (e.g., N = 6 loses 2.5 bits)

Next: Zig-zag Scan Up: Quantization Previous: Uniform quantization

Quantization Tables

● In JPEG, each F[u,v] is divided by a constant q(u,v).

● Table of q(u,v) is called quantization table.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

● Eye is most sensitive to low frequencies (upper left corner), less sensitive to high
frequencies (lower right corner)

● Standard defines 2 default quantization tables, one for luminance (above), one for
chrominance.

● Q: How would changing the numbers affect the picture (e.g., if I doubled them
all)?

Quality factor in most implementations is the scaling factor for default
quantization tables.

● Custom quantization tables can be put in image/scan header.

Next: Differential Pulse Code Modulation Up: JPEG Compression Previous:
Quantization Tables

Zig-zag Scan

What is the purpose of the Zig-zag Scan:

● to group low frequency coefficients in top of vector.

● Maps 8 x 8 to a 1 x 64 vector

Next: Run Length Encode (RLE) Up: JPEG Compression Previous: Zig-zag Scan

Differential Pulse Code Modulation (DPCM)
on DC component

Here we see that besides DCT another encoding method is employed: DPCM on the DC
component at least. Why is this strategy adopted:

● DC component is large and varied, but often close to previous value (like lossless
JPEG).

● Encode the difference from previous 8x8 blocks - DPCM

Next: Entropy Coding Up: JPEG Compression Previous: Differential Pulse Code
Modulation

Run Length Encode (RLE) on AC
components

Yet another simple compression technique is applied to the AC component:

● 1x64 vector has lots of zeros in it

● Encode as (skip, value) pairs, where skip is the number of zeros and value is the
next non-zero component.

● Send (0,0) as end-of-block sentinel value.

Next: Summary of the JPEG Up: JPEG Compression Previous: Run Length Encode
(RLE)

Entropy Coding

DC and AC components finally need to be represented by a smaller number of bits:

● Categorize DC values into SSS (number of bits needed to represent) and actual
bits.

 Value SSS
 0 0
 -1,1 1
 -3,-2,2,3 2
 -7..-4,4..7 3

● Example: if DC value is 4, 3 bits are needed.

Send off SSS as Huffman symbol, followed by actual 3 bits.

● For AC components (skip, value), encode the composite symbol (skip,SSS) using
the Huffman coding.

● Huffman Tables can be custom (sent in header) or default.

Next: Practical JPEG Compression Up: JPEG Compression Previous: Entropy Coding

Summary of the JPEG bitstream

Figure 7.12 and the above JPEG components have described how compression is
achieved at several stages. Let us conclude by summarising the overall compression
process:

● A "Frame" is a picture, a "scan" is a pass through the pixels (e.g., the red
component), a "segment" is a group of blocks, a "block" is an 8x8 group of
pixels.

● Frame header: sample precision (width, height) of image number of components
unique ID (for each component) horizontal/vertical sampling factors (for each
component) quantization table to use (for each component)

● Scan header Number of components in scan component ID (for each component)
Huffman table for each component (for each component)

● Misc. (can occur between headers) Quantization tables Huffman Tables
Arithmetic Coding Tables Comments Application Data

Next: Further Reading Up: JPEG Compression Previous: Summary of the JPEG

Practical JPEG Compression

JPEG compression algorithms may fall in to one of several categories depending on how the compression is
actually performed:

● Baseline/Sequential - the one that we described in detail

● Lossless

● Progressive

● Hierarchical

● "Motion JPEG" - Baseline JPEG applied to each image in a video.

Briefly, this is how each above approach is encoded:

1.
Lossless Mode

❍ A special case of the JPEG where indeed there is no loss

❍ Take difference from previous pixels (not blocks as in the Baseline mode) as a "predictor".

Predictor uses linear combination of previously encoded neighbors.

It can be one of seven different predictor based on pixels neighbors

❍ Since it uses only previously encoded neighbors, first row always uses P2, first column always
uses P1.

❍ Effect of Predictor (test with 20 images)

Note: "2D" predictors (4-7) always do better than "1D" predictors.

Comparison with Other Lossless Compression Programs (compression ratio):

 Compression Program Compression Ratio
 Lena football F-18 flowers

 lossless JPEG 1.45 1.54 2.29 1.26
 optimal lossless JPEG 1.49 1.67 2.71 1.33
 compress (LZW) 0.86 1.24 2.21 0.87
 gzip (Lempel-Ziv) 1.08 1.36 3.10 1.05
gzip -9 (optimal Lempel-Ziv) 1.08 1.36 3.13 1.05
 pack (Huffman coding) 1.02 1.12 1.19 1.00

2.
Progressive Mode

❍ Goal: display low quality image and successively improve.

❍ Two ways to successively improve image:

(a)
Spectral selection: Send DC component, then first few AC, some more AC, etc.

(b)
Successive approximation: send DCT coefficients MSB (most significant bit) to LSB (least
significant bit).

3.
Hierarchical Mode

A Three-level Hierarchical JPEG Encoder

(From V. Bhaskaran and K. Konstantinides, "Image and Video Compression Standards: Algorithms and
Architectures", Kluwer Academic Publishers, 1995.)

❍ Down-sample by factors of 2 in each direction.

Example: map 640x480 to 320x240

❍ Code smaller image using another method (Progressive, Baseline, or Lossless).

❍ Decode and up-sample encoded image

❍ Encode difference between the up-sampled and the original using Progressive, Baseline, or
Lossless.

❍ Can be repeated multiple times.

❍ Good for viewing high resolution image on low resolution display.

4.
JPEG-2

❍ Big change was to use adaptive quantization

Next: Video Compression Up: JPEG Compression Previous: Practical JPEG
Compression

Further Reading

A good tutorial on JPEG may be found at:

http://www.ece.purdue.edu/~ace/jpeg-tut/jpegtut1.html

http://www.ece.purdue.edu/~ace/jpeg-tut/jpegtut1.html

Next: H. 261 Compression Up: Video and Audio Compression Previous: Further
Reading

Video Compression
We have studied the theory of encoding now let us see how this is applied in practice.

We need to compress video (and audio) in practice since:

1.
Uncompressed video (and audio) data are huge. In HDTV, the bit rate easily
exceeds 1 Gbps. -- big problems for storage and network communications. For
example:

One of the formats defined for HDTV broadcasting within the United States is
1920 pixels horizontally by 1080 lines vertically, at 30 frames per second. If
these numbers are all multiplied together, along with 8 bits for each of the three
primary colors, the total data rate required would be approximately 1.5 Gb/sec.
Because of the 6 MHz. channel bandwidth allocated, each channel will only
support a data rate of 19.2 Mb/sec, which is further reduced to 18 Mb/sec by the
fact that the channel must also support audio, transport, and ancillary data
information. As can be seen, this restriction in data rate means that the original
signal must be compressed by a figure of approximately 83:1. This number seems
all the more impressive when it is realized that the intent is to deliver very high
quality video to the end user, with as few visible artifacts as possible.

2.
Lossy methods have to employed since the compression ratio of lossless methods
(e.g., Huffman, Arithmetic, LZW) is not high enough for image and video
compression, especially when distribution of pixel values is relatively flat.

The following compression types are commonly used in Video compression:

● Spatial Redundancy Removal - Intraframe coding (JPEG)

● Spatial and Temporal Redundancy Removal - Intraframe and Interframe coding
(H.261, MPEG)

These are discussed in the following sections.

Next: Overview of H.261 Up: Video and Audio Compression Previous: Video
Compression

H. 261 Compression
H. 261 Compression has been specifically designed for video telecommunication
applications:

● Developed by CCITT in 1988-1990

● Meant for videoconferencing, videotelephone applications over ISDN telephone
lines.

● Baseline ISDN is 64 kbits/sec, and integral multiples (px64)

● Overview of H.261
● Intra Frame Coding
● Inter-frame (P-frame) Coding
● The H.261 Bitstream Structure
● Hard Problems in H.261

❍ Motion Vector Search
❍ Propagation of Errors
❍ Bit-rate Control

Next: Intra Frame Coding Up: H. 261 Compression Previous: H. 261 Compression

Overview of H.261

The basic approach to H. 261 Compression is summarised as follows:

● Decoded Sequence

● Frame types are CCIR 601 CIF (352x288) and QCIF (176x144) images with
4:2:0 subsampling.

● Two frame types: Intraframes (I-frames) and Interframes (P-frames)

● I-frames use basically JPEG

● P-frames use pseudo-differences from previous frame (predicted), so frames
depend on each other.

● I-frame provide us with an accessing point.

Next: Inter-frame (P-frame) Coding Up: H. 261 Compression Previous: Overview of
H.261

Intra Frame Coding

The term intra frame coding refers to the fact that the various lossless and lossy
compression techniques are performed relative to information that is contained only
within the current frame, and not relative to any other frame in the video sequence. In
other words, no temporal processing is performed outside of the current picture or
frame. This mode will be described first because it is simpler, and because non-intra
coding techniques are extensions to these basics. Figure 1 shows a block diagram of a
basic video encoder for intra frames only. It turns out that this block diagram is very
similar to that of a JPEG still image video encoder, with only slight implementation
detail differences.

The potential ramifications of this similarity will be discussed later. The basic
processing blocks shown are the video filter, discrete cosine transform, DCT coefficient
quantizer, and run-length amplitude/variable length coder. These blocks are described
individually in the sections below or have already been described in JPEG Compression.

This is a basic Intra Frame Coding Scheme is as follows:

● Macroblocks are 16x16 pixel areas on Y plane of original image.

A macroblock usually consists of 4 Y blocks, 1 Cr block, and 1 Cb block.

In the example HDTV data rate calculation shown previously, the pixels were
represented as 8-bit values for each of the primary colors red, green, and blue. It
turns out that while this may be good for high performance computer generated
graphics, it is wasteful in most video compression applications. Research into the
Human Visual System (HVS) has shown that the eye is most sensitive to changes
in luminance, and less sensitive to variations in chrominance. Since absolute
compression is the name of the game, it makes sense that MPEG should operate
on a color space that can effectively take advantage of the eye¹s different
sensitivity to luminance and chrominance information. As such, H/261 (and
MPEG) uses the YCbCr color space to represent the data values instead of RGB,
where Y is the luminance signal, Cb is the blue color difference signal, and Cr is
the red color difference signal.

A macroblock can be represented in several different manners when referring to
the YCbCr color space. Figure 7.13 below shows 3 formats known as 4:4:4,
4:2:2, and 4:2:0 video. 4:4:4 is full bandwidth YCbCr video, and each
macroblock consists of 4 Y blocks, 4 Cb blocks, and 4 Cr blocks. Being full
bandwidth, this format contains as much information as the data would if it were
in the RGB color space. 4:2:2 contains half as much chrominance information as
4:4:4, and 4:2:0 contains one quarter of the chrominance information. Although
MPEG-2 has provisions to handle the higher chrominance formats for
professional applications, most consumer level products will use the normal 4:2:0
mode.

Macroblock Video Formats

Because of the efficient manner of luminance and chrominance representation,
the 4:2:0 representation allows an immediate data reduction from 12
blocks/macroblock to 6 blocks/macroblock, or 2:1 compared to full bandwidth
representations such as 4:4:4 or RGB. To generate this format without generating
color aliases or artifacts requires that the chrominance signals be filtered.

The Macroblock is coded as follows:

❍ Many macroblocks will be exact matches (or close enough). So send
address of each block in image -> Addr

❍ Sometimes no good match can be found, so send INTRA block -> Type

❍ Will want to vary the quantization to fine tune compression, so send
quantization value -> Quant

❍ Motion vector -> vector

❍ Some blocks in macroblock will match well, others match poorly. So send
bitmask indicating which blocks are present (Coded Block Pattern, or
CBP).

❍ Send the blocks (4 Y, 1 Cr, 1 Cb) as in JPEG.

● Quantization is by constant value for all DCT coefficients (i.e., no quantization
table as in JPEG).

Next: The H.261 Bitstream Structure Up: H. 261 Compression Previous: Intra Frame Coding

Inter-frame (P-frame) Coding

The previously discussed intra frame coding techniques were limited to processing the video signal on a
spatial basis, relative only to information within the current video frame. Considerably more
compression efficiency can be obtained however, if the inherent temporal, or time-based redundancies,
are exploited as well. Anyone who has ever taken a reel of the old-style super-8 movie film and held it
up to a light can certainly remember seeing that most consecutive frames within a sequence are very
similar to the frames both before and after the frame of interest. Temporal processing to exploit this
redundancy uses a technique known as block-based motion compensated prediction, using motion
estimation. A block diagram of the basic encoder with extensions for non-intra frame coding techniques
is given in Figure 7.14. Of course, this encoder can also support intra frame coding as a subset.

P-Frame Coding

Starting with an intra, or I frame, the encoder can forward predict a future frame. This is commonly
referred to as a P frame, and it may also be predicted from other P frames, although only in a forward
time manner. As an example, consider a group of pictures that lasts for 6 frames. In this case, the frame
ordering is given as I,P,P,P,P,P,I,P,P,P,P,Š

Each P frame in this sequence is predicted from the frame immediately preceding it, whether it is an I
frame or a P frame. As a reminder, I frames are coded spatially with no reference to any other frame in
the sequence.

P-coding can be summarised as follows:

● An Coding Example (P-frame)

● Previous image is called reference image.

● Image to code is called target image.

● Actually, the difference is encoded.

● Subtle points:

1.
Need to use decoded image as reference image, not original. Why?

2.
We're using "Mean Absolute Difference" (MAD) to decide best block. Can also use
"Mean Squared Error" (MSE) = sum(E*E)

Next: Hard Problems in H.261 Up: H. 261 Compression Previous: Inter-frame (P-
frame) Coding

The H.261 Bitstream Structure

The H.261 Bitstream structure may be summarised as follows:

● Need to delineate boundaries between pictures, so send Picture Start Code ->
PSC

● Need timestamp for picture (used later for audio synchronization), so send
Temporal Reference -> TR

● Is this a P-frame or an I-frame? Send Picture Type -> PType

● Picture is divided into regions of 11x3 macroblocks called Groups of Blocks ->
GOB

● Might want to skip whole groups, so send Group Number (Grp #)

● Might want to use one quantization value for whole group, so send Group
Quantization Value -> GQuant

● Overall, bitstream is designed so we can skip data whenever possible while still
unambiguous.

The overall H.261 Codec is summarised in Fig 7.8.4.

Next: Motion Vector Search Up: H. 261 Compression Previous: The H.261 Bitstream
Structure

Hard Problems in H.261

There are however a few difficult problems in H.261:

● Motion vector search

● Propagation of Errors

● Bit-rate Control

● Motion Vector Search
● Propagation of Errors
● Bit-rate Control

Next: Propagation of Errors Up: Hard Problems in H.261 Previous: Hard Problems in H.261

Motion Vector Search

● C(x+k,y+i) - pixels in the macro block with upper left corner (x,y) in the Target.

R(X+i+k,y+j+l) - pixels in the macro block with upper left corner (x+i,y+j) in the Reference.

Cost function is:

Where MAE stands for Mean Absolute Error.

● Goal is to find a vector (u, v) such that MAE (u, v) is minimum

● Full Search Method:

1.

Search the whole searching region.

2.
Cost is:

operations,

assuming that each pixel comparison needs 3 operations (Subtraction, Absolute value, Addition).

● Two-Dimensional Logarithmic Search:

Similar to binary search. MAE function is initially computed within a window of at nine

locations as shown in the figure.

Repeat until the size of the search region is one pixel wide:

1.
Find one of the nine locations that yields the minimum MAE.

2.
Form a new searching region with half of the previous size and centered at the location found in
step 1.

● Hierarchical Motion Estimation:

1.
Form several low resolution version of the target and reference pictures

2.
Find the best match motion vector in the lowest resolution version.

3.
Modify the motion vector level by level when going up

● Performance comparison:

 Search Method Operation for 720x480 at 30 fps
 p = 15 p=7

 Full Search 29.89 GOPS 6.99 GOPS
 Logarithmic 1.02 GOPS 777.60 MOPS
 Hierarchical 507.38 MOPS 398.52 MOPS

Next: Bit-rate Control Up: Hard Problems in H.261 Previous: Motion Vector Search

Propagation of Errors

● Send an I-frame every once in a while

● Make sure you use decoded frame for comparison

Next: MPEG Compression Up: Hard Problems in H.261 Previous: Propagation of
Errors

Bit-rate Control

● Simple feedback loop based on "buffer fullness"

If buffer is too full, increase the quantization scale factor to reduce the data.

Next: MPEG Video Up: Video and Audio Compression Previous: Bit-rate Control

MPEG Compression
The acronym MPEG stands for Moving Picture Expert Group, which worked to generate
the specifications under ISO, the International Organization for Standardization and IEC,
the International Electrotechnical Commission. What is commonly referred to as
"MPEG video" actually consists at the present time of two finalized standards, MPEG-
11 and MPEG-22, with a third standard, MPEG-4, was finalized in 1998 for Very Low
Bitrate Audio-Visual Coding. The MPEG-1 and MPEG-2 standards are similar in basic
concepts. They both are based on motion compensated block-based transform coding
techniques, while MPEG-4 deviates from these more traditional approaches in its usage
of software image construct descriptors, for target bit-rates in the very low range, <
64Kb/sec. Because MPEG-1 and MPEG-2 are finalized standards and are both presently
being utilized in a large number of applications, this paper concentrates on compression
techniques relating only to these two standards. Note that there is no reference to MPEG-
3. This is because it was originally anticipated that this standard would refer to HDTV
applications, but it was found that minor extensions to the MPEG-2 standard would
suffice for this higher bit-rate, higher resolution application, so work on a separate
MPEG-3 standard was abandoned.

The current thrust is MPEG-7 "Multimedia Content Description Interface" whose
completion is scheduled for July 2001. Work on the new standard MPEG-21
"Multimedia Framework" has started in June 2000 and has already produced a Draft
Technical Report and two Calls for Proposals.

MPEG-1 was finalized in 1991, and was originally optimized to work at video
resolutions of 352x240 pixels at 30 frames/sec (NTSC based) or 352x288 pixels at 25
frames/sec (PAL based), commonly referred to as Source Input Format (SIF) video. It is
often mistakenly thought that the MPEG-1 resolution is limited to the above sizes, but it
in fact may go as high as 4095x4095 at 60 frames/sec. The bit-rate is optimized for
applications of around 1.5 Mb/sec, but again can be used at higher rates if required.
MPEG-1 is defined for progressive frames only, and has no direct provision for
interlaced video applications, such as in broadcast television applications.

MPEG-2 was finalized in 1994, and addressed issues directly related to digital television
broadcasting, such as the efficient coding of field-interlaced video and scalability. Also,
the target bit-rate was raised to between 4 and 9 Mb/sec, resulting in potentially very
high quality video. MPEG-2 consists of profiles and levels. The profile defines the
bitstream scalability and the colorspace resolution, while the level defines the image
resolution and the maximum bit-rate per profile. Probably the most common descriptor
in use currently is Main Profile, Main Level (MP@ML) which refers to 720x480

resolution video at 30 frames/sec, at bit-rates up to 15 Mb/sec for NTSC video. Another
example is the HDTV resolution of 1920x1080 pixels at 30 frame/sec, at a bit-rate of up
to 80 Mb/sec. This is an example of the Main Profile, High Level (MP@HL) descriptor.
A complete table of the various legal combinations can be found in reference2.

● MPEG Video
❍ MPEG Video Layers
❍ B-Frames
❍ Motion Estimation
❍ Coding of Predicted Frames:Coding Residual Errors
❍ Differences from H.261

● The MPEG Video Bitstream
● Decoding MPEG Video in Software

❍ Intra Frame Decoding
❍ Non-Intra Frame Decoding
❍ MPEG-2, MPEG-3, and MPEG-4

● Further Reading/Information

Next: MPEG Video Layers Up: MPEG Compression Previous: MPEG Compression

MPEG Video

MPEG compression is essentially a attempts to over come some shortcomings of H.261
and JPEG:

● Recall H.261 dependencies:

● The Problem here is that many macroblocks need information is not in the
reference frame.

● For example:

● The MPEG solution is to add a third frame type which is a bidirectional frame,
or B-frame

● B-frames search for macroblock in past and future frames.

● Typical pattern is IBBPBBPBB IBBPBBPBB IBBPBBPBB

Actual pattern is up to encoder, and need not be regular.

● MPEG Video Layers
● B-Frames
● Motion Estimation
● Coding of Predicted Frames:Coding Residual Errors
● Differences from H.261

Next: B-Frames Up: MPEG Video Previous: MPEG Video

MPEG Video Layers

MPEG video is broken up into a hierarchy of layers to help with error handling, random
search and editing, and synchronization, for example with an audio bitstream. From the
top level, the first layer is known as the video sequence layer, and is any self-contained
bitstream, for example a coded movie or advertisement. The second layer down is the
group of pictures, which is composed of 1 or more groups of intra (I) frames and/or non-
intra (P and/or B) pictures that will be defined later. Of course the third layer down is the
picture layer itself, and the next layer beneath it is called the slice layer. Each slice is a
contiguous sequence of raster ordered macroblocks, most often on a row basis in typical
video applications, but not limited to this by the specification. Each slice consists of
macroblocks, which are 16x16 arrays of luminance pixels, or picture data elements, with
2 8x8 arrays of associated chrominance pixels. The macroblocks can be further divided
into distinct 8x8 blocks, for further processing such as transform coding. Each of these
layers has its own unique 32 bit start code defined in the syntax to consist of 23 zero bits
followed by a one, then followed by 8 bits for the actual start code. These start codes
may have as many zero bits as desired preceding them.

Next: Motion Estimation Up: MPEG Video Previous: MPEG Video Layers

B-Frames

The MPEG encoder also has the option of using forward/backward interpolated
prediction. These frames are commonly referred to as bi-directional interpolated
prediction frames, or B frames for short. As an example of the usage of I, P, and B
frames, consider a group of pictures that lasts for 6 frames, and is given as
I,B,P,B,P,B,I,B,P,B,P,B,Š As in the previous I and P only example, I frames are coded
spatially only and the P frames are forward predicted based on previous I and P frames.
The B frames however, are coded based on a forward prediction from a previous I or P
frame, as well as a backward prediction from a succeeding I or P frame. As such, the
example sequence is processed by the encoder such that the first B frame is predicted
from the first I frame and first P frame, the second B frame is predicted from the second
and third P frames, and the third B frame is predicted from the third P frame and the first
I frame of the next group of pictures. From this example, it can be seen that backward
prediction requires that the future frames that are to be used for backward prediction be
encoded and transmitted first, out of order. This process is summarized in Figure 7.16.
There is no defined limit to the number of consecutive B frames that may be used in a
group of pictures, and of course the optimal number is application dependent. Most
broadcast quality applications however, have tended to use 2 consecutive B frames
(I,B,B,P,B,B,P,Š) as the ideal trade-off between compression efficiency and video
quality.

B-Frame Encoding

The main advantage of the usage of B frames is coding efficiency. In most cases, B
frames will result in less bits being coded overall. Quality can also be improved in the
case of moving objects that reveal hidden areas within a video sequence. Backward
prediction in this case allows the encoder to make more intelligent decisions on how to

encode the video within these areas. Also, since B frames are not used to predict future
frames, errors generated will not be propagated further within the sequence.

One disadvantage is that the frame reconstruction memory buffers within the encoder
and decoder must be doubled in size to accommodate the 2 anchor frames. This is
almost never an issue for the relatively expensive encoder, and in these days of
inexpensive DRAM it has become much less of an issue for the decoder as well.
Another disadvantage is that there will necessarily be a delay throughout the system as

the frames are delivered out of order as was shown in Figure . Most one-way systems
can tolerate these delays, as they are more objectionable in applications such as video
conferencing systems.

Next: Motion Estimation Up: MPEG Video Previous: MPEG Video Layers
Dave Marshall
10/4/2001

Next: Coding of Predicted Frames:Coding Up: MPEG Video Previous: B-Frames

Motion Estimation

The temporal prediction technique used in MPEG video is based on motion estimation. The basic premise of
motion estimation is that in most cases, consecutive video frames will be similar except for changes induced by
objects moving within the frames. In the trivial case of zero motion between frames (and no other differences
caused by noise, etc.), it is easy for the encoder to efficiently predict the current frame as a duplicate of the
prediction frame. When this is done, the only information necessary to transmit to the decoder becomes the
syntactic overhead necessary to reconstruct the picture from the original reference frame. When there is motion
in the images, the situation is not as simple.

Figure 7.17 shows an example of a frame with 2 stick figures and a tree. The second half of this figure is an
example of a possible next frame, where panning has resulted in the tree moving down and to the right, and the
figures have moved farther to the right because of their own movement outside of the panning. The problem for
motion estimation to solve is how to adequately represent the changes, or differences, between these two video
frames.

Motion Estimation Example

The way that motion estimation goes about solving this problem is that a comprehensive 2-dimensional spatial
search is performed for each luminance macroblock. Motion estimation is not applied directly to chrominance in
MPEG video, as it is assumed that the color motion can be adequately represented with the same motion
information as the luminance. It should be noted at this point that MPEG does not define how this search should
be performed. This is a detail that the system designer can choose to implement in one of many possible ways.
This is similar to the bit-rate control algorithms discussed previously, in the respect that complexity vs. quality
issues need to be addressed relative to the individual application. It is well known that a full, exhaustive search
over a wide 2-dimensional area yields the best matching results in most cases, but this performance comes at an
extreme computational cost to the encoder. As motion estimation usually is the most computationally expensive
portion of the video encoder, some lower cost encoders might choose to limit the pixel search range, or use other
techniques such as telescopic searches, usually at some cost to the video quality.

Figure 7.18 shows an example of a particular macroblock from Frame 2 of Figure 7.17, relative to various
macroblocks of Frame 1. As can be seen, the top frame has a bad match with the macroblock to be coded. The
middle frame has a fair match, as there is some commonality between the 2 macroblocks. The bottom frame has
the best match, with only a slight error between the 2 macroblocks. Because a relatively good match has been
found, the encoder assigns motion vectors to the macroblock, which indicate how far horizontally and vertically
the macroblock must be moved so that a match is made. As such, each forward and backward predicted

macroblock may contain 2 motion vectors, so true bidirectionally predicted macroblocks will utilize 4 motion
vectors.

Motion Estimation Macroblock Example

Figure 7.19 shows how a potential predicted Frame 2 can be generated from Frame 1 by using motion
estimation. In this figure, the predicted frame is subtracted from the desired frame, leaving a (hopefully) less
complicated residual error frame that can then be encoded much more efficiently than before motion estimation.
It can be seen that the more accurate the motion is estimated and matched, the more likely it will be that the
residual error will approach zero, and the coding efficiency will be highest. Further coding efficiency is
accomplished by taking advantage of the fact that motion vectors tend to be highly correlated between
macroblocks. Because of this, the horizontal component is compared to the previously valid horizontal motion
vector and only the difference is coded. This same difference is calculated for the vertical component before
coding. These difference codes are then described with a variable length code for maximum compression
efficiency.

Final Motion Estimation Prediction

Of course not every macroblock search will result in an acceptable match. If the encoder decides that no
acceptable match exists (again, the "acceptable" criterion is not MPEG defined, and is up to the system designer)
then it has the option of coding that particular macroblock as an intra macroblock, even though it may be in a P
or B frame. In this manner, high quality video is maintained at a slight cost to coding efficiency.

Next: Differences from H.261 Up: MPEG Video Previous: Motion Estimation

Coding of Predicted Frames:Coding Residual Errors

After a predicted frame is subtracted from its reference and the residual error frame is
generated, this information is spatially coded as in I frames, by coding 8x8 blocks with
the DCT, DCT coefficient quantization, run-length/amplitude coding, and bitstream
buffering with rate control feedback. This process is basically the same with some minor
differences, the main ones being in the DCT coefficient quantization. The default
quantization matrix for non-intra frames is a flat matrix with a constant value of 16 for
each of the 64 locations. This is very different from that of the default intra quantization
matrix which is tailored for more quantization in direct proportion to higher spatial
frequency content. As in the intra case, the encoder may choose to override this default,
and utilize another matrix of choice during the encoding process, and download it via
the encoded bitstream to the decoder on a picture basis. Also, the non-intra quantization
step function contains a dead-zone around zero that is not present in the intra version.
This helps eliminate any lone DCT coefficient quantization values that might reduce the
run-length amplitude efficiency. Finally, the motion vectors for the residual block
information are calculated as differential values and are coded with a variable length
code according to their statistical likelihood of occurrence.

Next: The MPEG Video Bitstream Up: MPEG Video Previous: Coding of Predicted
Frames:Coding

Differences from H.261

● Larger gaps between I and P frames, so expand motion vector search range.

● To get better encoding, allow motion vectors to be specified to fraction of a pixel
(1/2 pixels).

● Bitstream syntax must allow random access, forward/backward play, etc.

● Added notion of slice for synchronization after loss/corrupt data. Example:
picture with 7 slices:

● B frame macroblocks can specify two motion vectors (one to past and one to
future), indicating result is to be averaged.

● Compression performance of MPEG 1

 Type Size Compression

 I 18 KB 7:1
 P 6 KB 20:1
 B 2.5 KB 50:1
 Avg 4.8 KB 27:1

Next: Decoding MPEG Video in Up: MPEG Compression Previous: Differences from
H.261

The MPEG Video Bitstream

The MPEG Video Bitstream is summarised as follows:

● Public domain tool mpeg_stat and mpeg_bits will analyze a bitstream.

● Sequence Information

1.
Video Params include width, height, aspect ratio of pixels, picture rate.

2.
Bitstream Params are bit rate, buffer size, and constrained parameters flag
(means bitstream can be decoded by most hardware)

3.
Two types of QTs: one for intra-coded blocks (I-frames) and one for inter-
coded blocks (P-frames).

● Group of Pictures (GOP) information

1.
Time code: bit field with SMPTE time code (hours, minutes, seconds,
frame).

2.
GOP Params are bits describing structure of GOP. Is GOP closed? Does
it have a dangling pointer broken?

● Picture Information

1.
Type: I, P, or B-frame?

2.
Buffer Params indicate how full decoder's buffer should be before starting
decode.

3.
Encode Params indicate whether half pixel motion vectors are used.

● Slice information

1.
Vert Pos: what line does this slice start on?

2.
QScale: How is the quantization table scaled in this slice?

● Macroblock information

1.
Addr Incr: number of MBs to skip.

2.
Type: Does this MB use a motion vector? What type?

3.
QScale: How is the quantization table scaled in this MB?

4.
Coded Block Pattern (CBP): bitmap indicating which blocks are coded.

Next: Intra Frame Decoding Up: MPEG Compression Previous: The MPEG Video
Bitstream

Decoding MPEG Video in Software

● Software Decoder goals: portable, multiple display types

● Breakdown of time

 Function % Time
 Parsing Bitstream 17.4%
 IDCT 14.2%
 Reconstruction 31.5%
 Dithering 24.5%
 Misc. Arith. 9.9%
 Other 2.7%

● Intra Frame Decoding
● Non-Intra Frame Decoding
● MPEG-2, MPEG-3, and MPEG-4

Next: Non-Intra Frame Decoding Up: Decoding MPEG Video in Previous: Decoding MPEG Video in

Intra Frame Decoding

To decode a bitstream generated from the encoder of Figure 7.20, it is necessary to reverse the order of the
encoder processing. In this manner, an I frame decoder consists of an input bitstream buffer, a Variable Length
Decoder (VLD), an inverse quantizer, an Inverse Discrete Cosine Transform (IDCT), and an output interface to

the required environment (computer hard drive, video frame buffer, etc.). This decoder is shown in Figure .

Intra Frame Encoding

Intra Frame Decoding

The input bitstream buffer consists of memory that operates in the inverse fashion of the buffer in the encoder.
For fixed bit-rate applications, the constant rate bitstream is buffered in the memory and read out at a variable
rate depending on the coding efficiency of the macroblocks and frames to be decoded.

The VLD is probably the most computationally expensive portion of the decoder because it must operate on a
bit-wise basis (VLD decoders need to look at every bit, because the boundaries between variable length codes
are random and non-aligned) with table look-ups performed at speeds up to the input bit-rate. This is generally
the only function in the receiver that is more complex to implement than its corresponding function within the
encoder, because of the extensive high-speed bit-wise processingnecessary.

The inverse quantizer block multiplies the decoded coefficients by the corresponding values of the quantization
matrix and the quantization scale factor. Clipping of the resulting coefficients is performed to the region 2048
to +2047, then an IDCT mismatch control is applied to prevent long term error propagation within the sequence.

The IDCT operation is given in Equation 2, and is seen to be similar to the DCT operation of Equation 1. As
such, these two operations are very similar in implementation between encoder and decoder.

Next: MPEG-2, MPEG-3, and MPEG-4 Up: Decoding MPEG Video in Previous: Intra
Frame Decoding

Non-Intra Frame Decoding

It was shown previously that the non-intra frame encoder built upon the basic building
blocks of the intra frame encoder, with the addition of motion estimation and its
associated support structures. This is also true of the non-intra frame decoder, as it
contains the same core structure as the intra frame decoder with the addition of motion
compensation support. Again, support for intra frame decoding is inherent in the
structure, so I, P, and B frame decoding is possible. The decoder is shown in Figure 24.

Non-Intra Frame Decoding

Next: Further Reading/Information Up: Decoding MPEG Video in Previous: Non-Intra Frame Decoding

MPEG-2, MPEG-3, and MPEG-4

● MPEG-2 target applications

Level size Pixels/sec bit-rate Application
 (Mbits)
--
Low 352 x 240 3 M 4 consumer tape equiv.
Main 720 x 480 10 M 15 studio TV
High 1440 1440 x 1152 47 M 60 consumer HDTV
High 1920 x 1080 63 M 80 film production
--

● Differences from MPEG-1

1.
Search on fields, not just frames.

2.
4:2:2 and 4:4:4 macroblocks

3.
Frame sizes as large as 16383 x 16383

4.
Scalable modes: Temporal, Progressive,...

5.
Non-linear macroblock quantization factor

6.
A bunch of minor fixes (see MPEG FAQ for more details)

● MPEG-3: Originally for HDTV (1920 x 1080), got folded into MPEG-2

● MPEG-4: Originally targeted at very low bit-rate communication (4.8 to 64 kb/sec). Now addressing
video processing...

Next: Audio Compression Up: MPEG Compression Previous: MPEG-2, MPEG-3, and
MPEG-4

Further Reading/Information

● G.K. Wallace, The JPEG Still Picture Compression Standard

● CCITT, Recommendation H.261

● D. Le Gall, MPEG: A Video Compression Standard for Multimedia Applications

● K. Patel, et. al., Performance of a Software MPEG Video Decoder

● P. Cosman, et. al., Using Vector Quantization for Image Processing
● "Coding of Moving Pictures and Associated Audio for Digital Storage Media at

up to about 1.5 Mbit/s," ISO/IEC 11172-2: Video (November 1991).
● "Generic Coding of Moving Pictures and Associated Audio Information: Video,"

ISO/IEC 13818-2 : Draft International Standard (November 1994).
● Barry G. Haskell, Atul Puri, Arun N. Netravali, Digital Video: An Introduction to

MPEG-2, Chapman and Hall, 1997.
● K.R. Rao, P. Yip, Discrete Cosine Transform Algorithms, Advantages,

Applications, Academic Press, Inc., 1990.
● Majid Rabbani, Paul W. Jones, Digital Image Compression Techniques, SPIE

Optical Engineering Press, 1991.
● Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, Didier J. LeGall, MPEG

Video Compression Standard, Chapman and Hall, 1997.
● IEEE Micro Magazine Media Processing, IEEE Computer Society, Volume 16

Number 4, August 1996.

● MPEG Resources on the Web.
● The Official MPEG Committee

Next: Simple Audio Compression Methods Up: Video and Audio Compression
Previous: Further Reading/Information

Audio Compression
As with video a number of compression techniques have been applied to audio.

● Simple Audio Compression Methods
● Psychoacoustics

❍ Human hearing and voice
❍ Frequency Masking
❍ Critical Bands
❍ Temporal masking
❍ Summary

● MPEG Audio Compression
❍ Some facts
❍ Steps in algorithm:
❍ Example:
❍ MPEG Layers
❍ Effectiveness of MPEG audio

● Streaming Audio (and video)
● Further Exploration

Next: Psychoacoustics Up: Audio Compression Previous: Audio Compression

Simple Audio Compression Methods

Traditional lossless compression methods (Huffman, LZW, etc.) usually don't work well
on audio compression (the same reason as in image compression).

The following are some of the Lossy methods applied to audio compression:

● Silence Compression - detect the "silence", similar to run-length coding

● Adaptive Differential Pulse Code Modulation (ADPCM)

e.g., in CCITT G.721 - 16 or 32 Kbits/sec.

(a) encodes the difference between two consecutive signals,

(b) adapts at quantization so fewer bits are used when the value is smaller.

❍ It is necessary to predict where the waveform is headed -> difficult

❍ Apple has proprietary scheme called ACE/MACE. Lossy scheme that tries
to predict where wave will go in next sample. About 2:1 compression.

● Linear Predictive Coding (LPC) fits signal to speech model and then transmits
parameters of model. Sounds like a computer talking, 2.4 kbits/sec.

● Code Excited Linear Predictor (CELP) does LPC, but also transmits error term -
audio conferencing quality at 4.8 kbits/sec.

Next: Human hearing and voice Up: Audio Compression Previous: Simple Audio
Compression Methods

Psychoacoustics

These methods are related to how humans actually hear sounds:

● Human hearing and voice
● Frequency Masking
● Critical Bands
● Temporal masking
● Summary

Next: Frequency Masking Up: Psychoacoustics Previous: Psychoacoustics

Human hearing and voice

● Range is about 20 Hz to 20 kHz, most sensitive at 2 to 4 KHz.

● Dynamic range (quietest to loudest) is about 96 dB

● Normal voice range is about 500 Hz to 2 kHz

❍ Low frequencies are vowels and bass
❍ High frequencies are consonants

Question: How sensitive is human hearing?

● Experiment: Put a person in a quiet room. Raise level of 1 kHz tone until just barely audible. Vary the
frequency and plot

Next: Critical Bands Up: Psychoacoustics Previous: Human hearing and voice

Frequency Masking

Question: Do receptors interfere with each other?

● Experiment: Play 1 kHz tone (maskingtone) at fixed level (60 dB). Play test tone
at a different level (e.g., 1.1kHz), and raise level until just distinguishable.

● Vary the frequency of the test tone and plot the threshold when it becomes
audible:

● Repeat for various frequencies of masking tones

Next: Temporal masking Up: Psychoacoustics Previous: Frequency Masking

Critical Bands

● Perceptually uniform measure of frequency, non-proportional to width of
masking curve

About 100 Hz for masking frequency < 500 Hz, grow larger and larger above 500
Hz.

● The width is called the size of the critical band

Barks

● Introduce new unit for frequency called a bark (after Barkhausen)

1 Bark = width of one critical band

For frequency < 500 Hz,

For frequency > 500 Hz,

● Masking Thresholds on critical band scale:

Next: Summary Up: Psychoacoustics Previous: Critical Bands

Temporal masking

● If we hear a loud sound, then it stops, it takes a little while until we can hear a
soft tone nearby

● Question: how to quantify?

● Experiment: Play 1 kHz masking tone at 60 dB, plus a test tone at 1.1 kHz at 40
dB. Test tone can't be heard (it's masked).

Stop masking tone, then stop test tone after a short delay.

Adjust delay time to the shortest time that test tone can be heard (e.g., 5 ms).

Repeat with different level of the test tone and plot:

● Try other frequencies for test tone (masking tone duration constant). Total effect
of masking

Next: MPEG Audio Compression Up: Psychoacoustics Previous: Temporal masking

Summary

● If we have a loud tone at, say, 1 kHz, then nearby quieter tones are masked.

● Best compared on critical band scale - range of masking is about 1 critical band

● Two factors for masking - frequency masking and temporal masking

● Question: How to use this for compression?

Next: Some facts Up: Audio Compression Previous: Summary

MPEG Audio Compression

● Some facts
● Steps in algorithm:
● Example:
● MPEG Layers
● Effectiveness of MPEG audio

Next: Steps in algorithm: Up: MPEG Audio Compression Previous: MPEG Audio
Compression

Some facts

● MPEG-1: 1.5 Mbits/sec for audio and video

About 1.2 Mbits/sec for video, 0.3 Mbits/sec for audio

(Uncompressed CD audio is 44,100 samples/sec * 16 bits/sample * 2 channels >
1.4 Mbits/sec)

● Compression factor ranging from 2.7 to 24.

● With Compression rate 6:1 (16 bits stereo sampled at 48 KHz is reduced to 256
kbits/sec) and optimal listening conditions, expert listeners could not distinguish
between coded and original audio clips.

● MPEG audio supports sampling frequencies of 32, 44.1 and 48 KHz.

● Supports one or two audio channels in one of the four modes:

1.
Monophonic - single audio channel

2.
Dual-monophonic - two independent channels (similar to stereo)

3.
Stereo - for stereo channels that share bits, but not using joint-stereo
coding

4.
Joint-stereo - takes advantage of the correlations between stereo channels

Next: Example: Up: MPEG Audio Compression Previous: Some facts

Steps in algorithm:

1.
Use convolution filters to divide the audio signal (e.g., 48 kHz sound) into
frequency subbands that approximate the 32 critical bands -> sub-band filtering.

2.
Determine amount of masking for each band caused by nearby band using the
results shown above (this is called the psychoacoustic model).

3.
If the power in a band is below the masking threshold, don't encode it.

4.
Otherwise, determine number of bits needed to represent the coefficient such that
noise introduced by quantization is below the masking effect (Recall that 1 bit of
quantization introduces about 6 dB of noise).

5.
Format bitstream

Next: MPEG Layers Up: MPEG Audio Compression Previous: Steps in algorithm:

Example:

● After analysis, the first levels of 16 of the 32 bands are these:

--
Band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Level (db) 0 8 12 10 6 2 10 60 35 20 15 2 3 5 3 1
--

● If the level of the 8th band is 60dB,

it gives a masking of 12 dB in the 7th band, 15dB in the 9th.

Level in 7th band is 10 dB (< 12 dB), so ignore it.

Level in 9th band is 35 dB (> 15 dB), so send it.

-> Can encode with up to 2 bits (= 12 dB) of quantization error.

Next: Effectiveness of MPEG audio Up: MPEG Audio Compression Previous:
Example:

MPEG Layers

● MPEG defines 3 layers for audio. Basic model is same, but codec complexity
increases with each layer.

● Divides data into frames, each of them contains 384 samples, 12 samples from
each of the 32 filtered subbands as shown below.

Figure: Grouping of Sub-band Samples for Layer 1, 2, and 3

● Layer 1: DCT type filter with one frame and equal frequency spread per band.
Psychoacoustic model only uses frequency masking.

● Layer 2: Use three frames in filter (before, current, next, a total of 1152 samples).
This models a little bit of the temporal masking.

● Layer 3: Better critical band filter is used (non-equal frequencies),
psychoacoustic model includes temporal masking effects, takes into account
stereo redundancy, and uses Huffman coder.

Next: Streaming Audio (and video) Up: MPEG Audio Compression Previous: MPEG Layers

Effectiveness of MPEG audio

--
Layer Target Ratio Quality @ Quality @ Theoretical
 bitrate 64 kbits 128 kbits Min. Delay
--
Layer 1 192 kbit 4:1 --- --- 19 ms
Layer 2 128 kbit 6:1 2.1 to 2.6 4+ 35 ms
Layer 3 64 kbit 12:1 3.6 to 3.8 4+ 59 ms
--

● 5 = perfect, 4 = just noticeable, 3 = slightly annoying, 2 = annoying, 1 = very annoying

● Real delay is about 3 times theoretical delay

Next: Further Exploration Up: Audio Compression Previous: Effectiveness of MPEG
audio

Streaming Audio (and video)

Popular new delivery medium for the Web and other Multimedia networks

Examples of streamed audio (and video) (and video)

● Real Audio
● Shockwave
● .wav files (not video obviously)

Here is an example of a real audio file recorded and produced for the Web by myself

● The file was originally recorded at CD Quality (44 Khz, 16-bit Stereo) and is
nearly minutes in length.

● The original uncompressed file is about 80 Mb.
● The compressed file (at 33.3) is only 1.7 Mb in total and is still of very good

quality.
● The file is downloaded to browser and not steamed above. Whilst real audio

players and encoders are freely available (see {\em http://www.realaudio.com/}).
Real audio servers {\bf cost money}.

For further real audio and other .wav/.aiff fragments of my music go to
Dave's Music Pages

■ Buffered Data:
■ Trick get data to destination before it's needed
■ Temporarily store in memory (Buffer)
■ Server keeps feeding the buffer
■ Client Application reads buffer

■ Needs Reliable Connection, moderately fast too.
■ Specialised client, Steaming Audio Protocol (PNM for real audio).

http://www.realaudio.com/
http://www.macromedia.com/
http://www.cs.cf.ac.uk/Dave/Multimedia/Aja.ra
http://dave.cs.cf.ac.uk/music

Next: Multimedia Integration, Interaction and Up: Audio Compression Previous:
Streaming Audio (and video)

Further Exploration

● MPEG Audio Page
● MP3 Beginner's Guide

A good article on this subject is:

● ``A Tutorial on MPEG/Audio Compression'', Davis Pan, IEEE Multimedia, pp.
60-74, 1995.

See Video MPEG Further Reading Resources above also

http://www.raum.com/mpeg/
http://www.hitsquad.com/smm/news/9903_109/?nl9905

Next: Integrating Multimedia Up: Multimedia Data Previous: Further Exploration

Multimedia Integration, Interaction
and Interchange

● Integrating Multimedia
● Interactive Multimedia
● Multimedia Interchange
● Quicktime

❍ Introduction
❍ Quicktime Support of Media Formats
❍ QuickTime Concepts
❍ The QuickTime Architecture
❍ QuickTime Components
❍ Quicktime File Format
❍ Further Information

● Open Media Framework Interchange (OMFI) Format
● Multimedia and Hypermedia Information Encoding Expert Group (MHEG)

❍ The family of MHEG standards
❍ MHEG-5 overview
❍ MHEG Programming Principles
❍ Interaction within a Scene
❍ Availability; Running Status
❍ Interactibles
❍ Visual Representation
❍ Object Sharing Between Scenes
❍ Object Encoding
❍ Conformance
❍ MHEG Coding Examples
❍ An MHEG Player Java Applet -- Futher MHEG Examples

■ Running the MHEG Engine
■ MHEG Example -- The Simple MHEG Presentation
■ MHEG Example -- The Demo MHEG Presentation

■ More Examples
❍ Relationships to Major Standards
❍ MHEG Implementation
❍ MHEG Future
❍ Further Reading/Information

Dave Marshall
10/4/2001

Next: Interactive Multimedia Up: Multimedia Integration, Interaction and Previous:
Multimedia Integration, Interaction and

Integrating Multimedia
So far we have been primarily concerned with each media type or format individually.
We have noted that certain media (individually) are based on spatial and/or temporal
representations, other may be static.

Once we start to integrate media spacial and temporal implications become even more
critical. For example static text may need to index or label a portion of video at a given
instant or segment of time and there the integration becomes temporal and spatial if the
label is placed at a given location (or locations moving over time).

Clearly, it is important to know the tolerance and limits for each medium as integration
will require knowledge of these for synchronisation and indeed create further limits (e.g.
bandwidth of two media types increase, if audio is encoded at a 48Khz sampling rate
and it needs to accompany video being streamed out at 60 frames per second then inter-
stream synchronisation is not necessarily straightforward.

It is common (obvious) that media types are bundled together for ease of delivery,
storage etc.. Therefore, it is not suprising that formats have been developed to support,
store and deliver media in an integrated form.

The need for interchange between different multimedia applications probably running on
different paltforms have lead to the evolution of common interchage file formats. Many
of these formats build on underlying individual media formats (MPEG, JPEG etc.)
however further relationships are necessary when the media is truly integrated to
become multimedia. Spatial, temporal structural and procedural constraints will exist
between the media. This especially true now that interaction is a common feature of
multimedia.

Next: Interactive Multimedia Up: Multimedia Integration, Interaction and Previous:
Multimedia Integration, Interaction and
Dave Marshall
10/4/2001

Next: Multimedia Interchange Up: Multimedia Integration, Interaction and Previous:
Integrating Multimedia

Interactive Multimedia
Modern multimedia presentation and applications are becoming increasingly interactive.

Simple interactions that simply start movie clips, audio segments animations etc are very
common. Recently complex interactions between media is available. Following
hyperlinks is instinctively non-linear and the advent of digital TV has lead to the need of
a wide choice and the need for interactivity.

Interatcivity now needs to be incorporated as part of the media representation/format.
The MHEG format (see below) has been developed expressely for such purposes.

We have now briefly addressed the need for integrated and interactive media formats.
One last topic before we discuss specific formats is the need for common interchange
formats.

Dave Marshall
10/4/2001

Next: Quicktime Up: Multimedia Integration, Interaction and Previous: Interactive
Multimedia

Multimedia Interchange
A Variety of multimedia applications runing on different paltforms will need to
communicate with each other particularly if they are running on a distributed network.

Until recently (and it may even still pose some problems) the lack of a common
interchage file format was a serious impediment to development of a market of
multimedia applications.

A common interchange format needs to be widely adopted (be supported by many
applications) and be sufficiently experessive to represent a wide variety of media
content. These may be conflicting requirements since only when a wide variety of media
is suported will it be widely adopted. Propriety application on support a small variety of
media they require and may not readily adapt to other formats. Fortunately some widely
accept standard that support a wide variety of media (with open standards even) are now
developed.

The need for interchange formats are significant in several applications:

● As a final storage model for the creation and editing of multimedia decuments.
● As a format for delivery of final form digital medai. E.g. Compact Discs to end-

use palyers.
● As a format for real-time delivery over a ditributed network
● for interapplication exchange of data.

Next: Quicktime Up: Multimedia Integration, Interaction and Previous: Interactive
Multimedia
Dave Marshall
10/4/2001

Next: Introduction Up: Multimedia Integration, Interaction and Previous: Multimedia
Interchange

Quicktime

● Introduction
● Quicktime Support of Media Formats
● QuickTime Concepts
● The QuickTime Architecture
● QuickTime Components
● Quicktime File Format
● Further Information

Dave Marshall
10/4/2001

Next: Quicktime Support of Media Up: Quicktime Previous: Quicktime

Introduction

QuickTime is the most widely used cross-platform multimedia technology available
today. QuickTime now has powerful streaming capabilities, so you can enjoy watching
live events as they happen. QuickTime 4 is the latest version and it includes streaming
capabilities as well as the tools needed to create, edit, and save QuickTime movies.
These tools include the QuickTime Player, PictureViewer, and the QuickTime Plug-in.
Quicktime 5 is now in Public Beta development and is scheduled for release early in
2001.

QuickTime developed out of a multimedia extension for Apple's Macintosh(proprietry)
System 7 operating system. It is now an international standard for multimedia
interchange and is avalailbe for many platforms and as Web browser plug ins.

The following main features are summarised below:

Versatile support for web-based media

● Access to live and stored streaming media content with the QuickTime Player
● High-Quality Low-Bandwidth delievery of multimedia
● Easy view of QuickTime movies (with enhanced control) in Web Browsers and

applications.
● Multi platform support.
● Built in support for most popular Internet media formats (Over 35 formats).
● Easy import/export of movies in the QuickTime Player

Sophisticated playback capabilities

● Play back full-screen video
● Play slide shows and movies continuously
● Work with video, still-image, and sound files in all leading formats

Easy content authoring and editing

● Create new QuickTime streaming movies by copying and pasting content from
any supported format

● Enhance movies and still pictures with filters for sharpening, color tinting,
embossing, and more

● Save files in multiple formats, including the new DV format for high-quality

video
● Create slide shows from pictures
● Add sound to a slide show

QuickTime is an open standard -- it embraces other standards and incorporates them
into its environment. It supports every major file format for pictures, including BMP,
GIF, JPEG, PICT, and PNG. QuickTime also supports every important professional file
format for video, including AVI, AVR, DV, M-JPEG, MPEG-1, and OpenDML. Key
standards for web streaming, including HTTP, RTP, and RTSP as set forth by the
Internet Engineering Task Force, are supported as well. QuickTime supports Timecode
tracks, including the critical standard for video Timecode set forth by SMPTE. And for
musicians, QuickTime supports MIDI standards such as the Roland Sound Canvas and
the GS format extensions. QuickTime is not a proprietary environment. Not only can
QuickTime movies be played back on both Windows- and Mac OSbased systems
(including Windows 95, Windows 98, and Windows NT), it can also be used on web
servers in UNIX, Windows, or Mac OS environments. QuickTime movies can also be
played back in any standard web browser, including Microsoft Internet Explorer,
Netscape Navigator, Netscape Communicator, and America Online. Unlike more limited
or proprietary formats, QuickTime makes it easy to combine media types and authoring
tools from multiple platforms. Content creators can work on the platform of their choice
and then deliver the output to a wide range of playback devices and computer platforms.
Robust multiplatform support dramatically reduces production time, because different
creators can simultaneously work on the same content using different platforms.
QuickTime 4 extends this capability to any RTP/RTSP standards-based server running a
QuickTime Streaming Server.

Next: Quicktime Support of Media Up: Quicktime Previous: Quicktime
Dave Marshall
10/4/2001

Next: QuickTime Concepts Up: Quicktime Previous: Introduction

Quicktime Support of Media Formats

QuickTime can work with more types of media than any other technology. Whether
you¹re creating streaming video web sites, CD-ROMs, DVDs, or professional video,
QuickTime gives you the best options for quality and bandwidth efficiency.

Video
-- QuickTime supports AVI, AVR, DV, OpenDML, and other professional
digital video formats. Although AVI and other files can contain only audio and
video, QuickTime can enhance these files with text, additional music tracks, and
any other supported media types. QuickTime 4 features video compressors and
decompressors that can handle needs ranging from CD-ROMs and DVDs to dial-
up Internet access. QuickTime can stream video over the Internet even with 28.8-
Kbps modems. QuickTime 4 includes Sorenson Video 2, which delivers the best
possible video quality while maintaining the smallest file size. Sorenson Video
incorporates the latest compression techniques, motion compensation, and data
rate control methods to provide un-matched video at virtually any speed. With
QuickTime, Cinepak, IMA, Intel Indeo Video, and the industry-standard H.263
compressor, you can target almost any audience, giving you the highest level of
cross-platform compatibility.

MPEG format
-- The MPEG standard for Macintosh is used extensively for consumer products,
combining high-quality audio with low data rates. An Apple extension for
QuickTime 4 for Macintosh provides direct access to MPEG-1 audio and video,
including the popular MPEG-1, Layer 3 (MP3). You can also play back MP3
files with QuickTime 4 for Windows. The QuickTime file format for MPEG-4
has been chosen as an ISO standard, so QuickTime files you create today will be
ready for MPEG-4 tomorrow.

Speech and music
-- QuickTime brings high-quality digital audio to all types of applications,
whether the audio is used by itself or with other media types. Support for
Qualcomm¹s PureVoice technology gives media authors access to some of the
highest-quality voice compression avail-able, in a format so compact that it can
be enjoyed over a 14.4-Kbps modem. Since PureVoice is optimized for speech, it
offers a much more effective solution than multipurpose audio formats.
QuickTime 4 also provides amazing audio fidelity for music at greatly reduced
bit rates through support of the QDesign Music 2 compressor. This compressor
represents a breakthrough in audio encoding and decoding technology by
providing unprecedented fidelity at as little as 1 percent of the original file size.
Such efficiency is vitally important for the bandwidth-limited situations

frequently encountered on the Internet. For example, one minute of CD-quality
audio can be reduced from an 11-megabyte file to a 150-kilobyte file that delivers
full-bandwidth, 16-bit, 44.1-kHz stereo in real time over a 28.8-Kbps connection.
MIDI and music. MIDI music is an integral part of the QuickTime architecture. It
can be used alone or with video, animation, still images, or other visual elements.
In addition to playing music through internal or external speakers, QuickTime
can route musical information to ex-ternal MIDI devices, effects processors, and
drum machines. QuickTime 4 delivers CD-quality, low-bandwidth music by
supporting over 200 instruments with the Roland Sound Canvas sound set. It also
supports GS format extensions, which allow additional expressions for General
or standard MIDI sequences. On Windows systems, QuickTime supports the use
of the MIDI Mapper for use with external MIDI hardware.
Still images and pictures. The extensive collection of still-image importers in
QuickTime 4 allows media authors to leverage photography and illustrations
created in a wide range of formats. QuickTime 4 now has the ability to open
FlashPix images with PictureViewer and export to PNG, TIFF, TARGA, and
MacPaint images, while supporting 16-bit-per-channel files. It also supports
multiple images in TIFF, FlashPix, and Adobe Photoshop formats. To enable you
to work easily within workgroups, QuickTime 4 supports BMP, GIF, JPEG,
PICT, PNG, and SGI formats.
Text. QuickTime supports searchable text tracks, with a Find command in the
QuickTime Player or your custom application to allow content creators and users
to quickly find a particular scene by searching through its script or annotation
text. A single QuickTime movie can have multiple text tracks, simplifying the
creation of multilingual movies. Text annotation can be used with any
QuickTime-enabled media types: AVI for video files, and WAV, AIFF, or
MPEG-1 for audio files. It can also be deployed as an HREF track, allowing you
to embed URLs in your movies.
Animations and sprites. Macromedia Flash animation can now be played with
any QuickTime application, including the QuickTime Plug-in. For superior
animation with compact files, QuickTime 4 integrates a curve-based vector
animation compressor and flexible sprite capabilities. For some types of
animations, these vector-based tools can produce a dramatically smaller file than
traditional compressors and prerendered video tracks can produce. QuickTime 4
also supports alpha channel compositing and special effects up to 16 bits per
pixel.

Next: QuickTime Concepts Up: Quicktime Previous: Introduction
Dave Marshall
10/4/2001

Next: The QuickTime Architecture Up: Quicktime Previous: Quicktime Support of
Media

QuickTime Concepts

To following concepts QuickTime are used by Quicktime:

Movies and Media Data Structures
-- A traditional movie, whether stored on film, laser disk, or tape, is a continuous
stream of data. A QuickTime movie can be similarly constructed, but it need not
be: a QuickTime movie can consist of data in sequences from different forms,
such as analog video and CD-ROM. The movie is not the medium; it is the
organizing principle.

A QuickTime movie may contain several tracks. Each track refers to a media that
contains references to the movie data, which may be stored as images or sound
on hard disks, floppy disks, compact discs, or other devices. The data references
constitute the track's media. Each track has a single media data structure.

Components
--

QuickTime provides components so that every application doesn't need to know
about all possible types of audio, visual, and storage devices. A component is a
code resource that is registered by the Component Manager. The component's
code can be available as a systemwide resource or in a resource that is local to a
particular application. Each QuickTime component supports a defined set of
features and presents a specified functional interface to its client applications.
Applications are thereby isolated from the details of implementing and managing
a given technology. For example, you could create a component that supports a
certain data encryption algorithm. Applications could then use your algorithm by
connecting to your component through the Component Manager, rather than by
implementing the algorithm over again.

Image Compression
--

Image data requires a large amount of storage space. Storing a single 640-by-480
pixel image in 32-bit color can require as much as 1.2 MB. Similarly, sequences
of images, like those that might be contained in a QuickTime movie, demand
substantially more storage than single images. This is true even for sequences
that consist of fairly small images, because the movie consists of a large number

of those images. Consequently, minimizing the storage requirements for image
data is an important consideration for any application that works with images or
sequences of images.

The Image Compression Manager provides your application with an interface for
compressing and decompressing images and sequences of images that is
independent of devices and algorithms.

Time
--

Image compression is difficult but worthwhile-images, not to mention long
sequences of images, take a lot of memory. Time management in QuickTime is
equally essential. You must understand time management to understand the
QuickTime functions and data structures.

Seemingly simple issues prove interesting-for example, determining the proper
length (duration) of a movie. For many movies, the proper duration is the time
required to play them in "real" time-that is, a rate in which human actions appear
natural, and objects fall to earth accelerating at 32 feet per second per second.
But what is the length of a movie that shows spreadsheet data charted over time,
or a map of the earth that recapitulates continental drift? Add to this the differing
clock speeds of different platforms, and the need to decompress in real time, and
time proves, as ever, complex.

To manage these situations, QuickTime defines time coordinate systems, which
anchor movies and their media data structures to a common temporal reality, the
second. A time coordinate system contains a time scale that provides the
translation between real time and the time in a movie. Time scales are marked in
time units. The number of units that pass per second quantifies the scale-that is, a
time scale of 26 means that 26 units pass per second and each time unit is 1/26 of
a second. A time coordinate system also contains a duration, which is the length
of a movie or a media in the number of time units it contains. Particular points in
a movie can be identified by a time value, the number of time units elapsed to
that point.

Each media has its own time coordinate system, which starts at time 0. The
Movie Toolbox maps each type of media data from the movie's time coordinate
system to the media's time coordinate system.

Next: The QuickTime Architecture Up: Quicktime Previous: Quicktime Support of
Media

Dave Marshall
10/4/2001

Next: QuickTime Components Up: Quicktime Previous: QuickTime Concepts

The QuickTime Architecture

QuickTime comprises two managers: the Movie Toolbox and the Image Compression
Manager. QuickTime also relies on the Component Manager, as well as a set of
predefined components. Figure 1-1 shows the relationships of these managers and an
application that is playing a movie.

Quicktime Architecture

The Movie Toolbox
-- Your application gains access to the capabilities of QuickTime by calling
functions in the Movie Toolbox. The Movie Toolbox allows you to store,
retrieve, and manipulate time-based data that is stored in QuickTime movies. A
single movie may contain several types of data. For example, a movie that
contains video information might include both video data and the sound data that
accompanies the video.

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

The Movie Toolbox also provides functions for editing movies. For example,
there are editing functions for shortening a movie by removing portions of the
video and sound tracks, and there are functions for extending it with the addition
of new data from other QuickTime movies.

The Movie Toolbox is described in the chapter "Movie Toolbox" later in this
book. That chapter includes code samples that show how to play movies.

The Image Compression Manager
--

The Image Compression Manager comprises a set of functions that compress and
decompress images or sequences of graphic images.

The Image Compression Manager provides a device-independent and driver-
independent means of compressing and decompressing images and sequences of
images. It also contains a simple interface for implementing software and
hardware image-compression algorithms. It provides system integration functions
for storing compressed images as part of PICT files, and it offers the ability to
automatically decompress compressed PICT files on any QuickTime-capable
Macintosh computer.

In most cases, applications use the Image Compression Manager indirectly, by
calling Movie Toolbox functions or by displaying a compressed picture.
However, if your application compresses images or makes movies with
compressed images, you will call Image Compression Manager functions.

The Image Compression Manager is described in the chapter "Image
Compression Manager" later in this book. This chapter also includes code
samples that show how to compress images or make movies with compressed
images.

The Component Manager
--

Applications gain access to components by calling the Component Manager. The
Component Manager allows you to define and register types of components and
communicate with components using a standard interface. A component is a code
resource that is registered by the Component Manager. The component's code
can be stored in a systemwide resource or in a resource that is local to a particular
application.

Once an application has connected to a component, it calls that component
directly. If you create your own component class, you define the function-level
interface for the component type that you have defined, and all components of

that type must support the interface and adhere to those definitions. In this
manner, an application can freely choose among components of a given type with
absolute confidence that each will work.

Next: QuickTime Components Up: Quicktime Previous: QuickTime Concepts
Dave Marshall
10/4/2001

Next: Quicktime File Format Up: Quicktime Previous: The QuickTime Architecture

QuickTime Components

QuickTime includes several components that are provided by Apple. These components
provide essential services to your application and to the managers that make up the
QuickTime architecture. The following Apple-defined components are among those
used by QuickTime:

● movie controller components, which allow applications to play movies using a
standard user interface standard image compression dialog components, which
allow the user to specify the parameters for a compression operation by
supplying a dialog box or a similar mechanism

● image compressor components, which compress and decompress image data
sequence grabber components, which allow applications to preview and record
video and sound data as QuickTime movies video digitizer components, which
allow applications to control video digitization by an external device

● media data-exchange components, which allow applications to move various
types of data in and out of a QuickTime movie derived media handler
components, which allow QuickTime to support new types of data in QuickTime
movies

● clock components, which provide timing services defined for QuickTime
applications preview components, which are used by the Movie Toolbox's
standard file preview functions to display and create visual previews for files
sequence grabber components, which allow applications to obtain digitized data
from sources that are external to a Macintosh computer

● sequence grabber channel components, which manipulate captured data for a
sequence grabber component

● sequence grabber panel components, which allow sequence grabber components
to obtain configuration information from the user for a particular sequence
grabber channel component

We will study programming aspects of the above with Java in the next Chapter.

Next: Quicktime File Format Up: Quicktime Previous: The QuickTime Architecture
Dave Marshall
10/4/2001

Next: Further Information Up: Quicktime Previous: QuickTime Components

Quicktime File Format

The Quicktime Movie File Format is a published (http://developer.apple.com/
techpubs/quicktime/qtdevdocs/PDF/QTFileFormat.pdf) file format for storing
multimedia content for Quicktime presentation. Several players are available on many
platforms.

The Quicktime file format uses a track model for organising the temporally data of a
movie. A movie can contain one or more tracks -- a track is a time-ordered sequence of a
media type. The media are addressed using an edit list which is a list of end-points of
digital media clips or segments.

See handouts, Ch 14 in Multimedia Systems by J. Buford (Addison Wesley) and the
online Apple documentation for further details.

Dave Marshall
10/4/2001

Next: Open Media Framework Interchange Up: Quicktime Previous: Quicktime File
Format

Further Information

Quicktime Software, information, news etc. may be obtained from Apple's Quicktime
Web site

Specific documents of interest to this course are:

● Quicktime documentation online
● Quicktime Information
● Quicktime Pro Features
● Quicktime file format

Dave Marshall
10/4/2001

http://www.apple.com/quicktime
http://www.apple.com/quicktime
http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/qthead4.htm
http://www.apple.com/quicktime/pdf/QuickTime4_FS-a.pdf
http://www.apple.com/quicktime/pdf/QuickTime4Pro_DS-a.pdf
http://developer.apple.com/techpubs/quicktime/qtdevdocs/PDF/QTFileFormat.pdf

Next: Multimedia and Hypermedia Information Up: Multimedia Integration, Interaction
and Previous: Further Information

Open Media Framework
Interchange (OMFI) Format
The OMFI is a common interchange framework developed in repsonse to an industry led
standardisation effort (inlcuding Avid -- a major digital video hardware/applications
vendor)

Like Quicktime the primary concern of the OMFI format is concerned with temporal
representation of media (such as video and audio) and a track model is used.

The primary emphasis is video production and an number of additional features reflect
this:

● Source (analogue) material object represent videotape and film so that the origin
of the data is readily identified. Final footage may resort to this original form so
as to ensure highest possible quality.

● Special track types store (SMPTE) time codes for segements of data.
● Transitions and effects for overlapping and sequences of segments are

predefined.
● Motion Control -- the ability to play one track at a speed which is a ratio of the

speed of another track is supported.

The OMFI file format incorporates:

● a header -- include indicies for objects contained in file
● Object dictionary -- to enhance the OMFI class hierarchy in an application
● Object data
● Track data

Next: Multimedia and Hypermedia Information Up: Multimedia Integration, Interaction
and Previous: Further Information
Dave Marshall
10/4/2001

Next: The family of MHEG Up: Multimedia Integration, Interaction and Previous:
Open Media Framework Interchange

Multimedia and Hypermedia
Information Encoding Expert
Group (MHEG)
The development of MHEG arose directly out of the increasing convergence of
broadcast and interactive technologies. It specifies an encoding format for multimedia
applications independently of service paradigms and network protocols. Like Quicktime
and OMFI it is concerned with time-based media objects, whose encodings are
determined by other standards.However, the scope of MHEG is larger in that it directly
supports interactive media and real-time delivery over networks.

There have been a progressions of MHEG standards (much like MPEG) The current
widespread standard is MHEG-5 but drafts standards exist up to MHEG-7.

Every design generally represents a compromise between conflicting goals. MHEG's
design is no exception, especially if you consider that MHEG-5 (and later) targets a
continuously growing and fiercely competitive market where broadcast and interactive
technologies converge almost daily.

Converging technologies have often stimulated adopting standard solutions. Multimedia
applications standards provide more than just the obvious objectives of portability and
interoperability. A good multimedia standard can become a reference solution for
system developers and application programmers. It also promotes the use of modular
architectures that rely on common components that accomplish a specific functionality,
such as interpreting and presenting MHEG applications to users. This task is performed
by a compliant runtime engine (RTE), a resident software component that sched-ules
delivery of an application to the user. It's aimed at a wide installation base within
complete solutions, like a Video on Demand or an Interactive TV system. RTEs help
improve a product's return on investment, abate a product's per unit costs, and provide
high quality, robust products due to extensive product testing.

● The family of MHEG standards
● MHEG-5 overview
● MHEG Programming Principles
● Interaction within a Scene
● Availability; Running Status
● Interactibles
● Visual Representation
● Object Sharing Between Scenes
● Object Encoding
● Conformance
● MHEG Coding Examples
● An MHEG Player Java Applet -- Futher MHEG Examples

❍ Running the MHEG Engine
❍ MHEG Example -- The Simple MHEG Presentation
❍ MHEG Example -- The Demo MHEG Presentation
❍ More Examples

● Relationships to Major Standards
● MHEG Implementation
● MHEG Future
● Further Reading/Information

Next: The family of MHEG Up: Multimedia Integration, Interaction and Previous:
Open Media Framework Interchange
Dave Marshall
10/4/2001

Next: MHEG-5 overview Up: Multimedia and Hypermedia Information Previous:
Multimedia and Hypermedia Information

The family of MHEG standards

MHEG encompasses the family of standards issued by the ISO/IEC JTC1 joint technical
committee's working group WG12‹information technology subcommitte SC29, coding
of audio, picture multimedia, and hypermedia information. See Table 8.1 for the
complete list of MHEG standards.

Table 8.1:MHEG Standards

Version Complete Name Status

MHEG-1 MHEG object representation-base International standard

 notation (ASN.1)

MHEG-2 MHEG object representation-alternate Withdrawn

 notation (SGML)

MHEG-3 MHEG script interchange representation International standard

MHEG-4 MHEG registration procedure International standard

MHEG-5 Support for base-level interactive applications International standard

MHEG-6 Support for enhanced interactive applications International standard

 (April 1998)

MHEG-7 Interoperability and conformance testing Draft international standard

 for ISO/IEC 13522-5 (Jan 1999)

Since it was introduced first, MHEG-1 received the most attention. It's the generic
standard for encoding multimedia objects without specific assumptions on the
application area or on the target platform used for delivering and rendering these objects
to the user. MHEG-3 provides a script extension to MHEG-1. MHEG-4 specifies a

registration procedure for identifiers used by the objects to identify, for example, a
specific format for content data. MHEG-5 can conceptually be considered a simplifying
profile of MHEG-1. It addresses terminals with limited resources, like the set-top unit.
Actually, an MHEG-1 decoder can't decode MHEG-5 applications due to some slightly
different provisions added to optimize performance in VoD/ITV environments. MHEG-
6 extends the declarative MHEG-5 approach with procedural code capabilities typical of
a scripting language. It defines the interface (MHEG-5 API) and a script engine's
runtime environment on top of an MHEG-5 engine using the Java virtual machine to
provide a complete solution for application representation. MHEG-7, a new standard,
addresses the conformance and interoperability of MHEG-5 engines and applications.

Next: MHEG-5 overview Up: Multimedia and Hypermedia Information Previous:
Multimedia and Hypermedia Information
Dave Marshall
10/4/2001

Next: MHEG Programming Principles Up: Multimedia and Hypermedia Information Previous: The family of
MHEG

MHEG-5 overview

SInce MHEG-5 is the widest MHEG standard in operation and is widely known we will highlight this MHEG
standard.

A multimedia application can be conceived as a set of self-contained objects based on synchronization and spatial-
temporal relationships of multiple media formats, structural composition, event-action associations, navigation,
and user interaction capabilities. Controlling the playback of time-dependent contents, like streams of multiplexed
audiovisual data requires specific support. These streams demand VCR control functions (play, pause, fast
forward, and so on), as well as the capability to manage events generated during their presentation. For example,
rendering text subtitles can be synchronized with timecode events generated during the playback of a stream.
MHEG-5 represents an application, as a set of scenes, which contain objects common to all scenes. A scene
supports the spatially and temporally coordinated presentation of audiovisual content consisting of graphics,
bitmaps, text, and streams (based on the multiplex of audio and video components). Interaction can be performed
via graphic elements like buttons, sliders, text entry boxes, and hypertext selections. Every scene, as well as an
entire application, is a self-contained entity that can represent its localized behavior by links that are event-action
associations. Events can be generated by users, expiration of timers, playback of streams, and other conditions
within the RTE.

The global scope of MHEG-5 is to define the syntax and semantics of a set of object classes that can be used for
interoperability of multimedia applications across minimal-resources platforms. The developed applications will
reside on a server, and as portions of the application are needed, they will be downloaded to the client. In a
broadcast environment, this download mechanism could rely, for instance, on cyclic rebroadcasting of all portions
of the application. It is the responsibility of the client to have a runtime that interprets the application parts,
presents the application to the user, and handles the local interaction with the user.

The major goals of MHEG-5 are:

● To provide a good standard framework for the development of client/server multimedia applications
intended to run on a memory-constrained Client.

● To define a final-form coded representation for interchange of applications across platforms of different
versions and brands.

● To provide the basis for concrete conformance levelling, guaranteeing that a conformant application will
run on all conformant terminals.

● To allow the runtime engine on the Client to be small and easy to implement.
● To be free of strong constraints on the architecture of the Client.
● To allow the building of a wide range of applications. This means also providing access to external

libraries. An application using external libraries will only be partly portable.
● To allow for application code that is guaranteed to be "safe" in the sense that it cannot harm other code in

the Client, nor put the Client in an abnormal state.
● To allow automatic static analysis of (final-form) application code in order to help insure bug-free

applications and minimize the debugging investment needed to get a robust application. Note that this
analysis should be possible to implement independently of the authoring environment.

● To promote rapid application development by providing high-level primitives and provide a declarative
paradigm for the application development.

The MHEG-5 model is object-oriented. The actions are methods targeted to objects from different classes to
perform a specific behavior and include:

● preparation,
● activation,

● controlling the presentation,
● user interaction,
● getting the value of attributes,
● and so on.

To allow interoperability across heterogeneous systems, MHEG-5 specifies the precise encoding syntax. Two
notations are possible: the ASN.1 notation, which MHEG-1 also adopts, and a textual notation as illustrated
below:.

In a client-server architecture (Fig 8.2), MHEG-5 applications are stored on the server and downloaded to the
terminal for the RTE to interpret. This model is not limited to storage and retrieval services. In the broadcast
environment, for example, the set of channels transmitted on a broadcast network can be considered a virtual
server, where the download mechanism relies on cyclic rebroadcast of all portions of an application.

MHEG Client-Server Interaction

Next: MHEG Programming Principles Up: Multimedia and Hypermedia Information Previous: The family of
MHEG
Dave Marshall
10/4/2001

http://www.cs.cf.ac.uk/Dave/Multimedia/mhegclient.gif

Next: Interaction within a Scene Up: Multimedia and Hypermedia Information Previous:
MHEG-5 overview

MHEG Programming Principles

MHEG-5 provides suitable abstractions for managing active, autonomous, and reusable entities
(since it adopts an object-oriented approach).

A class is specified by three kinds of properties:

● attributes that make up an object's structure,
● events that originate from an object, and
● actions that target an object to accomplish a specific behavior or to set or get an attribute's

value.

The most significant classes of MHEG-5 are now breifly described:

Root
-- A common Root superclass provides a uniform object identification mechanism and
specifies the general semantics for preparation/destruction and activation/deactivation of
objects, including notification of changes of an object's availability and running status.
These general provisions are further specialized moving downwards through the
inheritance tree, which first branches into the Group and Ingredient classes.

Group
-- This abstract class handles the grouping of objects in the Ingredient class as a unique
entity of interchange. In fact, Group objects can be addressed and independently
downloaded from the server. A Group can be specialized into Application and Scene
classes.

Application
-- An MHEG-5 application is structurally organized into one Application and one or more
Scene objects. The Application object represents the entry point that performs a transition
to the presentation's first Scene. Generally, this transition occurs at startup (see below
code examples) because a presentation can't happen without a Scene running.

The Launch action activates an Application after quitting the active Application. The Quit
action ends the active Application, which also terminates the active Scene's presentation.
The Ingredients of an Application are available to the different Scenes that become active,
thereby allowing an uninterrupted presentation of contents (for example, a bitmap can
serve as the common background for all Scenes in an Application).

Scene
-- This class allows spatially and temporally coordinated presentations of Ingredients. At
most, one Scene can be active at one time. Navigating within an Application is performed
via the TransitionToaction that closes the current Scene, including its Ingredients,
and activates the new one. The SceneCoordinateSystem attribute specifies the

presentation space's 2D size for the Scene. If a user interaction occurs in this space, a
UserInput event is generated. A Scene also supports timers. A Timer event is generated
when a timer expires.

Ingredient
-- This abstract class provides the common behavior for all objects that can be included in
an Application or a Scene.

The OriginalContent attribute maps object and content data. It contains either
included content or a reference to an external data source (such as a URL or a DSMCC
file name). The ContentHook attribute specifies the encoding format for the content.
However, MHEG-5 does not list the supported encoding formats. See coding examples
below for the use of content references and hooks.

The action Preload gives hints to the RTE for making the content available for
presentation. Especially for streams, this action does not completely download the
content, it just sets up the proper network connection to the site where the content is
stored. The action Unload frees allocated resources for the content.

The Presentable, Stream, and Link classes are subclasses of the Ingredient class.

Presentable
-- This abstract class specifies the common aspects for information that can be seen
or heard by the user. The Run and Stop actions activate and terminate the
presentation, while generating the IsRunning and IsStopped events.

Visible
-- The Visible abstract class specializes the Presentable class with provisions
for displaying objects in the active Scene's presentation space.

The OriginalBoxSize and OriginalPosition attributes respectively
specify the size and position of the object's bounding box relative to the Scene's
presentation space. The actions SetSize and SetPosition change the current
values of these attributes.

The specialized objects in the Visible class include:

■ Bitmap -- This object displays a 2D array of pixels. The Tiling attribute
specifies whether the content will be replicated throughout the BoxSize
area. The action ScaleBitmap scales the content to a new size.

Example, to create a simple bitmap object:

(bitmap: BgndInfo
 content-hook: #bitmapHook
 content-data: referenced-content: "Info.bitmap"
 box-size: (320 240)
 original-position: (0 0)
)

■ LineArt, DynamicLineArt -- A LineArt is a vectorial representation of
graphical entities, like polylines and ellipses. DynamicLineArt draws
lines and curves on the fly in the BoxSize area.

■ Text -- This object represents a text string with a set of rendition attributes.
Essentially, these attributes specify fonts and formatting information like
justification and wrapping.

Stream
-- This class (a subclass of Ingredient) controls the synchronized presentation of
multiplexed audio-visual data (such as an MPEG-2 file). A Stream object consists
of a list of components from the Video, Audio, and RTGraphics (animated
graphics) classes. The OriginalContent attribute of the Stream object refers
to the whole multiplex of data streams.

When a Stream object is running, its streams can be switched on and off
independently. This lets users switch between different audio trails (different
languages) or choose which video stream(s) to present among a range of available
ones. For example, the Turin code example below contains an MPEG-1 Stream
composed of one audio and one video component. These components
automatically activate when a run action targets the whole Stream because their
InitiallyActive attribute is set to true.

Specific events are associated with playback:
StreamPlaying/StreamStopped notifies the actual initiation/termination
and CounterTrigger notifies the system when a previously booked time-code
event occurs. The Turin code example below shows how the CounterTrigger
event can be used to synchronize text subtitling and also illustrates the
SetCounterPosition and SetCounterEndPosition actions to specify a
temporal segment for presentation.

Link
-- The Link class implements event-action behavior by a condition and an effect.
The LinkCondition contains an EventSource -‹ a reference to the object on
which the event occurs -‹ an EventType that specifies the kind of event and a
possible EventData that is a data value associated with the event.

MHEG-5 Action objects consist of a sequence of elementary actions. Elementary
actions are comparable to methods in an object-oriented paradigm. The execution
of an Action object means that each of its elementary actions are invoked
sequentially.

As an example, consider the following Link, which transitions to another Scene
when the character A is entered in the EntryField EF1.

Example, to create a simple link:

(link: Link1
 event-source: EF1
 event-type: #NewChar

 event-data: 'A'
 link-effect:
 (action: transition-to: Scene2)
)

In the Turin code example below, Link 49 triggers only if a
CounterTrigger event on the video clip occurs with EventData = 3.

Specifically, this lets you associate a different effect with every booked value of
the CounterPosition. The LinkEffect comprises a set of actions that are
executed in sequence when an event that matches with the LinkCondition
occurs. Every action specifies the target object and, possibly, other parameters
depending on the type of action. MHEG-5 specifies more than 100 kinds of
actions.

Interactible
-- This abstract class provides a way for users to interact with objects within the following
sub-classes:

Hotspot, PushButton, and SwitchButton
-- These subclasses implement button selection capability and generate the
IsSelected event. Example, to create a simple SwitchButton:

(switchbutton: Switch1
 style: #radiobutton
 position: (50 70)
 label: "On"
)

Hypertext
-- This class extends the Text class with anchors. When selected, these anchors
link text content to associated information.

Slider and EntryField
-- Respectively, these objects let users adjust a numeric value (such as the volume
of an audio stream) and edit text.

Example, to create a simple slider:

(slider: Slider1
 box-size: (40 5)
 original-position: (100 100)
 max-value: 20
 orientation: #right
)

Next: Interaction within a Scene Up: Multimedia and Hypermedia Information Previous:

MHEG-5 overview
Dave Marshall
10/4/2001

Next: Availability; Running Status Up: Multimedia and Hypermedia Information
Previous: MHEG Programming Principles

Interaction within a Scene

The MHEG application is event-driven, in the sense that all actions are called as the
result of an event firing a link. Events can be divided into two main groups: synchronous
events and asynchronous events. Asynchronous events are events that occur
asynchronously to the processing of Links in the MHEG engine. These include timer
events and user input events. An application area of MHEG-5 (such as DAVIC) must
specify the permissible UserInput events within that area. Synchronous events are events
that can only occur as the result of an MHEG-5 action being targeted to some objects. A
typical example of a synchronous event is IsSelected, which can only occur as the
result of the MHEG-5 action Select being invoked. Synchronous events are always dealt
with immediately; asynchronous events are queued.

The mechanism at the heart of the MHEG engine, therefore, is the following:

1.
After a period of of idleness, an asynchronous event occurs. The event can be a
user input event, a timer event, a stream event, or some other type of event.

2.
Possibly, a link that reacts on the event is found. This link is then fired. If no such
link is found, the process starts again at 1.

3.
The result of a link being fired is the execution of an action object, which is a
sequence of elementary actions. These can change the state of other objects,
create or destroy other objects, or cause events to occur.

4.
As a result of the actions being performed, synchronous events may occur. These
are dealt with immediately, i.e., before processing any other asynchronous events
queued.

When all events have been processed, the process starts again at 1.

Next: Availability; Running Status Up: Multimedia and Hypermedia Information
Previous: MHEG Programming Principles
Dave Marshall
10/4/2001

Next: Interactibles Up: Multimedia and Hypermedia Information Previous: Interaction
within a Scene

Availability; Running Status

Before doing anything to an object, the MHEG-5 engine must prepare it. Preparing an
object typically entails retrieving it from the server, decoding the interchange format and
creating the corresponding internal data structures, and making the object available for
further processing. The preparation of an object is asynchronous; its completion is
signalled by an IsAvailable event.

All objects that are part of an application or a scene have a RunningStatus, which is
either true or false. Objects whose RunningStatus is true are said to be running, which
means that they perform the behaviour they are programmed for. More concretely:

● only running Visibles are actually visible on the screen,
● only running Audio objects are played out through the loudspeaker,
● only running Links will execute the action part if the associated event occurs, etc.

Dave Marshall
10/4/2001

Next: Visual Representation Up: Multimedia and Hypermedia Information Previous:
Availability; Running Status

Interactibles

The MHEG-5 mix-in class Interactible groups some functionality associated with user
interface-related objects (Slider, HyperText, EntryField, Buttons).

These objects can all be highlighted (by setting their HighlightStatus to True).

They also have the attribute InteractionStatus, which, when set to true, allows the object
to interact directly with the user, thus bypassing the normal processing of UserInput
events by the MHEG-5 engine.

Exactly how an Interactible reacts when its InteractionStatus is true is implementation-
specific.

As an example, the way that a user enters characters in an EntryField can be
implemented in different ways in different MHEG-5 engines.

At most one Interactible at a time can have its InteractionStatus set to True. Interactibles

Dave Marshall
10/4/2001

Next: Object Sharing Between Scenes Up: Multimedia and Hypermedia Information
Previous: Interactibles

Visual Representation

For objects that are visible on the screen, the following rules apply :

● Objects are drawn downwards and to the right of their position on the screen.
This point can be changed during the life cycle of an object, thus making it
possible to move objects.

● Objects are drawn without scaling. Objects that do not fit within their bounding
box are clipped.

● Objects are drawn with "natural" priority, i.e., on top of already existing objects.
However, it is possible to move objects to the top or the bottom of the screen, as
well as putting them before or after another object.

● The screen can be frozen, allowing the application to perform many (possibly
slow) changes and not update the screen until it's unfrozen.

Dave Marshall
10/4/2001

Next: Object Encoding Up: Multimedia and Hypermedia Information Previous: Visual
Representation

Object Sharing Between Scenes

It is possible within MHEG-5 to share objects between some or all scenes of an
application. As an example, this can be used to have variables retain their value over
scene changes, or to have an audio stream play on across a scene change. Shared objects
are alway contained in an Application object. Since there is always exactly one
Application object running whenever a scene is running, the objects contained in an
application object are visible to each of its scenes.

Dave Marshall
10/4/2001

Next: Conformance Up: Multimedia and Hypermedia Information Previous: Object
Sharing Between Scenes

Object Encoding

The MHEG-5 specification does not prescribe any specific formats for the encoding of
content. For example, it is conceivable that a Video object is encoded as MPEG or as
motion-JPEG. This means that the group using MHEG-5 must define which content
encoding schemes to apply for the different objects in order to achieve interoperability.

However, MHEG-5 does specify a final-form encoding of the MHEG-5 objects
themselves. This encoding is an instance of ASN.1, using the Basic Encoding Rules
(BER).

Dave Marshall
10/4/2001

Next: MHEG Coding Examples Up: Multimedia and Hypermedia Information
Previous: Object Encoding

Conformance

The issue of conformance, though of crucial importance, has not yet been extensively
addressed by the MHEG committee. It is expected that a conformance definition for the
standard will have to be drafted, probably lagging the standard itself by some period of
time.

Dave Marshall
10/4/2001

Next: An MHEG Player Java Up: Multimedia and Hypermedia Information Previous: Conformance

MHEG Coding Examples

A Simple MHEG Example

Below (Fig 8.3) is a very simple scene that displays a bitmap and text. The user can press the 'Left' button on
the input device and a transition is made from the current scene, InfoScene1, to a new scene,
InfoScene2.

Simle MHEG Example

The pseudo-code from the above scene may look like the following:

(scene:InfoScene1
 <other scene attributes here>
 group-items:
 (bitmap: BgndInfo
 content-hook: #bitmapHook
 original-box-size: (320 240)
 original-position: (0 0)
 content-data: referenced-content: "InfoBngd"
)
 (text:
 content-hook: #textHook
 original-box-size: (280 20)
 original-position: (40 50)
 content-data: included-content: "1. Lubricate..."
)
 links:
 (link: Link1
 event-source: InfoScene1
 event-type: #UserInput
 event-data: #Left

http://www.cs.cf.ac.uk/Dave/Multimedia/lube.gif

 link-effect: action: transition-to: InfoScene2
)
)

A More Complex Example (Turin)

Another example application lets users retrieve tourist information about the city of Turin, Italy. URL:
http://drogo.cselt.stet.it/ufv/mediatouch/mh5webapp/to_audio_e_0.mh5

Figure 8.4 shows a screen shot of the main_scene object. This scene consists of

● a text title,
● a bitmap background,
● a video clip, which is playing a segment of Porta Nuova, the main railway station, enriched with a text

subtitle object (left side),
● some interactive thumbnails (right side),
● a set of buttons that provide VCR controls,
● functions to switch between viewing the video in normal and zoom modes, and item a return to

previous screen capability.

The playback of the video clip synchronizes with the subtitle's content. Selecting an interactive thumbnail
constrains the playback to the associated temporal segment.

MHEG Example Presentation (Turin Guide)

http://drogo.cselt.stet.it/ufv/mediatouch/mh5webapp/to_audio_e_0.mh5
http://www.cs.cf.ac.uk/Dave/Multimedia/turin.gif

The code listing below is an excerpt from the Turin application's MHEG textual notation:

{:Application ("turin.mh5" 0)
:OnStartUp (// sequence of initialization
actions
:TransitionTo (("main_scene.mh5" 0)) //
activation of the first scene
)
}
{:Scene ("main_scene.mh5" 0)
:OnStartUp (// sequence of initialization
actions
preload (2) // the connection to the
source of the video clip is set up
...
setCounterTrigger (2 3 190000) // book a
time code event at 190000 msec
...
)
:Items (// both presentable ingredients and
links
{:Bitmap 1 // background bitmap
:InitiallyActive true
:CHook 3 // JPEG
:OrigContent
:ContentRef ("background.jpg")
:OrigBoxSize 800 600
:OrigPosition 0 0
}
{:Stream 2 // video clip
:InitiallyActive false
:CHook 101 // MPEG-1
:OrigContent
:ContentRef ("turin.mpg")
:Multiplex (
{:Audio 3 // audio component of the
video clip
:ComponentTag 1 // refers to audio
elementary stream
:InitiallyActive true
}
{:Video 4 // video component of the
video clip
:ComponentTag 2 // refers to
video elementary stream
:InitiallyActive true
:OrigBoxSize 352 288
:OrigPosition 40 80
}
)
}
{:HotSpot 20 // "Porta Nuova" hotspot
:InitiallyActive true
:OrigBoxSize 120 100
:OrigPosition 440 214
}

... // 25 more presentable ingredients
{:Link 30 // selecting an "interactive"
thumbnail
:EventSource (20) // "Porta Nuova"
hotspot
:EventType IsSelected
:LinkEffect (
:SetSpeed (2 1 1) // video clip:
speed is set to 1/1 (normal)
:SetCounterPosition (2 190000) //
initial point of the segment
:SetCounterEndPosition (2 246500) //
end point of the segment
:Run (2) // activate playback with
the above settings
)
}
{:Link 49 // the video clip crosses a pre
defined time code position
:EventSource (2) // video clip
:EventType CounterTrigger
:EventData 3 // booked at startup by
setCounterTrigger (2 3 190000)
:LinkEffect (
:SetData (5 // text subtitle is set
to a new string, that is
:NewRefContent ("st9.txt")) //
"Porta Nuova and via Roma"
:SetHighlightStatus (20 true) //
hotspot 20 is highlighted
)
}
... // 58 more links
)
:SceneCS 800 600 // size of the scene's
presentation space
}

Next: An MHEG Player Java Up: Multimedia and Hypermedia Information Previous: Conformance
Dave Marshall
10/4/2001

Next: Running the MHEG Engine Up: Multimedia and Hypermedia Information
Previous: MHEG Coding Examples

An MHEG Player Java Applet -- Futher
MHEG Examples

The Technical University of Berlin have produced a MHEG Java Engine (
http://enterprise.prz.tu-berlin.de/imw/">http://enterprise.prz.tu-berlin.de/imw/

Java Class libraries (with JavaDoc documentation) and details on
installation/compilation etc are also available. Several examples of MHEG coding,
including an MHEG Introduction written in MHEG.

● Running the MHEG Engine
● MHEG Example -- The Simple MHEG Presentation
● MHEG Example -- The Demo MHEG Presentation
● More Examples

Dave Marshall
10/4/2001

Next: MHEG Example Up: An MHEG Player Java Previous: An MHEG Player Java

Running the MHEG Engine

The MHEG engine exists as a Java applet (although you can of course is the class librarie
in your own java code (applications and applets)).

The MHEG engine is available in the MHEG:MHEG Java Applet folder on the Macintosh
Applications HD in the Multimedia Lab.

You can run the applet through any Java enabled browser or appletviewer.

Here as an example of how to run the main applet provided for the demo MHEG example:

<applet name="MHEG 5 Engine"
 code="mheg5/POM/Mheg5Applet.class"
 codebase="applications/"
 archive="mhegwww.zip"
 width="510"
 height="346"
 align="center"
 <param name="objectBasePath" value="file:.">
 <param name="groupIdentifier" value="demo/startup">
 <param name="mon" value="false">
</applet>

If you use the applet yourself you may need to change:

● the code and codebase paths -- these specufy where the applications and applet
clasess reside.

● the groupIdentifier value -- for most of the applicatioin demos a startup
MHEG file is reference first in a folder for each application. (see other examples
below.

Dave Marshall
10/4/2001

Next: MHEG Example Up: An MHEG Player Java Previous: Running the MHEG Engine

MHEG Example -- The Simple MHEG Presentation

The Simple example produces the following output shown in Fig 8.5

MHEG Simple application Example

The presentation create two buttons, labelled ``Hello'' and ``World'' respectively, and some recangle
graphics.

When pressed the button is brought to the foreground of the display.

The applet is called via:

<html>
 <head>
 <title>MHEG-5 Engine written in Java</title>
 </head>
 <body bgcolor="#ffffff">
 <center>
 <h1>MHEG-5 Engine</h1>
 <applet
 name="MHEG 5 Engine"
 code="mheg5/POM/Mheg5Applet.class"
 codebase="applications/"
 archive="mhegwww.zip"
 width="510"
 height="346"

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

 align="center"
 alt="If you had a java-enabled browser, you would see an applet
here.">
 <hr>If your browser recognized the applet tag,
 you would see an applet here.<hr>
 <param name="objectBasePath" value="file:.">
 <param name="groupIdentifier" value="simple/startup">
 <param name="mon" value="false">
 </applet>
 </center>
 </body>
</html>

The MHEG modules for this presentation are:

startup
-- calls helloworld.mheg

helloworld.mheg
-- sets up main presentation

scene1.mheg
-- called in helloworld.mheg

The MHEG code for each module is a follows:

startup:

{:Application ("simple/startup" 0)
 //:OnStartUp (:TransitionTo(("simple/helloworld.mheg" 0)))
 :Items(
 {:Link 1
 :EventSource 1
 :EventType IsRunning
 :LinkEffect (:TransitionTo(("simple/helloworld.mheg" 0)))
 }
)
}
\end{verbatim

{\bf helloworld.mheg}

\footnotesize
\begin{verbatim}
{:Scene ("simple/helloworld.mheg" 0)

 :Items
 (

 {:Rectangle 4000
 :OrigBoxSize 80 260 :OrigPosition 110 20
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Green :OrigRefFillColour transparent
 }
 {:Rectangle 4001
 :OrigBoxSize 200 200 :OrigPosition 50 50 :OrigLineWidth 5

:OrigLineStyle 1
 :OrigRefLineColour DarkGray :OrigRefFillColour Gray
 }
 {:Rectangle 4002
 :OrigBoxSize 100 100 :OrigPosition 100 100
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Blue :OrigRefFillColour transparent
 }
 {:Rectangle 4003
 :OrigBoxSize 150 150 :OrigPosition 150 150
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour "#FF2211" :OrigRefFillColour DarkRed
 }
 {:Rectangle 4004
 :OrigBoxSize 280 170 :OrigPosition 10 10
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Yellow :OrigRefFillColour transparent
 }

 {:PushButton 4005 :InitiallyActive true
 :OrigBoxSize 100 50
 :ButtonRefColour DarkGreen :OrigLabel "World"
 }
 {:PushButton 4006 :InitiallyActive true
 :OrigBoxSize 100 50 :OrigPosition 50 25
 :ButtonRefColour Gray :OrigLabel "Hello"
 }

 {:Link 1015
 :EventSource 4006 :EventType IsSelected
 :LinkEffect (:BringToFront (4005)
 :SetHighlightStatus (4005 true))
 }
 {:Link 1016
 :EventSource 4005 :EventType IsSelected
 :LinkEffect (:BringToFront (4006))
 }
 {:Link 1017
 :EventSource 4005 :EventType CursorEnter
 :LinkEffect (:BringToFront (4005))
 }
 {:Link 1018
 :EventSource 4006 :EventType CursorEnter
 :LinkEffect (:BringToFront (4006))
 }

 {:ObjectRefVar 100 :OrigValue :ObjectRef 4001 }
 {:ObjectRefVar 101 :OrigValue :ObjectRef 4002 }
 {:Link 1000
 :EventSource 0 :EventType UserInput :EventData 1
 :LinkEffect (:SetPosition(4006 50 25))
 }
 {:Link 1001
 :EventSource 0 :EventType UserInput :EventData 2
 :LinkEffect (:SetPosition (4006 50 200))

 }
 {:Link 1002
 :EventSource 0 :EventType UserInput :EventData 3
 :LinkEffect (:Stop (:IndirectRef 101))
 }
 {:Link 1003
 :EventSource 0 :EventType UserInput :EventData 4
 :LinkEffect (:Run (:IndirectRef 101))
 }

 {:Link 1004
 :EventSource 0 :EventType UserInput :EventData 15
 :LinkEffect (:TransitionTo(("simple/scene1.mheg" 0)))
 }

 {:Link 1005
 :EventSource 0 :EventType UserInput :EventData 5
 :LinkEffect (:BringToFront (4000))
 }
 {:Link 1006
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (:BringToFront (4001))
 }
 {:Link 1007
 :EventSource 0 :EventType UserInput :EventData 7
 :LinkEffect (:BringToFront (4002))
 }
 {:Link 1008
 :EventSource 0 :EventType UserInput :EventData 8
 :LinkEffect (:BringToFront (4003))
 }
 {:Link 1009
 :EventSource 0 :EventType UserInput :EventData 9
 :LinkEffect (:BringToFront (4004))
 }

 {:Link 1010
 :EventSource 0 :EventType UserInput :EventData 10
 :LinkEffect (:SendToBack (4000))
 }
 {:Link 1011
 :EventSource 0 :EventType UserInput :EventData 11
 :LinkEffect (:SendToBack (4001))
 }
 {:Link 1012
 :EventSource 0 :EventType UserInput :EventData 12
 :LinkEffect (:SendToBack (4002))
 }
 {:Link 1013
 :EventSource 0 :EventType UserInput :EventData 13
 :LinkEffect (:SendToBack (4003))
 }
 {:Link 1014
 :EventSource 0 :EventType UserInput :EventData 14
 :LinkEffect (:SendToBack (4004))
 }

)

 :InputEventReg 1
 :SceneCS 300 300
 :MovingCursor true
}

scene1.mheg

{:Scene ("simple/scene1.mheg" 0)

 :Items
 (
 {:Rectangle 4000
 :OrigBoxSize 300 300 // 200 200
 :OrigPosition 20 80
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour "Black" :OrigRefFillColour DarkRed
 }
 {:Rectangle 4001
 :OrigBoxSize 200 200 :OrigPosition 100 180
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Blue :OrigRefFillColour DarkBlue
 }

 {:Link 1000
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (:PutBehind (4003 4000))
 }
 {:Link 1001
 :EventSource 0 :EventType UserInput :EventData 7
 :LinkEffect (:PutBehind (4002 4000))
 }
 {:Link 1002
 :EventSource 0 :EventType UserInput :EventData 8
 :LinkEffect (:PutBehind (4001 4000))
 }

 {:Link 1003
 :EventSource 0 :EventType UserInput :EventData 9
 :LinkEffect (:PutBefore (4003 4000))
 }
 {:Link 1004
 :EventSource 0 :EventType UserInput :EventData 10
 :LinkEffect (:PutBefore (4002 4000))
 }
 {:Link 1005
 :EventSource 0 :EventType UserInput :EventData 11
 :LinkEffect (:PutBefore (4001 4000))
 }

 {:Link 1006
 :EventSource 0 :EventType UserInput :EventData 1
 :LinkEffect (:SetPosition (4000 20 80))
 }
 {:Link 1007
 :EventSource 0 :EventType UserInput :EventData 2
 :LinkEffect (:SetPosition (4000 20 120))
 }

 {:Link 1008
 :EventSource 0 :EventType UserInput :EventData 3
 :LinkEffect (:SetBoxSize (4000 200 300)) // 200 200

 }
 {:Link 1009
 :EventSource 0 :EventType UserInput :EventData 4
 :LinkEffect (:SetBoxSize (4000 300 300))
 }

 {:Link 1100 :InitiallyActive true
 :EventSource 0 :EventType UserInput :EventData 16
 :LinkEffect (:TransitionTo(("simple/helloworld.mheg" 0)))
 }
)

 :InputEventReg 1
 :SceneCS 400 400
}

Dave Marshall
10/4/2001

Next: More Examples Up: An MHEG Player Java Previous: MHEG Example

MHEG Example -- The Demo MHEG Presentation

The Demo example produces the output shown in Fig 8.6.

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif
http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

MHEG Demo application Example

As can be seen many of the key features of MHEG are illustrated in further sub-windows (click on button to move to respective window).
Try these out for yourself.

The following MHEG modules are used:

startup
-- intial module

main.mhg
-- Called by startup

disp1.mhg
-- input from numeric keys 1 and 2 to tile rectangles (Fig 8.7)

MHEG Demo application Display1 Example

disp2.mhg
-- input from numeric keys 1 and 2 to tile rectangles (different display) (Fig 8.8)

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

MHEG Demo application Display2 Example

text.mhg
-- illustrates MHEG control of text display (Fig 8.9)

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

MHEG Demo application Text Example

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

intact.mhg
-- illustrates MHEG interactive objects (Fig 8.10)

MHEG Demo application Interactive Objects Example

bitmap1.mhg
-- illustraes MHEG display of bitmaps

bitmap2.mhg
-- illustraes MHEG display of bitmaps

ea.mhg

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

-- illustraes MHEG elementary actions (Fig 8.11)

MHEG Demo application Elementary Actions Example

allcl.mhg
-- MHEG conctrete classes and elementary actions (Fig 8.12)

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

MHEG Demo application Conctrete Classes Example

token.mhg
-- MHEG token groups example (Fig 8.13)

MHEG Demo application Token Groups Example

The MHEG code for the modules is as follows:

Startup:

http://www.cs.cf.ac.uk/Dave/Multimedia/qtplay.gif

{:Application ("demo/startup" 0)
 // :OnStartUp (:TransitionTo(("demo/main.mhg" 0)))
 :Items(
 {:Link 1
 :EventSource 1
 :EventType IsRunning
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }
)
}

main.mhg:

{:Scene ("demo/main.mhg" 0)

 :Items
 (
 {:Text 100
 :OrigContent 'An application for presenting a Mheg-5-Engine'
 :OrigBoxSize 320 80
 :OrigPosition 90 10
 :FontAttributes Bold.24 :FontName Proportional
 :HJustification centre
 :TextWrapping true
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 15
 :Tiling false
 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 420 15
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")

 :OrigBoxSize 48 43
 :OrigPosition 470 15
 :Tiling false
 }

 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }

 // --

 {:Text 1000
 :OrigContent 'Test the Displaystack, 1.Test:'
 :OrigBoxSize 300 30
 :OrigPosition 10 100
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 1001
 :OrigBoxSize 85 30
 :OrigPosition 420 95
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 1002
 :EventSource 1001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/disp1.mhg" 0))
)
 }

 {:Link 1003
 :EventSource 1001 :EventType CursorEnter
 :LinkEffect (:Activate(1005))
 }
 {:Link 1004
 :EventSource 1001 :EventType CursorLeave
 :LinkEffect (:DeActivate(1005))

 }
 {:Link 1005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/disp1.mhg" 0))
)
 }

 // --

 {:Text 2000
 :OrigContent 'Test the Displaystack, 2.Test:'
 :OrigBoxSize 300 30
 :OrigPosition 10 150
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 2001
 :OrigBoxSize 85 30
 :OrigPosition 420 145
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 2002
 :EventSource 2001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/disp2.mhg" 0))
)
 }

 {:Link 2003
 :EventSource 2001 :EventType CursorEnter
 :LinkEffect (:Activate(2005))
 }
 {:Link 2004
 :EventSource 2001 :EventType CursorLeave
 :LinkEffect (:DeActivate(2005))
 }
 {:Link 2005

 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/disp2.mhg" 0))
)
 }

 // --

 {:Text 3000
 :OrigContent 'Test Text features:'
 :OrigBoxSize 300 30
 :OrigPosition 10 200
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 3001
 :OrigBoxSize 85 30
 :OrigPosition 420 195
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 3002
 :EventSource 3001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/text.mhg" 0))
)
 }
 {:Link 3003
 :EventSource 3001 :EventType CursorEnter
 :LinkEffect (:Activate(3005))
 }
 {:Link 3004
 :EventSource 3001 :EventType CursorLeave
 :LinkEffect (:DeActivate(3005))
 }
 {:Link 3005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15

 :LinkEffect (:TransitionTo(("demo/text.mhg" 0))
)
 }

 // --

 {:Text 4000
 :OrigContent 'Test interactible Objects:'
 :OrigBoxSize 300 30
 :OrigPosition 10 250
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 4001
 :OrigBoxSize 85 30
 :OrigPosition 420 245
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 4002
 :EventSource 4001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/intact.mhg" 0))
)
 }
 {:Link 4003
 :EventSource 4001 :EventType CursorEnter
 :LinkEffect (:Activate(4005))
 }
 {:Link 4004
 :EventSource 4001 :EventType CursorLeave
 :LinkEffect (:DeActivate(4005))
 }
 {:Link 4005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/intact.mhg" 0))
)
 }

 // --

 {:Text 5000
 :OrigContent 'Test Bitmaps, 1.Test:'
 :OrigBoxSize 300 30
 :OrigPosition 10 300
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 5001
 :OrigBoxSize 85 30
 :OrigPosition 420 295
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 5002
 :EventSource 5001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/bitmap1.mhg" 0))
)
 }

 {:Link 5003
 :EventSource 5001 :EventType CursorEnter
 :LinkEffect (:Activate(5005))
 }
 {:Link 5004
 :EventSource 5001 :EventType CursorLeave
 :LinkEffect (:DeActivate(5005))
 }
 {:Link 5005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/bitmap1.mhg" 0))
)
 }

 // --

 {:Text 6000
 :OrigContent 'Test Bitmaps, 2.Test:'

 :OrigBoxSize 300 30
 :OrigPosition 10 350
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 6001
 :OrigBoxSize 85 30
 :OrigPosition 420 345
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 6002
 :EventSource 6001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/bitmap2.mhg" 0))
)
 }

 {:Link 6003
 :EventSource 6001 :EventType CursorEnter
 :LinkEffect (:Activate(6005))
 }
 {:Link 6004
 :EventSource 6001 :EventType CursorLeave
 :LinkEffect (:DeActivate(6005))
 }
 {:Link 6005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/bitmap2.mhg" 0))
)
 }

 // --

 {:Text 7000
 :OrigContent 'Test some Elementary Actions'
 :OrigBoxSize 300 30
 :OrigPosition 10 400
 :FontAttributes Bold.18 :FontName Proportional

 }

 {:PushButton 7001
 :OrigBoxSize 85 30
 :OrigPosition 420 395
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 7002
 :EventSource 7001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/ea.mhg" 0))
)
 }
 {:Link 7003
 :EventSource 7001 :EventType CursorEnter
 :LinkEffect (:Activate(7005))
 }
 {:Link 7004
 :EventSource 7001 :EventType CursorLeave
 :LinkEffect (:DeActivate(7005))
 }
 {:Link 7005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/ea.mhg" 0))
)
 }

 // --
 {:Text 8000
 :OrigContent 'Test many Classes and Elementary Actions'
 :OrigBoxSize 400 30
 :OrigPosition 10 450
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 8001
 :OrigBoxSize 85 30
 :OrigPosition 420 445
 :ButtonRefColour gray

 :OrigLabel "Go!"
 }

 {:Link 8002
 :EventSource 8001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/allcl.mhg" 0))
)
 }

 {:Link 8003
 :EventSource 8001 :EventType CursorEnter
 :LinkEffect (:Activate(8005))
 }
 {:Link 8004
 :EventSource 8001 :EventType CursorLeave
 :LinkEffect (:DeActivate(8005))
 }
 {:Link 8005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/allcl.mhg" 0))
)
 }

 // --

 {:Text 9000
 :OrigContent 'Test Tokengroup'
 :OrigBoxSize 400 30
 :OrigPosition 10 500
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 9001
 :OrigBoxSize 85 30
 :OrigPosition 420 495
 :ButtonRefColour gray
 :OrigLabel "Go!"
 }

 {:Link 9002

 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/token.mhg" 0))
)
 }
 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/token.mhg" 0))
)
 }

)
 :InputEventReg 1
 :SceneCS 520 550
 :MovingCursor true
}

disp1.mhg:

{:Scene ("demo/disp1.mhg" 0)

 :Items
 (
 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }

 {:Text 1000
 :OrigContent 'Testing the Displaystack, 1.Test:'
 :OrigBoxSize 500 30
 :OrigPosition 90 20
 :FontAttributes Bold.24 :FontName Proportional
 }

 {:Text 1001
 :OrigContent 'key1: put the magenta rect behind the red rect
key2: put the yellow rect behind the red rect
key3: put the blue rect behind the red rect
key4: put the magenta rect before the red rect
key5: put the yellow rect before the red rect
key6: put the blue rect before the red rect.'
 :OrigBoxSize 400 200
 :OrigPosition 250 100
 :FontAttributes Plain.18 :FontName Proportional
 :TextWrapping false
 }

 {:Bitmap 1010
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 15
 :Tiling false
 }

 {:Bitmap 1011
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 540 15
 :Tiling false
 }

 {:Bitmap 1012
 :OrigContent :ContentRef ("demo/prz.gif")
 :OrigBoxSize 48 43
 :OrigPosition 590 15
 :Tiling false
 }

 // ---

 {:Rectangle 4000
 :OrigBoxSize 100 100 :OrigPosition 20 130
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Red :OrigRefFillColour DarkRed
 }
 {:Rectangle 4001
 :OrigBoxSize 100 100 :OrigPosition 60 170
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Blue :OrigRefFillColour DarkBlue
 }
 {:Rectangle 4002
 :OrigBoxSize 100 100 :OrigPosition 100 150
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Yellow :OrigRefFillColour DarkYellow
 }
 {:Rectangle 4003
 :OrigBoxSize 100 100 :OrigPosition 70 100
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Magenta :OrigRefFillColour DarkMagenta
 }

 // --

 {:Link 2000
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (:PutBehind (4003 4000))
 }
 {:Link 2001
 :EventSource 0 :EventType UserInput :EventData 7
 :LinkEffect (:PutBehind (4002 4000))
 }
 {:Link 2002
 :EventSource 0 :EventType UserInput :EventData 8
 :LinkEffect (:PutBehind (4001 4000))
 }

 {:Link 2003
 :EventSource 0 :EventType UserInput :EventData 9
 :LinkEffect (:PutBefore (4003 4000))
 }

 {:Link 2004
 :EventSource 0 :EventType UserInput :EventData 10
 :LinkEffect (:PutBefore (4002 4000))
 }
 {:Link 2005
 :EventSource 0 :EventType UserInput :EventData 11
 :LinkEffect (:PutBefore (4001 4000))
 }

 // --

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 540 280
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1

 :SceneCS 650 350
 :MovingCursor true
}

disp2.mhg:

{:Scene ("demo/disp2.mhg" 0)

 :Items
 (
 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }

 {:Text 1000
 :OrigContent 'Testing the Displaystack, 2.Test:'
 :OrigBoxSize 500 30
 :OrigPosition 90 20
 :FontAttributes Bold.24 :FontName Proportional
 }

 {:Text 1001
 :OrigContent 'key1: bring to front: green rectangle
key2: bring to front: gray rectangle
key3: bring to front: blue rectangle
key4: bring to front: red rectangle
key5: bring to front: yellow rectangle
key6: send to back: green rectangle
key7: send to back: gray rectangle
key8: send to back: blue rectangle
key9: send to back: red rectangle
key0: send to back: yellow rectangle'
 :OrigBoxSize 300 220
 :OrigPosition 330 60
 :FontAttributes Plain.18 :FontName Proportional
 :TextWrapping false
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 15
 :Tiling false
 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 540 15
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")
 :OrigBoxSize 48 43
 :OrigPosition 590 15
 :Tiling false
 }

 // ---

 {:Rectangle 4000
 :OrigBoxSize 80 260 :OrigPosition 110 70
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Green :OrigRefFillColour transparent
 }
 {:Rectangle 4001
 :OrigBoxSize 200 200 :OrigPosition 50 100
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour DarkGray :OrigRefFillColour Gray
 }
 {:Rectangle 4002
 :OrigBoxSize 100 100 :OrigPosition 100 150
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Blue :OrigRefFillColour transparent
 }
 {:Rectangle 4003
 :OrigBoxSize 150 150 :OrigPosition 150 190
 :OrigLineWidth 5 :OrigLineStyle 1

 :OrigRefLineColour Red :OrigRefFillColour DarkRed
 }
 {:Rectangle 4004
 :OrigBoxSize 280 170 :OrigPosition 10 60
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Yellow :OrigRefFillColour transparent
 }

 // ---

 {:Link 1005
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (:BringToFront (4000))
 }
 {:Link 1006
 :EventSource 0 :EventType UserInput :EventData 7
 :LinkEffect (:BringToFront (4001))
 }
 {:Link 1007
 :EventSource 0 :EventType UserInput :EventData 8
 :LinkEffect (:BringToFront (4002))
 }
 {:Link 1008
 :EventSource 0 :EventType UserInput :EventData 9
 :LinkEffect (:BringToFront (4003))
 }
 {:Link 1009
 :EventSource 0 :EventType UserInput :EventData 10
 :LinkEffect (:BringToFront (4004))
 }

 {:Link 1010
 :EventSource 0 :EventType UserInput :EventData 11
 :LinkEffect (:SendToBack (4000))
 }
 {:Link 1011
 :EventSource 0 :EventType UserInput :EventData 12
 :LinkEffect (:SendToBack (4001))
 }
 {:Link 1012
 :EventSource 0 :EventType UserInput :EventData 13
 :LinkEffect (:SendToBack (4002))

 }
 {:Link 1013
 :EventSource 0 :EventType UserInput :EventData 14
 :LinkEffect (:SendToBack (4003))
 }
 {:Link 1014
 :EventSource 0 :EventType UserInput :EventData 5
 :LinkEffect (:SendToBack (4004))
 }

 // --

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 540 280
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1
 :SceneCS 650 350
 :MovingCursor true
}

text.mhg:

{:Scene ("demo/text.mhg" 0)

 :Items
 (
 {:Text 1000
 :OrigContent 'Testing the Text Features:'
 :OrigBoxSize 500 30
 :OrigPosition 80 10
 :FontAttributes Bold.24 :FontName Proportional
 }

 {:Text 3000
 :OrigContent 'Text 1: Plain.18
TextWrapping = false'
 :OrigBoxSize 220 110
 :OrigPosition 10 50
 :OrigFont 'OctetString in OriginalFont'
 :FontAttributes Plain.18
 :FontName Proportional
 :TextColour black
 :BackgroundColour white
 :CharacterSet 1848
 :HJustification start
 :VJustification start
 :LineOrientation horizontal
 :StartCorner upper-left
 :TextWrapping false
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 5
 :Tiling false

 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 625 5
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")
 :OrigBoxSize 48 43
 :OrigPosition 675 5
 :Tiling false
 }

 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }

 {:HotSpot 3100
 :OrigBoxSize 220 110
 :OrigPosition 10 50
 }

 {:Text 3001
 :OrigContent 'Text 2: Bold.18,
 HJustification = end,
 VJustification = end.'
 :OrigBoxSize 220 110
 :OrigPosition 250 50
 :OrigFont 'OctetString in OriginalFont'
 :FontAttributes Bold.18
 :TextColour black
 :BackgroundColour white
 :CharacterSet 1848
 :HJustification end

 :VJustification end
 :LineOrientation horizontal
 :StartCorner upper-left
 :TextWrapping true
 }
 {:HotSpot 3101
 :OrigBoxSize 220 110
 :OrigPosition 250 50
 }

 {:Text 3002
 :OrigContent 'Text 3: Italic.18,
 HJustification = centre,
 StartCorner = upper-left'
 :OrigBoxSize 220 110
 :OrigPosition 490 50
 :OrigFont 'OctetString in OriginalFont'
 :FontAttributes Italic.18
 :TextColour black
 :BackgroundColour white
 :CharacterSet 1848
 :HJustification centre
 :VJustification end
 :LineOrientation horizontal
 :StartCorner upper-left
 :TextWrapping true
 }
 {:HotSpot 3102
 :OrigBoxSize 220 110
 :OrigPosition 490 50
 }

 {:Text 3003
 :OrigContent :ContentRef ("demo/to_load.txt")
 :OrigBoxSize 220 110
 :OrigPosition 10 180
 :OrigFont 'OctetString in OriginalFont'
 :FontAttributes Bold-Italic.18
 :TextColour black
 :BackgroundColour white
 :CharacterSet 1848
 :HJustification centre
 :VJustification end

 :LineOrientation horizontal
 :StartCorner upper-left
 :TextWrapping true
 }
 {:HotSpot 3103
 :OrigBoxSize 220 110
 :OrigPosition 10 180
 }

 {:Text 3004
 :OrigContent 'Text 5: Emphasis.18,
 HJustification = justified,
 VJustification = justified.'
 :OrigBoxSize 220 110
 :OrigPosition 250 180
 :OrigFont 'OctetString in OriginalFont'
 :FontAttributes Emphasis.18
 :TextColour black
 :BackgroundColour white
 :CharacterSet 1848
 :HJustification justified
 :VJustification justified
 :LineOrientation horizontal
 :StartCorner upper-left
 :TextWrapping true
 }
 {:HotSpot 3104
 :OrigBoxSize 220 110
 :OrigPosition 250 180
 }

 {:Text 3005
 :OrigContent 'Text 6: black on white, Strong.18,
 horizontally and vertically centered.'
 :OrigBoxSize 220 110
 :OrigPosition 490 180
 :FontAttributes Strong.18
 :TextColour black
 :BackgroundColour white
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }

 {:HotSpot 3105
 :OrigBoxSize 220 110
 :OrigPosition 490 180
 }

 {:Text 3006
 :OrigContent 'Text 7: black on white, Plain.10,
 horizontally and vertically centered.'
 :OrigBoxSize 220 110
 :OrigPosition 10 310
 :FontAttributes Plain.10
 :TextColour black
 :BackgroundColour white
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }
 {:HotSpot 3106
 :OrigBoxSize 220 110
 :OrigPosition 10 310
 }

 {:Text 3007
 :OrigContent 'Text 8: black on white, Italic.24,
 horizontally and vertically centered.'
 :OrigBoxSize 220 110
 :OrigPosition 250 310
 :FontAttributes Italic.24
 :TextColour black
 :BackgroundColour white
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }
 {:HotSpot 3107
 :OrigBoxSize 220 110
 :OrigPosition 250 310
 }

 {:Text 3008
 :OrigContent 'Text 9: black on white, Bold.12, Fixed,
 horizontally and vertically centered.'
 :OrigBoxSize 220 110

 :OrigPosition 490 310
 :FontAttributes Bold.12
 :FontName Fixed
 :TextColour black
 :BackgroundColour white
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }
 {:HotSpot 3108
 :OrigBoxSize 220 110
 :OrigPosition 490 310
 }

 // --

 {:Rectangle 2000
 :OrigBoxSize 224 114 :OrigPosition 8 48
 :OrigLineWidth 2 :OrigLineStyle 1
 :OrigRefLineColour Red
 :OrigRefFillColour transparent
 }

 {:IntegerVar 32000 :OrigValue 350 }
 {:IntegerVar 32001 :OrigValue 120 }
 {:ObjectRefVar 32002 :OrigValue :ObjectRef 3000 } // the text
 {:ObjectRefVar 32003 :OrigValue :ObjectRef 3100 } // the hotspot

 {:IntegerVar 2001 :OrigValue 8 }
 {:IntegerVar 2002 :OrigValue 48 }
 {:IntegerVar 2003 :OrigValue 224 }
 {:IntegerVar 2004 :OrigValue 114 }

 {:Link 1004
 :EventSource 0 :EventType UserInput :EventData 1
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (32001 1)
 :Add (2003 4)
 :Add (2004 3)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef
32001)

 :SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef
32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1005
 :EventSource 0 :EventType UserInput :EventData 2
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Add (32001 1)
 :Add (2003 4)
 :Add (2004 5)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef
32001)
 :SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef
32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1006
 :EventSource 0 :EventType UserInput :EventData 3
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (32000 1)
 :Add (2003 3)
 :Add (2004 4)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef
32001)
 :SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef
32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1007
 :EventSource 0 :EventType UserInput :EventData 4
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)

 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Add (32000 1)
 :Add (2003 5)
 :Add (2004 4)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef
32001)
 :SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef
32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)

)
 }

 // --

 {:Link 1008
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (:SetVariable (32002 :GObjectRef 3000)
 :SetVariable (32003 :GObjectRef 3100)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)

)
 }
 {:Link 1108
 :EventSource 3100 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3000)
 :SetVariable (32003 :GObjectRef 3100)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)

 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1009
 :EventSource 0 :EventType UserInput :EventData 7
 :LinkEffect (:SetVariable (32002 :GObjectRef 3001)
 :SetVariable (32003 :GObjectRef 3101)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1109
 :EventSource 3101 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3001)
 :SetVariable (32003 :GObjectRef 3101)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)

 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1010
 :EventSource 0 :EventType UserInput :EventData 8
 :LinkEffect (:SetVariable (32002 :GObjectRef 3002)
 :SetVariable (32003 :GObjectRef 3102)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1110
 :EventSource 3102 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3002)
 :SetVariable (32003 :GObjectRef 3102)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1011
 :EventSource 0 :EventType UserInput :EventData 9
 :LinkEffect (:SetVariable (32002 :GObjectRef 3003)
 :SetVariable (32003 :GObjectRef 3103)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1111
 :EventSource 3103 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3003)
 :SetVariable (32003 :GObjectRef 3103)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1012
 :EventSource 0 :EventType UserInput :EventData 10
 :LinkEffect (:SetVariable (32002 :GObjectRef 3004)
 :SetVariable (32003 :GObjectRef 3104)
 :GetPosition (:IndirectRef 32002 2001 2002)

 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1112
 :EventSource 3104 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3004)
 :SetVariable (32003 :GObjectRef 3104)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1013
 :EventSource 0 :EventType UserInput :EventData 11
 :LinkEffect (:SetVariable (32002 :GObjectRef 3005)
 :SetVariable (32003 :GObjectRef 3105)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)

 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1113
 :EventSource 3105 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3005)
 :SetVariable (32003 :GObjectRef 3105)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1014
 :EventSource 0 :EventType UserInput :EventData 12
 :LinkEffect (:SetVariable (32002 :GObjectRef 3006)
 :SetVariable (32003 :GObjectRef 3106)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003))
 }
 {:Link 1114

 :EventSource 3106 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3006)
 :SetVariable (32003 :GObjectRef 3106)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1015
 :EventSource 0 :EventType UserInput :EventData 13
 :LinkEffect (:SetVariable (32002 :GObjectRef 3007)
 :SetVariable (32003 :GObjectRef 3107)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1115
 :EventSource 3107 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3007)
 :SetVariable (32003 :GObjectRef 3107)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)

 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1016
 :EventSource 0 :EventType UserInput :EventData 14
 :LinkEffect (:SetVariable (32002 :GObjectRef 3008)
 :SetVariable (32003 :GObjectRef 3108)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1116
 :EventSource 3108 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3008)
 :SetVariable (32003 :GObjectRef 3108)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)

 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // --

 {:Text 9000
 :OrigContent 'Press key(n), or click on a Text.
 To change the size of a text presentation,
 press cursor keys.'
 :OrigBoxSize 550 110
 :OrigPosition 10 430
 :FontAttributes Plain.18 :FontName Proportional
 :TextWrapping true
 }

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 600 430
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15

 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1
 :SceneCS 730 500
 :MovingCursor true
}

intact.mhg:

{:Scene ("demo/intact.mhg" 0)

 :Items
 (
 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }
 {:Text 1000
 :OrigContent 'Testing interactible Objects:'
 :OrigBoxSize 500 30
 :OrigPosition 80 10
 :FontAttributes Bold.24 :FontName Proportional
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 5
 :Tiling false
 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43

 :OrigPosition 545 5
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")
 :OrigBoxSize 48 43
 :OrigPosition 595 5
 :Tiling false
 }

 {:Text 1001
 :OrigContent 'Test of interacting Objects. Use Cursor keys to resize
 the EntryField above.'
 :OrigBoxSize 180 200
 :OrigPosition 340 270
 :FontAttributes Plain.18 :FontName Proportional
 :HJustification justified
 :TextWrapping true
 }

 {:EntryField 3001
 :OrigContent 'A simple Entryfield.'
 :OrigBoxSize 300 100
 :OrigPosition 10 50
 :ObscuredInput true
 }

 // 'A more complex one - vertically and horizontally centered'
 {:EntryField 3002
 :OrigContent 'A more complex one - vertically and horizontally centered'
 :OrigBoxSize 300 150
 :OrigPosition 335 50
 :FontAttributes Bold.16
 :FontName Proportional
 :TextColour red
 :BackgroundColour white
 :HJustification centre
 :VJustification centre
 }

 {:OStringVar 3003
 :OrigValue "void"
 }

 {:Link 3004
 :EventSource 3002 :EventType InteractionCompleted
 :LinkEffect (:GetTextData (3002 3003)
 :SetData (3005 :indirectref 3003))
 }

 {:Text 3005
 :OrigContent 'void'
 :OrigBoxSize 300 50
 :OrigPosition 335 210
 :FontAttributes Plain.10 :FontName Proportional
 }

 // --

 {:Text 4000
 :OrigContent 'A Pushbutton:'
 :OrigBoxSize 120 30
 :OrigPosition 15 173
 :FontAttributes Plain.18 :FontName Proportional
 }

 {:PushButton 4001
 :OrigBoxSize 120 30
 :OrigPosition 180 170
 :ButtonRefColour darkYellow
 :OrigLabel "A PushButton"
 }

 {:Rectangle 4002
 :InitiallyActive false
 :OrigBoxSize 30 30
 :OrigPosition 130 170
 :OrigLineWidth 5
 :OrigLineStyle 1
 :OrigRefLineColour DarkRed
 :OrigRefFillColour Red
 }

 // ----

 {:Text 4010
 :OrigContent 'A HotSpot:'
 :OrigBoxSize 120 30
 :OrigPosition 15 213
 :FontAttributes Plain.18 :FontName Proportional
 }

 {:HotSpot 4011
 :OrigBoxSize 120 30
 :OrigPosition 180 210
 }

 {:Rectangle 4012
 :InitiallyActive false
 :OrigBoxSize 30 30
 :OrigPosition 130 210
 :OrigLineWidth 5
 :OrigLineStyle 1
 :OrigRefLineColour DarkRed
 :OrigRefFillColour Red
 }

 // ----

 {:Text 4020
 :OrigContent '3 SwitchButtons:'
 :OrigBoxSize 135 30
 :OrigPosition 15 293
 :FontAttributes Plain.18 :FontName Proportional
 }

 {:SwitchButton 4021
 :OrigBoxSize 40 30
 :OrigPosition 180 290
 :OrigLabel "A SwitchButton"
 :ButtonStyle pushbutton
 }
 {:SwitchButton 4022
 :OrigBoxSize 20 20
 :OrigPosition 230 295
 :OrigLabel "A SwitchButton"

 :ButtonStyle radiobutton
 }
 {:SwitchButton 4023
 :OrigBoxSize 20 20
 :OrigPosition 270 295
 :OrigLabel "A SwitchButton"
 :ButtonStyle checkbox
 }

 {:Text 4025
 :OrigContent 'A Slider:'
 :OrigBoxSize 135 30
 :OrigPosition 15 333
 :FontAttributes Plain.18 :FontName Proportional
 }

 {:Slider 4026
 :OrigBoxSize 120 30
 :OrigPosition 180 330
 :Orientation right
 :MaxValue 100
 :InitialPortion 50
 :SliderStyle proportional
 }

 //{:Rectangle 4029
 // :InitiallyActive false
 // :OrigBoxSize 30 30
 // :OrigPosition 130 250
 // :OrigLineWidth 5
 // :OrigLineStyle 1
 // :OrigRefLineColour DarkRed
 // :OrigRefFillColour Red
 //}

 // --

 {:Text 4040
 :OrigContent 'Show Highlights:'
 :OrigBoxSize 150 30
 :OrigPosition 15 253
 :FontAttributes Plain.18 :FontName Proportional
 }

 {:PushButton 4041
 :OrigBoxSize 60 30
 :OrigPosition 180 250
 :ButtonRefColour gray
 :OrigLabel "On"
 }

 {:PushButton 4051
 :OrigBoxSize 60 30
 :OrigPosition 240 250
 :ButtonRefColour gray
 :OrigLabel "Off"
 }

 // --

 {:Link 5000
 :EventSource 4041 :EventType IsSelected
 :LinkEffect (:SetHighlightStatus (4001 true)
 :SetHighlightStatus (4011 true)
)
 }
 {:Link 5001
 :EventSource 4051 :EventType IsSelected
 :LinkEffect (:SetHighlightStatus (4001 false)
 :SetHighlightStatus (4011 false)
)
 }

 // --

 {:Link 5010
 :EventSource 4001 :EventType IsSelected
 :LinkEffect (:Run (4002))
 }
 {:Link 5011
 :EventSource 4001 :EventType IsDeselected
 :LinkEffect (:Stop (4002))
 }

 {:Link 5020
 :EventSource 4011 :EventType IsSelected

 :LinkEffect (:Run (4012))
 }
 {:Link 5021
 :EventSource 4011 :EventType IsDeselected
 :LinkEffect (:Stop (4012))
 }

 // --

 {:IntegerVar 32000 :OrigValue -1 }
 {:IntegerVar 32001 :OrigValue -1 }

 {:Link 1020
 :EventSource 0 :EventType UserInput :EventData 4
 :LinkEffect (:GetBoxSize (3002 32000 32001)
 :Add (32000 4)
 :SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}
 {:Link 1021
 :EventSource 0 :EventType UserInput :EventData 3
 :LinkEffect (:GetBoxSize (3002 32000 32001)
 :Subtract (32000 4)
 :SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}
 {:Link 1022
 :EventSource 0 :EventType UserInput :EventData 2
 :LinkEffect (:GetBoxSize (3002 32000 32001)
 :Add (32001 4)
 :SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}
 {:Link 1023
 :EventSource 0 :EventType UserInput :EventData 1
 :LinkEffect (:GetBoxSize (3002 32000 32001)
 :Subtract (32001 4)
 :SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}

 // --

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 540 300
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1
 :SceneCS 650 370
 :MovingCursor true
}

bitmap1.mhg:

{:Scene ("demo/bitmap.mhg" 0)

 :Items (
 {:Text 100
 :OrigContent 'Testing the drawing of Bitmaps, 1.Test:'
 :OrigBoxSize 500 30
 :OrigPosition 80 10
 :FontAttributes Bold.24
 :FontName Proportional
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 5
 :Tiling false
 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 595 5
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")
 :OrigBoxSize 48 43
 :OrigPosition 645 5
 :Tiling false
 }

 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }
 // ----------------------------

 {:Bitmap 3000
 :OrigContent
 :ContentRef ("demo/pirogue.jpg")
 :OrigBoxSize 158 158
 :OrigPosition 10 100
 :Tiling false
 }
 {:HotSpot 3001
 :OrigBoxSize 158 158
 :OrigPosition 10 100
 }
 {:Text 3002

 :OrigContent 'A JPEG-encoded picture, drawn in another size:'
 :OrigBoxSize 330 40
 :OrigPosition 10 48
 :FontAttributes Plain.18
 :FontName Proportional
 :TextWrapping true
 }

 // ----------------------------

 {:Bitmap 3100
 :OrigContent
 :ContentRef ("demo/pirogue.gif")
 :OrigBoxSize 158 158
 :OrigPosition 350 100
 :Tiling false
 }
 {:HotSpot 3101
 :OrigBoxSize 158 158
 :OrigPosition 350 100
 }
 {:Text 3102
 :OrigContent 'The GIF-encoded picture rescaled:'
 :OrigBoxSize 300 20
 :OrigPosition 350 48
 :FontAttributes Plain.18 :FontName Proportional
 :TextWrapping true
 }

 // ----------------------------

 {:Bitmap 3200
 :OrigContent
 :ContentRef ("demo/pirogue.jpg")
 :OrigBoxSize 0 0
 :OrigPosition 10 310
 :Tiling false
 }
 {:Text 3202
 :OrigContent 'The JPEG-encoded picture in original size:'
 :OrigBoxSize 320 20

 :OrigPosition 10 270
 :FontAttributes Plain.18 :FontName Proportional
 }

 // ----------------------------

 {:Bitmap 3300
 :OrigContent
 :ContentRef ("demo/pirogue.gif")
 :OrigBoxSize 0 0
 :OrigPosition 350 310
 :Tiling false
 }
 {:Text 3302
 :OrigContent 'The GIF-encoded picture in original size:'
 :OrigBoxSize 320 20
 :OrigPosition 350 270
 :FontAttributes Plain.18 :FontName Proportional
 }

 // --

 {:Rectangle 2000
 :OrigBoxSize 162 162 :OrigPosition 8 98
 :OrigLineWidth 2 :OrigLineStyle 1
 :OrigRefLineColour Red
 :OrigRefFillColour transparent
 }

 {:IntegerVar 32000 :OrigValue 158 }
 {:IntegerVar 32001 :OrigValue 158 }
 {:ObjectRefVar 32002 :OrigValue :ObjectRef 3000 } // the bitmap
 {:ObjectRefVar 32003 :OrigValue :ObjectRef 3001 } // the hotspot

 {:IntegerVar 2001 :OrigValue 8 }
 {:IntegerVar 2002 :OrigValue 98 }
 {:IntegerVar 2003 :OrigValue 162 }
 {:IntegerVar 2004 :OrigValue 162 }

 {:Link 1004
 :EventSource 0 :EventType UserInput :EventData 1
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
 :GetBoxSize (:IndirectRef 32002 2003 2004)

 :Subtract (32001 1)
 :Add (2003 4)
 :Add (2004 3)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000
:IndirectRef 32001)
 :SetBoxSize (:IndirectRef 32003 :IndirectRef 32000
:IndirectRef 32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1005
 :EventSource 0 :EventType UserInput :EventData 2
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Add (32001 1)
 :Add (2003 4)
 :Add (2004 5)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000
:IndirectRef 32001)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000
:IndirectRef 32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1006
 :EventSource 0 :EventType UserInput :EventData 3
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (32000 1)
 :Add (2003 3)
 :Add (2004 4)
 :SetBoxSize (:IndirectRef 32002 :IndirectRef 32000
:IndirectRef 32001)
 :SetBoxSize (:IndirectRef 32003 :IndirectRef 32000
:IndirectRef 32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)

)
 }
 {:Link 1007
 :EventSource 0 :EventType UserInput :EventData 4
 :LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Add (32000 1)
 :Add (2003 5)
 :Add (2004 4)
 :SetBoxSize (:IndirectRef 32002
 :IndirectRef 32000 :IndirectRef 32001)
 :SetBoxSize (:IndirectRef 32002
 :IndirectRef 32000 :IndirectRef 32001)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32003)
)
 }

 // --

 {:Link 1008
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (:SetVariable (32002 :GObjectRef 3000)
 :SetVariable (32003 :GObjectRef 3001)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1108
 :EventSource 3001 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3000)
 :SetVariable (32003 :GObjectRef 3001)

 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Link 1009
 :EventSource 0 :EventType UserInput :EventData 7
 :LinkEffect (:SetVariable (32002 :GObjectRef 3100)
 :SetVariable (32003 :GObjectRef 3101)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)
 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }
 {:Link 1109
 :EventSource 3101 :EventType IsSelected
 :LinkEffect (:SetVariable (32002 :GObjectRef 3100)
 :SetVariable (32003 :GObjectRef 3101)
 :GetPosition (:IndirectRef 32002 2001 2002)
 :GetBoxSize (:IndirectRef 32002 2003 2004)
 :Subtract (2001 2)
 :Subtract (2002 2)
 :Add (2003 4)
 :Add (2004 4)

 :SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
 :SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
 :BringToFront (2000)
 :BringToFront (:IndirectRef 32002)
 :BringToFront (:IndirectRef 32003)
)
 }

 // ---

 {:Text 9000
 :OrigContent 'Press key1 or key2,
 or click on one of the upper bitmaps.
 To change the size of the
 bitmap presentation, press cursor keys.'
 :OrigBoxSize 550 110
 :OrigPosition 10 490
 :FontAttributes Plain.18 :FontName Proportional
 :TextWrapping true
 }

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 590 480
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false

 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1
 :SceneCS 700 560
 :MovingCursor true
}

bitmap2.mhg:

{:Scene ("demo/bitmap2.mhg" 0)

 :Items (
 {:Text 1000
 :OrigContent 'Testing the drawing of Bitmaps, 2.Test:'
 :OrigBoxSize 500 30
 :OrigPosition 80 10
 :FontAttributes Bold.24
 :FontName Proportional
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 5
 :Tiling false
 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 595 5
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")

 :OrigBoxSize 48 43
 :OrigPosition 645 5
 :Tiling false
 }

 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }

 {:Bitmap 3000
 :OrigContent
 :ContentRef ("demo/colors.gif")
 :OrigBoxSize 680 400
 :OrigPosition 10 50
 :Tiling false
 }

 {:Bitmap 3100
 :OrigContent
 :ContentRef ("demo/capbla.gif")
 :OrigBoxSize 180 208
 :OrigPosition 50 100
 :Tiling false
 }
 {:Bitmap 3200
 :OrigContent
 :ContentRef ("demo/capblb.gif")
 :OrigBoxSize 180 208
 :OrigPosition 150 100
 :Tiling false
 }
 {:Bitmap 3300
 :OrigContent
 :ContentRef ("demo/capblc.gif")
 :OrigBoxSize 180 208
 :OrigPosition 50 200
 :Tiling false

 }
 {:Bitmap 3400
 :OrigContent
 :ContentRef ("demo/capbld.gif")
 :OrigBoxSize 180 208
 :OrigPosition 150 200
 :Tiling false
 }

 // {:Bitmap 3500
 // :OrigContent
 // :ContentRef ("demo/globe.gif")
 // :OrigBoxSize 0 0
 // :OrigPosition 450 200
 // :Tiling false
 // }

 // ----------------------------

 {:Bitmap 5000
 :InitiallyActive false
 :OrigContent
 :ContentRef ("demo/red_ball.gif")
 :OrigBoxSize 50 50
 :OrigPosition 10 10
 :Tiling true
 }

 // ----------------------------

 {:IntegerVar 32000 :OrigValue 320 }
 {:IntegerVar 32001 :OrigValue 158 }

 {:Link 1020
 :EventSource 0 :EventType UserInput :EventData 4
 :LinkEffect (:GetBoxSize (5000 32000 32001)
 :Add (32000 5)
 :SetBoxSize (5000
 :IndirectRef 32000 :IndirectRef 32001))}

 {:Link 1021
 :EventSource 0 :EventType UserInput :EventData 3
 :LinkEffect (:GetBoxSize (5000 32000 32001)
 :Subtract (32000 5)

 :SetBoxSize (5000
 :IndirectRef 32000 :IndirectRef 32001))}

 {:Link 1022
 :EventSource 0 :EventType UserInput :EventData 2
 :LinkEffect (:GetBoxSize (5000 32000 32001)
 :Add (32001 5)
 :SetBoxSize (5000
 :IndirectRef 32000 :IndirectRef 32001))}
 {:Link 1023
 :EventSource 0 :EventType UserInput :EventData 1
 :LinkEffect (:GetBoxSize (5000 32000 32001)
 :Subtract (32001 5)
 :SetBoxSize (5000
 :IndirectRef 32000 :IndirectRef 32001))}

 // -------

 {:Link 1030
 :EventSource 0 :EventType UserInput :EventData 14
 :LinkEffect (:Run (5000)
 :BringToFront (9001)
)
 }

 {:Link 1031
 :EventSource 0 :EventType UserInput :EventData 5
 :LinkEffect (:Stop (5000)
)
 }

 {:Link 2000
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (:BringToFront (3100))
 }
 {:Link 2001
 :EventSource 0 :EventType UserInput :EventData 7
 :LinkEffect (:BringToFront (3200))
 }
 {:Link 2002
 :EventSource 0 :EventType UserInput :EventData 8
 :LinkEffect (:BringToFront (3300))

 }
 {:Link 2003
 :EventSource 0 :EventType UserInput :EventData 9
 :LinkEffect (:BringToFront (3400))
 }

 {:Link 2004
 :EventSource 0 :EventType UserInput :EventData 10
 :LinkEffect (:PutBefore (3100 3000))
 }
 {:Link 2005
 :EventSource 0 :EventType UserInput :EventData 11
 :LinkEffect (:PutBefore (3200 3000))
 }
 {:Link 2006
 :EventSource 0 :EventType UserInput :EventData 12
 :LinkEffect (:PutBefore (3300 3000))
 }
 {:Link 2007
 :EventSource 0 :EventType UserInput :EventData 13
 :LinkEffect (:PutBefore (3400 3000))
 }

 // --

 {:Text 9000
 :OrigContent 'Press Key9 to activate a tiled bitmap,
 Key0 to deactivate it,
 and Cursor Keys to resize that bitmap.'
 :OrigBoxSize 550 110
 :OrigPosition 10 480
 :FontAttributes Plain.18 :FontName Proportional
 :TextWrapping true
 }

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 590 460
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1
 :SceneCS 700 530
 :MovingCursor true
}

ea.mhg:

{:Scene ("demo/ea.mhg" 0)

 :Items
 (

 {:Text 1000
 :OrigContent 'Testing "Elementary Actions":'
 :OrigBoxSize 500 30
 :OrigPosition 80 10
 :FontAttributes Bold.24 :FontName Proportional
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 5
 :Tiling false
 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 545 5
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")
 :OrigBoxSize 48 43
 :OrigPosition 595 5
 :Tiling false
 }

 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }

 // --

 // ElementaryActions for Rectangle

 {:Rectangle 4000
 :OrigBoxSize 100 100 :OrigPosition 20 130
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Red :OrigRefFillColour DarkRed
 }
 {:Rectangle 4001
 :OrigBoxSize 100 100 :OrigPosition 60 170
 :OrigLineWidth 5 :OrigLineStyle 1
 :OrigRefLineColour Blue :OrigRefFillColour DarkBlue

 }

 // apply all ElementaryActions possible for Rectangle
 {:Link 4102
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (
 // Root
 :GetAvailabilityStatus(4000 2103)
 :GetRunningStatus(4000 2103)
 // Ingredient
 :Clone(4000 4200)
 :Preload(4000)
 :SetData(4000 "new data_1")
 :Unload(4000)
 // Presentable
 :Run(4000)
 :SetData(4000 "new data_2")
 :Stop(4000)
 :Run(4000)
 // Visible
 :BringToFront(4000)
 :GetBoxSize(4000 2101 2102)
 :GetPosition (4000 2101 2102)
 :PutBefore(4000 4001)
 :PutBehind(4000 4001)
 :SendToBack(4000)
 :SetBoxSize(4000 150 100)
 :SetPaletteRef(4000 100)
 :SetPosition(4000 20 130)
 // LineArt
 :SetFillColour (4000 :NewAbsoluteColour blue)
 :SetLineColour (4000 :NewAbsoluteColour red)
 :SetLineStyle (4000 3)
 :SetLineWidth (4000 6)
 :PutBehind(4000 4001)
)
 }

 // --

 // ElementaryActions for PushButton

 {:PushButton 5000
 :OrigBoxSize 100 100
 :OrigPosition 200 130
 :ButtonRefColour darkYellow
 :OrigLabel "A Pushbutton"
 }

 {:Link 5100
 :EventSource 0 :EventType UserInput :EventData 7
 //:EventSource 5000 :EventType IsSelected
 :LinkEffect (
 //Root:
 :GetAvailabilityStatus(5000 2101)
 :GetRunningStatus(5000 2103)
 //Ingredient:
 :Clone(5000 5200)
 :Preload(5000)
 :SetData(5000 "setdata, ingredient")
 :Unload(5000)
 //Presentable:
 :Run(5000)
 :SetData(5000 "setdata, presentable")
 :Stop(5000)
 :Run(5000)
 //Visible:
 :BringToFront(5000)
 :GetBoxSize(5000 2101 2102)
 :GetPosition(5000 2101 2102)
 :PutBefore(5000 4000)
 :PutBehind(5000 4000)
 :SendToBack(5000)
 :SetBoxSize(5000 120 90)
 :SetPaletteRef(5000 1)
 :SetPosition(5000 190 120)
 //Button:
 :Deselect(5000)
 :GetInteractionStatus(5000 2101)
 :Select(5000)
 :SetInteractionStatus(5000 true)
 :Deselect(5000)
 //PushButton:
 :GetLabel(5000 5300)
 :Select(5000)

 :SetLabel(5000 "Label set by EA")
)
 }

 // ---

 // ElementaryActions for EntryField

 {:EntryField 2000
 :OrigContent 'A more complex one. vertically and horizontally centred.'
 :OrigBoxSize 300 100
 :OrigPosition 335 50
 :FontAttributes Bold.10 :FontName Proportional
 :TextColour red
 :BackgroundColour white
 :HJustification centre
 :VJustification centre
 }

 {:IntegerVar 2101 :OrigValue 1 }
 {:IntegerVar 2102 :OrigValue 1 }
 {:BooleanVar 2103 :OrigValue true}

 // apply all ElementaryActions possible for Entryfield
 {:Link 2100
 :EventSource 0 :EventType UserInput :EventData 9
 :LinkEffect (
 // Root
 :GetAvailabilityStatus(2000 2101)
 :GetRunningStatus(2000 2103)
 // Ingredient
 :Clone(2000 4200)
 :Preload(2000)
 :SetData(2000 "new data_1")
 :Unload(2000)
 // Presentable
 :Run(2000)
 :SetData(2000 "new data_2")
 :Stop(2000)
 :Run(2000)
 // Visible
 :BringToFront(2000)

 :GetBoxSize(2000 2101 2102)
 :GetPosition (2000 2101 2102)
 :PutBefore(2000 4000)
 :PutBehind(2000 4000)
 :SendToBack(2000)
 :SetBoxSize(2000 300 100)
 :SetPaletteRef(2000 100)
 :SetPosition(2000 335 50)
 // Text
 :GetTextContent(2000 2101)
 :GetTextData(2000 2101)
 :SetData(2000 "new data_3")
 //:SetFontRef(2000 "Bold:20")
 // Interactible
 :GetHighlightStatus(2000 2101)
 :GetInteractionStatus(2000 2101)
 :SetHighlightStatus(2000 true)
 :SetInteractionStatus(2000 true)
 // EntryField
 :GetEntryPoint(2000 2101)
 :GetOverwriteMode(2000 2101)
 :SetEntryPoint(2000 5)
 :SetOverwriteMode(2000 true)
)
 }

 // --

 // ElementaryActions for DynamicLineArt

 {:DynamicLineArt 3000
 :OrigBoxSize 300 100
 :OrigPosition 335 160
 }

 // apply all ElementaryActions possible for DynamicLineArt
 {:Link 3100
 :EventSource 0 :EventType UserInput :EventData 8
 :LinkEffect (
 // Root
 :GetAvailabilityStatus(3000 2101)
 :GetRunningStatus(3000 2103)
 // Ingredient

 :Clone(3000 4200)
 :Preload(3000)
 :SetData(3000 "new data_1")
 :Unload(3000)
 // Presentable
 :Run(3000)
 :SetData(3000 "new data_2")
 :Stop(3000)
 :Run(3000)
 // Visible
 :BringToFront(3000)
 :GetBoxSize(3000 2101 2102)
 :GetPosition (3000 2101 2102)
 :PutBefore(3000 4000)
 :PutBehind(3000 4000)
 :SendToBack(3000)
 :SetBoxSize(3000 300 100)
 :SetPaletteRef(3000 100)
 :SetPosition(3000 335 160)

 // LineArt
 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour blue)
 :SetLineStyle(3000 3)
 :SetLineWidth(3000 2)

 //DynamicLineArt:
 :BringToFront(3000)
 :Clear(3000)

 :SetPosition(3000 335 160)
 :PutBefore(3000 2000)
 :PutBehind(3000 2000)
 :SendToBack(3000)
 :SetBoxSize(3000 300 100)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour green)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 2)
 :DrawArc(3000 5 5 100 50 30 180)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour blue)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 10)
 :DrawLine(3000 5 5 300 100)

 :SetFillColour(3000 :NewAbsoluteColour green)
 :SetLineColour(3000 :NewAbsoluteColour yellow)
 :SetLineStyle(3000 1)
 :SetLineWidth(3000 2)
 :DrawOval(3000 5 50 100 45)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour yellow)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 6)
 :DrawPolygon(3000
 ((100 5) (100 45) (150 30) (199 45) (199 5)))

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour black)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 3)
 :DrawPolyLine(3000
 ((100 60) (100 95) (150 80) (199 95) (199 60)))

 :SetFillColour(3000 :NewAbsoluteColour gray)
 :SetLineColour(3000 :NewAbsoluteColour red)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 3)
 :DrawRectangle (3000 205 5 90 40)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour green)
 :SetLineStyle(3000 3)
 :SetLineWidth(3000 2)
 :DrawSector(3000 205 50 90 45 -30 180)

)
 }

 {:IntegerVar 3101 :OrigValue 30 } // start_angle for arc

 {:IntegerVar 3102 :OrigValue 10 } // linewidth for line
 {:IntegerVar 3103 :OrigValue 100 } // x-size for oval
 {:IntegerVar 3104 :OrigValue 150 } // xPos of a point of polygon
 {:IntegerVar 3105 :OrigValue 80 } // yPos of a point for polyline
 {:IntegerVar 3106 :OrigValue 90 } // xSize for rectangle
 {:IntegerVar 3107 :OrigValue 180 } // arc_angle for sector

 {:Link 3200
 :EventSource 0 :EventType UserInput :EventData 1
 :LinkEffect (
 :Add (3101 5)
 :Add (3102 1)
 :Add (3103 10)
 :Add (3104 5)
 :Add (3105 5)
 :Add (3106 10)
 :Add (3107 10)

 :Clear(3000)
 :GetBoxSize(3000 2101 2102)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour green)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 2)
 :DrawArc(3000 5 5 100 50 :IndirectRef 3101 180)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour blue)
 :SetLineStyle(3000 3)
 :SetLineWidth(3000 :IndirectRef 3102)
 :DrawLine(3000 5 5 300 100)

 :SetFillColour(3000 :NewAbsoluteColour green)
 :SetLineColour(3000 :NewAbsoluteColour yellow)
 :SetLineStyle(3000 1)
 :SetLineWidth(3000 4)
 :DrawOval(3000 5 50 :IndirectRef 3103 45)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour yellow)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 6)

 :DrawPolygon(3000 ((100 5) (100 45)
 (:IndirectRef 3104 30) (199 45) (199 5)))

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour black)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 3)
 :DrawPolyLine(3000 ((100 60) (100 95)
 (150 :IndirectRef 3105) (199 95) (199 60)))

 :SetFillColour(3000 :NewAbsoluteColour gray)
 :SetLineColour(3000 :NewAbsoluteColour red)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 3)
 :DrawRectangle (3000 205 5 :IndirectRef 3106 40)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour green)
 :SetLineStyle(3000 3)
 :SetLineWidth(3000 2)
 :DrawSector(3000 205 50 90 45 -30 :IndirectRef 3107)
)
 }
 {:Link 3201
 :EventSource 0 :EventType UserInput :EventData 2
 :LinkEffect (
 :Subtract (3101 5)
 :Subtract (3102 1)
 :Subtract (3103 10)
 :Subtract (3104 5)
 :Subtract (3105 5)
 :Subtract (3106 10)
 :Subtract (3107 10)

 :Clear(3000)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour green)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 2)
 :DrawArc(3000 5 5 100 50 :IndirectRef 3101 180)

 :SetFillColour(3000 :NewAbsoluteColour red)

 :SetLineColour(3000 :NewAbsoluteColour blue)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 :IndirectRef 3102)
 :DrawLine(3000 5 5 300 100)

 :SetFillColour(3000 :NewAbsoluteColour green)
 :SetLineColour(3000 :NewAbsoluteColour yellow)
 :SetLineStyle(3000 1)
 :SetLineWidth(3000 2)
 :DrawOval(3000 5 50 :IndirectRef 3103 45)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour yellow)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 6)
 :DrawPolygon(3000 ((100 5) (100 45)
 (:IndirectRef 3104 30) (199 45) (199 5)))

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour black)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 3)
 :DrawPolyLine(3000 ((100 60) (100 95)
 (150 :IndirectRef 3105) (199 95) (199 60)))

 :SetFillColour(3000 :NewAbsoluteColour gray)
 :SetLineColour(3000 :NewAbsoluteColour red)
 :SetLineStyle(3000 2)
 :SetLineWidth(3000 3)
 :DrawRectangle (3000 205 5 :IndirectRef 3106 40)

 :SetFillColour(3000 :NewAbsoluteColour red)
 :SetLineColour(3000 :NewAbsoluteColour green)
 :SetLineStyle(3000 3)
 :SetLineWidth(3000 2)
 :DrawSector(3000 205 50 90 45 -30 :IndirectRef 3107)
)
 }

 // --

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 540 280
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1
 :SceneCS 650 350
 :MovingCursor true
}

allcl.mhg:

{:Scene ("demo/allcl.mhg" 0)

 :Items
 (

 {:Text 1000
 :OrigContent 'Testing all concrete Classes and el.Actions:'
 :OrigBoxSize 500 30
 :OrigPosition 80 10
 :FontAttributes Bold.24 :FontName Proportional
 }

 {:Bitmap 101
 :OrigContent :ContentRef ("demo/tu_klein.gif")
 :OrigBoxSize 51 39 // 0 0
 :OrigPosition 10 5
 :Tiling false
 }

 {:Bitmap 102
 :OrigContent :ContentRef ("demo/fsp_pv.gif")
 :OrigBoxSize 48 43
 :OrigPosition 545 5
 :Tiling false
 }

 {:Bitmap 103
 :OrigContent :ContentRef ("demo/prz.gif")
 :OrigBoxSize 48 43
 :OrigPosition 595 5
 :Tiling false
 }

 {:Link 110
 :EventSource 0
 :EventType UserInput
 :EventData 16
 :LinkEffect (
 :Quit (("demo/startup" 0))
)
 }
 // --

 // Root 1008
 // Group 1009
 // Application 1010
 // Scene 1011

 // Ingredient 1012
 // Link 1013

 // ---- Programs (1014) ----

 {:ResidentPrg 1015
 :Name "Hello World, I'm a ResidentProgram."
 }

 {:RemotePrg 1016
 :Name "Hello World, I'm a RemoteProgram."
 }

 {:InterchgPrg 1017
 :Name "Hello World, I'm a InterchangedProgram."
 }

 {:Palette 1018
 }

 {:Font 1019
 }

 {:CursorShape 1020
 }

 // ---- Variables 1021 ----

 {:BooleanVar 1022
 :OrigValue true
 }

 {:IntegerVar 1023
 :OrigValue 1
 }

 {:OStringVar 1024
 :OrigValue "hello world"
 }

 {:ObjectRefVar 1025
 :OrigValue :ObjectRef 1024
 }

 {:ContentRefVar 1026

 :OrigValue :ContentRef "demo/to_load.txt"
 }

 // ---- Presentables 1027 ----
 // TokenManager 1028

 {:TokenGroup 1029
 :TokenGroupItems ((1024))
 }

 {:ListGroup 1030
 :TokenGroupItems ((1024))
 :Positions ((10 10))
 }

 {:Stream 1037
 :Multiplex ({:Audio 1038 :ComponentTag 100 })
 }

 {:Audio 1038
 :ComponentTag 100
 }

 // ---- Visibles ----

 {:Text 2000
 :OrigContent 'Bitmap, LineArt, Rectangle, Dynamic- LineArt:'
 :OrigBoxSize 95 95
 :OrigPosition 0 50
 :FontAttributes Bold.14
 :TextColour black
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }

 {:Bitmap 1032
 :OrigContent :ContentRef ("demo/pirogue.jpg")
 :OrigBoxSize 120 120
 :OrigPosition 100 50
 }

 {:LineArt 1033
 :OrigBoxSize 120 120

 :OrigPosition 225 50
 }

 {:Rectangle 1034
 :OrigBoxSize 120 120
 :OrigPosition 350 50
 :OrigLineWidth 5
 :OrigLineStyle 1
 :OrigRefLineColour Red
 :OrigRefFillColour Yellow
 }

 {:DynamicLineArt 1035
 :OrigBoxSize 120 120
 :OrigPosition 475 50
 }

 // ---------------------------

 {:Text 2001
 :OrigContent 'Text, Video, RTGraphics:'
 :OrigBoxSize 95 95
 :OrigPosition 0 175
 :FontAttributes Bold.14
 :TextColour black
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }

 {:Text 1036
 :OrigContent "I'm a simple Text"
 :OrigBoxSize 120 120
 :OrigPosition 100 175
 :TextColour red
 :BackgroundColour black
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }

 {:Video 1039
 :InitiallyActive true

 :OrigContent
 :ContentRef ("demo/saao.m1v")
 :OrigBoxSize 120 120
 :OrigPosition 225 175
 :ComponentTag 100
 :Termination loop
 }

 {:RTGraphics 1040
 :OrigBoxSize 120 120
 :OrigPosition 350 175
 :ComponentTag 100
 }

 // ---- Interactibles 1041 ----

 {:Text 2002
 :OrigContent 'Slider, EntryField, HyperText:'
 :OrigBoxSize 95 95
 :OrigPosition 0 300
 :FontAttributes Bold.14
 :TextColour black
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }

 {:Slider 1042
 :OrigBoxSize 120 120
 :OrigPosition 100 300
 :Orientation up
 :MaxValue 100
 :SliderStyle proportional
 }

 {:EntryField 1043
 :OrigBoxSize 120 120
 :OrigPosition 225 300
 }

 {:HyperText 1044
 :OrigContent 'HyperText: an anchor to
 Tom Caseys site'

 :OrigBoxSize 120 120
 :OrigPosition 350 300

 }

 // ---- Buttons 1045 ----

 {:Text 2003
 :OrigContent 'HotSpot, PushButton, SwitchButton:'
 :OrigBoxSize 95 95
 :OrigPosition 0 425
 :FontAttributes Bold.14
 :TextColour black
 :HJustification centre
 :VJustification centre
 :TextWrapping true
 }

 {:Hotspot 1046
 :OrigBoxSize 120 120
 :OrigPosition 100 425
 }

 {:PushButton 1047
 :OrigBoxSize 120 120
 :OrigPosition 225 425
 }

 {:SwitchButton 1048
 :OrigBoxSize 120 120
 :OrigPosition 350 425
 :ButtonStyle radiobutton
 }

 // TODO: ___TODO___:
 //{:Action
 // (:Activate 1000)
 //}

 // --

 {:IntegerVar 3100 :OrigValue 1 }

 {:IntegerVar 3101 :OrigValue 1 }
 {:BooleanVar 3102 :OrigValue true }
 {:ObjectRefVAr 3103 :OrigValue :ObjectRef 3000}

 // apply all ElementaryActions possible for all classes
 {:Link 3000
 :EventSource 0 :EventType UserInput :EventData 6
 :LinkEffect (
 // Root (using the bitmap: 1032)
 :GetAvailabilityStatus(1032 3102)
 :GetRunningStatus(1032 3102)

 // Scene
 //:SendEvent(0 1) // todo.
 :GetCursorPosition(0 3100 3101)
 :SetCursorPosition(0 100 100)
 :SetCursorShape(1000 1000)
 :SetTimer(0 1 2 :AbsoluteTime true)
 //:TransitionTo() // not so useful here.

 //Application:
 //:CloseConnection()
 //:GetEngineSupport()
 //:Launch()
 //:LockScreen()
 //:OpenConnection()
 //:Quit()
 //:ReadPersistent()
 //:Spawn()
 //:StorePersistent()
 //:UnlockScreen()

 // Ingredient (using the bitmap: 1032)
 :Clone(1032 1050)
 :Preload(1032)
 :SetData(1032 "new data_1")
 :Unload(1032)

 //Link:
 //:Activate()
 //:Deactivate()

 //Program (using resident program: 1015)

 //:Call(1015)
 //:Fork(1015)
 //:SetData(1015)
 //:Stop(1015)

 //Presentable (using the bitmap: 1032)
 //:Run(1032)
 //:SetData(1032)
 //:Stop(1032)

 //Stream:
 //:Clone()
 :SetCounterEndPosition(1037 5)
 :SetCounterPosition(1037 1)
 :SetCounterTrigger(1037 2)
 //:SetData(1037)
 :SetSpeed(1037 25)

 //Visible (using the bitmap: 1032)
 :BringToFront(1032)
 :GetBoxSize(1032 3100 3101)
 :GetPosition(1032 3100 3101)
 :PutBefore(1032 1035)
 :PutBehind(1032 1035)
 :SendToBack(1032)
 :SetBoxSize(1032 60 60)
 //:SetPaletteRef(1032)
 :SetPosition(1032 100 50)

 //RTGraphics:
 //:Clone(1040)
 //:SetData(1040)

 //LineArt:
 //:SetFillColour(1033)
 //:SetLineColour(1033)
 :SetLineStyle(1033 3)
 :SetLineWidth(1033 2)

 //DynamicLineArt:
 :BringToFront(1035)
 :Clear(1035)
 :DrawArc(1035 10 10 30 30 0 180)

 :DrawLine(1035 10 10 50 50)
 :DrawOval(1035 20 20 50 30)
 //:DrawPolygon(1035)
 //:DrawPolyline(1035)
 :DrawRectangle(1035 10 10 30 50)
 :DrawSector(1035 30 30 40 40 90 180)
 //:GetFillColour(1035)
 //:GetLineColour(1035)
 :GetLineStyle(1035 3100)
 :GetLineWidth(1035 3100)
 :PutBefore(1035 1032)
 :PutBehind(1035 1032)
 :SendToBack(1035)
 :SetBoxSize(1035 90 90)
 //:SetFillColour(1035)
 //:SetLineColour(1035)
 :SetLineStyle(1035 5)
 :SetLineWidth(1035 6)
 :SetPosition(1035 400 50)

 //Bitmap:
 :ScaleBitmap(1032 50 50)
 :SetTransparency(1032 25)

 //Text:
 //:GetTextContent(1036)
 //:GetTextData(1036)
 //:SetData(1036)
 //:SetFontRef(1036)

 //Interactible (using EntryField):
 :GetHighlightStatus(1043 3102)
 :GetInteractionStatus(1043 3102)
 :SetHighlightStatus(1043 true)
 :SetInteractionStatus(1043 true)

 //EntryField:
 :GetEntryPoint(1043 3101)
 :GetOverwriteMode(1043 3102)
 :SetEntryPoint(1043 4)
 :SetOverwriteMode(1043 false)

 //HyperText:

 //:GetLastAnchorField(1044)

 //Video:
 //:Clone(1039)
 :ScaleVideo(1039 30 30)
 //:SetData(1039)

 //Slider:
 :GetPortion(1042 3101)
 :GetSliderValue(1042 3101)
 :SetPortion(1042 50)
 :SetSliderValue(1042 25)
 :Step(1042 1)

 //Button (using PushButton)
 :Deselect(1047)
 :GetInteractionStatus(1047 3102)
 :Select(1047)
 :SetInteractionStatus(1047 true)

 //HotSpot:
 :Select(1046)

 //PushButton:
 //:GetLabel(1047)
 :Select(1047)
 :SetLabel(1047 "new Label")

 //SwitchButton:
 :Deselect(1048)
 :GetSelectionStatus(1048 3102)
 :Select(1048)
 :SetLabel(1048 "new Label")
 //:Toggle(1048)

 //Audio:
 //:Clone(1038)
 :GetVolume(1038 3100)
 //:SetData(1038)
 //:SetVolume(1038 100)

 //TokenGroup:
 //:CallActionSlot(1029)

 //ListGroup:
 :AddItem(1030 1 1032)
 :DelItem(1030 1032)
 :DeselectItem(1030 2)
 :GetCellItem(1030 2 1032)
 :GetFirstItem(1030 1032)
 //:GetItemStatus(1030)
 //:GetListItem(1030)
 //:GetListSize(1030)
 //:ScrollItems(1030)
 //:SelectItem(1030)
 //:SetFirstItem(1030)
 //:ToggleItem(1030)

 //TokenManager (using TokenGroup):
 //:GetTokenPosition(1029)
 //:Move(1029)
 //:MoveTo(1029)

 //Variable (using IntegerVariable):
 //:SetVariable(1023)
 //:TestVariable(1023)

 //IntegerVariable:
 //:Add(1023)
 //:Divide(1023)
 //:Modulo(1023)
 //:Multiply(1023)
 //:SetVariable(1023)
 //:Subtract(1023)

 //BooleanVariable:
 //:SetVariable(1022)

 //OctetStringVariable:
 //:SetVariable(1024)
 //:Append(1024)

 //ObjectRefVariable:
 //:SetVariable(1025)

 //ContentRefVariable:
 //:SetVariable(1026)

)
 }

 // --

 {:PushButton 9001
 :OrigBoxSize 100 60
 :OrigPosition 540 480
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
 }

)

 :InputEventReg 1
 :SceneCS 650 550
 :MovingCursor true
}

token.mhg:

{:Scene ("demo/tokentest.mhg" 0)

 :Items
 (
 {:Text 500 :InitiallyActive false
 :OrigContent 'TokenGroup is running'
 :OrigBoxSize 500 30
 :OrigPosition 70 2
 :FontAttributes Bold.18 :FontName Proportional
 }
 {:Text 501 :InitiallyActive true
 :OrigContent 'TokenGroup is not running'
 :OrigBoxSize 500 30
 :OrigPosition 70 2
 :FontAttributes Bold.18 :FontName Proportional
 }

 {:PushButton 50 :InitiallyActive true
 :OrigBoxSize 150 30 :OrigPosition 10 175
 :ButtonrefColour Gray :OrigLabel "Run TokenGroup" }
 {:Link 60 :EventSource 50 :EventType IsSelected
 :LinkEffect (:MoveTo(1000 0)
 :CallActionSlot(1000 1)
 :Run(1000))}

 {:PushButton 51 :InitiallyActive true
 :OrigBoxSize 150 30 :OrigPosition 160 175
 :ButtonRefColour Gray :OrigLabel "Stop TokenGroup" }
 {:Link 62 :EventSource 51 :EventType IsSelected
 :LinkEffect (:MoveTo(1000 0)
 :CallActionSlot(1000 2)
 :Stop(1000))}

 {:Link 100 :EventSource 101 :EventType IsSelected
 :LinkEffect (:GetTokenPosition(1000 104)
 :SetVariable(103 :GInteger :IndirectRef 104)
 :SetVariable(102 :GOctetString "Query TokenPosition<")
 :Append (102 :IndirectRef 103)
 :Append (102 ">")
 :SetLabel (101 :IndirectRef 102))
 }

 {:PushButton 101 :InitiallyActive true
 :OrigBoxSize 300 30 :OrigPosition 10 205
 :ButtonRefColour Gray :OrigLabel "Query TokenPosition<?>" }
 {:OStringVar 102 :OrigValue "" }
 {:OStringVar 103 :OrigValue "" }
 {:IntegerVar 104 :OrigValue -1 }

 {:PushButton 106 :InitiallyActive true
 :OrigBoxSize 100 30 :OrigPosition 10 235
 :ButtonRefColour Gray :OrigLabel "NextItem" }
 {:PushButton 107 :InitiallyActive true
 :OrigBoxSize 100 30 :OrigPosition 110 235
 :ButtonRefColour Gray :OrigLabel "PrevItem" }

 {:Link 111 :EventSource 106 :EventType IsSelected
 :LinkEffect(:Move(1000 1)) }
 {:Link 112 :EventSource 107 :EventType IsSelected
 :LinkEffect(:Move(1000 2)) }

 {:PushButton 120 :InitiallyActive true
 :OrigBoxSize 60 30 :OrigPosition 10 265
 :ButtonRefColour Gray :OrigLabel "MoveTo1" }
 {:PushButton 121 :InitiallyActive true
 :OrigBoxSize 60 30 :OrigPosition 70 265
 :ButtonRefColour Gray :OrigLabel "MoveTo2" }
 {:PushButton 122 :InitiallyActive true
 :OrigBoxSize 60 30 :OrigPosition 130 265
 :ButtonRefColour Gray :OrigLabel "MoveTo3" }
 {:PushButton 123 :InitiallyActive true
 :OrigBoxSize 60 30 :OrigPosition 190 265
 :ButtonRefColour Gray :OrigLabel "MoveTo4" }
 {:PushButton 124 :InitiallyActive true
 :OrigBoxSize 60 30 :OrigPosition 250 265
 :ButtonRefColour Gray :OrigLabel "MoveTo5" }

 {:Link 125 :EventSource 120 :EventType IsSelected
 :LinkEffect(:MoveTo(1000 1)) }
 {:Link 126 :EventSource 121 :EventType IsSelected
 :LinkEffect(:MoveTo(1000 2)) }
 {:Link 127 :EventSource 122 :EventType IsSelected
 :LinkEffect(:MoveTo(1000 3)) }
 {:Link 128 :EventSource 123 :EventType IsSelected
 :LinkEffect(:MoveTo(1000 4)) }

 {:Link 129 :EventSource 124 :EventType IsSelected
 :LinkEffect(:MoveTo(1000 5)) }

 {:Rectangle 4711 :InitiallyActive false
 :OrigBoxSize 64 64 :OrigPosition 40 25 :OrigLineWidth 4 :OrigLineStyle 1
 :OrigRefLineColour DarkRed :OrigRefFillColour Red
 }
 {:Rectangle 4712 :InitiallyActive false
 :OrigBoxSize 64 64 :OrigPosition 78 45 :OrigLineWidth 4 :OrigLineStyle 1
 :OrigRefLineColour DarkGray :OrigRefFillColour Gray
 }
 {:Rectangle 4713 :InitiallyActive false
 :OrigBoxSize 64 64 :OrigPosition 116 65 :OrigLineWidth 4 :OrigLineStyle 1
 :OrigRefLineColour DarkBlue :OrigRefFillColour Blue
 }
 {:Rectangle 4714 :InitiallyActive false
 :OrigBoxSize 64 64 :OrigPosition 154 85 :OrigLineWidth 4 :OrigLineStyle 1
 :OrigRefLineColour DarkGreen :OrigRefFillColour Green
 }
 {:Rectangle 4715 :InitiallyActive false
 :OrigBoxSize 64 64 :OrigPosition 192 105 :OrigLineWidth 4 :OrigLineStyle 1
 :OrigRefLineColour DarkMagenta :OrigRefFillColour Magenta
 }

 {:Link 1001 :EventSource 1000 :EventType TokenMovedFrom :EventData 1
 :LinkEffect (:CallActionSlot(1000 1))}
 {:Link 1002 :EventSource 1000 :EventType TokenMovedTo :EventData 1
 :LinkEffect (:CallActionSlot(1000 2))}
 {:Link 1003 :EventSource 1000 :EventType TokenMovedFrom :EventData 2
 :LinkEffect (:CallActionSlot(1000 1))}
 {:Link 1004 :EventSource 1000 :EventType TokenMovedTo :EventData 2
 :LinkEffect (:CallActionSlot(1000 2))}
 {:Link 1005 :EventSource 1000 :EventType TokenMovedFrom :EventData 3
 :LinkEffect (:CallActionSlot(1000 1))}
 {:Link 1006 :EventSource 1000 :EventType TokenMovedTo :EventData 3
 :LinkEffect (:CallActionSlot(1000 2))}
 {:Link 1007 :EventSource 1000 :EventType TokenMovedFrom :EventData 4
 :LinkEffect (:CallActionSlot(1000 1))}
 {:Link 1008 :EventSource 1000 :EventType TokenMovedTo :EventData 4
 :LinkEffect (:CallActionSlot(1000 2))}
 {:Link 1009 :EventSource 1000 :EventType TokenMovedFrom :EventData 5
 :LinkEffect (:CallActionSlot(1000 1))}
 {:Link 1010 :EventSource 1000 :EventType TokenMovedTo :EventData 5

 :LinkEffect (:CallActionSlot(1000 2))}

 {:TokenGroup 1000
 :InitiallyActive false
 :Shared false
 :MovementTable
 (
 (2 3 4 5 1)
 (5 1 2 3 4)
)
 :TokenGroupItems
 (
 (4711
 :ActionSlots
 (
 (:SetFillColour(4711 :NewAbsoluteColour red))
 (:SetFillColour(4711 :NewAbsoluteColour transparent))
)
)
 (4712
 :ActionSlots
 (
 (:SetFillColour(4712 :NewAbsoluteColour gray))
 (:SetFillColour(4712 :NewAbsoluteColour transparent))
)
)
 (4713
 :ActionSlots
 (
 (:SetFillColour(4713 :NewAbsoluteColour blue))
 (:SetFillColour(4713 :NewAbsoluteColour transparent))
)
)
 (4714
 :ActionSlots
 (
 (:SetFillColour(4714 :NewAbsoluteColour green))
 (:SetFillColour(4714 :NewAbsoluteColour transparent))
)
)
 (4715
 :ActionSlots

 (
 (:SetFillColour(4715 :NewAbsoluteColour magenta))
 (:SetFillColour(4715 :NewAbsoluteColour transparent))
)
)
)
 :NoTokenActionSlots
 (
 (:Run(500) :Stop(501))
 (:Run(501) :Stop(500))
)
 }

 {:PushButton 9001
 :OrigBoxSize 100 30
 :OrigPosition 210 300
 :ButtonRefColour gray
 :OrigLabel "back to main"
 }

 {:Link 9002
 :EventSource 9001 :EventType IsSelected
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
 }

 {:Link 9003
 :EventSource 9001 :EventType CursorEnter
 :LinkEffect (:Activate(9005))
 }
 {:Link 9004
 :EventSource 9001 :EventType CursorLeave
 :LinkEffect (:DeActivate(9005))
 }
 {:Link 9005
 :InitiallyActive false
 :EventSource 0
 :EventType UserInput
 :EventData 15
 :LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)

 }

)

 :InputEventReg 1
 :SceneCS 320 350
 :MovingCursor true
}

Next: More Examples Up: An MHEG Player Java Previous: MHEG Example
Dave Marshall
10/4/2001

Next: Relationships to Major Standards Up: An MHEG Player Java Previous: MHEG
Example

More Examples

Further examples are available in the applications folder:

bitmap
-- further examples of bitmaps in MHEG

interacting
-- further examples of interactiion in MHEG

intvar
-- integer variables

jmf
-- video and audio

quiz2
-- MHEG quiz in MHEG

text
-- further text in MHEG.

Dave Marshall
10/4/2001

Next: MHEG Implementation Up: Multimedia and Hypermedia Information Previous:
More Examples

Relationships to Major Standards

Important relationships exist between MHEG-5 and other standards and specifications.

Davic (Digital Audio Visual Council)
-- aims to maximize interoperability across applications and services for the
broadcast and interactive domains. It selects existing standards and specifies their
interfaces in the realm of a complete reference model. This comprises the content
provider system, the service provider system, and the service consumer system.
This forum has prepared a series of specifications: Davic 1.0 selected MHEG-5
for encoding base level applications and Davic 1.1 relies on MHEG-6 to extend
these applications in terms of the Java virtual machine that uses services from the
MHEG-5 RTE.

DVB (Digital Video Broadcasting)s
-- provides a complete solution for digital television and data broadcasting across
a range of delivery media where audio and video signals are encoded in MPEG-2.
The specification includes an open service information system, known as DVB-
SI, which provides the elements necessary for developing a basic electronic
program guide (EPG) to support navigation amongst the new digital television
services.

MPEG
-- the well-known(Chapter 7) family of standards used for coding audiovisual
information (such as movies, video, and music) in a digital compressed format.
MPEG-1 and MPEG-2 streams are likely to be used by MHEG-5 applications,
which can easily control their playback through the facilities provided by the
Stream class.

DSMCC (Digital Storage Media Command and Control)
-- specifies a set of protocols for controlling and managing MPEG streams in a
client-server environment. The user-to-user protocol (both the client and server
are users) consists of VCR commands for playback of streams stored on the
server, as well as commands for downloading other data (bitmaps, text, and so
on). The playback of MPEG streams from within MHEG-5 applications has a
counterpart at the DSMCC layer.

Next: MHEG Implementation Up: Multimedia and Hypermedia Information Previous:

More Examples
Dave Marshall
10/4/2001

Next: MHEG Future Up: Multimedia and Hypermedia Information Previous: Relationships to Major Standards

MHEG Implementation

Several components may be requires in implementing and MHEG systems:

Runtime Engine (RTE)
-- MHEG-5 runtime engines generally run accross a client-server architecture (See The Armida system (Figure 8.14) referenced below for an example application).

Armedia Client Architecture
Armedia is a client-server based interactive multimedia application retrieval system.

A preceding Start-up Module may be used to perform general initialization etc.:

❍ The client can be launched either as an autonomous Windows application or
❍ as a plug-in by an HTML browser, allowing seamless navigation between the World Wide Web and the webs of MHEG-5 applications. (See Armida

system for more details).

The MHEG-5 RTE is the kernel of the client's architecture. It performs the pure interpretation of MHEG-5 objects and, as a platform-independent module, issues
I/O and data access requests to other components that are optimized for the specific runtime platform.

The RTE performs two main tasks. First, it prepares the presentation and handles accessing, decoding, and managing MHEG-5 objects in their internal format. The
second task is the actual presentation, which is based on an event loop where events trigger actions. These actions then become requests to the Presentation layer
along with other actions that internally affect the engine.

Presentation layer

http://www.cs.cf.ac.uk/Dave/Multimedia/armedia.gif

-- The presentation layer (PL) manages windowing resources, deals with low-level events, and performs decoding and rendering of contents from different media
to the user. This functionality is available to the RTE via an object-oriented API that encapsulates all I/O platform specific aspects. The basic MHEG-5 Presentable
classes have counterparts at this API level, which makes provisions for initialization/termination, data access and decoding, setting specific attributes (such as text
font, color, and so on), and performing spatial and temporal controls. In addition, an informative flow exists from the PL back to the RTE, which notifies user
interaction and stream events.

Access module
-- This module provides a consistent API for accessing information from different sources. It's used by the RTE to get objects and the PL to access content data
(either downloaded or streamed). Note that the selection of a particular delivery strategy is out of MHEG-5's scope, and hence remains an implementation issue.
Typical applications should support:

❍ bulk download for bitmaps, text, and MHEG-5 objects; and
❍ progressive download for audio and audiovisual streams.

The implementation of these mechanisms occurs via the DSMCC interface. The user has full interactive control of the data presentation, including playback of
higher quality MPEG-2 streams delivered through an ATM network. Object and content access requests can also be issued to the Web via HTTP. However, this
wide-spread protocol still suffers from limitations when high-quality video clips are progressively down-loaded, since the underlying networks may not yet
provide adequate quality-of-service (QoS). When accessing the broadcast service, the Access module requires the DVB channel selection component to select the
program referred to by a Stream object. To achieve this, you set the Con-tentHook to a value that means Switched DVB and the OriginalContent to the identifier of
the channel to select. The MPEG-2 stream transport-ed by the selected channel is displayed in the active Scene's presentation space.

MHEG Authoring Tool: MediaTouch
--

The availability of an adequate authoring tool is mandatory to create the MHEG applications. The MediaTouch (Figure 8.15) application is one example developed
for the Armida Sysytem
(http://drogo.cselt.stet.it/ufv /ArmidaIS/home_en.htm). It is a visual-based Hierarchical Iconic authoring tool, similar to Authorware in many approaches.

http://drogo.cselt.stet.it/ufv/ArmidaIS/home_en.htm

MediaTouch MHEG Authoring Tool (Hierarchy and Links Editor windows)

MediaTouch is based on the native approach, which lets the author operate at the level of MHEG-5 objects.

MediaTouch provides authors with the following functions:

http://www.cs.cf.ac.uk/Dave/Multimedia/mediatouch.gif

Hierarchy Editor
-- Supports the interactive creation of the structure of Applications and Scenes objects. The author operates by adding, moving, and deleting Ingredients on
the tree that represents the hierarchy's current status. Several Scenes from different Applications can be edited at one time and you can copy and move
Ingredients between Scenes and Applications.

Properties Editor
-- The author sets the properties of Presentable Ingredients via an input form that is specific to each object class. The author does not need to type a value
directly, since the system adopts a menu-based input interface that aims to minimize errors and inconsistencies.

Layout Editor
-- A Scene's layout can be set by interactively adjusting the position and size of the bounding box for every Visible Ingredient. An Ingredient's content data,
when available, is also displayed within its bounding box to make the layout match the actual presentation.

Links Editor
-- This function lets authors add, modify, and delete links and actions to Application and Scene objects. The author sets the link conditions, actions, and
referenced objects via a menu. Links and actions can also be copied between different scenes and applications.

Figure 8.15) shows a screen shot from MediaTouch where an Application composed of two Scenes and one shared Text is open within the Hierarchy Editor
window. One of these Scenes shows its Presentable Ingredients, and the author is editing its Links. The author can then launch the RTE from within MediaTouch
to check the outcome of his work.

MHEG Autoring Tool: MHEGDitor
-- MHEGDitor is an MHEG-5 authoring tool based on Macromedia Director. MHEGDitor is composed of an Authoring Xtra to edit applications and of a
Converter Xtra to convert resulting movies into MHEG-5 applications. The two MHEGDitor Xtras work separately. With MHEGDitor Authoring Xtra, create and
edit your application within Macromedia Director 6. It opens a window to set preferences and links a specific external script castLib to your movie for you to
create specific MHEG behaviours rapidly. You can test your application on the spot within Director, as if it were played by MHEGPlayer, the MHEG interpreter
companion of MHEGDitor. With MHEGDitor Converter Xtra, convert Macromedia Director 6 movies (edited with MHEGDitor Authoring Xtra) into a folder
containing all necessary items for an MHEG-5 application. Associated with Macromedia Director 6, MHEGDitor is the easiest way to author multimedia
applications for Interactive TV for both Macintosh and Windows. This tool makes it possible for all system operators or content providers to deliver developed
interactive programs to the widest range of potential users.

The Current Release is 1.4 which performs the following:

❍ Director 6.5 to MHEG-5
❍ Available on both Macintosh and Windows 95/NT platforms
❍ Advanced dynamic lists support, new Converter Xtra settings (text data exported as external data...), converted applications optimisation, and more.

MHEG writing tool:MHEG Write
-- An editor to create and manipulate MHEG-5 applications by hand This editor is based on the free software "VIM", which is available via Internet from various
sites for virtually all operating systems, including DOS, Windows, UNIX, etc. The MHEGWrite extension supports only the MHEG-5 textual notation.
MHEGWrite provides macros for object templates, syntax highlighting and syntax error detection. Using MHEGWrite enables you to access every MHEG-5
features to edit your applications, since this editor is able to read native MHEG-5 code. It also gives good support for detailed examination, profile adaptation, and
error correction of MHEG-5 applications produced with arbitrary other tools. By purchasing MHEGWrite, the MHEG Centre will also provide you with a set of
MHEG-5 application samples, illustrating several MHEG-5 features, such as ListGroup together with cloning, using variables, sharing objects, etc.

Playing MHEG files
-- There are a few ways to play MHEG files:

❍ MHEGPlayer is an MHEG-5 interpreter which is able to execute MHEG-5 applications developed with MHEGDitorTM or any other authoring tool. It
implements the MHEG-5 International Standard according to the additional requirements of the DAVIC application domain. The available content types
are aligned with the underlying operating system. MHEGPlayer consists of a core interpreter with presentation system for Windows 95/NT. It is pre-
configured to utilise the local file system to access MHEG objects and content data.

Supported Formats include:

■ Bitmap: PNG, BMP, TIFF, JPEG, PSD
■ Video: MPEG-1, AVI, Quicktime (via MCI)
■ Audio: Wave, AIFF_C (via MCI)
■ MHEG-5: ASN.1 (DER) or Textual Notation

❍ MHEG Java Engine -- Java Source code exists to compile a platform-independent MHEG player (http://enterprise.prz.tu-berlin.de/imw/)
❍ MHEG plug-ins for Netscape Browsers and Internet Explorer have been developed,

Next: MHEG Future Up: Multimedia and Hypermedia Information Previous: Relationships to Major Standards
Dave Marshall
10/4/2001

Next: Further Reading/Information Up: Multimedia and Hypermedia Information
Previous: MHEG Implementation

MHEG Future

Several companies and research institutes are currently developing MHEG tools and
applications and conducting interoperability experiments for international projects and
consortia. The MHEG Support Center is a European project that hopes to implement and
operate an MHEG support and conformance testing environment for developers of
multimedia systems and applications. Its partners include CCETT, Cril Ingenierie
(France), De teBerkom, and GMD Fokus (Germany). IPA, the Information-technology
Promotion Agency of Japan, is developing an MHEG-5 system with an authoring tool
and viewer. The project members consist of ASCII, KDD, NEC, NTT Soft-ware, the
Oki Electric Industry, Pioneer, Sony, and Toppan Printing. The purpose of this project is
to do a profiling study and conduct interoperability testing of MHEG-5 systems.

Also, the following European achievements are worth mentioning:

● a Java implementation of an MHEG-5 engine, available from Philips; (See
below)

● MhegDitor by CCETT, an authoring tool based on Macromedia Director; and
● the results of the Jupiter project that addresses usability, performance, and

interoperability of Davic-compliant services.

At CSELT, a partner of Jupiter, we're making more complete versions of MediaTouch
and Armi-da. We've demonstrated these systems at a number of events on behalf of
Telecom Italia and showed such applications as movies-on-demand, news-on-demand,
tourist information, and interactive TV.

A list containing the above applications and other initiatives is maintained by the MHEG
Users Group (MUG), an unofficial forum begun by people from the standardization
body to dissemi-nate information and enable discussion on MHEG (see
http://www.fokus.gmd.de/ovma/mug).

It's evident that the initial interest in MHEG-1 and MHEG-3 has recently decreased due
to the incoming ITV/VoD profile, which is based on MHEG-5 and MHEG-6. The
specification of this complete solution, urged and endorsed by Davic, was finalized by
April 1998 when MHEG-6 is scheduled to become an International Standard. Further
efforts will be devoted to MHEG-7, which is expected to provide the final specification
of conformance and interoperability aspects for MHEG-5 by January 1999.

http://www.fokus.gmd.de/ovma/mug

Next: Further Reading/Information Up: Multimedia and Hypermedia Information
Previous: MHEG Implementation
Dave Marshall
10/4/2001

Next: Multimedia Programming Up: Multimedia and Hypermedia Information
Previous: MHEG Future

Further Reading/Information

The above notes on MHEG are base largely on an article MHEG-5 -- Aim, Concepts,
and Implementation Issues, by M. Echiffre, C. Marchisio, P. Marchisio, P. Panicciari
and S. Del Rossi, IEEE Multimedia, Winter 1998, pp 84-91. Also available at URL:
http://www.fokus.gmd.de/ovma/mug/archives/doc/u1084.pdf

Other good reference on MHEG and related multimedia standards are:

● T. Meyer-Boudnik and W. Effelsberg, MHEG Explained, IEEE Multimedia,
Spring 1995, Vol. 2, No. 1, pp. 26-38.

● ISO 13522-5, Information Technology‹Coding of Multimedia and Hypermedia
Information, Part 5: Support for Base-Level Interactive Applications, Int'l Org.
for Standardization/Int'l Electronics Comm., Geneva, 1996.

● ISO Draft International Standard 13522-6, Information Technology‹Coding of
Multimedia and Hypermedia Information, Part 6: Support for Enhanced
Interactive Applications, Int'l Org. for Standardization/ Int'l Electronics Comm.,
Geneva, 1997.

● Davic 1.0 Specifications, Revision 5.0, Imprimeries de Versoix, Versoix,
Switzerland, Dec. 1995.

● ETSI 300 468 2d ed.: Digital Broadcasting Systems for Television, Sound, and
Data Services, Specification for Service Information (SI) in Digital Video
Broadcasting (DVB) Systems, ETSI publications dept., Sophia Antipolis, France,
1997, http://www.etsi.fr.

● ISO 13818-6, Information Technology‹Generic Coding of Moving Pictures and
Associated Audio Informa-tion, Part 6: Digital Storage Media Command and
Control, Int'l Org. for Standardization/Int'l Electronics Comm., Geneva, 1996.

● S. Dal Lago et al., Armida: Multimedia Applications Across ATM-Based
Networks Accessed via Internet Navigation, Multimedia Tools and Applications,
Vol. 5, No. 2, Sept. 1997.

Resources on the Web include:

● The MHEG Centre --- http://www.mhegcentre.com/
● MHEG-5 User Group --- www.fokus.gmd.de/ovma/mug
● MHEG and the WWW --- http://www.prz.tu-

berlin.de/~joe/mheg/mheg_intro.html
● Java MHEG Engine --- http://thunder.informatik.uni-

http://www.fokus.gmd.de/ovma/mug/archives/doc/u1084.pdf
http://www.mhegcentre.com/
http://www.cs.cf.ac.uk/Dave/Multimedia/www.fokus.gmd.de/ovma/mug
http://www.prz.tu-berlin.de/~joe/mheg/mheg_intro.html
http://www.prz.tu-berlin.de/~joe/mheg/mheg_intro.html
http://thunder.informatik.uni-kl.de:8080/MHEG5Engine/

kl.de:8080/MHEG5Engine/ , http://enterprise.prz.tu-berlin.de/imw/ (JAVA
ENGINE SOURCE)

● MediaTouch MHEG authoring ---
http://drogo.cselt.stet.it/ufv/mediatouch/index.htm

● MediaTouch Free RTE --- http://drogo.cselt.stet.it/ufv/mediatouch/rte.htm
● Moving Pictures Expert Group --- www.cselt.it/mpeg, www.mpeg.org
● Digital Audio Visual Council --- www.davic.org
● Digital Video Broadcasting --- www.dvb.org
● CSELT, Multimedia and Video Services --- www.cselt.it/ufv
● Example MHEG Applications ---

http://drogo.cselt.stet.it/ufv/mediatouch/applications.htm

Next: Multimedia Programming Up: Multimedia and Hypermedia Information
Previous: MHEG Future
Dave Marshall
10/4/2001

http://thunder.informatik.uni-kl.de:8080/MHEG5Engine/
http://enterprise.prz.tu-berlin.de/imw/
http://enterprise.prz.tu-berlin.de/imw/
http://drogo.cselt.stet.it/ufv/mediatouch/rte.htm
http://www.cs.cf.ac.uk/Dave/Multimedia/www.cselt.it/mpeg, www.mpeg.org
http://www.cs.cf.ac.uk/Dave/Multimedia/www.davic.org
http://www.cs.cf.ac.uk/Dave/Multimedia/www.dvb.org
http://www.cs.cf.ac.uk/Dave/Multimedia/www.cselt.it/ufv
http://drogo.cselt.stet.it/ufv/mediatouch/applications.htm

Next: QuickTime for Java Up: Multimedia Module No: CM0340 Previous: Further
Reading/Information

Multimedia Programming

● QuickTime for Java
❍ The Java for Quicktime SDK, Example Programs and Online

Documentation
❍ Using QuickTime in Multimedia Production
❍ The QuickTime for Java API
❍ An Overview of QuickTime for Java

■ The Quicktime API: A Set of Java Classes with 2 Layers
■ The QTSimpleApplet Example

❍ The QuickTime for Java Core Packages
❍ The Quicktime for Java Application Framework Packages
❍ Quicktime for Java Classes and Interfaces

■ The QTCanvas Class
■ Interacting With Java Layout Managers

■ The QTDrawable Interface
■ Working with the QTDrawable interface

■ The QTFactory Class
■ The Spaces and Controllers Architecture

❍ Displaying and Streaming Movies
■ Playing a Streaming Movie
■ Using The Detached Controller
■ Converting To Full Screen
■ Using Movie Callbacks

❍ Media AND Presenters
■ Media Data and Movies

■ The ImageSpec Interface
❍ QuickTime For Java Presenters

■ Subclasses of ImagePresenter
❍ Imaging and Effects

■ Drawing An Image File

❍ Quicktime to Java Imaging
❍ Image Producing
❍ Using the QTImageDrawer Class
❍ Visual Effects
❍ Animation and Compositing

■ The SWCompositor Class
■ The SWController
■ The Compositor
■ Composited Effects

❍ Transition Effects
❍ The Java for Quicktime Example Programs

Dave Marshall
10/4/2001

Next: The Java for Quicktime Up: Multimedia Programming Previous: Multimedia
Programming

QuickTime for Java
To conclude this course we will look at lower level Multimedia programming issues.

Multimedia Programming is NOT Multimedia Authoring

We will look at one example:

● Quicktime for Java

● The Java for Quicktime SDK, Example Programs and Online Documentation
● Using QuickTime in Multimedia Production
● The QuickTime for Java API
● An Overview of QuickTime for Java

❍ The Quicktime API: A Set of Java Classes with 2 Layers
■ The QTSimpleApplet Example

● The QuickTime for Java Core Packages
● The Quicktime for Java Application Framework Packages
● Quicktime for Java Classes and Interfaces

❍ The QTCanvas Class
■ Interacting With Java Layout Managers

❍ The QTDrawable Interface
■ Working with the QTDrawable interface

❍ The QTFactory Class
❍ The Spaces and Controllers Architecture

● Displaying and Streaming Movies
❍ Playing a Streaming Movie
❍ Using The Detached Controller
❍ Converting To Full Screen
❍ Using Movie Callbacks

● Media AND Presenters
❍ Media Data and Movies

■ The ImageSpec Interface
● QuickTime For Java Presenters

❍ Subclasses of ImagePresenter
● Imaging and Effects

❍ Drawing An Image File
● Quicktime to Java Imaging
● Image Producing
● Using the QTImageDrawer Class
● Visual Effects
● Animation and Compositing

❍ The SWCompositor Class
❍ The SWController
❍ The Compositor
❍ Composited Effects

● Transition Effects
● The Java for Quicktime Example Programs

Dave Marshall
10/4/2001

Next: Using QuickTime in Multimedia Up: QuickTime for Java Previous: QuickTime
for Java

The Java for Quicktime SDK,
Example Programs and Online
Documentation
The examples in this section are taken from the Java for Quicktime SDK. We will study
a few of these programs in detail, some others are referred to with excerpts of code
given here. At the end of this Chapter a full list of the example programs are given. You
are encouraged to explore these further.

The Java for Quicktime SDK is available from Apple at

● www.apple.com/quicktime/qtjava

Further Documentation and examples are availble from this URL also.

The example programs that come with the SDK are also available locally:

● Java for Quicktime SDK Demos (Individual fil*** es) --- Local Students ONLY
● Zipped Java for Quicktime SDK Demos -- - Local Students ONLY

Finally, JavaDoc information about the Java for Quicktime class library is available
from:

● www.cs.cf.ac.uk/applications/javaqt/

Dave Marshall
10/4/2001

http://www.apple.com/quicktime/qtjava
http://www.cs.cf.ac.uk/Dave/Multimedia/JavaQT/Java_QT_Demos/
http://www.cs.cf.ac.uk/Dave/Multimedia/JavaQT/javaQTdemos.zip
http://www.cs.cf.ac.uk/applications/javaqt/

Next: The QuickTime for Java Up: QuickTime for Java Previous: The Java for
Quicktime

Using QuickTime in Multimedia
Production
As we have already discussed with our studies on the Quicktime architecture and
format:

● QuickTime provides some powerful constructions that can simplify the
production of applications or applets that contain or require multimedia content.

● A multimedia presentation can be very complex.
● The Quicktime architecture and its API (C or Java) can help to simplify this

process.

Multimedia presentation often includes many different facets:

● some animation, some video, and
● a desire for complex presentation and interactive delivery of this content.
● The spaces and controllers architecture, and
● the services that it provides to build animations, provides the ability to deliver

presentations that can be both complex in their construction and powerful in the
interactive capabilities that they provide to the user.

The media requirements for such presentations can also be complex.

They may include ``standard'' digital video, animated characters, and customized
musical instruments. QuickTime's ability to reference movies that exist on local and
remote servers provides a great deal of flexibility in the delivery of digital content.

A movie can also be used to contain the media for animated characters and/or
customized musical instruments. For example, a cell-based sprite animation can be built
where the images that make up the character are retrieved from a movie that is built
specifically for that purpose. In another scenario, a movie can be constructed that
contains both custom instruments and a description of instruments to be used from
QuickTime's built-in Software Synthesizer to play a tune.

In both cases we see a QuickTime movie used to contain media and transport this media
around. Your application then uses this media to recreate its presentation. The movie in
these cases is not meant to be played but is used solely as a media container. This movie

can be stored locally or remotely and retrieved by the application when it is actually
viewed. Of course, the same technique can be applied to any of the media types that
QuickTime supports. The sprite images and custom instruments are only two possible
applications of this technique.

A further interesting use of QuickTime in this production space is the ability of a
QuickTime movie to contain the media data that it presents as well as to hold a reference
to external media data. For example, this enables both an artist to be working on the
images for an animated character and a programmer to be building the animation using
these same images. This can save time, as the production house does not need to keep
importing the character images, building intermediate data containers, and so on. As the
artist enhances the characters, the programmer can immediately see these in his or her
animation, because the animation references the same images.

Next: The QuickTime for Java Up: QuickTime for Java Previous: The Java for
Quicktime
Dave Marshall
10/4/2001

Next: An Overview of QuickTime Up: QuickTime for Java Previous: Using
QuickTime in Multimedia

The QuickTime for Java API
If you're a Java or QuickTime programmer and want to harness the power of
QuickTime's multimedia engine, you'll find a number of important advantages to using
the QuickTime for Java API. A C Quicktime API also exists. But we focus only on the
Java API in this course.

For one thing, the API lets you access QuickTime's native runtime libraries and,
additionally, provides you with a feature rich Application Framework that enables you
to integrate QuickTime capabilities into Java software.

Aside from representation in Java, QuickTime for Java also provides a set of packages
that forms the basis for the Application Framework found in the quicktime.app group.
The focus of these packages is to present different kinds of media. The framework uses
the interfaces in the quicktime.app packages to abstract and express common
functionality that exists between different QuickTime objects.

As such, the services that the QuickTime for Java Application Framework renders to the
developer can be viewed as belonging to the following categories:

● creation of objects that present different forms of media, using QTFactory.
makeDrawable() methods

● various utilities (classes and methods) for dealing with single images as well as
groups of related images

● spaces and controllers architecture, which enables you to deal with complex data
generation or presentation requirements

● composition services that allow the complex layering and blending of different
image sources

● timing services that enable you to schedule and control time-related activities
● video and audio media capture from external sources
● exposure of the QuickTime visual effects architecture

All of these are built on top of the services that QuickTime provides. They provided
interfaces and classes in the quicktime.app packages can be used as a basis for
developers to build on and extend in new ways, not just as a set of utility classes you can
use.

Next: An Overview of QuickTime Up: QuickTime for Java Previous: Using
QuickTime in Multimedia
Dave Marshall
10/4/2001

Next: The Quicktime API: A Up: QuickTime for Java Previous: The QuickTime for
Java

An Overview of QuickTime for
Java
QuickTime for Java enables Java and QuickTime programmers to have direct access to
QuickTime's multimedia capabilities.

● At its simplest level, QuickTime for Java lets you write a Java applet and run that
applet on a variety of platforms. Java can be used in an applet, for example, to
make Web pages more interactive so that users will be able to interact with those
pages in ways they haven't before.

● At an advanced level, you can write applications that composite images, capture
music and audio, create special effects, and use sprites for animation.

● The Quicktime API: A Set of Java Classes with 2 Layers
❍ The QTSimpleApplet Example

Dave Marshall
10/4/2001

Next: The QTSimpleApplet Example Up: An Overview of QuickTime Previous: An
Overview of QuickTime

The Quicktime API: A Set of Java Classes
with 2 Layers

The QuickTime API is implemented as a set of Java classes in QuickTime for Java:
These classes offer equivalent APIs for using QuickTime functionality on both Mac OS
and Windows platforms.

The QuickTime for Java API consists of two layers:

Core layer
-- provides the ability to access the QuickTime native runtime libraries (its API)
and

Application Framework layer
-- integrate QuickTime capabilities into their Java software.

The Application Framework layer includes:

● the integration of QuickTime with the Java runtime, which includes sharing
display space between Java and QuickTime and passing events from Java into
QuickTime

● a set of classes that provides a number of services that simplify the authoring of
QuickTime content and operation

The QuickTime for Java classes are grouped into a set of packages on the basis of
common functionality, common usage, and their organization in the standard QuickTime
header files. The packages provide both an object model for the QuickTime API and a
logical translation or binding of the native function calls into Java method calls.

● The QTSimpleApplet Example

Next: The QTSimpleApplet Example Up: An Overview of QuickTime Previous: An
Overview of QuickTime
Dave Marshall
10/4/2001

Next: The QuickTime for Java Up: The Quicktime API: A Previous: The Quicktime API: A

The QTSimpleApplet Example

A good starting point for understanding QuickTime for Java is the QTSimpleApplet program from the
QuickTime for Java SDK. The code listing for QTSimpleApplet.java is given below:

/*
 * QuickTime for Java SDK Sample Code

 Usage subject to restrictions in SDK License Agreement
 * Copyright: © 1996-1999 Apple Computer, Inc.

 */
import java.applet.Applet;
import java.awt.*;
import java.io.*;

import quicktime.*;
import quicktime.io.QTFile;

import quicktime.app.QTFactory;
import quicktime.app.display.*;
import quicktime.app.image.ImageDrawer; // for exceptions

public class QTSimpleApplet extends Applet {
 private Drawable myQTContent;
 private QTCanvas myQTCanvas;

 public void init () {
 try {
 // this is a workaround required by a bug in the
loading
 // mechanism of applets using the JavaPlugin on
Netscape on Win
 if (QTSession.isInitialized() == false)
 QTSession.open();

 // set up a QTCanvas which will disply its
content
 // at its original size of smaller and
centered in the space given
 // to the QTCanvas when the applet is
layed out
 setLayout (new BorderLayout());
 myQTCanvas = new QTCanvas (QTCanvas.kInitialSize,
0.5F, 0.5F);
 add (myQTCanvas, "Center");

 QTFile file = new QTFile (getCodeBase().getFile()
+ getParameter("file"));
 myQTContent = QTFactory.makeDrawable (file);
 } catch (QTException qtE) {
 // something wrong with the content but QT
itself is OK

 if (QTSession.isInitialized())
 myQTContent = ImageDrawer.getQTLogo();
 else
 throw new RuntimeException
(qtE.getMessage());
 } catch (FileNotFoundException fnfE) {
 myQTContent = ImageDrawer.getQTLogo();

 } catch (IOException ioE) {
 // the IOException would occur as a
violation of
 // java security settings on the user
machine - throw it again
 throw new SecurityException (ioE.getMessage());
 }
 }

 public void start () {
 try { // if QT was not successfully initialized the
QTCanvas will be null
 if (myQTCanvas != null)
 myQTCanvas.setClient (myQTContent, true);
 } catch (QTException e) {
 e.printStackTrace();
 }
 }

 public void stop () {
 if (myQTCanvas != null)
 myQTCanvas.removeClient();
 }

 public void destroy () {
 QTSession.close();
 }
}

The out of QTSimpleApplet running in an applet viewer is shown in Fig. 9.1.

{\tt QTSimpleApplet} Output

The things to note about this program are:

● We can display multimedia content (On Internet or locally) in less than a dozen lines of Java code.
● The media may include video, audio, text, timecode, music/ MIDI, sprite animation, tween, MPEG, or

even movies that let you use Apple's QuickTime VR and QuickDraw 3D capabilities.
● You can control with the standard QuickTime movie controller buttons, uses the media as specified in

the applet tag -- in this example, sample.mov:

<applet code="QTSimpleApplet.class" width=200 height=100>
 <param name="file" value="sample.mov">
 </applet>

The basic operation of the code is as follows:

http://www.cs.cf.ac.uk/Dave/Multimedia/{\tt QTSimpleApplet}.gif

● The QTCanvas, QTDrawable, and QTFactory classes that belong to the quicktime.app
package and are discussed in greater detail. These are typically used in all Quicktime presentations.

● QTCanvas, QTDrawable create objects where media can be presented:

❍ QTCanvas is the object responsible for handling the integration from the java.awt side
between Java and QuickTime.

❍ The QTCanvas also has parameters that let you control the resizing of the client that it presents
-- here we tell the canvas to center the client within the space given by the applet's layout
manager.This ensures that the client is only as big as its initial size (or smaller if you make the
canvas smaller).

❍ The QTSession.open() call performs a gestalt check to make sure that QuickTime is
present and is initialized. Note that this is a required call before any QuickTime for Java classes
can be used.

❍ To set up a QTCanvas object that displays its content at its original size or smaller and is
centered in the space given to the QTCanvas when the applet is laid out, we do the following:

setLayout (new BorderLayout());
myQTCanvas =
 new QTCanvas (QTCanvas.kInitialSize, 0.5F,
 0.5F);
add (myQTCanvas, "Center");
QTFile file = new QTFile (getCodeBase().getFile() +
getParameter("file"));
myQTContent = QTFactory.makeDrawable (file);
} catch (Exception e) {
e.printStackTrace();
...
}
}

● QTFactory() methods are used to manufacture a wide variety of multimedia objects that QuickTime
supports.

❍ The QTFactory.makeDrawable() method is used to create an appropriate QuickTime
object for the media that is specified in the <PARAM> tag in the call from the HTML file.

❍ If a QTException is thrown in the init() method, an appropriate action should be taken by
the applet, depending on the error reported. In the start() method shown in the next code snippet,
you set the client of the QTCanvas. This QTCanvas.client is the QuickTime object (i.e., an
object that implements the QTDrawable interface) that draws to the area of the screen that the
QTCanvas occupies. This is the QuickTime side of the integration between Java and
QuickTime:

public void start () {
try { my QTCanvas.setClient (myQTContent, true);
} catch (Exception e) {
e.printStackTrace();
}
}

❍ You use the stop() method to remove the client from the QTCanvas. It will be reset in the
start() method if the applet is restarted. destroy() is used to close the QTSession.
This protocol enables the applet to be reloaded, suspended, and resumed -- for example, if the
user is leaving and returning to the page with the applet. The init()/de-stroy(), and
start()/stop() methods are reciprocal in their activities.

public void stop () {
my QTCanvas.removeClient();
}
public void destroy () {
QTSession.close();
}

❍ You need to call QTSession.close() if you have previously called QTSession.
open() in order to shut down QuickTime properly.

● The init() method may throw exceptions because the required file was not found or the applet does
not have permission from Java's security manager to read that file. Alternatively, the required version
of QuickTime may not be installed. The applet should deal with these issues appropriately.

Next: The QuickTime for Java Up: The Quicktime API: A Previous: The Quicktime API: A
Dave Marshall
10/4/2001

Next: The Quicktime for Java Up: QuickTime for Java Previous: The QTSimpleApplet Example

The QuickTime for Java Core
Packages
As one would expect,The QuickTime for Java classes are grouped into a set of packages. The
grouping is based on common functionality and usage. A number of packages also have
subpackages that group together smaller sets of functionality.

The major packages generally have a constants interface that presents all of the constants that
relate to this general grouping and an exception class that all errors that derive from a call in this
package group will throw. The packages, with descriptions of their principal classes and interfaces
are now summarised:

Package Principal classes Description

 and interfaces

quicktime QTSession, The QTSession class has calls that set up and

 QTException initialise the QuickTime engine, such as

 initialize, gestalt, and enter Movies.

quicktime.io OpenFile, QTFile, Contains calls that deal with file I/O. These

 OpenMovieFile, calls are derived from the Movies.h file.

 QTIOException

quicktime.qd QDGraphics, Contains classes that represent the

 PixMap, Region, QuickDraw data structures that are required

 QDRect, QDColor, for the rest of the QuickTime API. These calls

 QDConstants, are derived from the QuickDraw.h and

 QDException QDOffscreen.h files. The QuickTime API

 expects data structures that belong to

 QuickDraw, such as graphics ports, GWorlds,

 rectangles, and points.

quicktime.qd3d CameraData, Contains classes that represent the

 Q3Point, Q3Vector QuickDraw 3D data structures that are

 required for the rest of the QuickTime API,

 predominantly the tweener and 3D media

 services.

quicktime.sound SndChannel, Sound, Contains classes that represent the Sound

 SPBDevice, Manager API. These calls are derived from

 SoundConstants, the Sound.h file. While some basic sound

 SoundException, recording services are provided, for more

 demanding sound input and output the

 sequence grabber components and movie

 playback services should be used.

Package Principal classes Description

 and interfaces

quicktime.std StdQTConstants, The original QuickTime interfaces on the

 StdQTException Mac OS are contained in a collection of eight

 header files that describe the standard

 QuickTime API. As such, nearly all of the

 functions defined in these files are to be

 found in classes in the quicktime.std group

 of packages.

quicktime.std.anim Sprite, Classes that provide support for animation.

 SpriteWorld QuickTime can be used as a real time

 rendering system for animation, distinct from

 a data format-that is, the movie. Thus, you

 can create a graphics space (SpriteWorld)

 within which characters (Sprite objects) can

 be manipulated.

quicktime.std.clocks Clock, Contains classes that provide timing services,

 TimeBase, including support for the creation of

 QTCallback hierarchical dependencies between time

 and subclasses hierarchical dependencies between time

 bases, the usage of callbacks for user

 scheduling of events or notification, and the

 capability of instantiating the system clocks

 that provide the timing services.

quicktime.std.com Component, QuickTime is a component-based

 Component-Description architecture, with much of its functionality

 being provided through the creation and

 implementation of a particular component's

 API. This package contains classes that

 provide basic support for this component

 architecture; a full implementation is

 forthcoming.

quicktime.std.image CodecComponent, Contains classes that present the Image

 QTImage, Compression Manager. These classes provide

 CSequence, Matrix control for the compression and

 decompression of both single images and

 sequences of images. It also contains the

 Matrix class, which (like the Region class in

 the qd package) is used generally throughout

 QuickTime to alter and control the rendering

 of 2D images.

Package Principal classes Description

 and interfaces

quicktime.std.movies AtomContainer, Contains the principal data structures of

 Movie, QuickTime, including classes that represent

 MovieController, QuickTime atom containers, movies, movie

 Track controllers, and tracks-all essential for

 creating and manipulating QuickTime

 movies. A movie containing one or more

 tracks is the primary way that data is

 organized and managed in QuickTime. A

 Movie object can be created from a file or from

 memory and can be saved to a file. The

 MovieController class provides the standard

 way that QuickTime data (movies) are

 presented and controlled. AtomContainer

 objects are the standard data structures used

 to store and retrieve data in QuickTime.

quicktime.std.movies.media DataRef, Media A Track object is a media neutral structure,

 and subclasses, but it contains a single Media type that

 MediaHandler defines the kind of data that a Track is

 and subclasses, representing. The Media, MediaHandler and

 Sample SampleDescription subclasses describe the

 Description and various media types that QuickTime can

 subclasses present. Media classes control references to

 data that comprise the raw media data.

Package Principal classes Description

 and interfaces

quicktime.std.music AtomicInstrument, Contains classes that deal with the general

 NoteChannel, music architecture provided by QuickTime.

 NoteAllocator This architecture can be used to capture and

 generate music (MIDI) events in real time,

 customize and create instruments, and

 eventually provide your own algorithmic

 synthesis engines.

quicktime.std.qtcomponets MovieExporter, Contains classes that interface with some of

 MovieImporter, the components that are provided to supply

 TimeCoder different services. The import and export

 components are supported, as are tween and

 timecode media components.

quicktime.std.sg SequenceGrabber, Contains classes that implement the

 SGVideoChannel, sequence grabber component for capturing

 SGSoundChannel video and audio media data.

quicktime.util QTHandle, Contains classes that represent utility

 QTByteObject, functionality required by the general

 QTPointer, QuickTime API. The most commonly used

 UtilException feature of this package is a set of classes for

 memory management from Memory.h. These

 classes typically form the base class for actual

 QuickTime objects.

quicktime.vr QTVRConstants, Contains classes that represent the

 QTVRInstance, QuickTime Virtual Reality API. The package

 QTVRException contains all the QuickTime VR interface

 constants, the QTVRInstance class and some

 QTVR callbacks for presentation of QTVR

 content.

Next: The Quicktime for Java Up: QuickTime for Java Previous: The QTSimpleApplet Example
Dave Marshall
10/4/2001

Next: Quicktime for Java Classes Up: QuickTime for Java Previous: The QuickTime for Java

The Quicktime for Java Application
Framework Packages
The classes in the QuickTime for Java Application Framework are built entirely on top of QuickTime
for Java native binding classes. The Application Framework classes are designed to simplify the usage
of the QuickTime for Java API and to provide a close integration with Java's display and event
distribution system. They offer a set of services that are commonly used by QuickTime programs. In
addition, they provide useful abstractions and capabilities that make the use of these services simpler
and easier for the developer. The Framework itself is also designed with reusability and extensibility of
classes in mind. It uses Java interfaces to express some of the functionality that can be shared or is
common among different classes. You can also implement your own versions of these interfaces, or
extend existing implementations, to more specifically meet a particular requirement, and in so doing,
use these custom classes with other classes of the Framework itself. The Following Table describes the
various Framework packages and their principal classes.

Package Description

quicktime.app Provides a set of ``factory'' methods for creating classes that

 you can use to present media that QuickTime can import. In

 addition, it provides some utility methods for finding

 directories and files in the local file system.

quicktime.app.action Contains a large number of useful controller classes for mouse

 drags and for handling mouse events. It also contains action

 classes that can be used to apply actions to target objects.

quicktime.app.anim Contains classes that present all of the functionality of the

 Sprite and SpriteWorld.

quicktime.app.audio Contains a number of interfaces and classes that deal

 specifically with the audio capabilities of QuickTime.

quicktime.app.display Contains a number of classes that are important for using the

 QuickTime for Java API. QTCanvas and QTDrawable negotiate

 with java.awt classes to allow the presentation of QuickTime

 content within a Java window or display space.

quicktime.app.image Handles the presentation and manipulation of images.

 Included are utility classes for setting transparent colors in

 images, applying visual effects, creating objects for handling

 sequences of images, and QTDrawable objects that read image

 data from a file or load the data into memory.

quicktime.app.players QTPlayer and MoviePlayer define a set of useful methods that

 enables you to present QuickTime movies, using QTCanvas

 objects and the QTDrawable interface.

quicktime.app.sg Contains a single class, SGDrawer.

quicktime.app.spaces Interfaces in this package provide a uniform means of dealing

 with a collection of objects in QuickTime for Java.

quicktime.app.time Provides a set of useful classes to handle timing services used

 to schedule regular tasks that need to be performed on an

 ongoing basis.

Next: Quicktime for Java Classes Up: QuickTime for Java Previous: The QuickTime for Java
Dave Marshall
10/4/2001

Next: The QTCanvas Class Up: QuickTime for Java Previous: The Quicktime for Java

Quicktime for Java Classes and
Interfaces
This section discusses the usage of two principal classes and one principal interface in
the QuickTime for Java API.

These are

QTCanvas
: As we saw in the our QTSimpleApplet, the QTCanvas is a subclass of the
java.awt.Canvas and represents primarily a way to gain access to the
underlying native graphics structure of the platform. QuickTime requires this in
order to draw to the screen.

QTDrawable
:

an interface that expresses this requirement of QuickTime objects to draw to this
native graphics structure.

QTFactory
: a class that uses the importing capabilities of QuickTime to ``manufacture''
QTDrawable objects to present that media.

In this section, we discuss how to

● use the QTCanvas class to interact with the Java display and event system
● use the QTDrawable interface to encapsulate common operations that can be

applied to a QuickTime drawing object
● present media that QuickTime can import by using ``factory'' methods provided

by the QTFactory class

The section also introduces briefly an abstraction known as a space, which is part of the
QuickTime for Java spaces and controllers architecture. A space defines and organizes
the behavior of objects and allows for the complex representation of disparate media
types.

● The QTCanvas Class
❍ Interacting With Java Layout Managers

● The QTDrawable Interface
❍ Working with the QTDrawable interface

● The QTFactory Class
● The Spaces and Controllers Architecture

Next: The QTCanvas Class Up: QuickTime for Java Previous: The Quicktime for Java
Dave Marshall
10/4/2001

Next: Interacting With Java Layout Up: Quicktime for Java Classes Previous:
Quicktime for Java Classes

The QTCanvas Class

To present QuickTime content within Java, you need a mechanism for interacting with
the Java display and event system. This is provided through the services of the
QTCanvas class and its client, an object that implements the Drawable interface.
QTCanvas is a specialized canvas that supplies access to the native graphics
environment and offers expanded display functionality.

QTCanvas encapsulates much of the display and presentation functionality of the
QuickTime for Java API. It is responsible for ``punching a hole'' within the Java display
surface and telling its client that it can draw to this display surface and receive events
that occur therein. Its clients are generally some kind of QuickTime object, and the
events it receives may be mouse or key events. An instance of a QTCanvas object can
display any object that implements the Drawable interface.

The client of a QTCanvas object is called Drawable because QuickTime generally uses
the word ``draw'' -- for example, MCDraw. Java uses the word ``paint,'' so this enables
us to make a distinction between Java objects that ``paint'' and QuickTime objects that
``draw.''

Your code can interact with the QTCanvas methods as with those of any
java.awt.Component. The QTCanvas delegates calls as appropriate to its drawing
client. A client essentially draws itself in the display area of a QTCanvas. If the client
is a QTDrawable, the QTCanvas also gets the graphics structure (QDGraphics) of the
native implementation of the canvas's peer and sets this QDGraphics as the destination
QDGraphics of such a client. All QTDrawable objects require a destination
QDGraphics in which to draw.

Using the setClient() method, you can associate a new client, a Drawable object,
with this QTCanvas. The flag determines if awt performs a layout and how the client is
integrated with the canvas. If the flag is false, the new client takes on the current size
and position of the canvas. If the flag is true, then awt lays out the canvas again, using
the initial size of the client and the resize flags to resize the canvas and its client. The
getClient() method returns the Drawable object currently associated with this
QTCanvas.

● Interacting With Java Layout Managers

Next: Interacting With Java Layout Up: Quicktime for Java Classes Previous:
Quicktime for Java Classes
Dave Marshall
10/4/2001

Next: The QTDrawable Interface Up: The QTCanvas Class Previous: The QTCanvas
Class

Interacting With Java Layout Managers

QuickTime media content is often sensitive to the size and proportions of screen space
that it uses -- for instance, a movie that is made to display at 320 x 240 pixels can look
bad or have serious performance repercussions if drawn at 600 x 60 pixels on the screen.

The QTCanvas provides flags for controlling how the Java layout managers allocate
space to it (resizeFlags) and where, within that space, the QTCanvas client
actually draws (alignmentFlags). You can also set the minimum, preferred, and
maximum sizes of the QTCanvas, as with any other java.awt.Component. The
preferred size is automatically set for you as the initial size of the QTCanvas client if
your application does not specifically set the preferred size itself.

Dave Marshall
10/4/2001

Next: Working with the QTDrawable Up: Quicktime for Java Classes Previous:
Interacting With Java Layout

The QTDrawable Interface

The QTDrawable interface encapsulates the common operations that can be applied to
a QuickTime drawing object. It also presents an interface that expresses the required
methods that the QTCanvas needs to call upon its drawing client.

Objects that implement the QTDrawable interface draw into the QDGraphics object
presented to the client by its QTCanvas. As a consequence, this is not an appropriate
interface for objects that are not QuickTime-based drawing objects. QTExceptions
can be thrown by any of the methods in this interface and would indicate that either the
graphics environment has changed in some unexpected way or that the media object
itself is in some unexpected state.

Fig 9.2 represents the QTDrawable interfaces and the classes in QuickTime for Java
that implement this interface.

QTDrawable interfaces and classes

● Working with the QTDrawable interface

Dave Marshall
10/4/2001

Next: The QTFactory Class Up: The QTDrawable Interface Previous: The
QTDrawable Interface

Working with the QTDrawable interface

As we've seen, the QTDrawable interface is used to handle the negotiation between
the QTCanvas and one of several QuickTime objects. The QuickTime objects that
implement the QTDrawable interface are extensive and include the following:

● the QTPlayer class, which presents the movie controller
● the MoviePlayer or QTImageProducer classes, which present the Movie

data type
● the GraphicsImporteDrawer class, which wraps the graphics importer to

present images from a data source, typically image files
● the ImagePresenter class, which presents the DSequence but for a single

image only, allowing image data to be loaded and kept in memory, providing a
faster redraw than the GraphicsImporter object

● the SWCompositor class, which presents the sprite world
● the SGDrawer class, which presents the sequence grabber and sequence grabber

channel (video) components
● the GroupDrawable class, which groups QTDrawable objects into the same

canvas.
● the QTEffect class, which wraps the visual effects architecture of QuickTime
● the QTImageDrawer class, which allows the results of Java painting into a

java.awt.Image to be captured and drawn by QuickTime

The QTDrawable interface is designed to work hand-in-hand with a QTCanvas
object. The class that implements this interface draws into the supplied QDGraphics
object. The QTCanvas will call the methods of its client (setting its destination
QDGraphics, setting display bounds, and redrawing it) as required.

These methods are used by the QTCanvas to notify the client object that it has been
added to or removed from the QTCanvas. Various clients require this notification:

● QTPlayer, so it can declare its interest in mouse and key events
● QTImageDrawer, so that it can create an java.awt.Image object to paint into
● QTDisplaySpaces , to allow the attachment of controllers that are interested

in receiving events whose source is the QTCanvas
● setDisplayBounds(), getDisplayBounds()

These methods are used to get the current size of a QTCanvas client and set its
size. The QTCanvas determines the size of itself and its client based on a

complex interaction between the size the QTCanvas parent container allocates
to the QTCanvas, the initial (or best) size of its client, and the setting of the
resize and alignment flags of the QTCanvas itself.

Once the QTCanvas has determined the correct size of itself and its client, it
uses the setDisplayBounds() method to resize and locate its client. The
size and location of a QTCanvas and its client is always the same.

● redraw() This method is used to tell the client to redraw itself. Both the
setDisplayBounds() and redraw() methods of a client are only called
by the QTCanvas paint() method, with the setDisplayBounds() call,
if required, being always called before a redraw() call.

● getGWorld(), setGWorld() These methods are used to set the
QTDrawable client's destination QDGraphics if the client of a QTCanvas is a
QTDrawable, as is normally the case. All QTDrawable objects must have a
destination QDGraphics at all times. As such, if a QTDrawable client is
removed from a QTCanvas or the QTCanvas has been hidden
myQTCanvas.setVisible (false);

then a special QDGraphics, QDGraphics.scratch(), is used to indicate
to the QTDrawable that it is invisible and basically disabled. While the
following methods are not used specifically in the relationship between
QTCanvas and its client, they are presented here for the sake of completeness
and also express capabilities that all QTDrawable objects possess:

● getClip(), setClip() All QTDrawable objects have the ability to clip
their drawn pixels to a specified region. The getClip() and setClip()
methods are used to get and set a clipping region. null can be used and returned,
and it indicates that the QTDrawable currently has no clipping region set.

The DirectGroup display space enables one or more QTDrawable objects to
draw into the same QTCanvas destination QDGraphics. It provides the
capability to layer the objects in such a group, so that the objects do not draw
over each other. This layering is achieved through the use of clipping regions.
The DirectGroup clips its members so that members that are behind others
cannot draw into the area where those in front are positioned. As this group by
definition draws directly to the screen, this is the only means that can be used to
avoid the flickering that would occur if the QTDrawable objects could not be
clipped.

● getMatrix(), setMatrix(), getInitialSize()

The QTDrawable interface also extends the Transformable interface.

The Transformable interface expresses the ability of QuickTime drawers to have a
matrix applied that will map the source pixels of a drawing object to some transformed
destination appearance. A matrix allows the following transformations to be applied in
the rendering process:

● translation. Drawing pixels from an x or y location
● scaling. Scaling the image by an x or y scaling factor
● rotation. Rotating the image a specified number of degrees
● skew. Skewing the image by a specified amount
● perspective. Applying an appearance of perspective to the image

Your application can freely mix and match these different transformations at its own
discretion.

All QTDrawable objects can have a matrix applied to them that will transform their
visual appearance. A Sprite in a SpriteWorld can also have matrix transformations
applied to it, as can a 3D model. The TwoDSprite also implements the
Transformable interface.

The Transformable interface allows for applications to define behaviors that can be
applied to any of these objects. For example, the
quicktime.app.actions.Dragger, which will position objects in response to a
mouseDragged event, is defined totally in terms of the Transformable interface.
Thus, the Dragger can reposition any TwoDSprite in a SWCompositor or any
QTDrawable in a GroupDrawable. Using interfaces to express common
functionality is a powerful concept and is relied upon extensively in the QuickTime for
Java Application Framework.

Next: The QTFactory Class Up: The QTDrawable Interface Previous: The
QTDrawable Interface
Dave Marshall
10/4/2001

Next: The Spaces and Controllers Up: Quicktime for Java Classes Previous: Working
with the QTDrawable

The QTFactory Class

The QTFactory class provides ``factory'' methods for creating classes used to present
media that QuickTime can import. The makeDrawable() methods of QTFactory
use the QuickTime importers to return an appropriate QuickTime object that can present
any of a wide range of media types (images, movies, sounds, MIDI, and so on) that
QuickTime can import.

Given a file, a Java InputStream object, or a URL, the makeDrawable() methods
that belong to the QTFactory class examine the contained media and return an object
that best presents that kind of media. For example:

● movies -- a QTPlayer object
● images -- a GraphicsImporteDrawer object
● sound media -- a QTPlayer object
● MIDI media -- a QTPlayer object

Once you have the QTDrawable object, you merely add it to the canvas and the visual
component of the media is presented in the canvas' display space.

There are three versions of the makeDrawable() method. The first two methods deal
with a file, either local or remote:

● QTFactory.makeDrawable(QTFile, . . .)
● QTFactory.makeDrawable(String URL, . . .)

The QTFile version is a local file, whereas the URL version can use any of the
protocols known to QuickTime:

❍ file: for a local file
❍ HTTP: for a remote file
❍ FTP: for a remote file
❍ RTSP: for a movie with streaming content

● QTFactory.makeDrawable (InputStream, . . .)

In this method, the media data can be derived from any source -- for example,
from a ZipEntry, from a local or remote file, or from memory.

The readBytes() method of the input stream is used to read all of the source
object's bytes into memory. Then this memory is used to create the appropriate
QTDrawable.

In the first two cases, QuickTime can use details about the file to determine the
type of media that the file contains. Many media formats are not self-describing.
That is, they don't have information in the data that describes what they are.
Usually, the file type describes to QuickTime this important detail.

In the case of the InputStream, however, because the data can come from an
unknown or arbitrary source, your application must describe to QuickTime the
format of the source data so that it can import it successfully. As such, these
methods require the provision of a hintString and hintType. You can
specify that the hint is either the file extension, Mac OS file type, or MIMEType
of the source data.

Once the makeDrawable() methods determine the media, they create either a
Movie or a GraphicsImporter as the QuickTime object to present that
media. They then pass off this Movie or GraphicsImporter to a
QTDrawableMaker to return a QTDrawable object to present that Movie or
GraphicsImporter.

Your application uses the default QTDrawableMaker if you do not specify
one. This returns a QTPlayer that creates a MovieController for the
Movie or a GraphicsImporteDrawer for the GraphicsImporter. An
application can also specify a custom QTDrawableMaker that will create a
required object for one or both of these two cases.

The QTFactory also provides methods to locate files in the known directories
of the Java application when it executes. In order for QuickTime to open a local
file, it must have the absolute path and name of the file. Your application may
want to open files where it can know the relative location of the file from where
it is executing. For instance, many of the code samples in the QuickTime for Java
SDK will look for files in the media directory that is in the SDK directory. This
media directory is added to the class path when the application is launched. The
QTFactory.findAbsolutePath() method is used by the application to
find the absolute path of the file, and to find those files, at runtime.

● addDirectory() Allows your application to specify a directory that is added
to the known directories that are used in searching for files

● removeDirectory() Allows your application to remove directories where it
doesn't want files to be found. This can shorten the search process, as the
application can remove the specified directory from the search paths that the
find()... methods will search for specified files in.

● findAbsolutePath() Given a relative file (or directory), this method will
search for this specified path in

❍ application-specified directories
❍ user.dir, which is a directory that is one of the system properties of the

Java runtime
❍ any directory known in the class path directories. class.path is also a

system property of the Java runtime.

This method searches for the specified path as this path is appended to these
known directories. It returns the first occurrence of the file (or directory) that
exists in these locations. If the specified file is not found, a
FileNotFoundException is thrown.

● findInSystemPaths() Whereas the findAbsolutePath() will look
for the specified file by appending that file to the known directories, this method
will do a recursive search for the specified file or subdirectory of all of the known
or registered directories and their parents. This can be a time-consuming search,
and typically your application will only use this method to find a file that the user
has misplaced or is not found in the findAbsolutePath() method. If the
specified file is not found, a FileNotFoundException is thrown.

Next: The Spaces and Controllers Up: Quicktime for Java Classes Previous: Working
with the QTDrawable
Dave Marshall
10/4/2001

Next: Displaying and Streaming Movies Up: Quicktime for Java Classes Previous: The
QTFactory Class

The Spaces and Controllers Architecture

The QuickTime for Java API introduces an abstraction known as a space. A space
defines and organizes the behavior of objects and allows for the complex representation
of disparate media types. Spaces provide a powerful and useful means to assemble and
control a complex presentation.

You use a space to create a ``world'' that can be controlled dynamically from Java at
runtime. This world could have certain characteristics that define how the objects exist
and interact with others. Your application assembles the space with its objects or
members and uses Java's event model to allow for user interaction with those objects.
Because it is a dynamic environment, decisions about behavior and even which
members belong to the space can be deferred until runtime. The Space interface, which
is part of the quicktime.app.spaces package, provides the standard API that all
spaces support.

QuickTime for Java controllers manipulate Java objects in spaces. These controllers can
define the standard behavior for a group of objects by defining the behavior of objects
over time, by monitoring objects, and by responding to user events. Controllers provide
a uniform way of enforcing the same behavior on a group of objects. The behavior of a
controller depends upon the support protocols defined by a space and by a controller
itself.

The QuickTime for Java API provides a Controller interface and defines a protocol for
the interaction between spaces and controllers. While the focus in this release of
QuickTime for Java is in presentation, the architecture is general enough to be applied in
the model space for generating data.

Next: Displaying and Streaming Movies Up: Quicktime for Java Classes Previous: The
QTFactory Class
Dave Marshall
10/4/2001

Next: Playing a Streaming Movie Up: QuickTime for Java Previous: The Spaces and
Controllers

Displaying and Streaming Movies
QuickTime provides a set of APIs that enable you to stream multimedia content over a
network in real time, as opposed to downloading that content and storing it locally prior
to presentation. With streaming, the timing and speed of transmission as well as the
display of data are determined by the nature of the content rather than the speed of the
network, server, or the client. Thus, a one minute long QuickTime movie is streamed
over a network so that it can be displayed or presented in one minute of real time.

In the QuickTime streaming architecture, a stream is, simply, a track in a movie.
QuickTime lets you stream a broad variety of content -- audio, video, text, and MIDI;
the output of any audio or video codec supported in QuickTime can be streamed, in fact.
If your application is QuickTime-savvy, you can automatically take advantage of this
multimedia streaming capability.

In addition to demonstrating some useful techniques for displaying QuickTime movies,
this section shows you how to play a streaming movie from a URL. It builds on the
concepts and examples discussed in the previous sections and shows you how to

● select and then play a QuickTime movie with its controller detached
● display a QuickTime movie within a window and add callbacks that are triggered

at some specific time during movie playback

● Playing a Streaming Movie
● Using The Detached Controller
● Converting To Full Screen
● Using Movie Callbacks

Next: Playing a Streaming Movie Up: QuickTime for Java Previous: The Spaces and
Controllers
Dave Marshall

10/4/2001

Next: Using The Detached Controller Up: Displaying and Streaming Movies Previous: Displaying and
Streaming Movies

Playing a Streaming Movie

This example builds on the QTSimpleApplet code discussed in ``The QTSimpleApplet Code''. This
applet enables you to play a steaming movie from a URL.

You define the instance variables for the applet:

private Drawable myQTContent;
private QTCanvas myQTCanvas;

Just as with the QTSimpleApplet code sample, you can use the standard init(), start(),
stop(), and destroy() methods to initialize, execute, and terminate the applet. Likewise, you call
QTSession.open()in order to make sure that QuickTime is present and initialized. Again, this is a
required call before any QuickTime for Java classes can be used. It is called first in the init() method. In
order to shut down QuickTime properly, you also need to call QTSession.close() if you have
previously called QTSession.open(). This is called in the destroy() method.

QTCanvas, as we've seen, is a display space into which QuickTime can draw and receive events. QTCanvas
provides the output destination for QuickTime drawing. You set up a QTCanvas to display its content at its
original size or smaller and centered in the space given to the QTCanvas when the applet is laid out. The
QTCanvas is initialized to display its client up to as large as that client's initial size. And 0.5F flags are used
to position the canvas at the center of the space allocated to it by its parent container's layout manager:

setLayout (new BorderLayout());
myQTCanvas = new QTCanvas (QTCanvas.kInitialSize, 0.5F, 0.5F);
add (myQTCanvas, "Center");

You need to set the client as a Drawable object that can display into the canvas. The QuickTime logo is
displayed when there is no movie to display. Thus, ImageDrawer is set up as the initial client of
QTCanvas.

myQTContent = ImageDrawer.getQTLogo();

You enter the URL to a QuickTime movie to be displayed in a text field:

final TextField urlTextField = new TextField (
"file:///... Enter an URL to a movie",
30);

You set the font and font size in the text field for the URL. The initial string is displayed in the text field. You
add an ActionListener so that the events taking place on the text field are captured and executed.
tf.getText() returns the URL that the user has entered:

urlTextField.setFont (new Font ("Dialog", Font.PLAIN, 10));
urlTextField.setEditable (true);
urlTextField.addActionListener (new ActionListener () {
TextField tf = urlTextField;
public void actionPerformed (ActionEvent ae) {

myQTContent = QTFactory.makeDrawable (tf.getText());
myQTCanvas.setClient (myQTContent, true);
}
});

The URL can support the usual protocols:

● file -- a local file on the user's computer
● HTTP -- HyperText Transfer Protocol
● FTP -- File Transfer Protocol
● RTSP -- Real Time Streaming Protocol

The URL can also point to any media file (movies, images, and so on) that QuickTime can present. The single
makeDrawable() method will return the appropriate QuickTime object to present the specified media.
Once created, this QuickTime object is set as the client of the QTCanvas and can then be viewed and/or
played by the user.

Note that no error handling is done in the code in this example to keep things simple.

The full code for the QTStreamingApplet.java is given below:

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

import quicktime.*;
import quicktime.io.QTFile;

import quicktime.app.QTFactory;
import quicktime.app.display.*;
import quicktime.app.image.ImageDrawer;

public class QTStreamingApplet extends Applet {

 private Drawable myQTContent;
 private QTCanvas myQTCanvas;
 private Vector urlTable;
 private TextField urlTextField;
 private PopupMenu pm;

 public void init () {
 try {
 QTSession.open();
 // set up a QTCanvas which will disply its
content
 // at its original size of smaller and
centered in the space given
 // to the QTCanvas when the applet is
layed out
 setLayout (new BorderLayout());
 urlTable = new Vector();
 myQTCanvas = new QTCanvas (QTCanvas.kInitialSize,
0.5F, 0.5F);
 add (myQTCanvas, "Center");

 myQTContent = ImageDrawer.getQTLogo();

 add (bottomPanel(), "South");
 readURL();

 } catch (QTException qtE) {
 //in this case the only QTException is in
QTSession.open()
 throw new RuntimeException (qtE.getMessage());
 }
 }

 public void start () {
 try { // if QT was not successfully initialized the
QTCanvas will be null
 if (myQTCanvas != null)
 myQTCanvas.setClient (myQTContent, true);
 } catch (QTException e) {
 e.printStackTrace();
 }
 }

 public void stop () {
 if (myQTCanvas != null)
 myQTCanvas.removeClient();
 }

 public void destroy () {
 QTSession.close();
 }

 /**
 * creates drawable object from the URL the user has entered
 * or from the menu item chosen
 */
 private void createNewMovieFromURL(String selURL) throws
QTException {
 String url = urlTextField.getText();
 myQTContent = QTFactory.makeDrawable (url);
 myQTCanvas.setClient (myQTContent, true);
 }

 /**
 * the parameter list in the html file should
 * have a name = total having the value of the total
 * number of url's to be appended to the popup menu.
 * Each url should start with "url" + i , where i
 * is 1, 2.... in increasing order till the i = total.
 */
 private void readURL() throws QTException{
 for (int i = 0; i <
Integer.parseInt(getParameter("total")); i++) {
 String url = getParameter("url" + (i + 1));
 if (url != null)
 appendItem(url);
 }
 }

 public Component bottomPanel () {
 Panel row2 = new Panel();
 row2.setLayout(new FlowLayout(FlowLayout.CENTER));
 row2.setBackground(Color.white);

 urlTextField = new TextField ("file:///... Enter an URL to
a movie", 40);
 //Enter URL to movie here", 30);
 urlTextField.setFont (new Font ("Dialog", Font.PLAIN,
10));
 urlTextField.setEditable (true);
 urlTextField.addActionListener (new ActionListener () {
 //TextField tf = urlTextField;

 public void actionPerformed (ActionEvent ae) {
 if (myQTCanvas != null) {
 try {

createNewMovieFromURL(urlTextField.getText());

appendItem(urlTextField.getText());
 } catch (QTException e) {
 //probably a non-
fatal error that the Applet
 //should deal with
more informatively
 e.printStackTrace();
 }
 }
 }
 });

 row2.add(urlTextField);

 pm = new PopupMenu();

 Image img1 = Toolkit.getDefaultToolkit().getImage(
 getCodeBase().getFile() + "images/p1.gif");
 Image img2 = Toolkit.getDefaultToolkit().getImage(
 getCodeBase().getFile() + "images/r1.gif");
 IconButton menuButton =
 new PopupMenuButton (img1, img2, pm);

 row2.add (menuButton);

 return row2;
 }

 /**
 * This appends the input movie url entered in the textfield or
 * selected from the Choose movie menu to the PopupMenu. It checks
 * for its duplicates and then appends it to the list in the
popupmenu
 * @param urlItem Item to be appended to the PopupMenu
 */
 private void appendItem(String urlItem) throws QTException {
 if (urlTable.contains(urlItem) == false) {
 MenuItem item = new MenuItem(urlItem);

 pm.add (item);
 item.addActionListener (new ActionListener () {
 public void actionPerformed(ActionEvent event) {
 try {
 MenuItem jm =
(MenuItem)event.getSource();
 String selURL = jm.getLabel();

 urlTextField.setText(selURL);
 createNewMovieFromURL(selURL);
 }catch (QTException ex) {
 ex.printStackTrace();
 }
 }
 });
 urlTable.addElement(urlItem);
 }
 }
}

For supporting code required for this example (IconButton.java and
PopupMenuButton.java refer to the sample code folder online for this example.

Next: Using The Detached Controller Up: Displaying and Streaming Movies Previous: Displaying and
Streaming Movies
Dave Marshall
10/4/2001

Next: Converting To Full Screen Up: Displaying and Streaming Movies Previous:
Playing a Streaming Movie

Using The Detached Controller

The code sample in this section shows how to select and then play a QuickTime movie
with its controller detached. The media required is a QuickTime movie of the user's
choice.

You are prompted to select a movie file. If you make the selection, a window is
constructed and the movie and its controller are presented, as shown in Figure 9.3

The Detached Controller

The movie and its controller are displayed separately in the same window, with the
controller at the top and the actual movie at the bottom. They are separated by a label.
Though the movie and its controller are shown here in the same window, they could also
be displayed in different windows, even on different monitors.

You use a QTPlayer object to play the movie in its canvas, and you can use a
MoviePlayer object to present the movie.

void setControllerCanvas(Movie mMovie) throws QTException {
QTCanvas controllerCanvas = new QTCanvas();
MovieController mController = new MovieController(mMovie,
mcScaleMovieToFit);
mController.setAttached(false);
QTPlayer qtPlayer = new QTPlayer(mController);
add(controllerCanvas, "North");
controllerCanvas.setClient(qtPlayer, true);

}

You can attach or detach the movie from its controller using this method:

mController.setAttached(false);

Once the controller is a client of its canvas, if the movie is reattached to the controller,
you need to notify the canvas of this change in the client's display characteristics.

Now you create the canvas for the detached movie:

void setMovieCanvas(Movie mMovie) throws QTException{
QTCanvas movieCanvas = new QTCanvas();
MoviePlayer mPlayer = new MoviePlayer(mMovie);
add(movieCanvas, "South");
movieCanvas.setClient(mPlayer, true);
}

The following snippet shows the code that assembles the Detached-Controller window.
Resizing the window resizes the movie and the width of the controller but not its height.

DetachedController(Movie mMovie) throws QTException {
super ("QT in Java");
setControllerCanvas(mMovie);
setMovieCanvas(mMovie);
add (new Label("DETACHED CONTROLLER"), "Center");
.
.
.
}

The full code listing for the DetachedController.java example can be found in
the online code examples.

Next: Converting To Full Screen Up: Displaying and Streaming Movies Previous:
Playing a Streaming Movie
Dave Marshall
10/4/2001

Next: Using Movie Callbacks Up: Displaying and Streaming Movies Previous: Using The Detached
Controller

Converting To Full Screen

The FullScreen class provides the capability for converting a screen to full-screen mode and back
to normal mode. The QuickTime for Java API allows you to put the specified screen into full screen
mode and then use a Java window to fill the screen.

To do this, you use the FullScreenWindow class, which is a subclass of the
java.awt.Window object. The FullScreenWindow class internally manages a FullScreen
object, and when the show() method is called, it puts the screen into full-screen mode and fills up
the screen with an awt.Window. This is very useful because you can get the complete functionality
of using a Java AWT Window but in full-screen mode.

The movie is created in a similar fashion as the QTStreamingApplet. The program also creates a
menu that allows the user to select a movie and once opened provides a Present Movie menu item to
present the movie in full screen mode.

The full code listing is available in the online code examples.

The main parts of the code are as follows:

You present the movie in full screen mode and use the current screen resolution and current movie.
The QTCanvas is created using the performance resize flag. This ensures that the movie is
displayed at its original size or at a multiple of 2:

FullScreenWindow w = new FullScreenWindow(new FullScreen(),
myPlayMovie);
MoviePlayer mp = new MoviePlayer (myPlayMovie.getMovie());
QTCanvas c = new QTCanvas (QTCanvas.kPerformanceResize, 0.5F, 0.5F);
w.add (c);
w.setBackground (Color.black);

You remove the movie from its current QTCanvas and put the movie into the new canvas of the
FullScreenWindow. You do this because a QTDrawable can only draw to a single destination
QDGraphics:

myPlayMovie.getCanvas().removeClient();
c.setClient (mp, false);

HideFSWindow is a MouseListener. A MouseListener is installed on both the QTCanvas
and the Window. The window is then shown, which will put the window into full-screen mode:

w.show();
HideFSWindow hw = new HideFSWindow (w, myPlayMovie, c);
w.addMouseListener (hw);

c.addMouseListener (hw);

As MoviePlayer object is used to present the movie, this shows just the movie and not a
controller. So finally, you start the movie playing:

mp.setRate (1);

When the user presses the mouse, the movie is restored to its previous QTCanvas and the full-screen
window is hidden:

public void mousePressed (MouseEvent me) {
try {
c.removeClient();
pm.getCanvas().setClient (pm.getPlayer(), false);
} catch (QTException e) {
e.printStackTrace();
} finally {
w.hide();
}
}

The user must explicitly press the mouse to hide the FullScreenWindow. However, your
application could also define an ExtremeCallBack that would automatically hide the
FullScreenWindow when the movie is finished playing. Callbacks are discussed in the next
section.

Next: Using Movie Callbacks Up: Displaying and Streaming Movies Previous: Using The Detached
Controller
Dave Marshall
10/4/2001

Next: Media AND Presenters Up: Displaying and Streaming Movies Previous: Converting To Full Screen

Using Movie Callbacks

This section explains how to display a QuickTime movie within a window and add callbacks. The callbacks
are QuickTime calling back into Java through the movie controller, movie, and QuickTime VR APIs.
Callbacks can be used by an application to perform its own tasks when certain conditions occur within
QuickTime itself. The callbacks used in the MovieCallbacks program are invoked when some condition
having to do with the presentation of a movie is changed:

● In the movie, the DrawingComplete procedure is used to notify the Java program whenever
QuickTime draws to the screen.

● ActionFilter procedures are used. This subclass overrides those actions that pass on no parameters
and a float parameter.

● The movie contains QuickTime VR content, and a number of QTVR callbacks are installed for panning
and tilting, for hot spots, and for entering and leaving nodes.

The QTCallBack, ActionFilter, or DrawingComplete callbacks are invoked through a direct or
indirect call of the QuickTime MoviesTask function.

Many of the callback methods in QuickTime in Java are required to execute in place, in that QuickTime
requires a result code in order to proceed. These callbacks provide meaningful feedback when their
execute() method returns. The subclasses of QTCallBack, however, can execute asynchronously, in
which case QuickTime does not require a result code in order to proceed. This is also true of any of the
execute() methods with no return value.

The program just prints out details about the callback when it is invoked. The QuickTime API documentation
provides examples and discussions on the usage of these.

To set up a movie drawing callback:

static class MovieDrawing implements MovieDrawingComplete {
public short execute (Movie m) {
System.out.println ("drawing:" + m);
return 0;
}
}

To set up an action filter:

static class PMFilter extends ActionFilter {
public boolean execute (MovieController mc, int action) {
System.out.println (mc + "," + "action:" + action);
return false;
}
public boolean execute (MovieController mc, int action, float value) {
System.out.println (mc + "," + "action:" + action + ",value=" + value);
return false;
}
}

The following code sets up callbacks for QuickTime VR content:

Track t = m.getQTVRTrack (1);
if (t != null) {
QTVRInstance vr = new QTVRInstance (t, mc);
vr.setEnteringNodeProc (new EnteringNode(), 0);
vr.setLeavingNodeProc (new LeavingNode(), 0);
vr.setMouseOverHotSpotProc (new HotSpot(), 0);
Interceptor ip = new Interceptor();
vr.installInterceptProc (QTVRConstants.kQTVRSetPanAngleSelector, ip, 0);
vr.installInterceptProc (QTVRConstants.kQTVRSetTiltAngleSelector, ip, 0);
vr.installInterceptProc (QTVRConstants.kQTVRSetFieldOfViewSelector, ip,
0);
vr.installInterceptProc (QTVRConstants.kQTVRSetViewCenterSelector, ip, 0);
vr.installInterceptProc (QTVRConstants.kQTVRTriggerHotSpotSelector, ip,
0);
vr.installInterceptProc (QTVRConstants.kQTVRGetHotSpotTypeSelector, ip,
0);
}
static class EnteringNode implements QTVREnteringNode {
public short execute (QTVRInstance vr, int nodeID) {
System.out.println (vr + ",entering:" + nodeID);
return 0;
}
}
static class LeavingNode implements QTVRLeavingNode {
public short execute (QTVRInstance vr, int fromNodeID, int toNodeID,
boolean[]
cancel) {
System.out.println (vr + ",leaving:" + fromNodeID + ",entering:" +
toNodeID);
// cancel[0] = true;
return 0;
}
}
static class HotSpot implements QTVRMouseOverHotSpot {
public short execute (QTVRInstance vr, int hotSpotID, int flags) {
System.out.println (vr + ",hotSpot:" + hotSpotID + ",flags=" + flags);
return 0;
}
}

The following code shows how to install a QTRuntimeException handler:

QTRuntimeException.registerHandler (new Handler());

Runtime exceptions can be thrown by many methods and are thrown where the method does not explicitly
declare that it throws an exception. Using the QTRuntimeHandler allows your application to examine the
exception and determine if it can be ignored or recovered from. An example of this is the paint() method
of a Java component. Its signature is

public void paint (Graphics g);

It is declared not to throw any exceptions. However, the QTDrawable redraw() or
setDisplayBounds() calls (which are both invoked on a QTCanvas client) are defined to throw
QTExceptions. If the QTCanvas client does throw an exception in this case, it passes it off to a
QTRuntimeHandler if the application has registered one, with details about the cause of the exception. The

application can then either throw the exception or rectify the situation. If no runtime exception handler is
registered, the exception is thrown and caught by the Java VM thread itself.

Next: Media AND Presenters Up: Displaying and Streaming Movies Previous: Converting To Full Screen
Dave Marshall
10/4/2001

Next: Media Data and Movies Up: QuickTime for Java Previous: Using Movie
Callbacks

Media AND Presenters
QuickTime understands media through the pairing of media data and a metadata object
that describes the format and characteristics of that media data. This media data can
exist either on some external storage device or in memory. The media data can further
be stored in the movie itself or can exist in other files, either local or remote. The
metadata object that describes the format of the media data is known as a
SampleDescription. There are various extensions to the base-level
SampleDescription that are customized to contain information about specific
media types (e.g., ImageDescription for image data).

This section discusses the following topics:

● retrieving media data and QuickTime's use of this complex and powerful
capability, particularly with the introduction of multimedia streaming

● using presenters to express an object that renders media data loaded into or
residing in memory

● the ImagePresenter class, which is the principal class in the QuickTime for
Java API that presents such image data

● Media Data and Movies
❍ The ImageSpec Interface

Dave Marshall
10/4/2001

Next: The ImageSpec Interface Up: Media AND Presenters Previous: Media AND
Presenters

Media Data and Movies

With the introduction of QuickTime streaming, QuickTime has extended its ability to
retrieve data. Traditionally, media data had to exist as local data. With streaming, media
data can now exist on remote servers and retrieved using the HTTP or FTP Internet
protocols, as well as the more traditional file protocol of previous releases. The location
of media is contained in a structure called a DataRef. This tells QuickTime where
media data is and how to retrieve it.

QuickTime streaming also adds support for broadcast media data, using the RTSP
protocol. Media data of this format is delivered through network protocols, typically
sourced through the broadcast of either live or stored video. It requires the creation of
streaming data handlers to deal with the mechanics of retrieving media data using this
protocol. The tracks in a single movie can have data in different locations. For example,
one track's media data might be contained in the movie itself; a second track's media
data might exist in another local file; and a third track's media data might exist in a
remote file and retrieved through the FTP protocol. In these two cases, the movie
references the media data that is stored elsewhere. A fourth track might retrieve
broadcasted media data through a network using the RTSP protocol. Your application is
free to mix and match these data references for tracks' media data as appropriate.
QuickTime presents a complex and powerful capability to deal with media data; a
complexity that provides the user of QuickTime with a powerful tool in both the
development and delivery of media content.

Dealing With Media

Despite the complexity of the data retrieval semantics of QuickTime, the process of
dealing with media in QuickTime is quite simple. In the CreateMovie sample code,
the movie's data is constructed by inserting the media sample data and its description
into the media object and then inserting the media into the track.

The following is a printout of the ImageDescription for the last frame of the image
data that is added to the movie. As you can see, the ImageDescription describes
the format, the size, and the dimensions of the image itself:

quicktime.std.image.ImageDescription[
 cType=rle ,
 temporalQuality=512,
 spatialQulity=512,

 width=330,
 height=140,
 dataSize=0,
 frameCount=1,
 name=Animation,
 depth=32]

The following is the SoundDescription of the sound track added in this sample
code. It describes the sample, sample rate, size, and its format:

quicktime.std.movies.media.SoundDescription[
 format=twos,
 numChannels=1,
 sampleSize=8,
 sampleRate=22050.0]

If the data is not local to the movie itself, one inserts a sample description (as previously
to describe the data) and a DataRef that describes to QuickTime both the location of the
data and the means it should use to retrieve the data when it is required. Once
assembled, QuickTime handles all of the mechanics of retrieving and displaying the
media at runtime.

When media is displayed, the media handlers use the various rendering services of
QuickTime. These rendering services are based on the same data model, in that the
sample description is used to both describe the media and to instantiate the appropriate
component responsible for rendering data of that specific format. These rendering
components are also available to the application itself outside of movie playback.

For example, the DSequence object is used to render image data to a destination
QDGraphics and used throughout QuickTime to render visual media. Your application
can also use the DSequence object directly by providing both the image data and an
ImageDescription that describes the format and other characteristics of this data
and, of course, a destination QDGraphics where the data should be drawn. Like
QuickTime itself, your application can apply matrix transformations, graphics modes,
and clipping regions that should be applied in this rendering process.

Similar processes are used and available for all of the other media types (sound, music,
and so on) that QuickTime supports, with each of these media types providing their own
extended sample descriptions, media handlers, and rendering services.

● The ImageSpec Interface

Next: The ImageSpec Interface Up: Media AND Presenters Previous: Media AND
Presenters
Dave Marshall
10/4/2001

Next: QuickTime For Java Presenters Up: Media Data and Movies Previous: Media
Data and Movies

The ImageSpec Interface

The ImageSpec interface expresses the close relationship between image data and an
ImageDescription that describes it. Figure 9.4 illustrates all of the ImageSpec-
derived classes in the QuickTime for Java API.

The ImageSpec Interface

The image data itself is represented by an object that implements the EncodedImage
interface. This interface allows image data to be stored in either a (Java) int or byte
array. Any object that implements the ImageSpec interface can have its image
rendered by either the ImagePresenter to a destination QDGraphics or by a
TwoDSprite to its container SWCompositor.

The ImageSpec interface expresses the commonality of QuickTime's media model,
specifically with regard to image data, and unifies the many possible constructions and
imaging services that QuickTime provides. If your application requires a particular
format for generating image data, then it can implement the ImageSpec interface and
thus have QuickTime use this custom class wherever the QuickTime for Java API uses
existing ImageSpec objects.

The Compositable and DynamicImage interfaces extend the ImageSpec
interface. The Compositable interface captures the ability of image data to have a
graphics mode applied to it when it is rendered. Graphics modes include rendering
effects such as transparency, where any pixels of a particular color in the image data
won't be drawn, and blending, where all of the drawn colors of an image are blended
with a blend color to alter the rendered image.

The DynamicImage interface extends Compositable and expresses the fact that
some pixel data may change. This interface is used by the Compositor, as a
TwoDSprite must invalidate its Sprite if the pixel data changes.

Next: QuickTime For Java Presenters Up: Media Data and Movies Previous: Media
Data and Movies
Dave Marshall
10/4/2001

Next: Subclasses of ImagePresenter Up: QuickTime for Java Previous: The ImageSpec Interface

QuickTime For Java Presenters
When QuickTime plays back a movie, it does not generally read all of its media data into memory but
rather reads chunks of data as required. A movie can be constructed that requires the media data to be
loaded into memory or other parameters that will require more memory to be used but will generally
improve the quality of the rendered movie. The QuickTime API documentation covers these
customisations that a movie's author can make.

Due to the usefulness of, and in some cases requirement for, loading media data into memory,
QuickTime for Java provides presenters. A presenter is an object that renders media data that is loaded
or resides in memory. A presenter also uses a QuickTime service to render this media data.

QuickTime for Java has a built in ImagePresenter for rendering image data. The
ImagePresenter class implements the QTDrawable interface. The ImagePresenter uses a
DSequence to perform the rendering of the image data. It is the primary object that is used in
QuickTime for Java to render image data. The TwoDSprite is also a presenter that presents image
data loaded into memory. However, its role is specific to the membership of its Sprite in a
SpriteWorld (which is represented in QuickTime for Java by the SWCompositor).

Though only an ImagePresenter is provided in the current release of QT4Java, a similar design
strategy could be employed with other media types. For example, let's consider the music media type.
MusicMedia is rendered in QuickTime by the TunePlayer class. A MusicPresenter class
could be created that used the TunePlayer to render the MusicData. A MusicSpec interface
could be described that returns a MusicDescription and the raw MusicData of the tune events.

The ImagePresenter manages the varying state and conditions of use of QuickTime's
DSequence renderer. It is a useful abstraction because it hides such details from the user, creating a
robust and reusable class.

The ImagePresenter is able to render its data faster than its corollary
GraphicsImporterDrawer, which also implements the QTDrawable interface, for two reasons.
First, the data is kept in memory and so it is quicker to read. (The GraphicsImporteDrawer reads
its image data from its DataRef, typically a file.) Second, the image data of an ImagePresenter
can be (and often is) kept in a format that is optimized for rendering or decompression. However, a
GraphicsImporteDrawer will use less memory and is often more than sufficient for presenting
an image where no demanding rendering tasks are required, such as constant, time-sensitive redrawing.

An ImagePresenter object can be created from many sources. For example, from a file:

ImagePresenter myImage = ImagePresenter.fromFile(imageFile);

In this case, the ImagePresenter will create a GraphicsImporter to read and load into
memory the image data from the file. It will then decompress the image if necessary to a format
optimized for rendering.

You can also create an ImagePresenter from generated image data and an ImageDescription

that describes it:

int width = 100;
int height = 100;
IntEncodedImage myImageData = new IntEncodedImage (width * height);
//...fill in pixel values using standard java ARGB ordering
ImageDescription myDescription =
ImageDescription.getJavaDefaultPixelDescription (width,
height);
myDescription.setDataSize (myImageData.getSize());
ImagePresenter myPresenter = ImagePresenter.fromQTImage(myImageData,
myDescription);

You can also create an ImagePresenter object from an onscreen or offscreen QDGraphics that
you have previously drawn into:

QDGraphics gWorld =
Rect rect =
int colorDepth =
int quality =
int codecType =
CodecComponent codec =
ImagePresenter myIP = ImagePresenter.fromGWorld (myGWorld,
 myGWorld.getBounds(),
 myGWorld.getPixMap().getPixelSize(),
 myDerivedCompressionQuality,
 myDerivedCompressionType,
 myDerivedCodecComponent);

● Subclasses of ImagePresenter

Next: Subclasses of ImagePresenter Up: QuickTime for Java Previous: The ImageSpec Interface
Dave Marshall
10/4/2001

Next: Imaging and Effects Up: QuickTime For Java Presenters Previous: QuickTime
For Java Presenters

Subclasses of ImagePresenter

There are two basic subclasses of ImagePresenter, which inherit from and build on
the features of ImagePresenter: QTImageProducer and QTEffectPresent.
Both of these subclasses work in a similar fashion. They render their target objects (a
movie or an effect) into an offscreen QDGraphics object. The pixel data from this
QDGraphics is then set as the EncodedImage data of the superclass. An
ImageDescription is created that describes this raw pixel data and this description
is given to the superclass.

Thus, retrieving the image data (getImage()) returns the raw pixel data that the
movie has drawn into. The ImagePresenter superclass then blits this raw pixel data
to its destination QDGraphics. If this presenter is added as a Sprite, the raw pixel data
becomes that sprite's image data. QTImageProducer takes a Movie object and
implements the same interfaces as MoviePlayer, but it has the extra capability of
being a presenter and having a graphics mode set for its overall appearance.
QTEffectPresent is similar to QTImageProducer but takes a QTEffect
object. You could use this presenter to capture the results of applying a filter to a source
image. You could then discard the filter object and just present the resultant image. You
can also use this presenter to present a character in a sprite animation that could
transition on and off the stage.

Next: Imaging and Effects Up: QuickTime For Java Presenters Previous: QuickTime
For Java Presenters
Dave Marshall
10/4/2001

Next: Drawing An Image File Up: QuickTime for Java Previous: Subclasses of
ImagePresenter

Imaging and Effects
The QuickTime for Java Application Framework provides a number of classes that
handle the presentation of images within a Java display space. These classes provide
utility methods that you can use to set transparent colors in images, apply visual effects,
or create objects for handling sequences of images (such as slide shows). Other methods
en-able you to create QTDrawable objects that read image data from a file or load the
data into memory.

This section shows you how to

● draw an image file using the GraphicsImporteDrawer
● create a java.awt.Image out of an image in QuickTime's format
● use the QTImageDrawer class to render Java-painted content in a QuickTime

graphics space
● take advantage of QuickTime's visual effects architecture to apply transitions

between two images

● Drawing An Image File

Dave Marshall
10/4/2001

Next: Quicktime to Java Imaging Up: Imaging and Effects Previous: Imaging and Effects

Drawing An Image File

The ImageFileDemo.java code listing (below) shows how to import and draw an image from a file. This
program works with the GraphicsImporteDrawer object to import and display a variety of image file
formats. The media required for this sample code is any image file that can be imported using the
GraphicsImporterDrawer. The quicktime.app.image package has two primary image display
classes: GraphicsImporteDrawer and ImagePresenter. These classes implement both ImageSpec
and QTDrawable interfaces.
GraphicsImporterDrawer uses GraphicsImporter to read, decompress, and display image files.

The ImageFileDemo.java code listing:

import java.awt.*;
import java.awt.event.*;

import quicktime.*;
import quicktime.std.StdQTConstants;
import quicktime.std.image.GraphicsImporter;
import quicktime.io.QTFile;

import quicktime.app.display.QTCanvas;
import quicktime.app.image.*;

/** QuickTime Graphics Importer and Codec demo */
public class ImageFileDemo extends Frame implements StdQTConstants {

 public static void main (String args[]) {
 try {
 QTSession.open();

 int[] fileTypes = { kQTFileTypeGIF,
kQTFileTypeJPEG, kQTFileTypePicture };
 QTFile qtf = QTFile.standardGetFilePreview
(fileTypes);

 ImageFileDemo ifd = new ImageFileDemo (qtf);
 ifd.pack();
 ifd.show();
 ifd.toFront();
 } catch (QTException e) {
 if (e.errorCode() != Errors.userCanceledErr)
 e.printStackTrace();
 QTSession.close();
 }
 }

 ImageFileDemo (QTFile qtf) throws QTException {
 super (qtf.getName());

 QTCanvas canv = new QTCanvas();
 add (canv, "Center");

 GraphicsImporterDrawer myImageFile = new
GraphicsImporterDrawer (qtf);
 canv.setClient (myImageFile, true);

 addWindowListener(new WindowAdapter () {
 public void windowClosing (WindowEvent e) {
 QTSession.close();
 dispose();
 }

 public void windowClosed (WindowEvent e) {
 System.exit(0);
 }
 });
 }
}

Dave Marshall
10/4/2001

Next: Image Producing Up: QuickTime for Java Previous: Drawing An Image File

Quicktime to Java Imaging
The code in this section shows how to create a java.awt.Image from a QuickTime
source. The QTImageProducer is used to produce this image's pixel data from the
original QuickTime source.

The QuickTime image could come from any one of the following sources:

● an image file in a format that Java doesn't directly support but QuickTime does
● recording the drawing actions of a QDGraphics into a Pict. This can be written out

to a file or presented by an ImagePresenter class to the
QTImageProducer directly.

● using the services of QuickTime's sequence grabber component. A sequence
grabber can be used to capture just one individual frame from a video source.

In the sample code, the user is prompted to open an image file from one of 20 or more
formats that QuickTime's GraphicsImporter can import. The program then uses the
QTImageProducer to create a java.awt.Image that is then drawn in the
paint() method of the Frame. You prompt the user to select an image file and import
that image into QuickTime. You then create a GraphicsImporteDrawer that uses
the GraphicsImporter to draw.

This object produces pixels for the QTImageProducer:

QTFile imageFile =
QTFile.standardGetFilePreview(QTFile.kStandardQTFileTypes);
GraphicsImporter myGraphicsImporter =
 new GraphicsImporter (imageFile);
GraphicsImporterDrawer myDrawer =
 new GraphicsImporterDrawer(myGraphicsImporter);

You create a java.awt.Image from the pixels supplied to it by the QTImageProducer:

QDRect r = myDrawer.getDisplayBounds();
imageSize = new Dimension (r.getWidth(), r.getHeight());
QTImageProducer qtProducer = new QTImageProducer (myDrawer,
 imageSize);
javaImage =
 Toolkit.getDefaultToolkit().createImage(qtProducer);

Note that to do Java drawing, your application uses the
java.awt.Graphics.drawImage(...) calls, which must be defined in a
paint() method. When using a QTCanvas client, this detail is taken care of by the
QTCanvas itself by establishing the QTCanvas QTDrawable client relationship, as
the above code demonstrates.

In the paint() method of the frame, the image that we produced in the above code is
drawn, using this drawImage call. This method will correctly resize the image to the
size of the Frame.

public void paint (Graphics g) {
Insets i = getInsets();
Dimension d = getSize();
int width = d.width - i.left - i.right;
int height = d.height - i.top - i.bottom;
g.drawImage (javaImage, i.left, i.top, width, height, this);
}

This returns the size of the source image, so the pack() will correctly resize the frame:

public Dimension getPreferredSize () {
return imageSize;
}

Next: Image Producing Up: QuickTime for Java Previous: Drawing An Image File
Dave Marshall
10/4/2001

Next: Using the QTImageDrawer Class Up: QuickTime for Java Previous: Quicktime to
Java Imaging

Image Producing
The code in this section shows how to display any QuickTime drawing object using Java's
ImageProducer model.

The program works with the QTImageProducer and with Swing components. The
QTImageProducer in this case is responsible for getting the QuickTime movie and
producing the pixels for a
java.awt.Image. It draws the movie into its own QDGraphics world and then feeds
the pixels to any java.image.ImageConsumer objects that are registered with it in a
format that they are able to deal with. The Swing buttons control the movie playback.

The Swing JComponent is the ImageConsumer of the QTImageProducer. It will
automatically repaint itself if the QTImageProducer source is multiframed media, such
as a movie. This is a feature of the ImageProducer model of the Java API.

Placing a QuickTime movie within a Swing JComponent requires the usage of Java's
image producing API. Swing is a framework that uses lightweight components. As such, a
heavyweight component, such as a QTCanvas, is generally not added to the lightweight
components. To put QuickTime content into a lightweight component
java.awt.Image is used to capture the pixel data generated by QuickTime. As the
previous example showed, the Java image producing API is used, with the
QTImageProducer implementing the ImageProducer interface used for this
purpose.

We open the movie and set looping of its time base. We make a MoviePlayer out of the
Movie to pass to the QTImageProducer, which takes any QTDrawable object as a
source of pixel data. We pass in the original size of the movie to the
QTImageProducer, which will notify the producer how big a QDGraphics it should
create.

Once the QTImageProducer is made, we need to redraw it when each frame of the
movie is drawn. To optimize this process, we install a MovieDrawingComplete
callback. This callback notifies us when the movie draws a complete frame, and in the
execute() method we redraw the QTImageProducer. The QTImageProducer
redraw() method will pass on the changed pixel data to the registered ImageConsumer
objects. The ImageConsumer is registered with the QTImageProducer when we
create the IPJComponent, as shown in the code below.

OpenMovieFile openMovieFile = OpenMovieFile.asRead(movFile);
Movie m = Movie.fromFile (openMovieFile);
m.getTimeBase().setFlags (loopTimeBase);
MoviePlayer moviePlayer = new MoviePlayer (m);
QDRect r = moviePlayer.getDisplayBounds();
Dimension d = new Dimension (r.getWidth(), r.getHeight());
ip = new QTImageProducer (moviePlayer, d);

//this tells us that the movie has redrawn and
//we use this to redraw the QTImageProducer - which will
//supply more pixel data to its registered consumers

m.setDrawingCompleteProc (movieDrawingCallWhenChanged, this);
IPJComponent canv = new IPJComponent (d, ip);
pan.add("Center", canv);

The following is the execute() method of the MovieDrawingComplete interface.
This execute() method is invoked whenever the movie draws. We use the
updateConsumers() method of the QTImageProducer as the movie has already
drawn when this callback is executed, so we only need to notify the image consumers and
give them the new pixel data. If the movie hadn't drawn, then the QTImageProducer
redraw() method would be called. This both redraws the QTDrawable source and updates
the image consumers' pixel data:

public int execute (Movie m) {
try {
 ip.updateConsumers (null);
 } catch (QTException e) {

return e.errorCode();
}
return 0;
}

The following shows the construction of the IPJComponent. This JComponent is a
Swing component and its paint() method will draw the image that is the consumer of the
QTImageProducer. The constructor creates a java.awt.Image, the createImage()
method establishing the QTImageProducer as the producer of pixel data for this Image.
The prepareImage() call establishes the IPJComponent as the ImageObserver
of this process. The paint() method uses the supplied java.awt.Graphic
drawImage() call to draw the Image, also passing the IPJComponent as the
ImageObserver. Each time the QTImageProducer is redrawn, it notifies its image
consumers that it has more pixel data. This will, in turn, notify the ImageObserver,
which is the IPJComponent, that it should repaint itself. The paint() method is
consequently called and drawImage() will draw the new pixel data to the screen.

static class IPJComponent extends JComponent {

IPJComponent (Dimension prefSize, QTImageProducer ip) {
pSize = prefSize;
im = createImage (ip);
prepareImage (im, this);
}
private Dimension pSize;
private Image im;
public Dimension getPreferredSize() {
return pSize;
}
public void paint (Graphics g) {
g.drawImage (im, 0, 0, pSize.width, pSize.height, this);
}
// stops flicker as we have no background color to erase
public void update (Graphics g) {
paint (g);
}
}

Next: Using the QTImageDrawer Class Up: QuickTime for Java Previous: Quicktime to
Java Imaging
Dave Marshall
10/4/2001

Next: Visual Effects Up: QuickTime for Java Previous: Image Producing

Using the QTImageDrawer Class
The QTImageDrawer class enables standard Java drawing commands and graphics
objects to have their content rendered by QuickTime within a QuickTime graphics space
(QDGraphics). Standard AWT paint() calls can be made on the Graphics object
supplied to the paint() callQTImageDrawer implements the ImageSpec
interface, you can add it to a quicktime.app.display.Compositor object and
thus draw into the same display space as QuickTime-generated content. It also
implements the QTDrawable interface and can thus also be a client of a QTCanvas.
A QTImageDrawer object is used to convert the results of painting into a
java.awt.Image object using a java.awt.Graphics object to a format that QuickTime can
render.

When the java.awt.Image object is created and painted into (using the
QTImageDrawer Paintable object) the QTImageDrawer uses Java's
PixelGrabber to grab the raw pixel values that resulted from this painting. It then
constructs an ImageDescription object that describes to Quick-Time the format,
width, and height of this pixel data, and an ImagePresenter is used internally to
render the image using QuickTime imaging services.

If the QTImageDrawer is used to grab the results of a single paint, then it can make
optimizations on the amount of memory that it uses. A single frame is indicated by the
kSingleFrame flag when constructing it. In this case, your application can grab the
resultant image data (getImage()) and its description (getDescription()) and
then discard the QTImageDrawer object completely. This is preferable in many
situations where both performance and memory usage are a consideration:

● performance is enhanced because once the image is retrieved in this way and can
be drawn very efficiently by QuickTime, it is already in a for-mat that is suitable.

● The extra memory and overhead of Java's imaging model and the translation to a
format QuickTime can render can thus be discarded.

The paint() method of the QTImageDrawer Paintable object returns an array of
rectangles that tells the drawer which areas of its drawing area were drawn. This
optimizes the amount of copying and can greatly increase performance when
composited.

Next: Visual Effects Up: QuickTime for Java Previous: Image Producing
Dave Marshall
10/4/2001

Next: Animation and Compositing Up: QuickTime for Java Previous: Using the QTImageDrawer
Class

Visual Effects
QuickTime provides a wide range of sophisticated visual effects. QuickTime's visual effects
architecture can be applied to visual media in a movie or can be used in real-time -- that is, applied to
image sources that are not contained in a movie. The code listed here and the QuickTime for Java
classes are designed with this second usage in mind.

Example code to apply effects to a movie can be in the QuickTime SDK Example code. Especially
the CompositedEffects, QTEffects and Transitions demonstrations

The QTEffect class forms the base class for visual effects. Depending on the effect itself, you can
apply visual effects over a length of time or once only.

● Effects can be applied to no source images (i.e., the effect acts on a background QDGraphics
object), such as the ripple effect.

● An effect can also be applied to a single source image (typically, color correction or
embossing) using the QTFilter class.

● Finally, an effect can be applied to two sources (such as wipes and fades), using the
QTTransition class that transitions from the source to the destination image.

The code snippets in this section show how to use QuickTime's visual effects architecture. The
complete programs CompositedEffects.java,
PlayQTEffects.java and TransitionEffect.java should be consulted for further
examples of use of the code. The effects in the code are applied, in real time, to two images. The
rendering of the transitions is controlled by the user settings in the window's control panel.

Changes to any one of these three fields of the transition can affect the values of the other. Thus,
changing the duration or frames per second (fps) will alter how many frames are rendered. The code
updates the values in the other fields to reflect these dependencies. You set the duration of the
transition if it is running using the time mode of the QTTransition class:

timeField.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent event) {
int output = ... //get value from field
transition.setTime (output);
}
}

You set the number of frames the transition will take to render:

frameField.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent event) {
int output = ... //get value from field
transition.setFrames (output);

}
}

You set the number of frames per second that the transition should be rendered in:

fpsField.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent event) {
int output = ...//get value from field
transition.setFramesPerSecond (output);
}
}

You use this code snippet to make the transition run based on the settings. If the transition is
profiling, some statistics about the transition are printed.

runEffectButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent event) {
try {
 transition.doTransition();
 if (transition.isProfiled()) {
 String profileString = "Transition Profile:"
 + "requestedDuration:" + transition.getTime()
 + ",actualDuration:" + transition.profileDuration()
 + ",requestedFrames:" + transition.getFrames()
 + ",framesRendered=" + transition.profileFramesRendered()
 + ",averageRenderTimePerFrame="
 + (transition.profileDuration()
 / transition.profileFramesRendered());
 System.out.println (profileString);
 }
 } catch (QTException e)
 {
 if (e.errorCode() != userCanceledErr)
 e.printStackTrace();
 }
}
}

You use this code snippet to show QuickTime's Choose Effects dialog box:

chooseEffectButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent event) {
 PlayQTEffectApp.showDialog (transition);
}
}

The two buttons in the following code snippet can change the mode of the transition. If the transition
renders using time mode, it will potentially drop frames in order to render itself as close to the
specified duration as possible. If the transition is set to doTime(false), it will render the
currently specified number of frames as quickly as possible. This mode varies considerably from

computer to computer based on the processing and video capabilities of the runtime environment.

frameButton.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent event) {
transition.doTime (false);
}
});
timeButton.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent event) {
transition.doTime (true);
}
}

Figs. 9.5 and 9.6 show two (of the many) effects from the program.

The explode effect frome the QT Effects program

The matrix effect frome the QT Effects program

To make an effect, you need to either build one in code or the user can choose an effect from
QuickTime's Choose Effects dialog box, as shown in Fig. 9.7.

QuickTime's Choose Effects dialog box

You set up an atom container to use a SMPTE effect. Using SMPTE effects, you set the WhatAtom
to SMPTE, ensure the endian order is bigendian, and use SMPTE effect number 74:

public AtomContainer createSMPTEEffect (int effectType,
int effectNumber) {
 AtomContainer effectSample = new AtomContainer();
 // We are using SMPTE Effects so set the what atom to smpt
 effectSample.insertChild (new Atom(kParentAtomIsContainer),
 kEffectWhatAtom,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(kWipeTransitionType));
 // We are using SMPTE effect number 74 - start at 0%, stop at 100%
 effectSample.insertChild (new Atom(kParentAtomIsContainer),
 effectType,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(effectNumber));
 return effectSample;
}

In this example, the dialog box is configured to show only effects that expect two sources, but it can
be configured to show effects applied or requiring only a single source.

public static void showDialog (QTEffect ef) throws QTException {
 AtomContainer effectSample
 = ParameterDialog.showParameterDialog(new EffectsList
 (2, 2, 0), 0);

 ef.setEffect (effectSample);
}

You use the doTransition() method, which is part of the QTTransition class in the
quicktime.app.image package, to set parameters to control the rendering behavior of the effect.

QTTransition ef = new QTTransition();
ef.setTime (800);
ef.setSourceImage (sourceImage);
ef.setDestinationImage (destImage);
ef.setEffect (createSMPTEEffect (kEffectWipe,
kRandomWipeTransitionType));

Your application can also directly control the rendering of each frame of an effect through setting the
frame directly and redrawing the effect.

Next: Animation and Compositing Up: QuickTime for Java Previous: Using the QTImageDrawer
Class
Dave Marshall
10/4/2001

Next: The SWCompositor Class Up: QuickTime for Java Previous: Visual Effects

Animation and Compositing
With animation, you are working essentially with a time-based script of composited
images, which simply means that the images will change over time. With compositing,
you are using images from different sources and layering them and generating a
composited image.

● The SWCompositor Class
● The SWController
● The Compositor
● Composited Effects

Dave Marshall
10/4/2001

Next: The SWController Up: Animation and Compositing Previous: Animation and
Compositing

The SWCompositor Class

The SWCompositor class provides the capability to compose a complex image from
disparate image sources and then treat the result as a single image, which is presented to
the user. It also provides a time base that controls the rendering cycle and allows your
application to attach time-based behaviors or actions.

The SWCompositor uses the QuickTime SpriteWorld internally to perform its
compositing tasks and its TimeBase for its timing services. All of the actual drawing of
the members of a SWCompositor is handled through the interaction between the
SpriteWorld and Sprite classes of QuickTime.

The SpriteWorld itself is wrapped by the SWCompositor class, and to represent
the Sprite class it uses the TwoDSprite. The TwoDSprite is a presenter, that is it
presents image information. The presentation of image information within the context of
the SWCompositor SpriteWorld is determined by the matrix, graphics mode,
layer, and visibility of the Sprite object.

To create a Sprite, you need a valid SpriteWorld. To create a SpriteWorld, you
need a valid QDGraphics destination. Depending on whether a SWCompositor is
visible, you may or may not have a valid destination QDGraphics. The interaction
between the SWCompositor and its TwoDSprite presenters handles the saving and
creating of SpriteWorld and Sprite objects -- your application does not need to deal
specifically with this issue.

The SWCompositor object presents the functionality of the SpriteWorld within
the context of the QTDisplaySpace interface. The TwoDSprite object wraps the
QuickTime Sprite object, giving it a Transformable interface so that its visual
characteristics can have matrix transformations applied to them. It also implements the
Compositable interface, as graphics modes can be applied when a sprite's image data
is rendered. You can save the current display state of an individual sprite and recreate a
sprite from the information you saved; the TwoDSpriteInfo object is a helper class
created for this purpose.

The SWCompositor supports two important characteristics of members. If the
member implements a DynamicImage, this indicates to the Compositor that the
image being presented by the member is apt to change. For example, the member is a
QTImageProducer, in which case the member needs to create a special object -- an
Invalidator -- that will invalidate the sprite that is presenting the member, so that the

composite cycle will redraw that sprite, and you will see the changing image data of a
movie as it plays back. This is discussed in more detail below. A further service that the
SWCompositor renders to its new members is the handling of members that
implement the Notifier interface. If a member implements this interface, the
Compositor establishes the connection between the Notifier (the new member) and
its NotifyListener (the new member's TwoDSprite). When the new member's
image data is complete, it can then automatically notify its registered
NotifyListener -- its TwoDSprite. This is used with QTImageDrawer
members where the QTImageDrawer won't have valid image data until the Java
offscreen image is created. It could also be used with images that may reside on a
remote server, or interactively where the user may choose or draw an image that is part
of an animation.

Next: The SWController Up: Animation and Compositing Previous: Animation and
Compositing
Dave Marshall
10/4/2001

Next: The Compositor Up: Animation and Compositing Previous: The SWCompositor
Class

The SWController

The SWController deals with SpriteWorldHitTest calls on the
SpriteWorld that are contained by the SWCompositor's subclasses. By default, it
performs hit-testing on the actual sprite image itself. However, your application can set
the hit-test flags to support any mode of hit-testing appropriate. As a subclass of the
MouseController, it will return any member of the SWCompositor that is hit
only if isWholespace() is true. If isWholespace() is false, the hit sprite must be
a member of the SWController itself.

Dave Marshall
10/4/2001

Next: Composited Effects Up: Animation and Compositing Previous: The
SWController

The Compositor

The Compositor class is a subclass of SWCompositor, with its primary role being
the relaxation of membership requirements of its members. The member object of a
Compositor is only required to implement the ImageSpec interface, in which case,
the Compositor creates the TwoDSprite that presents that image data in its display
space. If a TwoDSprite itself is added to the Compositor, it is added directly as a
member, since TwoDSprite also implements the ImageSpec interface.

If the new member implements the Transformable interface, then its current matrix
will be set on its TwoDSprite presenter. If the new member implements the
Compositable interface, then its current GraphicsMode is applied to its
TwoDSprite presenter. These actions simplify the adding of members to the
Compositor. However, once added, your application will need to deal directly with
the member's TwoDSprite presenter to alter the Matrix or GraphicsMode of the
sprite.

Note that most of the functionality of the Compositor is within the SWCompositor
abstract class. It is only in the membership requirements that the Compositor
specializes the SWCompositor -- specifically in the creation, removal, and retrieval of
a member's TwoDSprite presenter.

Dave Marshall
10/4/2001

Next: Transition Effects Up: Animation and Compositing Previous: The Compositor

Composited Effects

The example code in this section, CompositedEffects.java is one of demo programs in the SDK,
shows the use of a Compositor to create a composited image out of effects, sprites, and Java text. It also
shows (Fig 9.8) you how to use this as a backdrop for a QuickTime movie that draws directly to the screen.
You construct a composited image containing the layering of an image file, a ripple effect, an animation and
some Java text. Over this, you place a movie and its movie controller, which is drawn in front of the
composited image. The Compositor is used to combine multiple-image objects, including a
CompositableEffect (the ripple effect), into a single image that is then blitted on screen. Both the
Compositor and the QTPlayer are added as members of the top-level DirectGroup client of a
QTCanvas. The code also shows you how timing hierarchies can be established when spaces are contained
within each other.

The {\tt CompositedEffects.java} Program Output

The media required for this sample code include (media files are found in the media folder in the SDK Demo
files):

● ShipX.pct files (where X is a number indicative of a frame order)
● Water.pct
● jumps.mov

The compositing services of the Compositor (that is, transparent drawing, alpha blending, and so on) are
not available with a DirectGroup. A DirectGroup does allow for its member objects to be layered.
Thus, the movie can draw in front of the Compositor unheeded. It shows the embedding of a
Compositor space in a parent Compositor, and then the embedding of thisCompositor in a parent
DirectGroup display space.

We create the parent Compositor that will contain the background image, ripple effect, Java text, and the
spaceship compositor. The spaceship compositor is created similarly to preceding examples:

Dimension d = new Dimension (kWidth, kHeight);
QDRect r = new QDRect(d);
QDGraphics gw = new QDGraphics (r);
Compositor comp = new Compositor (gw, QDColor.green,
 new QDGraphics (r), 10, 1);

We add the background image, setting it to the same size as the Compositor. The ripple effect will ripple
the pixels that this image draws:

QTFile bgFile = new QTFile(
 QTFactory.findAbsolutePath("pics/water.pct"));
GraphicsImporterDrawer if1 = new GraphicsImporterDrawer (bgFile);
if1.setDisplayBounds (r);
ImagePresenter background =
 ImagePresenter.fromGraphicsImporterDrawer (if1);
comp.addMember (background, Layerable.kBackMostLayer);

The ripple effect is layered to apply on top of the background image, and its bounds are set to only the top part
of the compositor's display bounds. A ripple effect is applied only to what is behind it, not to sprites or text
drawn in front of it. The QuickTime ripple effect codec works by moving pixels around on the destination
QDGraphics that it is set to. By placing it in a Compositor, your application can control which part of an
image it ripples -- in this case, the water picture that is be-hind it.

CompositableEffect e = new CompositableEffect ();
AtomContainer effectSample = new AtomContainer();
effectSample.insertChild (new Atom(kParentAtomIsContainer),
 kEffectWhatAtom,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(kWaterRippleCodecType));
e.setEffect (effectSample);
e.setDisplayBounds (new QDRect (0, kHeight - 100, kWidth, 100));
comp.addMember (e, 2);

We add the contained Compositor. Yellow is set as the background color, which is then not drawn, as we
set the graphics mode of the Compositor to transparent with yellow as the transparent color.

We also add a Dragger so that members of this compositor can be dragged around when any modifier key is
pressed when the mouse-Pressed event is generated. We also add a Dragger to the parent Compositor so that
we can drag any of its top-level members when no modifier keys are pressed:

Compositor sh = new Compositor (
 new QDGraphics (new QDRect(160, 160)),
 QDColor.yellow, 8, 1);
addSprites (sh);
sh.setLocation (190, 90);
sh.setGraphicsMode (new GraphicsMode
 (transparent, QDColor.yellow));
sh.getTimer().setRate(1);
sh.addController(new SWController
 (new Dragger (
 MouseResponder.kAnyModifiersMask,

 MouseResponder.kAnyModifiers), true));
comp.addMember (sh, 1);
comp.addController(new SWController (
 new Dragger (MouseResponder.kNoModifiersMask),
 true));

You use the QTImageDrawer object using the Java-drawing APIs to draw the Java text, which is then given
a transparency so that only the text characters themselves are displayed by QuickTime. Note that you set the
background color to white, so the Java text appears transparent. White provides a reliable transparent
background for different pixel depths.

myQTCanvas.setBackground (Color.white);
\begin{verbatim}

You add the Java text in front of the background image and ripples
and set its transparency to the background color of the {\tt QTCanvas}, so
that
only the text is seen.

\begin{verbatim}
QTImageDrawer qid =
 new QTImageDrawer (jt, new Dimension (110, 22),
 Redrawable.kSingleFrame);
Paintable jt = new JavaText ();
qid.setGraphicsMode
 (new GraphicsMode (transparent, QDColor.white));
qid.setLocation (200, 20);
comp.addMember (qid, 1);

The code here provides a good demonstration of the timing hierarchy that is built using the display spaces of
the Compositor and DirectGroup. We make a DirectGroup as the top-level container space, adding
both the containing Compositor as a member of this group and the movie jumps.mov. Finally, we set the
rates of both the Compositor and the DirectGroup to 1 so that they are playing when the window is
shown:

DirectGroup dg =
new DirectGroup (d, QDColor.white);
dg.addMember (comp, 2);
QTFile movieFile =
 new QTFile (
 QTFactory.findAbsolutePath ("jumps.mov"));
QTDrawable mov = QTFactory.makeDrawable (movieFile);
mov.setDisplayBounds (new QDRect(20, 20, 120, 106));
dg.addMember (mov, 1);
myQTCanvas.setClient (dg, true);
comp.getTimer().setRate(1);
dg.getTimer().setRate(1);

The top DirectGroup is the master time base for all of its members; the rate at which its time base is set
(the top text box) determines the overall rate of its members. The members can have their own rates that
become offset based on the rates of their parent groups. To start the program, you set the top rate to 1.

Next: Transition Effects Up: Animation and Compositing Previous: The Compositor
Dave Marshall
10/4/2001

Next: The Java for Quicktime Up: QuickTime for Java Previous: Composited Effects

Transition Effects
We end with a program, TransitionEffect.java that demonstrates how to use the
QuickTime effects architecture and apply it to a character in an animation scene.

The code in this section shows how you can build a transition effect and apply it to a character in
a realistic animation (Fig. 9.9):

Transition Effect Example

In the program, a fading effect is applied to transition to the spaceship image. The image fades in
and out as per the rate and the number of frames set for the transition.

It shows the usage of effects and effects presenters. The kCrossFadeTransitionType
effect is applied to the source and the destination images, which that makes them fade as per the
number of frames set for the transition.

The QTEffectPresent is used to embed the QTTransition effect and present it to the
Compositor, which draws it to the canvas. Note that the QTTransition effect cannot be
directly added to the Compositor; instead, it is given to the QTEffectPresent, which is
added to the Compositor. If a filter were applied, it would have the same limitations as a
transition when added to a Compositor. It must be added using the QTEffectPresent.

A ripple effect is applied to the water image (in front of the water image taking up the same
location), using the CompositableEffect class. Zero sourced effects, such as the ripple
effect, can be added directly to a Compositor.

class Fader implements StdQTConstants {
Fader() throws Exception {
File file = QTFactory.findAbsolutePath ("pics/Ship.pct");
QTFile f = new QTFile (file.getAbsolutePath());
QDGraphics g = new QDGraphics (new QDRect (78, 29));
g.setBackColor (QDColor.black);
g.eraseRect(null);
ImagePresenter srcImage = ImagePresenter.fromGWorld(g);
Compositable destImage = new GraphicsImporterDrawer (f);
ef = new QTTransition ();
ef.setRedrawing(true);
ef.setSourceImage (srcImage);
ef.setDestinationImage (destImage);
ef.setDisplayBounds (new QDRect(78, 29));
ef.setEffect (createFadeEffect (kEffectBlendMode,
kCrossFadeTransitionType));
ef.setFrames(60);
ef.setCurrentFrame(0);
}
private QTTransition ef;
public QTEffectPresenter makePresenter() throws QTException {
QTEffectPresenter efPresenter = new QTEffectPresenter (ef);
return efPresenter;
}
public QTTransition getTransition () {
return ef;
AtomContainer createFadeEffect (int effectType, int effectNumber)
throws QTException {
AtomContainer effectSample = new AtomContainer();
effectSample.insertChild (new Atom(kParentAtomIsContainer),
 kEffectWhatAtom,
 1,
 0,
 EndianOrder.flipNativeToBigEndian32(kCrossFadeTransitionType));
effectSample.insertChild (new Atom(kParentAtomIsContainer),
effectType,
1,
0,
EndianOrder.flipNativeToBigEndian32(effectNumber));
return effectSample;
}
}

We then create the QTEffectPresent for the transition and add it as a member of the
Compositor:

Fader fader = new Fader();
QTEffectPresenter efp = fader.makePresenter();
efp.setGraphicsMode (new GraphicsMode (blend, QDColor.gray));
efp.setLocation(80, 80);
comp.addMember (efp, 1);
comp.addController(new TransitionControl (20, 1,
fader.getTransition()));

The controller object implements the TicklishController and subclasses the
PeriodicAction class that has a doAction() method, which gets invoked on every tickle
call.

class TransitionControl extends PeriodicAction
implements TicklishController {
 TransitionControl (int scale, int period, QTTransition t) {
 super (scale , period);
 this.t = t;
 }

The doAction() call is overridden to set the current frame and redraw the
TransitionEffect. The source and the destination images of the transition effect are
swapped when the number of set frames is reached. The transition's controller then rests for a
few seconds before it is awakened again and reapplied. The incoming time values to the
doAction method (called by PeriodicAction.tickle()) are used to calculate the rest
and transition, ensuring that if the rate of playback changes, the transition controller will react to
these changes. When the transition is quiescent, we set the redrawing state of the
QTEffectPresent to false. This ensures that when the Compositor invalidates this
presenter it will not invalidate the sprite, as we are not currently drawing into the
QTEffectPresent. When the transition is being applied, that is when the current frame is set,
then the isRedrawing method will return true. The Invalidator for the
QTEffectPresenter will then redraw the effect and invalidate its sprite presenter. Thus, this
controller is also able to control the redrawing of both itself and its sprite through the use of the
redrawing state and ensure that the Compositor only renders the sprite that presents this
QTEffectPresent when it actually changes its pixel data -- that is, the image data of the
effect's presenter.

protected void doAction (float er, int tm) throws QTException {
if (waiting) {
if ((er > 0 && ((startWaitTime + waitForMsecs) <= tm))
|| (er < 0 && ((startWaitTime - waitForMsecs) >= tm))) {
 waiting = false;
 t.setRedrawing(true);
} else
 return;
}

int curr_frm = t.getCurrentFrame();
curr_frm++;
t.setCurrentFrame(curr_frm);
if (curr_frm > t.getFrames()) {

 curr_frm = 0;
 t.setRedrawing(false);
 t.setCurrentFrame(curr_frm);
 t.swapImages();
 waiting = true;
 startWaitTime = tm;
}

Next: The Java for Quicktime Up: QuickTime for Java Previous: Composited Effects
Dave Marshall
10/4/2001

Next: About this document ... Up: QuickTime for Java Previous: Transition Effects

The Java for Quicktime Example
Programs
Many more example programs are supplied with the Java for Quicktime. Full code
listings for some of the example programs are also available here.

You are positively encouraged (i.e this stuff is examinable) to investigate and implement
these programs. Each example has a good Readme file that explains how it works.

The full list of example programs is as follows:

QTTestApplet
: This will do a simple test and catch any exceptions to ensure that both
QuickTime and QTJava are installed properly

Music
: Simple demonstration application of the QTMusic toolbox - good first step to
see that everything is installed properly. If this doesn't work there is a problem
with your Java installation, your QuickTime installation or the QTJava
installation, depending on the problem.

ImageFile
: use of the GraphicsImporter to display a QT image

PlayMovie
: use of the MovieController to play a QT Movie - the movie can be a local file or
a URL specified by the user

DukeMovie
: Present any QT content within a Java frame with a Java rendered duke
animation on top

QTSimpleApplet
: present ANY QT readable content with just a few lines of code. A browser
version using the Java plugin and an appletviewer html page are provided

QTStreamingApplet
: An applet that lets you enter a URL to play a movie and maintain a list in the
popup menu

JISApplet
: An example of reading QT data from an input stream and creating a QTCanvas
client from it

DraggingSpritesApplet
: using the SpriteToolbox and java defined DragControllers to drag sprites around
which is created using a movie's track

QTtoJavaImage
: Uses the QTImageProducer to produce a java.awt.Image

ImageProducing
: Display a QuickTime movie in a JComponent using the QTImageProducer

SlideShow
: This demo program shows how to use the ImageViewer object to present a
sequence of images one at a time using mouse clicks from the user.

GroupDrawing
: using the group drawable object DirectGroup to present multiple QT content in
a single QTCanvas - on screen. Shows the timing hierarchy that is built out of the
members of the DirectGroup.

MediaPresenter
: using a DirectGroup to provide a clip region and buttons to either rotate or scale
any QT presentable media.

ImageCompositing
: using the off screen Compositor to present multiple QT content in a single

CompositedEffects
: Using the compositor to composite the use of the Ripple Effect. The effect is
applied to any objects it overlaps that are behind it in the compositor. The spaces
ships and text are in front of it so the rippling is not applied to them. This
resulting image is then added behind a movie in a DirectGroup

QTEffects
: using the QT Visual effects architecture

Bouncing Sprites
: shows using the SpriteToolbox to move sprites around and bounce them to
different frames

SoundMeter

: Shows you how to meter a given band of Frequencies with the
SoundMediaHandler calls. These values can be used to provide input to a
spectrum display.

SoundRecord
: Using the SG classes to create a movie through recorded sound

SoundMemRecord
: Using the Sound Manager classes to record and playback sound into memory

Dragging Sprites
: using the SpriteToolbox and java defined DragControllers to drag sprites around

Create Movies
: Create a movie in Java

CurvesDemo
: Uses the Apple Curve Codec API calls that provide the functionality of
QTVectors Graphics. Draws shapes and curves to demonstrate the usage of the
Curve API calls. The QTVector Demo does the same thing by manipulating the
raw data.

TimeCode
: Add and remove a TimeCode track to a movie - also shows how to notify
QTCanvas when the application changes the size of its client

Play Tune
: Uses the TunePlayer to play a tune, save the tune to a movie and rebuild a tune
from the instruments in a movie

DetachedController
: Detaching a movie from its controller - putting the movie in one QTCanvas and
the MovieController in another

Custom Media
: Using the GenericMedia as a base class for an unknown to QTJava Media type
Requires the user to open a VR file

JavaSprites
: "Capture" the results of drawing in java and make a QT Sprite out of it.

CreatePictFile
: Opens a file, draws it into an offscreen QDGraphics capturing the results of this
drawing into a Pict. This pict is then written out as a file and can be opened and
viewed in any application that reads Pict Files.

GraphicsExport
: Opens a image file, draws it into an offscreen QDGraphics , capturing the
results of this drawing into a Pict file. It also provides you with a settings box
where you can set the output image settings.

TweenCamera
: Adding a tween track to an existing movie with a 3D track and using the tween
track to add an animated camera action.

JScriptApplet
: Using JavaScript to control playback of a QT movie. Only works in IE on
Windows.

TimeSlaving
: Shows firstly scrolling java text that is scrolled based on the time value of its
TimeBase. Press the movie button and the text's TimeBase is slaved to the
Movie's TimeBase. The text will then scroll based on the changing time values of
the movie.

Transitions
: Putting a character in an animation that fades in and out. A TicklishController is
used to control the fade.

KeyboardController
: Putting a movie into the Compositor and controlling the playback of the movie
with the space bar (toggle play/stop) and the arrow key - (left rate == -1, right
rate = 1, up time to end of movie, down time to start of movie)

MusicMixer
: Dissecting a movie and creating a mixer representation out of the sound objects
in that movie. It give you control over individual track sound and also builds a
sub mixer for music instruments found in a music track.

MovieCallbacks
: Using the capability of QuickTime calling back into Java to notify a Java
application of specific events that occur when presenting a movie

ImportExport
: An example demonstrating how to export a movie , import a media , and
reference a media in a movie.

TextDemo
: An example demonstrating how to use the Text rendering capabilities of
QuickDraw.

SGCapture
: Simple demonstration to display live video.

SGCapture2Disk
: Create a movie out of video and audio capture

Next: About this document ... Up: QuickTime for Java Previous: Transition Effects
Dave Marshall
10/4/2001

Up: Multimedia Module No: CM0340 Previous: The Java for Quicktime

About this document ...
Multimedia
Module No: CM0340

This document was generated using the LaTeX2HTML translator Version 97.1 (release)
(July 13th, 1997)

LaTeX2HTML is copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer
Based Learning Unit, University of Leeds.

The command line arguments were:
latex2html BSC_MM_CALLER.tex.

The translation was initiated by Dave Marshall on 10/4/2001

Dave Marshall
10/4/2001

http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html

Next: Introduction to Multimedia

Timetable for Lectures and Tutorials
● HTML version
● PDF Version

Past Exam Papers for Multimedia (CM0340)
and Multimedia Systems (CMP632)

● Past Exam Papers

BSc Multimedia (CM0340) Assessed Exercises
● Assessed Exercises

Download Quicktime Java Demos

● Java for Quicktime SDK Demos (Individual files) --- Local Students ONLY
● Zipped Java for Quicktime SDK Demos --- Local Students ONLY

Java for Quicktime JavaDocs
● Java for Quicktime JavaDocs

● Introduction to Multimedia
❍ About This Course

■ Aims of Module
■ Objectives of Module
■ Syllabus Outline
■ Recommended Course Books

❍ Introduction
■ History of Multimedia Systems
■ Multimedia/Hypermedia

■ What is Multimedia?
■ What is HyperText and HyperMedia?

■ Multimedia Systems
■ Characteristics of a Multimedia System
■ Challenges for Multimedia Systems
■ Desirable Features for a Multimedia System
■ Components of a Multimedia System

■ Applications
■ Trends in Multimedia
■ Further Reading/Exploration

● Multimedia Authoring
❍ Multimedia Authoring:Systems and Applications

■ What is an Authoring System?
■ Why should you use an authoring system?

■ Multimedia Authoring Paradigms
■ Multimedia Programming vs Multimedia Authoring
■ Issues in Multimedia Applications Design

■ Content Design
■ Technical Design
■ Visual Design

■ Storyboarding
■ Overview of Multimedia Software Tools

■ Digital Audio
■ Music Sequencing and Notation
■ Image/Graphics Editing
■ Image/Graphics Editing
■ Animation
■ Multimedia Authoring

■ Further Information
❍ Multimedia Programming:Scripting (Lingo)

http://www.cs.cf.ac.uk/Dave/Multimedia/JavaQT/Java_QT_Demos/
http://www.cs.cf.ac.uk/Dave/Multimedia/JavaQT/javaQTdemos.zip
http://www.cs.cf.ac.uk/applications/javaqt/

■ Director programming/Lingo Scripting
■ Director Basics
■ Overview and Definitions
■ The Score and the Stage
■ Using The Score
■ The playback head
■ Channels
■ Frames
■ Sprites
■ Cast members
■ Lingo
■ Markers
■ Editing Frames
■ Identifying Frames with Lingo
■ Lingo Scripting
■ When does Lingo run?
■ The Lingo language
■ Dot Syntax
■ Parentheses
■ Character spaces
■ Comments
■ Optional keywords and abbreviated commands
■ Literal Values
■ Identifying cast members and casts
■ Lingo operators
■ Lingo Lists
■ Types of Scripts
■ Messages and Events
■ Director Example 1: Simple Animation
■ Director Example 2:Importing media
■ Director Example 3:Simple Lingo Scripting
■ Director Example 4:Controlling Navigation with Lingo

❍ Multimedia Programming:Tagging (SMIL)
■ What it is SMIL?

■ SMIL support
■ Running SMIL Applications

■ Using Quicktime
■ Using RealPlayer G2
■ Using the SOJA applet
■ another SMILE viewer:GRINS

■ Let us begin to SMIL -- SMIL Authoring
■ SMIL Syntax Overview

■ Basic Layout
■ SMIL Layout
■ Positioning Media

■ fitting media to regions
■ Synchronisation
■ SMIL Events

■ SMIL ON
● Multimedia Technology

❍ Multimedia Systems Technology
■ Discrete v continuous media
■ Analog and Digital Signals
■ Input Devices and Storage

■ Text and Static Data
■ Graphics
■ Images
■ Audio
■ Video

■ Output Devices
■ Storage Media

■ High performance I/O
■ Basic Storage
■ RAID -- Redundant Array of Inexpensive Disks
■ Optical Storage
■ CD Storage
■ DVD
■ DVD and computers

● Multimedia Data
❍ Multimedia Data Representations

■ Basics of Digital Audio
■ Application of Digital Audio -- Selected Examples
■ Digitization of Sound
■ Digitizing Audio
■ Computer Manipulation of Sound
■ Sample Rates and Bit Size
■ Nyquist's Sampling Theorem
■ Implications of Sample Rate and Bit Size
■ Typical Audio Formats
■ Delivering Audio over a Network

■ Synthetic Sounds
■ Introduction to MIDI (Musical Instrument Digital Interface)

■ Components of a MIDI System
■ Hardware Aspects of MIDI
■ MIDI Messages
■ General MIDI
■ Digital Audio and MIDI
■ Digital Audio, Synthesis, Midi and Compression -- MPEG 4 Structured Audio
■ MPEG 4 Structured Audio
■ Further Reading/Information for Digital Audio and Midi

■ Graphic/Image File Formats
■ Graphic/Image Data Structures
■ Standard System Independent Formats
■ System Dependent Formats
■ Further Reading/Information

■ Colour in Image and Video
■ Basics of Colour
■ CIE Chromaticity Diagram
■ Colour Image and Video Representations
■ Summary of Colour

■ Basics of Video
■ Types of Colour Video Signals
■ Analog Video
■ Digital Video
■ Chroma Subsampling
■ Further Reading/Information

❍ Video and Audio Compression
■ Classifying Compression Algorithms

■ What is Compression?
■ Lossless Compression Algorithms (Repetitive Sequence Suppression)

■ Simple Repetition Suppresion
■ Run-length Encoding

■ Lossless Compression Algorithms (Pattern Substitution)
■ Lossless Compression Algorithms (Entropy Encoding)

■ Basics of Information Theory
■ The Shannon-Fano Algorithm
■ Huffman Coding
■ Huffman Coding of Images
■ Adaptive Huffman Coding
■ Arithmetic Coding
■ Lempel-Ziv-Welch (LZW) Algorithm
■ Entropy Encoding Summary
■ Further Reading/Information

■ Source Coding Techniques
■ Transform Coding
■ Frequency Domain Methods
■ Fourier Theory
■ The Discrete Cosine Transform (DCT)
■ Differential Encoding
■ Vector Quantisation

■ JPEG Compression
■ Quantization
■ Zig-zag Scan
■ Differential Pulse Code Modulation (DPCM) on DC component
■ Run Length Encode (RLE) on AC components
■ Entropy Coding
■ Summary of the JPEG bitstream
■ Practical JPEG Compression
■ Further Reading

■ Video Compression
■ H. 261 Compression

■ Overview of H.261
■ Intra Frame Coding
■ Inter-frame (P-frame) Coding
■ The H.261 Bitstream Structure
■ Hard Problems in H.261

■ MPEG Compression
■ MPEG Video
■ The MPEG Video Bitstream
■ Decoding MPEG Video in Software
■ Further Reading/Information

■ Audio Compression
■ Simple Audio Compression Methods
■ Psychoacoustics
■ MPEG Audio Compression
■ Streaming Audio (and video)
■ Further Exploration

❍ Multimedia Integration, Interaction and Interchange
■ Integrating Multimedia
■ Interactive Multimedia
■ Multimedia Interchange
■ Quicktime

■ Introduction
■ Quicktime Support of Media Formats
■ QuickTime Concepts
■ The QuickTime Architecture
■ QuickTime Components
■ Quicktime File Format
■ Further Information

■ Open Media Framework Interchange (OMFI) Format
■ Multimedia and Hypermedia Information Encoding Expert Group (MHEG)

■ The family of MHEG standards
■ MHEG-5 overview
■ MHEG Programming Principles
■ Interaction within a Scene
■ Availability; Running Status
■ Interactibles
■ Visual Representation
■ Object Sharing Between Scenes
■ Object Encoding
■ Conformance
■ MHEG Coding Examples
■ An MHEG Player Java Applet -- Futher MHEG Examples
■ Relationships to Major Standards
■ MHEG Implementation
■ MHEG Future
■ Further Reading/Information

● Multimedia Programming
❍ QuickTime for Java

■ The Java for Quicktime SDK, Example Programs and Online Documentation
■ Using QuickTime in Multimedia Production
■ The QuickTime for Java API
■ An Overview of QuickTime for Java

■ The Quicktime API: A Set of Java Classes with 2 Layers
■ The QuickTime for Java Core Packages
■ The Quicktime for Java Application Framework Packages
■ Quicktime for Java Classes and Interfaces

■ The QTCanvas Class
■ The QTDrawable Interface
■ The QTFactory Class
■ The Spaces and Controllers Architecture

■ Displaying and Streaming Movies
■ Playing a Streaming Movie
■ Using The Detached Controller
■ Converting To Full Screen
■ Using Movie Callbacks

■ Media AND Presenters
■ Media Data and Movies

■ QuickTime For Java Presenters
■ Subclasses of ImagePresenter

■ Imaging and Effects
■ Drawing An Image File

■ Quicktime to Java Imaging
■ Image Producing
■ Using the QTImageDrawer Class
■ Visual Effects

■ Animation and Compositing
■ The SWCompositor Class
■ The SWController
■ The Compositor
■ Composited Effects

■ Transition Effects
■ The Java for Quicktime Example Programs

● About this document ...

Dave Marshall
10/4/2001

Next: About this document ...

CM0340 Multimedia
Lecture and Tutorial Timetable

Semester 1 2001
Dr David Marshall

Week Number Date/Time Lecture/Tutorial

1 Oct 1 11.10 Lecture

2 Oct 8 11.10 Tutorial

 Oct 9 10.00,11.00 Tutorials

3 Oct 15 11.10 Lecture

4 Oct 22 11.10 Lecture

 Oct 23 10.00,11.00 Tutorials

5 Oct 29 11.10 Lecture

6 Nov 5 11.10 Lecture

 Nov 6 10.00,11.00 Tutorials

7 Nov 12 11.10 Lecture

8 Nov 19 11.10 Lecture

 Nov 20 10.00,11.00 Tutorials

9 Nov 26 11.10 Lecture

10 Dec 3 11.10 Lecture

 Dec 4 10.00,11.00 Tutorials

11 Dec 10 11.10 Lecture

All lectures in C 2.07
All tutorials in S3.03

● About this document ...

Next: About this document ...
Dave Marshall
11/15/2001

Up: CM0340 Multimedia Lecture and Previous: CM0340 Multimedia Lecture and

About this document ...
CM0340 Multimedia
Lecture and Tutorial Timetable
Semester 1 2001

This document was generated using the LaTeX2HTML translator Version 97.1 (release) (July 13th,
1997)

LaTeX2HTML is copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based
Learning Unit, University of Leeds.

The command line arguments were:
latex2html MM_Timetable2001.tex.

The translation was initiated by Dave Marshall on 11/15/2001

Dave Marshall
11/15/2001

http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html

CM0340 Multimedia
Lecture and Tutorial Timeteble

Semester 1 2001

Dr David Marshall

Week Number Date/Time Lecture/Tutorial
1 Oct 1 11.10 Lecture
2 Oct 8 11.10 Tutorial

Oct 9 10.00,11.00 Tutorials
3 Oct 15 11.10 Lecture
4 Oct 22 11.10 Lecture

Oct 23 10.00,11.00 Tutorials
5 Oct 29 11.10 Lecture
6 Nov 5 11.10 Lecture

Nov 6 10.00,11.00 Tutorials
7 Nov 12 11.10 Lecture
8 Nov 19 11.10 Lecture

Nov 20 10.00,11.00 Tutorials
9 Nov 26 11.10 Lecture
10 Dec 3 11.10 Lecture

Dec 4 10.00,11.00 Tutorials
11 Dec 10 11.10 Lecture

All lectures in C 2.07
All tutorials in S3.03

Multimedia Past Exam Papers
Below are past papers for the BSc Mutltimedia (CM0340) module and the MSc IGDS
Elective Multimedia Systems (CMP632) Module.

Parts of the Syllabus are the same so you may wish to look at past papers from either
exam. Clearly if the topic of a question is not in your respective module syllabus this can
be ignored in you case.

All paper are PDF format

BSc Mutltimedia (CM0340)

● Multimedia MOCK EXAM 1999 Paper
● Multimedia BSC EXAM Academic Year 1999-2000

❍ Multimedia BSC EXAM Paper 2000
❍ Multimedia BSC Solutions 2000

● Smil Exam Crib Sheet

● Multimedia BSC EXAM Academic Year 2000-2001
❍ Multimedia BSC EXAM Paper 2001
❍ Multimedia BSC Solutions 2001

MSc IGDS Multimedia Systems
(CMP632)

❍ Multimedia Systems Exam 1999
■ Exam paper 1999
■ Exam Solutions 1999

❍ Multimedia Systems Exam 2000
■ Exam paper 2000
■ Exam Solutions 2000

Multimedia
Mock Exam Questions Dec 1999

Exam paper format:
• Time Allowed: 2 Hours
• Answer 3 Questions out of 4
• Each Question Carries 27 Marks

1. (a) What is meant by the terms Multimedia and Hypermedia? Distinguish
between these two concepts. [2]

(b) What is meant by the terms static media and dynamic media? Give two
examples of each type of media. [4]

(c) What major factors affect the integration of multimedia in a multimedia
presentation? [8]

(d) Describe giving suitable code fragments how you would effectively combine a
video clip and an audio clip in an MHEG application. You may assume that both
clips are of the same duration and must start at the same instant. [13]

2. (a) Why is file or data compression necessary for Multimedia activities?
 [3]

(b) Briefly explain how the Discrete Cosine Transform Operates, and why is it so
important in data compression in Multimedia applications

[10]
(c) A Simple Transform Encoding procedure maybe described by the following

steps for a 2x2 block of monochrome pixels:

(b) Take top left pixel as the base value for the block, pixel A.
(c) Calculate three other transformed values by taking the difference between

these (respective) pixels and pixel A, i.e. B-A, C-A, D-A.
(d) Store the base pixel and the differences as the values of the transform.

Given the above transform:

(i) What is the inverse transform? [2]
(ii) How may such a transform scheme be used to compress data?

[4]
(iii) Show how you would encode and compress the following image block:

10 20 20 25
15 25 15 20
20 25 10 20
15 20 15 25

[5]
(iv) Why is this scheme not very suitable for general image compression?

[3]

3 (a) What are the major factors to be taken into account when considering
storage requirements for Multimedia Systems? [4]

 (b) What is RAID technology and what advantages does it offer as a medium for
the storage and delivery of large data? [4]

 (c) Briefly explain the eight levels of RAID functionality. [8]

(d) A digital video file is 40 Mb in size. The disk subsystem has four drives and
the controller is designed to support read and write onto each drive,
concurrently. The digital video is stored using the disk striping concept. A block
size of 8 Kb is used for each I/O operation.

 (i) What is the performance improvement in sequentially reading the
complete file when compared to a single drive subsystem in terms of the number
of operations performed?
 (ii) What is the percentage performance improvement for this system
compared to a single drive system?

[11]

4 (a) Give a definition of a Multimedia Authoring System. What key features
should such a system provide? [2]

 (b) What Multimedia Authoring paradigms exist? Describe each paradigm
briefly. [8]

(c) How would you facilitate the following application in Macromedia
Director. Your answer should concentrate on the Lingo programming
aspects rather than Interface issues.

Accept two numeric inputs from an appropriate cast members that enables
another cast member to be moved to the inputted 2D coordinates specified
by the input. The input should be checked to see if valid coordinates have
been specified. [17]

Multimedia BSc Exam 2000 SOLUTIONS

Setter: ADM
CheckerACJ

Additional Material: SMIL Language Description Sheet

Answer 3 Questions out of 4

1. (a) What is meant by the terms Multimedia and Hypermedia? Distinguish between
these two concepts.

Multimedia ---- An Application which uses a collection of multiple media sources
e.g. text, graphics, images, sound/audio, animation and/or video.

Hypermedia --- An application which uses associative relationships among
information contained within multiple media data for the purpose of facilitating
access to, and manipulation of, the information encapsulated by the data.

2 MARKS ---- BOOKWORK

(b) What is meant by the terms static media and dynamic media? Give two examples
of each type of media.

Static Media – does not change over time, e.g. text, graphics

Dynamic Media --- Time dependent (Temporal), e.g. Video, sound, animation.

4 MARKS --- BOOKWORK

(c) What issues of functionality need to be provided in order to effectively use a wide
variety of media in Multimedia applications? Your answer should briefly address how
such functionality can facilitated in general Multimedia applications.

The following functionality should be provided:

- Digital Representation of Media --- Many formats for many media
- Capture: Digitisation of Media --- special Hardware/Software
- Creation and editing --- assemble media and alter it
- Storage Requirements --- significant for multimedia
- Compression --- related to above and below, ie can save on storage but can

hinder retrieval
- Structuring and retrieval methods of media --- simple to advanced DataBase

Storage

- Display or Playback methods --- effect of retrieval must view data
- Media Synchronisation --- display multimedia as it is intended
9 MARKS --- BOOKWORK

(d) Different types of media will require different types of supporting operations to
provide adequate levels of functionality. For the examples of static and dynamic
media given in your answer to part 1(b) briefly discuss what operations are need to
support a wide range of multimedia applications.

A selection of the items below is reuired for good marks NOT ALL. Other Solns
Possible?

Typical Range of operations required for common media

Text: Editing
Formatting
Sorting
Indexing
Searching
Encrypting
ABOVE REQUIRE: :

 Character Manipulation
 String Manipulation

Audio: Audio Editing
Synchronisation
Conversion/Translation
Filtering/ Sound Enhancing Operators
Compression
Searching
Indexing

ABOVE REQUIRE: :
 Sample Manipulation

 Waveform Manipulation

Graphics: Graphic primitive Editing
Shading
Mapping
Lighting
Viewing
Rendering
Searching
Indexing
ABOVE REQUIRE: :

 Primitive Manipulation
 Structural/Group Manipulation

Image: Pixel operations
Geometric Operations
Filtering
Conversion
Indexing
Compression
Searching

Animation: Primitive/Group Editing
Structural Editing
Rendering
Synchronistaion
Searching
Indexing

Video: Pixel Operations
Frame Operations
Editing
Synchronisation
Conversion
Mixing
Indexing
Searching
Video Effects/Filtering

12 MARKS --- UNSEEN

2. (a) Why is file or data compression necessary for Multimedia activities?

Multimedia files are very large therefore for storage, file transfer etc. file sizes need to
be reduced. Text and other files may also be encoded/compressed for email and other
applications.

2 MARKS --- BOOKWORK

(b) Briefly explain, clearly identifying the differences between them, how entropy
coding and transform coding techniques work for data compression. Illustrate your
answer with a simple example of each type.

Compression can be categorised in two broad ways:

 Lossless Compression
 -- where data is compressed and can be reconstituted (uncompressed)
without loss of detail or information. These are referred to as bit-preserving
 or reversible compression systems also.
 Lossy Compression
 -- where the aim is to obtain the best possible fidelity for a given bit-rate
or minimizing the bit-rate to achieve a given fidelity measure. Video and
 audio compression techniques are most suited to this form of
compression.

 Lossless compression frequently involves some form of entropy encoding
and are based in information theoretic techniques

 Lossy compression use source encoding techniques that may involve
transform encoding, differential encoding or vector quantisation.

ENTROPY METHODS:

The entropy of an information source S is defined as:

H(S) = SUMI (PI Log2 (1/PI)

 where PI is the probability that symbol SI in S will occur.

 Log2 (1/PI) indicates the amount of information contained in SI, i.e., the number of
bits needed to code SI.

Encoding for the Shannon-Fano Algorithm:

A top-down approach

 1. Sort symbols according to their frequencies/probabilities, e.g., ABCDE.

2. Recursively divide into two parts, each with approx. same number of counts.

(Huffman algorithm also valid indicated below)

A simple transform coding example

 A Simple Transform Encoding procedure maybe described by the following
steps for a 2x2 block of monochrome pixels:

 1. Take top left pixel as the base value for the block, pixel A.
 2. Calculate three other transformed values by taking the difference between
these (respective) pixels and pixel A, i.e. B-A, C-A, D-A.
 3. Store the base pixel and the differences as the values of the transform.
 Given the above we can easily for the forward transform:

 and the inverse transform is trivial

 The above transform scheme may be used to compress data by exploiting
redundancy in the data:

 Any Redundancy in the data has been transformed to values, Xi. So We can
compress the data by using fewer bits to represent the differences. I.e if we
 use 8 bits per pixel then the 2x2 block uses 32 bits/ If we keep 8 bits for the base
pixel, X0, and assign 4 bits for each difference then we only use 20 bits.
 Which is better than an average 5 bits/pixel

8 MARKS --- BOOKWORK

(c) (i) Show how you would use Huffman coding to encode the following set of tokens:

 BABACACADADABBCBABEBEDDABEEEBB

 How is this message transmitted when encoded?

 The Huffman algorithm is now briefly summarised:

 1. Initialization: Put all nodes in an OPEN list, keep it sorted at all times
(e.g., ABCDE).

 2. Repeat until the OPEN list has only one node left:

 (a) From OPEN pick two nodes having the lowest
frequencies/probabilities, create a parent node of them.

 (b) Assign the sum of the children's frequencies/probabilities to the
parent node and insert it into OPEN.

 (c) Assign code 0, 1 to the two branches of the tree, and delete the
children from OPEN.

Symbol Count OPEN (1) OPEN (2) OPEN (3)
A 8 20
B 10
C 3 7 12 -
D 4 -
E 5 -

Total 30

- indicate merge node with other node with number in column

Finished Huffman Tree:

Symbol Code
A 01
B 1
C 0001
D 0000
E 001

How is this message transmitted when encoded?

Send code book and then bit code for each symbol.

7 Marks --- UNSEEN

 (ii) How many bits are needed transfer this coded message and what is its
Entropy?

Symbol Count Subtotal # of bits
A 8 16
B 10 10
C 3 13
D 4 16
E 5 15

D(4) C(3)

P1(7)

E(5)

P2(12)

A(8)

P3(20)

B(10)

P4(30)

0

0

0

0

1

1

1

1

Total Number bits (excluding code book) = 70

Entropy = 70/30 = 2.3333

4 MARKS --- UNSEEN

(iii) What amendments are required to this coding technique if data is
generated live or is otherwise not wholly available? Show how you
could use this modified scheme by adding the tokens ADADA to the
above message.

Adaptive method needed:

Basic idea (encoding)

 Initialize_model();
 while ((c = getc (input)) != eof)
 {
 encode (c, output);
 update_model (c);
 }

So encode message as before:

A= 01 D = 0000

So addd stream:

01000001000001

Modify Tree:
Symbol Count OPEN (1) OPEN (2) OPEN (3)
A 11
B 10 24
C 3 8 14 -
D 6 -

 E 5 -

6 Marks --- UNSEEN

E(5) C(3)

P1(8)

D(6)

P2(14)

A(11)

P3(24)

B(10)

P4(35)

0

0

0

0

1

1

1

1

3 (a) What are the major factors to be taken into account when considering what
storage requirements are necessary for Multimedia Systems?

Major factors:
 Large volume of date
 Real time delivery
 Data format
 Storage Medium
 Retrieval mechanisms

4 MARKS --- Unseen/applied bookwork

 (b) What is RAID technology and what advantages does it offer as a medium for
the storage and delivery of large data?

RAID --- Redundant Array of Inexpensive Disks

Offers:
 Affordable alternative to mass storage
 High throughput and reliability

RAID System:
 Set of disk drives viewed by user as one or more logical drives
 Data may be distributed across drives
 Redundancy added in order to allow for disk failure

4 MARKS --- BOOKWORK

 (c) Briefly explain the eight levels of RAID functionality .

Level 0 – Disk Striping --- distributing data across multiple drives
Level 1 – Disk Mirroring --- Fault tolerancing
Level 2 – Bit Interleaving and HEC Parity
Level 3 - Bit Interleaving with XOR Parity
Level 4 – Block Interleaving with XOR Parity
Level 5 - Block Interleaving with Parity Distribution
Level 6 – Fault Tolerant System --- Error recovery
Level 7 – Heterogeneuos System --- Fast access across whole system

8 MARKS --- BOOKWORK

(d) A digital video file is 40 Mb in size. The disk subsystem has four drives and
the controller is designed to support read and write onto each drive,
concurrently. The digital video stored using the disk striping concept. A block
size of 8 Kb is used for each I/O operation.

 (i) What is the performance improvement in sequentially reading the
complete file when compared to a single drive subsystem in terms of the number
of operations performed?

We have 5120 segments to write to RAID disks. Given 4 disks we have 1280
actual I/Os to perform

On 1 drive we clearly have 5120 operations to perform.

 (ii) What is the percentage performance improvement expressed as the
number of physical I/O operations to be executed in on the RAID and single
drive systems?

The improvement is
(5120 – 1280)/1280*100 = 300%. Obvious given 4 concurrent drives and RAID!!

11 MARKS --- UNSEEN

4 (a) Give a definition of a Multimedia Authoring System. What key features
should such a system provide?

An Authoring System is a program which has pre-programmed elements for the
development of interactive multimedia software titles.
Authoring systems vary widely in orientation, capabilities, and learning curve.

There is no such thing (at this time) as a completely point-and-click automated
authoring system; some knowledge of heuristic thinking and algorithm design is
necessary.

Authoring is basically just a speeded-up form of programming --- VISUAL
PROGRAMMING; you don't need to know the intricacies of a programming
language, or worse, an API, but you do need to understand how programs work.

2 MARKS ---- BOOKWORK

 (b) What Multimedia Authoring paradigms exist? Describe each paradigm
briefly.

There are various paradigms, including:

Scripting Language

The Scripting paradigm is the authoring method closest in form to traditional
programming. The paradigm is that of a programming language, which specifies (by
filename) multimedia elements, sequencing, hotspots, synchronization, etc. A
powerful, object-oriented scripting language is usually the centerpiece of such a
system; in-program editing of elements (still graphics, video, audio, etc.) tends to be
minimal or non-existent. Scripting languages do vary; check out how much the
language is object-based or object-oriented. The scripting paradigm tends to be longer
in development time (it takes longer to code an individual interaction), but generally
more powerful interactivity is possible. Since most Scripting languages are
interpreted, instead of compiled, the runtime speed gains over other authoring
methods are minimal.

The media handling can vary widely; check out your system with your contributing
package formats carefully. The Apple’s HyperTalk for HyperCard, Assymetrix’s

OpenScript for ToolBook and Lingo scripting language of Macromedia Director are
examples of a Multimedia scripting language.

Here is an example lingo script to jump to a frame

global gNavSprite
on exitFrame

go the frame
play sprite gNavSprite
end

Iconic/Flow Control
This tends to be the speediest (in development time) authoring style; it is best suited
for rapid prototyping and short-development time projects. Many of these tools are
also optimized for developing Computer-Based Training (CBT). The core of the
paradigm is the Icon Palette, containing the possible functions/interactions of a
program, and the Flow Line, which shows the actual links between the icons. These
programs tend to be the slowest runtimes, because each interaction carries with it all
of its possible permutations; the higher end packages, such as Authorware or
IconAuthor, are extremely powerful and suffer least from runtime speed problems.

Frame

The Frame paradigm is similar to the Iconic/Flow Control paradigm in that it usually
incorporates an icon palette; however, the links drawn between icons are conceptual
and do not always represent the actual flow of the program. This is a very fast
development system, but requires a good auto-debugging function, as it is visually
un-debuggable. The best of these have bundled compiled-language scripting, such as
Quest (whose scripting language is C) or Apple Media Kit.

Card/Scripting
The Card/Scripting paradigm provides a great deal of power (via the incorporated
scripting language) but suffers from the index-card structure. It is excellently
suitedfor Hypertext applications, and supremely suited for navigation intensive (a la
Cyan’s “MYST” game) applications. Such programs are easily extensible via
XCMDs andDLLs; they are widely used for shareware applications. The best
applications allow all objects (including individual graphic elements) to be scripted;
many entertainment applications are prototyped in a card/scripting system prior to
compiled-language coding.

Cast/Score/Scripting
The Cast/Score/Scripting paradigm uses a music score as its primary authoring
metaphor; the synchronous elements are shown in various horizontal tracks
withsimultaneity shown via the vertical columns. The true power of this metaphor lies
in the ability to script the behavior of each of the cast members. The most
popularmember of this paradigm is Director, which is used in the creation of many
commercial applications. These programs are best suited for animation-intensive
orsynchronized media applications; they are easily extensible to handle other
functions (such as hypertext) via XOBJs, XCMDs, and DLLs.

Macromedia Director uses this .

Hierarchical Object
The Hierarchical Object paradigm uses a object metaphor (like OOP) which is
visually represented by embedded objects and iconic properties. Although the
learning curve is non-trivial, the visual representation of objects can make very
complicated constructions possible.

Hypermedia Linkage
The Hypermedia Linkage paradigm is similar to the Frame paradigm in that it shows
conceptual links between elements; however, it lacks the Frame paradigm’s visual
linkage metaphor.

Tagging
The Tagging paradigm uses tags in text files (for instance, SGML/HTML, SMIL
(Synchronised Media Integration Language), VRML, 3DML and WinHelp) to link
pages, provide interactivity and integrate multimedia elements.

8 Marks --- BOOKWORK

(c) You have been asked to provide a Multimedia presentation that can
support media in both English and French. You may assume that you
have been given a sequence of 10 images and a single 50 second digitised
audio soundtrack in both languages. Each Image should be mapped over
consecutive 5 second fragments of the audio. All Images are of the same
500x500 pixel dimension.

Describe, giving suitable code fragments, how you would assemble such a
presentation using SMIL. Your solution should cover all aspects of the
SMIL presentation

<smil>
 <head>
 <layout>
 <root-layout height="500" width="500" background-
color="#000000" title="MultiLingual"/>
 <region id="image1" width="500" height="500" top="0"
left="0" background-color="#000000" z-index="1" />
 <region id="image2" width="500" height="500" top="0"
left="0" background-color="#000000" z-index="1" />
……….
 </layout>
 </head>

<body>
 <par>
 <switch>

 <!-- English only -->

 < audio system-language="en" src ="english.au" />

 <!-- French only -->
 <audio system-language="fr" src ="francais.au" />
 </switch>

<seq>
 <img src="image1.jpg" region="image1" begin="0.00s"
dur="5.00s" />
 <img src="image2.jpg" region="image2" begin="5.00s"
dur="5.00s" />

…….

</seq>
</par>

</body>
</smil>

17 Marks ---- UNSEEN

Multimedia Systems Suplementary Exam
Material

Synchronized Multimedia Integration Language
(SMIL) 1.0 Specification

Abstract

This document specifies version 1 of the Synchronized Multimedia Integration Language (SMIL 1.0,
pronounced "smile"). SMIL allows integrating a set of independent multimedia objects into a synchronized
multimedia presentation. Using SMIL, an author can

1. describe the temporal behavior of the presentation
2. describe the layout of the presentation on a screen
3. associate hyperlinks with media objects

This specification is structured as follows:

Section 1 presents the specification approach.
Section 2 defines the "smil" element.
Section 3 defines the elements that can be contained in the head part of a SMIL document.
Section 4 defines the elements that can be contained in the body part of a SMIL document. In particular,
this Section defines the time model used in SMIL.

Table of Contents

1 Specification Approach
2 The smil Element
3 The Document Head

3.1 The head Element
3.2 The layout Element
3.3 SMIL Basic Layout Language

3.3.1 The region Element
3.3.2 The root-layout Element

3.4 The meta Element
4 The Document Body

4.1 The body Element
4.2 Synchronization Elements

4.2.1 The par Element
4.2.2 The seq Element

: The ref, animation, audio, img, video, text and textstream 4.2.3 Media Object Element

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 1 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

elements
4.2.4 SMIL Time Model

4.2.4.1 Time Model Values
4.2.4.2 Determining Values of Model Values for SMIL 1.0 Elements

4.3 The switch Element
4.4 Test Attributes

 Elements4.5 Hyperlinking
4.5.1 The a Element
4.5.2 The anchor Element

1 Specification Approach

SMIL documents are XML 1.0 documents . The reader is expected to be familiar with the concepts
and terms defined in XML 1.0.

[XML10]

This specification does not rely on particular features defined in URLs that cannot potentially be expressed
using URNs. Therefore, the more generic term URI is used throughout the specification.[URI]

The syntax of SMIL documents is defined by the DTD in . The syntax of an attribute value that
cannot be defined using the DTD notation is defined together with the first element using an attribute that can
contain the attribute value. The syntax of such attribute values is defined using the Extended Backus-Naur Form
(EBNF) defined in the XML 1.0 specification.

Section 5.2

An element definition is structured as follows: First, all attributes of the element are defined in alphabetical
order. An attribute is defined in the following way: If the attribute is used by an element for the first time in the
specification, the semantics of the attribute are defined. If the attribute has already been used by another
element, the specification refers to the definition of the attribute in the first element that used it. The definition of
element attributes is followed by the definition of any attribute values whose syntax cannot be defined using the
DTD notation. The final section in an element definition specifies the element content.

2 The Elementsmil

Element Attributes

The "smil" element can have the following attribute:

id
This attribute uniquely identifies an element within a document. Its value is an XML identifier.

Element Content

The "smil" element can contain the following children:

body
Defined in Section 4.1

head
Defined in Section 3.1

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 2 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

3 The Document Head

The Element3.1 head

The "head" element contains information that is not related to the temporal behavior of the presentation.

Element Attributes

The "head" element can have the following attribute:

id
Defined in Section 2

Element Content

The "head" element can contain the following children:

layout
Defined in Section 3.2

meta
Defined in Section 3.4

switch
Defined in Section 4.3

The "head" element may contain any number of "meta" elements and either a "layout" element or a "switch"
element.

 The Element3.2 layout

The "layout" element determines how the elements in the document's body are positioned on an abstract
rendering surface (either visual or acoustic).

If a document contains no layout element, the positioning of the body elements is implementation-dependent.

A SMIL document can contain multiple alternative layouts by enclosing several layout elements within a
"switch" element (defined in). This can be used for example to describe the document's layout using
different layout languages.

Section 4.3

The following example shows how CSS2 can be used as alternative to the SMIL basic layout language
(defined in):Section 3.3

<smil>
 <head>
 <switch>
 <layout type="text/css">
 [region="r"] { top: 20px; left: 20px }
 </layout>
 <layout>

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 3 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

 <region id="r" top="20" left="20" />
 </layout>
 </switch>
 </head>
 <body>
 <seq>

 </seq>
 </body>
</smil>

(note that in this example, both layout alternatives result in the same layout)

Element Attributes

id
Defined in Section 2

type
This attribute specifies which layout language is used in the layout element. If the player does not
understand this language, it must skip all content up until the next "</layout>" tag. The default value of the
type attribute is "text/smil-basic-layout".

Element Content

If the type attribute of the layout element has the value "text/smil-basic-layout", it can contain the following
elements:

region
Defined in Section 3.3.1

root-layout
Defined in Section 3.3.2

If the type attribute of the "layout" element has another value, the element contains character data.

3.3 SMIL Basic Layout Language

This section defines a basic layout language for SMIL. SMIL basic layout is consistent with the visual rendering
model defined in CSS2, it reuses the formatting properties defined by the CSS2 specification, and newly
introduces the "fit" attribute . The reader is expected to be familiar with the concepts and terms defined
in CSS2.

[CSS2]

SMIL basic layout only controls the layout of media object elements (defined in). It is illegal to
use SMIL basic layout for other SMIL elements.

Section 4.2.3

The type identifier for SMIL basic layout is "text/smil-basic-layout".

Fixed Property Values

The following stylesheet defines the values of the CSS2 properties "display" and "position" that are valid in
SMIL basic layout. These property values are fixed:

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 4 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

a {display:block}
anchor {display:block}
animation {display: block;
 position: absolute}
body {display: block}
head {display: none}
img {display: block;
 position: absolute}
layout {display: none}
meta {display: none}
par {display: block}
region {display: none}
ref! {display: block;
 position: absolute}
root-layout {display: none}
seq {display: block}
smil {display: block}
switch {display:block}
text {display: block;
 position: absolute}
textstream {display: block;
 position: absolute}
video {display: block;
 position: absolute}

Note that as a result of these definitions, all absolutely positioned elements (animation, img, ref, text, textstream
and video) are contained within a single containing block defined by the content content edge of the root
element (smil).

Default Values

SMIL basic layout defines default values for all layout-related attributes. These are consistent with the initial
values of the corresponding properties in CSS2.

If the author wants to select the default layout values for media object elements in a document, the
document must contain an empty layout element of type "text/smil-basic-layout" such as:

all

<layout type="text/smil-basic-layout"></layout>

3.3.1 The Elementregion

The region element controls the position, size and scaling of media object elements.

In the following example fragment, the position of a text element is set to a 5 pixel distance from the top border
of the rendering window:

<smil>
 <head>
 <layout>
 <region id="a" top="5" />
 </layout>
 </head>

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 5 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

 <body>
 <text region="a" src="text.html" dur="10s" />
 </body>
</smil>

Element Attributes

The "region" element can have the following attributes:

background-color
The use and definition of this attribute are identical to the "background-color" property in the CSS2
specification, except that SMIL basic layout does not require support for "system colors".
If the background-color attribute is absent, the background is transparent.

fit
This attribute specifies the behavior if the intrinsic height and width of a visual media object differ from
the values specified by the height and width attributes in the "region" element. This attribute does not
have a 1-1 mapping onto a CSS2 property, but can be simulated in CSS2.
This attribute can have the following values:

fill
Scale the object's height and width independently so that the content just touches all edges of the
box.

hidden
If the intrinsic height (width) of the media object element is smaller than the height (width)
defined in the "region" element, render the object starting from the top (left) edge and fill up
the remaining height (width) with the background color.
If the intrinsic height (width) of the media object element is greater than the height (width)
defined in the "region" element, render the object starting from the top (left) edge until the
height (width) defined in the "region" element is reached, and clip the parts of the object
below (right of) the height (width).

meet
Scale the visual media object while preserving its aspect ratio until its height or width is equal to
the value specified by the height or width attributes, while none of the content is clipped. The
object's left top corner is positioned at the top-left coordinates of the box, and empty space at the
left or bottom is filled up with the background color.

scroll
A scrolling mechanism should be invoked when the element's rendered contents exceed its bounds.

slice
Scale the visual media object while preserving its aspect ratio so that its height or width are equal
to the value specified by the height and width attributes while some of the content may get
clipped. Depending on the exact situation, either a horizontal or a vertical slice of the visual media
object is displayed. Overflow width is clipped from the right of the media object. Overflow height
is clipped from the bottom of the media object.

The default value of "fill" is "hidden".

height
The use and definition of this attribute are identical to the "height" property in the CSS2 specification.
Attribute values can be "percentage" values, and a variation of the "length" values defined in CSS2. For

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 6 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

"length" values, SMIL basic layout only supports pixel units as defined in CSS2. It allows to leave out the
"px" unit qualifier in pixel values (the "px" qualifier is required in CSS2).

id
Defined in
A region element is applied to a positionable element by setting the attribute of the positionable
element to the id value of the region.
The "id" attribute is required for "region" elements.

Section 2
region

left
The use and definition of this attribute are identical to the "left" property in the CSS2 specification.
Attribute values have the same restrictions as the attribute values of the "height" attribute.
The default value is zero.

skip-content
This attribute is introduced for future extensibility of SMIL (see). It is interpreted in the
following two cases:

Appendix

If a new element is introduced in a future version of SMIL, and this element allows SMIL 1.0
elements as element content, the "skip-content" attribute controls whether this content is
processed by a SMIL 1.0 player.
If an empty element in SMIL version 1.0 becomes non-empty in a future SMIL version, the "skip-
content" attribute controls whether this content is ignored by a SMIL 1.0 player, or results in a
syntax error.

If the value of the "skip-content" attribute is "true", and one of the cases above apply, the content of the
element is ignored. If the value is "false", the content of the element is processed.
The default value for "skip-content" is "true".

title
This attribute offers advisory information about the element for which it is set. Values of the title attribute
may be rendered by user agents in a variety of ways. For instance, visual browsers frequently display the
title as a "tool tip" (a short message that appears when the pointing device pauses over an object).
It is strongly recommended that all "region" elements have a "title" attribute with a meaningful
description. Authoring tools should ensure that no element can be introduced into a SMIL document
without this attribute.

top
The use and definition of this attribute are identical to the "top" property in the CSS2 specification.
Attribute values have the same restrictions as the attribute values of the "height" attribute.
The default value is zero.

width
The use and definition of this attribute are identical to the "width" property in the CSS2 specification.
Attribute values have the same restrictions as the attribute values of the "height" attribute.

z-index
The use and definition of this attribute are identical to the "z-index" property in the CSS2 specification,
with the following exception:

If two boxes generated by elements A and B have the same stack level, then
1. If the display of an element A starts later than the display of an element B, the box of A is

stacked on top of the box of B (temporal order).
2. If the display of the elements starts at the same time, and an element A occurs later in the

SMIL document text than an element B, the box of A is stacked on top of the box of B
(document tree order as defined in CSS2).

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 7 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Element Content

"region" is an empty element.

3.3.2 The elementroot-layout

The "root-layout" element determines the value of the layout properties of the root element, which in turn
determines the size of the viewport, e.g. the window in which the SMIL presentation is rendered.

If a document contains more than one "root-layout" element, this is an error, and the document should not be
displayed.

Element Attributes

The "root-layout" element can have the following attributes:

background-color
Defined in Section 3.3.1

height
Defined in
Sets the height of the root element. Only length values are allowed.

Section 3.3.1

id
Defined in Section 2

skip-content
Defined in Section 3.3.1

title
Defined in Section 3.3.1

width
Defined in
Sets the width of the root element. Only length values are allowed.

Section 3.3.1

Element Content

"root-layout" is an empty element.

3.4 The Elementmeta

The "meta" element can be used to define properties of a document (e.g., author, expiration date, a list of key
words, etc.) and assign values to those properties. Each "meta" element specifies a single property/value pair.

Element Attributes

The "meta" element can have the following attributes:

content
This attribute specifies the value of the property defined in the meta element.
The "content" attribute is required for "meta" elements.

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 8 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

id
Defined in Section 2

name
This attribute identifies the property defined in the meta element.
The "name" attribute is required for "meta" elements.

skip-content
Defined in Section 3.3.1

The list of properties is open-ended. This specification defines the following properties:

base
The value of this property determines the base URI for all relative URIs used in the document.

pics-label or PICS-Label
The value of this property specifies a valid rating label for the document as defined by PICS .[PICS]

title
The value of this property contains the title of the presentation.

Element Content

"meta" is an empty element.

4 The Document Body

 The Element4.1 body

The "body" element contains information that is related to the temporal and linking behavior of the document. It
implicitly defines a "seq" element (defined in Section 4.2.2, see Section 4.2.4 for a definition of the temporal
semantics of the "body" element).

Element Attributes

The "body" element can have the following attribute:

id
Defined in Section 2

Element Content

The "body" element can contain the following children:

a
Defined in Section 4.5.1

animation
Defined in Section 4.2.3

audio
Defined in Section 4.2.3

img

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 9 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Defined in Section 4.2.3
par

Defined in Section 4.2.1
ref

Defined in Section 4.2.3
seq

Defined in Section 4.2.2
switch

Defined in Section 4.3
text

Defined in Section 4.2.3
textstream

Defined in Section 4.2.3
video

Defined in Section 4.2.3

 Synchronization Elements4.2

 The Element4.2.1 par

The children of a par element can overlap in time. The textual order of appearance of children in a par has no
significance for the timing of their presentation.

Element Attributes

The "par" element can have the following attributes:

abstract
A brief description of the content contained in the element.

author
The name of the author of the content contained in the element.

begin
This attribute specifies the time for the explicit begin of an element. See for a definition of
its semantics.
The attribute can contain the following two types of values:

Section 4.2.4

delay-value
A delay value is a clock-value measuring presentation time. Presentation time advances at the
speed of the presentation. It behaves like the timecode shown on a counter of a tape-deck. It can
be stopped, decreased or increased either by user actions, or by the player itself.
The semantics of a delay value depend on the element's first ancestor that is a synchronization
element (i.e. ancestors that are "a" or "switch" elements are ignored):

If this ancestor is a "par" element, the value defines a delay from the effective begin of that
element (see Figure 4.1).
If this ancestor is a "seq" element (defined in), the value defines a delay from
the effective end of the first lexical predecessor that is a synchronization element (see
Figure 4.2).

Section 4.2.2

event-value

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 10 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

The element begins when a certain event occurs (see Figure 4.3). Its value is an element-event
(see Definition below).
The element generating the event must be "in scope". The set of "in scope" elements S is
determined as follows:

1. Take all children from the element's first ancestor that is a synchronization element and add
them to S.

2. Remove all "a" and "switch" elements from S. Add the children of all "a" elements to S,
unless they are "switch" elements.

The resulting set S is the set of "in scope" elements.

copyright
The copyright notice of the content contained in the element.

dur
This attribute specifies the explicit duration of an element. See for a definition of its
semantics. The attribute value can be a clock value, or the string "indefinite".

Section 4.2.4

end
This attribute specifies the explicit end of an element. See for a definition of its semantics.
The attribute can contain the same types of attribute values as the "begin" attribute.

Section 4.2.4

endsync
For a definition of the semantics of this attribute, see . The attribute can have the following
values:

Section 4.2.4

first
For a definition of the semantics of this value, see .Section 4.2.4
id-ref
This attribute value has the following syntax:

where "id-value" must be a legal XML identifier.
For a definition of the semantics of this value, see .

id-ref ::= "id(" id-value ")"

Section 4.2.4
last
For a definition of the semantics of this value, see .Section 4.2.4

The default value of "endsync" is "last".

id
Defined in Section 2

region
This attribute specifies an abstract rendering surface (either visual or acoustic) defined within the layout
section of the document. Its value must be an XML identifier. If no rendering surface with this id is
defined in the layout section, the values of the formatting properties of this element are determined by the
default layout.
The "region" attribute on "par" elements cannot be used by the basic layout language for SMIL defined in
this specification. It is added for completeness, since it may be required by other layout languages.

repeat
For a definition of the semantics of this attribute, see . The attribute value can be an integer,
or the string "indefinite". The default value is 1.

Section 4.2.4

system-bitrate
Defined in Section 4.4

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 11 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

system-captions
Defined in Section 4.4

system-language
Defined in Section 4.4

system-overdub-or-caption
Defined in Section 4.4

system-required
Defined in Section 4.4

system- -sizescreen
Defined in Section 4.4

system-screen-depth
Defined in Section 4.4

title
Defined in
It is strongly recommended that all "par" elements have a "title" attribute with a meaningful description.
Authoring tools should ensure that no element can be introduced into a SMIL document without this
attribute.

Section 3.3.1

Note on Synchronization between Children

The accuracy of synchronization between the children in a parallel group is implementation-dependent. Take
the example of synchronization in case of playback delays, i.e. the behavior when the "par" element contains
two or more continuous media types such as audio or video, and one of them experiences a delay.
A player can show the following synchronization behaviors:

hard synchronization
The player synchronizes the children in the "par" element to a common clock (see Figure 4.4 a)).

soft synchronization
Each child of the "par" element has its own clock, which runs independently of the clocks of other
children in the "par" element (see Figure 4.4 b)).

Attribute Values

clock value
Clock values have the following syntax:

Clock-val ::= Full-clock-val | Partial-clock-val | Timecount-val
Full-clock-val ::= Hours ":" Minutes ":" Seconds ("." Fraction)?
Partial-clock-val ::= Minutes ":" Seconds ("." Fraction)?
Timecount-val ::= Timecount ("." Fraction)?
 ("h" | "min" | "s" | "ms")? ; default is "s"
Hours ::= 2DIGIT; any positive number
Minutes ::= 2DIGIT; range from 00 to 59
Seconds ::= 2DIGIT; range from 00 to 59
Fraction! ::= DIGIT+
Timecount ::= DIGIT+
2DIGIT!! ::= DIGIT DIGIT
DIGIT!! ::= [0-9]

The following are examples of legal clock values:

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 12 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Full clock value: 02:30:03 = 2 hours, 30 minutes and 3 seconds
Partial clock value: 02:33 = 2 minutes and 33 seconds
Timecount values:
3h = 3 hours
45min = 45 minutes
30s = 30 seconds
5ms = 5 milliseconds

A fraction x with n digits represents the following value:

x * 1/10**n

Examples:

00.5s = 5 * 1/10 seconds = 500 milliseconds
00:00.005 = 5 * 1/1000 seconds = 5 milliseconds

element-event value
An value specifies a particular event in a synchronization element.
An element event has the following syntax:

element event

Element-event ::= "id(" Event-source ")(" Event ")"
Event-source ::= Id-value
Event ::= "begin" | Clock-val | "end"

The following events are defined:

begin
This event is generated at an element's effective begin.
Example use: begin="id(x)(begin)"

clock-val
This event is generated when a clock associated with an element reaches a particular value. This
clock starts at 0 at the element's effective begin. For "par" and "seq" elements, the clock gives the
presentation time elapsed since the effective begin of the element. For media object elements, the
semantics are implementation-dependent. The clock may either give presentation time elapsed
since the effective begin, or it may give the media time of the object. The latter may differ from the
presentation time that elapsed since the object's display was started e.g. due to rendering or
network delays, and is the recommended approach.
It is an error to use a clock value that exceeds the value of the effective duration of the element
generating the event.

Example use: begin="id(x)(45s)"

end
This event is generated at the element's effective end.
Example use: begin="id(x)(end)"

Element Content

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 13 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

The par element can contain the following children:

a
Defined in Section 4.5.1

animation
Defined in Section 4.2.3

audio
Defined in Section 4.2.3

img
Defined in Section 4.2.3

par
Defined in Section 4.2.1

ref
Defined in Section 4.2.3

seq
Defined in Section 4.2.2

switch
Defined in Section 4.3

text
Defined in Section 4.2.3

textstream
Defined in Section 4.2.3

video
Defined in Section 4.2.3

All of these elements may appear multiple times as direct children of a par element.

 The Element4.2.2 seq

The children of a "seq" element form a temporal sequence.

Attributes

The seq element can have the following attributes:

abstract
Defined in Section 4.2.1

author
Defined in Section 4.2.1

begin
Defined in Section 4.2.1

copyright
Defined in Section 4.2.1

dur
Defined in Section 4.2.1

end
Defined in Section 4.2.1

id

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 14 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Defined in Section 2
region

Defined in
The region attribute on "seq" elements cannot be used by the basic layout language for SMIL defined in
this specification. It is added for completeness, since it may be required by other layout languages.

Section 4.2.1

repeat
Defined in Section 4.2.1

system-bitrate
Defined in Section 4.4

system-captions
Defined in Section 4.4

system-language
Defined in Section 4.4

system-overdub-or-caption
Defined in Section 4.4

system-required
Defined in Section 4.4

system- -sizescreen
Defined in Section 4.4

system-screen-depth
Defined in Section 4.4

title
Defined in
It is strongly recommended that all "seq" elements have a "title" attribute with a meaningful description.
Authoring tools should ensure that no element can be introduced into a SMIL document without this
attribute.

Section 3.3.1

Element Content

The seq element can contain the following children:

a
Defined in Section 4.5.1

animation
Defined in Section 4.2.3

audio
Defined in Section 4.2.3

img
Defined in Section 4.2.3

par
Defined in Section 4.2.1

ref
Defined in Section 4.2.3

seq
Defined in Section 4.2.2

switch
Defined in Section 4.3

text
Defined in Section 4.2.3

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 15 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

textstream
Defined in Section 4.2.3

video
Defined in Section 4.2.3

 Media Object Elements: The , , , and
elements
4.2.3 ref animation audio,img video,text textstream

The media object elements allow the inclusion of media objects into a SMIL presentation. Media objects are
included by reference (using a URI).

There are two types of media objects: media objects with an intrinsic duration (e.g. video, audio) (also called
"continuous media"), and media objects without intrinsic duration (e.g. text, image) (also called "discrete
media").

Anchors and links can be attached to visual media objects, i.e. media objects rendered on a visual abstract
rendering surface.

When playing back a media object, the player must not derive the exact type of the media object from the
name of the media object element. Instead, it must rely solely on other sources about the type, such as type
information contained in the "type" attribute, or the type information communicated by a server or the operating
system.

Authors, however, should make sure that the group into which of the media object falls (animation, audio, img,
video, text or textstream) is reflected in the element name. This is in order to increase the readability of the
SMIL document. When in doubt about the group of a media object, authors should use the generic "ref"
element.

Element Attributes

Media object elements can have the following attributes:

abstract
Defined in Section 4.2.1

alt
For user agents that cannot display a particular media-object, this attribute specifies alternate text. It is
strongly recommended that all media object elements have an "alt" attribute with a meaningful description.
Authoring tools should ensure that no element can be introduced into a SMIL document without this
attribute.

author
Defined in Section 4.2.1

begin
Defined in Section 4.2.1

clip-begin
The clip-begin attribute specifies the beginning of a sub-clip of a continuous media object as offset from
the start of the media object.
Values in the clip-begin attribute have the following syntax:

Clip-time-value ::= Metric "=" (Clock-val | Smpte-val)

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 16 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Metric ::= Smpte-type | "npt"
Smpte-type ::= "smpte" | "smpte-30-drop" | "smpte-25"
Smpte-val ::= Hours ":" Minutes ":" Seconds
 [":" Frames ["." Subframes]]
Hours ::= 2DIGIT
Minutes ::= 2DIGIT
Seconds ::= 2DIGIT
Frames ::= 2DIGIT
Subframes ::= 2DIGIT

The value of this attribute consists of a metric specifier, followed by a time value whose syntax and
semantics depend on the metric specifier. The following formats are allowed:

SMPTE Timestamp
SMPTE time codes can be used for frame-level access accuracy. The metric specifier
can have the following values:

[SMPTE]

smpte
smpte-30-drop

These values indicate the use of the "SMPTE 30 drop" format with 29.97 frames per
second. The "frames" field in the time value can assume the values 0 through 29. The
difference between 30 and 29.97 frames per second is handled by dropping the first two
frame indices (values 00 and 01) of every minute, except every tenth minute.

smpte-25
The "frames" field in the time specification can assume the values 0 through 24.

The time value has the format hours:minutes:seconds:frames.subframes. If the frame value is zero,
it may be omitted. Subframes are measured in one-hundredth of a frame.
Examples:
clip-begin="smpte=10:12:33:20"

Normal Play Time
Normal Play Time expresses time in terms of SMIL clock values. The metric specifier is "npt", and
the syntax of the time value is identical to the syntax of SMIL clock values.
Examples:

"
clip-begin="npt=123.45s"

clip-begin="npt=12:05:35.3

clip-end
The clip-end attribute specifies the end of a sub-clip of a continuous media object (such as audio, video
or another presentation) that should be played. It uses the same attribute value syntax as the clip-begin
attribute.
If the value of the "clip-end" attribute exceeds the duration of the media object, the value is ignored, and
the clip end is set equal to the effective end of the media object.

copyright
Defined in Section 4.2.1

dur
Defined in Section 4.2.1

end
Defined in Section 4.2.1

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 17 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

fill
For a definition of the semantics of this attribute, see Section 4.2.4. The attribute can have the values
"remove" and "freeze".

id
Defined in Section 2

longdesc
This attribute specifies a link (URI) to a long description of a media object. This description should
supplement the short description provided using the alt attribute. When the media-object has associated
anchors, this attribute should provide information about the anchor's contents.

region
Defined in Section 4.2.1

src
The value of the src attribute is the URI of the media object.

system-bitrate
Defined in Section 4.4

system-captions
Defined in Section 4.4

system-language
Defined in Section 4.4

system-overdub-or-caption
Defined in Section 4.4

system-required
Defined in Section 4.4

system- -sizescreen
Defined in Section 4.4

system-screen-depth
Defined in Section 4.4

title
Defined in
It is strongly recommended that all media object elements have a "title" attribute with a meaningful
description. Authoring tools should ensure that no element can be introduced into a SMIL document
without this attribute.

Section 3.3.1

type
MIME type of the media object referenced by the "src" attribute.

Element Content

Media Object Elements can contain the following element:

anchor
Defined in Section 4.5.2

4.2.4 SMIL Time Model

4.2.4.1 Time Model Values

In the following discussion, the term "element" refers to synchronization elements only.

For each element we define the implicit, explicit, desired, and effective begin, duration, and end.

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 18 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

The effective begin/duration/end specify what the reader of the document will perceive.

The implicit, explicit, and desired values are auxiliary values used to define the effective values.

The rules for calculating each of these values for the elements defined in SMIL 1.0 are described in the next
section.

1. Each element in SMIL has an .implicit begin
2. Each element can be assigned an by adding a "begin" attribute to the element:explicit begin

"begin = "value of explicit-begin

It is an error if the explicit begin is earlier than the implicit begin of the element.

3. Each element in SMIL has an .implicit end
4. Each element can be assigned an by adding an "end" attribute to the element:explicit end

end = " "value of explicit-end

5. The of an element is the difference between the implicit end and the implicit begin.implicit duration
6. Each element in SMIL can be assigned an by adding a "dur" attribute to the element:explicit duration

dur = " "value of explicit-duration

7. The of an element is equal to the explicit begin if one is given, otherwise the desired begin
is equal to the implicit begin.

desired begin

8. Each element has a .desired end
9. The of an element is the difference between the desired end and the desired begin.desired duration

10. Each element has an .effective begin
11. Each element has an . (Note: the effective end of a child element can never be later than

the effective end of its parent.)
effective end

12. The of an element is the difference between the effective end and the effective begin.effective duration

4.2.4.2 Determining Time Model Values for SMIL 1.0 Elements

This section defines how time model values are calculated for the synchronization elements of SMIL 1.0 in
cases that are not covered by the rules in .Section 4.2.4.1

Determining the of an elementimplicit begin

The implicit begin of the first child of the "body" element is when the document starts playing. When this
is falls outside the scope of this document.
The implicit begin of a child of a "par" element is equal to the effective begin of the "par" element.
The implicit begin of the first child of a "seq" element is equal to the effective begin of the "seq" element.
The implicit begin of any other child of a "seq" element is equal to the desired end time of the previous
child of the "seq" element.

Determining the of an elementimplicit end

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 19 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

The first description that matches the element is the one that is to be used:

An element with a "repeat" attribute with value "indefinite" has an implicit end immediately after its
effective begin.
An element with a "repeat" attribute with a value other than "indefinite" has an implicit end equal to the
implicit end of a seq element with the stated number of copies of the element without "repeat" attribute as
children.
A media object element referring to a continuous media object has an implicit end equal to the sum of
the effective begin of the element and the intrinsic duration of the media object.
A media object element referring to a discrete media object such as text or image has an implicit end
immediately after its effective begin.
A "seq" element has an implicit end equal to the desired end of its last child.
A "par" element has an implicit end that depends on the value of the "endsync" attribute. The implicit end
is equal to the sum of the effective begin of the "par" element and the implicit duration which is derived as
follows:

If the value of the "endsync" attribute is "last", or if the "endsync" attribute is missing, the implicit
duration of the "par" element is the maximum of the desired durations of its children.
If the value of the "endsync" attribute is "first", the implicit duration of the "par" element is the
minimum of the desired durations of its children.
If the value of the "endsync" attribute is an id-ref, the implicit duration of the "par" element is equal
to the desired duration of the child referenced by the "id-ref".

Determining the of an elementdesired end

If the element has both an explicit duration and an explicit end, the desired end is the minimum of:
the sum of the desired begin and the explicit duration; and
the explicit end.

If the element has an explicit duration but no explicit end, the desired end is the sum of the desired begin
and the explicit duration.
If the element has an explicit end but no explicit duration, the desired end is equal to the explicit end
Otherwise, the desired end is equal to the implicit end.

Determining the of an elementdesired begin

The desired begin of an element is determined by using rule 7 in .Section 4.2.4.1

Determining the of an elementeffective begin

The of an element is equal to the desired begin of the element, unless the effective end of the
parent element is earlier than this time, in which case the element is not shown at all.

effective begin

Determining the of an elementeffective end

The effective end of the last child of the body element is player-dependent. The effective end is at least
as late as the desired end, but whether it is any later is implementation-dependent.
The effective end of the child of a "par" element can be derived as follows:

If the child has a "fill" attribute, and the value of the "fill" attribute is "freeze", the effective end of
the child element is equal to the effective end of the parent.

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 20 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

The last state of the element is retained on the screen until the effective end of the element.
If the child has a "fill" attribute, and the value of the "fill" attribute is "remove", the effective end of
the child element is the minimum of the effective end of the parent and the desired end of the child
element.
If the child element has no "fill" attribute, the effective end of the child depends on whether or not
the child has an explicit duration or end.

If the child has an explicit duration or end, the effective end is determined as if the element
had a "fill" attribute with value "remove".
If the child has neither an explicit duration nor an explicit end, the effective end is
determined as if the element had a "fill" attribute with value "freeze".

The effective end of the last child of a "seq" element is derived in the same way as the effective end of a
child of a "par" element.
The effective end of any other child of a "seq" element can be derived as follows:

If the child has a "fill" attribute, and the value of the "fill" attribute is "freeze", the effective end of
the child element is equal to the effective begin of the next element
If the child has a "fill" attribute, and the value of the "fill" attribute is "remove", the effective end of
the child element is the minimum of the effective begin of the next element and the desired end of
the next child element.
If the child element has no "fill" attribute, the effective end of the child depends on whether or not
the child has an explicit duration or end.

If the child has an explicit duration or end, the effective end is determined as if the element
had a fill attribute with value "remove".
If the child has neither an explicit duration nor an explicit end, the effective end is
determined as if the element had a fill attribute with value "freeze".

 The Element4.3 switch

The switch element allows an author to specify a set of alternative elements from which only one acceptable
element should be chosen. An element is acceptable if the element is a SMIL 1.0 element, the media-type can
be decoded, and all of the test-attributes (see) of the element evaluate to "true".Section 4.4

An element is selected as follows: the player evaluates the elements in the order in which they occur in the
switch element. The first acceptable element is selected at the exclusion of all other elements within the switch.

Thus, authors should order the alternatives from the most desirable to the least desirable. Furthermore, authors
should place a relatively fail-safe alternative as the last item in the <switch> so that at least one item within the
switch is chosen (unless this is explicitly not desired). Implementations should NOT arbitrarily pick an object
within a <switch> when test-attributes for all fail.

Note that http URIs provide for content-negotiation, which may be an alternative to using the "switch" element
in some cases.

Attributes

The switch element can have the following attributes:

id
Defined in Section 2

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 21 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

title
Defined in
It is strongly recommended that all switch elements have a "title" attribute with a meaningful description
Authoring tools should ensure that no element can be introduced into a SMIL document without this
attribute.

Section 3.3.1

Element Content

If the "switch" element is used as a direct or indirect child of a "body" element, it can contain the following
children:

a
Defined in Section 4.5.1

animation
Defined in Section 4.2.3

audio
Defined in Section 4.2.3

img
Defined in Section 4.2.3

par
Defined in Section 4.2.1

ref
Defined in Section 4.2.3

seq
Defined in Section 4.2.2

switch
Defined in Section 4.3

text
Defined in Section 4.2.3

textstream
Defined in Section 4.2.3

video
Defined in Section 4.2.3

All of these elements may appear multiple times as children of a "switch" element.

If the "switch" element is used within a "head" element, it can contain the following child:

layout
Defined in
Multiple layout elements may occur within the switch element.

Section 3.2

Test 4.4 Attributes

This specification defines a list of test attributes that can be added to any synchronization element, and that test
system capabilities and settings. Conceptually, these attributes represent boolean tests. When one of the test
attributes specified for an element evaluates to "false", the element carrying this attribute is ignored.

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 22 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Within the list below, the concept of "user preference" may show up. User preferences are usually set by the
playback engine using a preferences dialog box, but this specification does not place any restrictions on how
such preferences are communicated from the user to the SMIL player.

The following test attributes are defined in SMIL 1.0:

system-bitrate
This attribute specifies the approximate bandwidth, in bits per second available to the system. The
measurement of bandwidth is application specific, meaning that applications may use sophisticated
measurement of end-to-end connectivity, or a simple static setting controlled by the user. In the latter
case, this could for instance be used to make a choice based on the users connection to the network.
Typical values for modem users would be 14400, 28800, 56000 bit/s etc. Evaluates to "true" if the
available system bitrate is equal to or greater than the given value. Evaluates to "false" if the available
system bitrate is less than the given value.
The attribute can assume any integer value greater than 0. If the value exceeds an implementation-
defined maximum bandwidth value, the attribute always evaluates to "false".

system-captions
This attribute allows authors to distinguish between a redundant text equivalent of the audio portion of
the presentation (intended for a audiences such as those with hearing disabilities or those learning to read
who want or need this information) and text intended for a wide audience. The attribute can has the value
"on" if the user has indicated a desire to see closed-captioning information, and it has the value "off" if the
user has indicated that they don't wish to see such information. Evaluates to "true" if the value is "on", and
evaluates to "false" if the value is "off".

system-language
The attribute value is a comma-separated list of language names as defined in [RFC1766].

Evaluates to "true" if one of the languages indicated by user preferences exactly equals one of the
languages given in the value of this parameter, or if one of the languages indicated by

user preferences exactly equals a prefix of one of the languages given in the value of this parameter such
that the first tag character following the prefix is "-".

Evaluates to "false" otherwise.

Note: This use of a prefix matching rule does not imply that language tags are assigned to languages in
such a way that it is always true that if a user understands a language with a certain tag, then this user will
also understand all languages with tags for which this tag is a prefix.

The prefix rule simply allows the use of prefix tags if this is the case.

Implementation note: When making the choice of linguistic preference available to the user, implementors
should take into account the fact that users are not familiar with the details of language matching as
described above, and should provide appropriate guidance. As an example, users may assume that on
selecting "en-gb", they will be served any kind of English document if British English is not available. The
user interface for setting user preferences should guide the user to add "en" to get the best matching
behavior.

Multiple languages MAY be listed for content that is intended for multiple audiences. For example, a

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 23 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

rendition of the "Treaty of Waitangi", presented simultaneously in the original Maori and English versions,
would call for:

 <audio src="foo.rm" system-language="mi, en"/>

However, just because multiple languages are present within the object on which the system-language
test attribute is placed, this does not mean that it is intended for multiple linguistic audiences. An example
would be a beginner's language primer, such as "A First Lesson in Latin," which is clearly intended to be
used by an English-literate audience. In this case, the system-language test attribute should only include
"en".

Authoring note: Authors should realize that if several alternative language objects are enclosed in a
"switch", and none of them matches, this may lead to situations such as a video being shown without any
audio track. It is thus recommended to include a "catch-all" choice at the end of such a switch which is
acceptable in all cases.

system-overdub-or-caption
This attribute is a setting which determines if users prefer overdubbing or captioning when the option is
available. The attribute can have the values "caption" and "overdub". Evaluates to "true" if the user
preference matches this attribute value. Evaluates to "false" if they do not match.

system-required
This attribute specifies the name of an extension. Evaluates to "true" if the extension is supported by the
implementation, otherwise, this evaluates to "false". In a future version of SMIL, this attribute value will
be an XML namespace .[NAMESPACES]

system- -sizescreen
Attribute values have the following syntax:

Each of these is a pixel value, and must be an integer value greater than 0. Evaluates to "true" if the
SMIL playback engine is capable of displaying a presentation of the given size. Evaluates to "false" if the
SMIL playback engine is only capable of displaying a smaller presentation.

screen-size-val ::= screen-height"X"screen-width

system-screen-depth
This attribute specifies the depth of the screen color palette in bits required for displaying the element.
The value must be greater than 0. Typical values are , 8, 24 Evaluates to "true" if the SMIL playback
engine is capable of displaying images or video with the given color depth. Evaluates to "false" if the
SMIL playback engine is only capable of displaying images or video with a smaller color depth.

1

 Hyperlinking Elements4.5

The link elements allows the description of navigational links between objects.

SMIL provides only for in-line link elements. Links are limited to uni-directional single-headed links (i.e. all
links have exactly one source and one destination resource). All links in SMIL are actuated by the user.

Handling of Links in Embedded Documents

Due to its integrating nature, the presentation of a SMIL document may involve other (non-SMIL) applications
or plug-ins. For example, a SMIL browser may use an HTML plug-in to display an embedded HTML page.
Vice versa, an HTML browser may use a SMIL plug-in to display a SMIL document embedded in an HTML
page.

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 24 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

In such presentations, links may be defined by documents at different levels and conflicts may arise. In this
case, the link defined by the containing document should take precedence over the link defined by the
embedded object. Note that since this might require communication between the browser and the plug-in,
SMIL implementations may choose not to comply with this recommendation.

If a link is defined in an embedded SMIL document, traversal of the link affects only the embedded SMIL
document.

If a link is defined in a non-SMIL document which is embedded in a SMIL document, link traversal can only
affect the presentation of the embedded document and not the presentation of the containing SMIL document.
This restriction may be released in future versions of SMIL.

Addressing

SMIL supports name fragment identifiers and the '#' connector. This means that SMIL supports locators as
currently used in HTML (e.g. it uses locators of the form "http://foo.com/some/path#anchor1").

Linking to SMIL Fragments

A locator that points to a SMIL document may contain a fragment part (e.g. http://www.w3.org/
test.smi#par1). The fragment part is an id value that identifies one of the elements within the referenced SMIL
document. If a link containing a fragment part is followed, the presentation should start as if the user had fast-
forwarded the presentation represented by the destination document to the effective begin of the element
designated by the fragment.

The following special cases can occur:

1. The element addressed by the link has a "repeat" attribute.
1. If the value of the "repeat" attribute is N, all N repetitions of the element are played.
2. If the value of the "repeat" attribute is "indefinite", playback ends according to the rules defined for

repeat value "indefinite".
2. The element addressed by the link is contained within another element that contains a "repeat" attribute.

1. If the value of the "repeat" attribute is N, playback starts at the beginning of the element
addressed by the link, followed by N-1 repetitions of the element containing the "repeat" attribute.

2. If the value of the "repeat" attribute is "indefinite", playback starts at the beginning of the element
addressed by the link. Playback ends according to the rules defined for repeat value "indefinite".

3. The element addressed by the link is content of a "switch" element: It is forbidden to link to elements that
are the content of "switch" elements.

 The Element4.5.1 a

The functionality of the "a" element is very similar to the functionality of the "a" element in HTML 4.0
 . SMIL adds an attribute "show" that controls the temporal behavior of the source when the link is

followed. For synchronization purposes, the "a" element is transparent, i.e. it does not influence the
synchronization of its child elements. "a" elements may not be nested. An "a" element must have an
attribute.

[HTML40]

href

Attributes

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 25 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

The "a" element can have the following attributes:

id
Defined in Section 2

href
This attribute contains the URI of the link's destination.
The "href" attribute is required for "a" elements.

show
This attribute controls the behavior of the source document containing the link when the link is followed.
It can have one of the following values:

"replace": The current presentation is paused at its current state and is replaced by the destination
resource. If the player offers a history mechanism, the source presentation resumes from the state
in which it was paused when the user returns to it.
"new": The presentation of the destination resource starts in a new context, not affecting the
source resource.
"pause": The source presentation is paused at its current state, and the destination resource starts
in a new context. When the display of the destination resource ends, the source presentation
resumes from the state in which it was paused.

The default value of "show" is "replace".

title
Defined in
It is strongly recommended that all "a" elements have a "title" attribute with a meaningful description.
Authoring tools should ensure that no element can be introduced into a SMIL document without this
attribute.

Section 3.3.1

Element Content

The "a" element can contain the following children:

animation
Defined in Section 4.2.3

audio
Defined in Section 4.2.3

img
Defined in Section 4.2.3

par
Defined in Section 4.2.1

ref
Defined in Section 4.2.3

seq
Defined in Section 4.2.2

switch
Defined in Section 4.3

text
Defined in Section 4.2.3

textstream

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 26 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Defined in Section 4.2.3
video

Defined in Section 4.2.3

4.5.2 The Elementanchor

The functionality of the "a" element is restricted in that it only allows associating a link with a complete media
object. HTML image maps have demonstrated that it is useful to associate links with spatial subparts of an
object. The anchor element realizes similar functionality for SMIL:

1. The anchor element allows associating a link destination to spatial and temporal subparts of a media
object, using the "href" attribute (in contrast, the "a" element only allows associating a link with a
complete media object).

2. The anchor element allows making a subpart of the media object the destination of a link, using the "id"
attribute.

3. The anchor element allows breaking up an object into spatial subparts, using the "coords" attribute.
4. The anchor element allows breaking up an object into temporal subparts, using the "begin" and "end"

attributes. The values of the begin and end attributes are relative to the beginning of the media object.

Attributes

The anchor element can have the following attributes:

begin
Defined in Section 4.2.1

coords
The value of this attribute specifies a rectangle within the display area of a visual media object. Syntax
and semantics of this attribute are similar to the coords attribute in HTML image maps, when the link is
associated with a rectangular shape. The rectangle is specified by four length values: The first two values
specify the coordinates of the upper left corner of the rectangle.The second two values specify the
coordinates of the lower right corner of the rectangle. Coordinates are relative to the top left corner of
the visual media object (see Figure 4.5). If a coordinate is specified as a percentage value, it is relative to
the total width or height of the media object display area.
An attribute with an erroneous coords value is ignored (right-x smaller or equal to left-x, bottom-y
smaller or equal to top-y). If the rectangle defined by the coords attribute exceeds the area covered by
the media object, exceeding height and width are clipped at the borders of the media object.
Values of the coords attribute have the following syntax:

coords-value ::= left-x "," top-y "," right-x "," bottom-y

end
Defined in Section 4.2.1

id
Defined in Section 2

show
Defined in Section 4.5.1

skip-content

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 27 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

Defined in Section 3.3.1
title

Defined in
It is strongly recommended that all anchor elements have a "title" attribute with a meaningful description.
Authoring tools should ensure that no element can be introduced into a SMIL document without this
attribute.

Section 3.3.1

8/1/01 3:33 pmSynchronized Multimedia Integration Language

Page 28 of 28file:///Tex%201Gb/Textures/LECTURE%20STUFF/Multimedia/SMIL/SMIL_exam_crib_Sheet.html

CM0340

1

CARDIFF CARDIFF UNIVERSITY
EXAMINATION PAPER

Academic Year: 2000-2001
Examination Period: Autumn 2000
Examination Paper Number: CM0340
Examination Paper Title: Multimedia
Duration: 2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:
There are three pages.
There are four questions in total.

There are no appendices.

The maximum mark for the examination paper is 100% and the mark obtainable for a
question or part of a question is shown in brackets alongside the question.

Students to be provided with:
The following items of stationery are to be provided:
One answer book.

Instructions to Students:
Answer THREE questions.

CM0340

2

1. (a) What is meant by the terms Multimedia and Hypermedia? Distinguish
between these two concepts. [2]

(b) What is meant by the terms static media and dynamic media? Give two
examples of each type of media. [4]

(c) What are the main facilities that must be provides in a system designed to
support the integration of multimedia into a multimedia presentation? [8]

(d) Describe giving suitable code fragments how you would effectively combine a
video clip and an audio clip in an MHEG application and start a subtitle text
display 19000 milliseconds into the video clip. You may assume that both clips
are of the same duration and must start at the same instant. [13]

2. (a) Why is data compression necessary for Multimedia activities?
 [3]

(b) Briefly explain how the LZW Transform Operates. What common
compression methods utilise this transform? [10]

(c) Show how the LZW transform would be used to encode the following 2D
array of image data. You should use 2x2 window elements for the tokens used in
the encoding.

[14]

CM0340

3

3. (a) What key features of Quicktime have led to its adoption and acceptance as an
international multimedia format? [4]

(b) Briefly outline the Quicktime Architecture and its key components. [10]

(c) Quicktime provides many basic built-in visual effect procedures. By using
fragments of Java code show how a cross-fade effect between two images can be
created. You solution should concentrate only on the Java code specific to
producing the Quicktime effect. You may assume that the images are already
imported into the application and are referred to as sourceImage and destImage.
You should not consider any Graphical Interfacing aspects of the coding.

4. (a) What is MIDI? How is a basic MIDI message structured? [6]

 (b) In what ways can MIDI be used effectively in Multimedia Applications, as
opposed to strictly musical applications? [8]

(c) How can MIDI be used with modern data compression techniques? Briefly
describe how such compression techniques may be implemented. [13]

Multimedia
BSc Exam Questions Jan 2001 SOLUTIONS

Exam paper format:
(b) Time Allowed: 2 Hours
(c) Answer 3 Questions out of 4
(d) Each Question Carries 27 Marks

1. (a) What is meant by the terms Multimedia and Hypermedia? Distinguish
between these two concepts.

Multimedia ---- An Application which uses a collection of multiple media sources
e.g. text, graphics, images, sound/audio, animation and/or video.

Hypermedia --- An application which uses associative relationships among
information contained within multiple media data for the purpose of facilitating
access to, and manipulation of, the information encapsulated by the data.

2 MARKS ---- BOOKWORK

(b) What is meant by the terms static media and dynamic media? Give two
examples of each type of media.

Static Media – does not change over time, e.g. text, graphics

Dynamic Media --- Time dependent (Temporal), e.g. Video, sound, animation.

4 MARKS --- BOOKWORK

(c) What are the main facilities that must be provides in a system designed to
support the integration of multimedia into a multimedia presentation?

The following functionality should be provided:

• Digital Representation of Media --- Many formats for many media
• Capture: Digitisation of Media --- special Hardware/Software

• Creation and editing --- assemble media and alter it
• Storage Requirements --- significant for multimedia
• Compression --- related to above and below, ie can save on storage but can

hinder retrieval
• Structuring and retrieval methods of media --- simple to advanced DataBase

Storage
• Display or Playback methods --- effect of retrieval must view data
• Media Synchronisation --- display multimedia as it is intended

8 MARKS --- BOOKWORK

(d) Describe giving suitable code fragments how you would effectively combine
and start at the same time a video clip and an audio clip in an MHEG application
and start a subtiltle text display 19000 milliseconds into the video clip. You may
assume that both clips are of the same duration and must start at the same instant.

TheMHEG code listing below is illustrates the solution:

{:Application ("SYNC_APP.mh5" 0)
:OnStartUp (// sequence of initialization
actions
}
{:Scene ("main_scene.mh5" 0)
:OnStartUp (// sequence of initialization
actions
preload (2) // the connection to the
source of the video clip is set up
preload (3) // the connection to the
source of the audio clip is set up

...
setCounterTrigger (2 3 190000) // book a
time code event at 190000 msec for example
...
)
:Items (// both presentable ingredients and
links
{:Bitmap 1 // background bitmap NOT IMPORTANT FOR SOLN
:InitiallyActive true
:CHook 3 // JPEG
:OrigContent
:ContentRef ("background.jpg")
:OrigBoxSize 800 600
:OrigPosition 0 0
}

{:Stream 2 // video clip
:InitiallyActive false
:CHook 101 // MPEG-1
:OrigContent
:ContentRef ("video.mpg")
:Multiplex (
{:Audio 3 // audio component of the
video clip
:ComponentTag 1 // refers to audio
elementary stream
:InitiallyActive true
}
... // possibly more presentable ingredients

}
{:Link 49 // the video clip crosses a pre
defined time code position
:EventSource (2) // video clip
:EventType CounterTrigger
:EventData 3 // booked at startup by
setCounterTrigger (2 3 190000)
:LinkEffect (
:SetData (5 // text subtitle is set
to a new string, that is
:NewRefContent ("subtitle.txt")) //
"Subtitle text"
:SetHighlightStatus (20 true) //
hotspot 20 is highlighted
)
}
... // more links
)
:SceneCS 800 600 // size of the scene's
presentation space
}

Key Points:

• Preloading both clips is essential to start streaming:
• Need to “book” 190000 msec event for subtitles
• Content loaded and Video and audio is multiplexed
• Set a link transition for subtiltle

13 MARKS - UNSEEN

2. (a) Why is file or data compression necessary for Multimedia activities?

Multimedia files are very large therefore for storage, file transfer etc. file sizes need to be
reduced often as part of the file format. Text and other files may also be
encoded/compressed for email and other applications.

3 Marks -- Bookwork

(b) Briefly explain how the LZW Transform Operates. What common
compression methods utilise this transform.

Suppose we want to encode the Oxford Concise English dictionary which contains about
159,000 entries. Why not just transmit each word as an 18 bit number?

Problems:

* Too many bits,
* everyone needs a dictionary,
* only works for English text.
* Solution: Find a way to build the dictionary adaptively.

• Original methods due to Ziv and Lempel in 1977 and 1978. Terry Welch improved
the scheme in 1984 (called LZW compression).

• It is used in UNIX compress and GIF compression

The LZW Compression Algorithm can summarised as follows:

 w = NIL;
 while (read a character k)
 {
 if wk exists in the dictionary
 w = wk;
 else
 add wk to the dictionary;
 output the code for w;
 w = k;
 }

* Original LZW used dictionary with 4K entries, first 256 (0-255) are ASCII codes.

10 MARKS – BOOKWORK

(c) Show how the LZW transform would be used to encode the following 2D
array of image data, you should use 2x2 window elements for the characters:

SEE HANDWRITTEN SOLN attached
14 Marks UNSEEN

3 (a) What key features of Quicktime have lead to its adoption and an international
multimedia format?

QuickTime is the most widely used cross-platform multimedia technology available
today. QuickTime developed out of a multimedia extension for Apple's
Macintosh(proprietry) System 7 operating system. It is now an international standard for
multimedia interchange and is avalailbe for many platforms and as Web browser plug ins.

The following main features are:

• Versatile support for web-based media

• Sophisticated playback capabilities

• Easy content authoring and editing

• QuickTime is an open standard -- it embraces other standards and incorporates them
into its environment. It supports almost every major Multimedia file format

4 Marks – BOOKWORK

(b) Briefly outline the Quicktime Architecture and its key components.

The QuickTime Architecture:

QuickTime comprises two managers: the Movie Toolbox and the Image Compression
Manager. QuickTime also relies on the Component Manager, as well as a set of
predefined components. Figure below shows the relationships of these managers and an
application that is playing a movie.

The Movie Toolbox
-- Your application gains access to the capabilities of QuickTime by calling functions in
the Movie Toolbox. The Movie Toolbox allows you to store, retrieve, and manipulate
time-based data that is stored in QuickTime movies. A single movie may contain several
types of data. For example, a movie that contains video information might include both
video data and the sound data that accompanies the video.

The Movie Toolbox also provides functions for editing movies. For example, there are
editing functions for shortening a movie by removing portions of the video and sound
tracks, and there are functions for extending it with the addition of new data from other
QuickTime movies.

The Movie Toolbox is described in the chapter "Movie Toolbox" later in this book. That
chapter includes code samples that show how to play movies.

The Image Compression Manager
--

The Image Compression Manager comprises a set of functions that compress and
decompress images or sequences of graphic images.

The Image Compression Manager provides a device-independent and driver-independent
means of compressing and decompressing images and sequences of images. It also
contains a simple interface for implementing software and hardware image-compression
algorithms. It provides system integration functions for storing compressed images as
part of PICT files, and it offers the ability to automatically decompress compressed PICT
files on any QuickTime-capable Macintosh computer.

In most cases, applications use the Image Compression Manager indirectly, by calling
Movie Toolbox functions or by displaying a compressed picture. However, if your
application compresses images or makes movies with compressed images, you will call
Image Compression Manager functions.

The Image Compression Manager is described in the chapter "Image Compression
Manager" later in this book. This chapter also includes code samples that show how to
compress images or make movies with compressed images.

The Component Manager
--

Applications gain access to components by calling the Component Manager. The
Component Manager allows you to define and register types of components and
communicate with components using a standard interface. A component is a code
resource that is registered by the Component Manager. The component's code can be
stored in a systemwide resource or in a resource that is local to a particular application.

Once an application has connected to a component, it calls that component directly.
If you create your own component class, you define the function-level interface for
the component type that you have defined, and all components of that type must
support the interface and adhere to those definitions. In this manner, an application
can freely choose among components of a given type with absolute confidence that
each will work.

QuickTime Components :

• movie controller components, which allow applications to play movies using a
standard user interface standard image compression dialog components, which
allow the user to specify the parameters for a compression operation by supplying
a dialog box or a similar mechanism

• image compressor components, which compress and decompress image data
sequence grabber components, which allow applications to preview and record

video and sound data as QuickTime movies video digitizer components, which
allow applications to control video digitization by an external device

• media data-exchange components, which allow applications to move various
types of data in and out of a QuickTime movie derived media handler
components, which allow QuickTime to support new types of data in QuickTime
movies

• clock components, which provide timing services defined for QuickTime
applications preview components, which are used by the Movie Toolbox's
standard file preview functions to display and create visual previews for files
sequence grabber components, which allow applications to obtain digitized data
from sources that are external to a Macintosh computer

• sequence grabber channel components, which manipulate captured data for a
sequence grabber component

• sequence grabber panel components, which allow sequence grabber components
to obtain configuration information from the user for a particular sequence
grabber channel component

10 Marks BookWork

(c) Quicktime provides many basic built-in visual effect procedures. By using
fragments of Java code show how a cross-fade effect between two images can be
created. You solution should concentrate only on the Java code specific to
producing the Quicktime effect. You may assume that the images are already
imported into the application and are referred to as sourceImage and destImage.
You should not consider any Graphical Interfacing aspects of the coding.

This code shows how a Cross Fade Transition effect could be built NOT
ALL THE INTERFACING STUFF INCLUDED BELOW IS REQUIRED SEE COMMENTS AFTER
FOR IMPORTANT PARTS THAT NEED ADDRESSING.

/*
 * QuickTime for Java Transition Sample Code

 */

import java.awt.*;
import java.awt.event.*;
import java.io.*;

import quicktime.std.StdQTConstants;
import quicktime.*;
import quicktime.qd.*;
import quicktime.io.*;
import quicktime.std.image.*;
import quicktime.std.movies.*;
import quicktime.util.*;

import quicktime.app.QTFactory;
import quicktime.app.time.*;
import quicktime.app.image.*;
import quicktime.app.display.*;
import quicktime.app.anim.*;
import quicktime.app.players.*;
import quicktime.app.spaces.*;
import quicktime.app.actions.*;

public class TransitionEffect extends Frame implements
StdQTConstants, QDConstants {

public static void main(String args[]) {
try {

QTSession.open();

TransitionEffect te = new
TransitionEffect("Transition Effect");

te.pack();
te.show();
te.toFront();

} catch (Exception e) {
e.printStackTrace();
QTSession.close();

}

}

TransitionEffect(String title) throws Exception {
super (title);

QTCanvas myQTCanvas = new
QTCanvas(QTCanvas.kInitialSize, 0.5f, 0.5f);

add("Center", myQTCanvas);

Dimension d = new Dimension (300, 300);
addWindowListener(new WindowAdapter() {

public void windowClosing (WindowEvent e) {
QTSession.close();
dispose();

}

public void windowClosed (WindowEvent e) {
System.exit(0);

}

});

QDGraphics gw = new QDGraphics (new QDRect(d));
Compositor comp = new Compositor (gw,

QDColor.black, 20, 1);

ImagePresenter idb = makeImagePresenter (new
QTFile (QTFactory.findAbsolutePath ("pics/stars.jpg")),

new
QDRect(300, 220));

idb.setLocation (0, 0);
comp.addMember (idb, 2);

ImagePresenter id = makeImagePresenter (new
QTFile (QTFactory.findAbsolutePath ("pics/water.pct")),

new
QDRect(300, 80));

id.setLocation (0, 220);
comp.addMember (id, 4);

CompositableEffect ce = new CompositableEffect
();

ce.setTime(800); // TIME OF EFFECT
 ce.setSourceImage(sourceImage);
 ce. setDestinationImage(destImage);

ce.setEffect (createSMPTEEffect,
kEffectCrossFade, KRandomCrossFadeTransitionType);

ce.setDisplayBounds (new QDRect(0, 220, 300,
80));

comp.addMember (ce, 3);

Fader fader = new Fader();
QTEffectPresenter efp = fader.makePresenter();
efp.setGraphicsMode (new GraphicsMode (blend,

QDColor.gray));
efp.setLocation(80, 80);
comp.addMember (efp, 1);

comp.addController(new TransitionControl (20, 1,
fader.getTransition()));

myQTCanvas.setClient (comp, true);
comp.getTimer().setRate(1);

}

private ImagePresenter makeImagePresenter (QTFile
file, QDRect size) throws Exception {

GraphicsImporterDrawer if1 = new
GraphicsImporterDrawer (file);

if1.setDisplayBounds (size);
return ImagePresenter.fromGraphicsImporterDrawer

(if1);
}

}

……..

FULL CODE NOT REQUIRED as above

Important bits

• Set up an atom container to use an SMPTE effect using
CreateSMPTEeffect()

• Set up a Transition with the IMPORTANT parameters:

• ce.setTime(800); // TIME OF EFFECT
• ce.setSourceImage(sourceImage);
• ce. setDestinationImage(destImage);
• ce.setEffect (createSMPTEEffect,

kEffectCrossFade,
KRandomCrossFadeTransitionType);

• A doTransition() or doAction() method performs
transition

13 Marks --- UNSEEN

4. (a) What is MIDI? How is a basic MIDI message structured?

MIDI: a protocol that enables computer, synthesizers, keyboards, and other
musical or (even) multimedia devices to communicate with each other.

MIDI MESSAGE:

• MIDI message includes a status byte and up to two data bytes.
• Status byte

The most significant bit of status byte is set to 1.
• The 4 low-order bits identify which channel it belongs to (four bits produce 16

possible channels).
• The 3 remaining bits identify the message.
• The most significant bit of data byte is set to 0.

6 Marks --- Bookwork

 (b) In what ways can MIDI be used effectively in Multimedia Applications, as
opposed to strictly musical applications?

Many Application:
Low Bandwidth/(Low Quality?) Music on Web, Quicktime etc supports
Midi musical instrument set
Sound Effectts --- Low Bandwidth alternative to audio samples, Sound Set
part of GM soundset
Control of external devices --- e.g Synchronistaion of Video and Audio
(SMPTE), Midi System Exclusive, AUDIO RECORDERS, SAMPLERS
Control of synthesis --- envelope control etc
MPEG 4 Compression control --- see Part (c)
Digital Audio

8 Marks --- Applied Bookwork: Discussion of Information mentioned in
Notes/Lectures.

(c) How can MIDI be used with modern data compression techniques?
Briefly describe how such compression techniques may be implemented?

• We have seen the need for compression already in Digital Audio -- Large Data Files

• Basic Ideas of compression (see next Chapter) used as integral part of audio format --
MP3, real audio etc.

• Mpeg-4 audio -- actually combines compression synthesis and midi to have a massive
impact on compression.

• Midi, Synthesis encode what note to play and how to play it with a small number of
parameters -- Much greater reduction than simply having some encoded bits of audio.

• Responsibility to create audio delegated to generation side.

MPEG-4 comprises of 6 Structured Audio tools are:

• SAOL the Structured Audio Orchestra Language

• SASL the Structured Audio Score Language
• SASBF the Structured Audio Sample Bank Format
• a set of MIDI semantics which describes how to control SAOL with MIDI
• a scheduler which describes how to take the above parts and create sound
• the AudioBIFS part of BIFS, which lets you make audio soundtracks in MPEG-4

using a variety of tools and effects-processing techniques

MIDI IS the control language for the synthesis part:

• As well as controlling synthesis with SASL scripts, it can be controlled with MIDI
files and scores in MPEG-4. MIDI is today's most commonly used representation for
music score data, and many sophisticated authoring tools (such as sequencers) work
with MIDI.

• The MIDI syntax is external to the MPEG-4 Structured Audio standard; only
references to the MIDI Manufacturers Association's definition in the standard. But in
order to make the MIDI controls work right in the MPEG context, some semantics
(what the instructions "mean") have been redefined in MPEG-4. The new semantics
are carefully defined as part of the MPEG-4 specification.

13 Marks --- UNSEEN but Basic Ideas mentioned in lectures and earmarked for
further reading . Detailed application of Lecture notes material

Multimedia IGDS MSc Exam 1999

Setter: ADM
Checker: OFR

Time Allowed: 2 Hours
Answer 3 Questions out of 4
Each Question Carries 24 Marks

1. (a) What is meant by the terms Multimedia and Hypermedia? Distinguish
between these two concepts. [2]

(b) What is meant by the terms static media and dynamic media? Give examples
of each type of media. [4]

(c) What types of functionality need to be provided in order to effectively use a
wide variety of media in Multimedia applications. Your answer should briefly address
how such functionality can be facilitated in general Multimedia applications.

[8]

(d) Different types of media will require different types of supporting operations
to provide the adequate levels of functionality. For the examples of static and
dynamic media given in part 1(b) briefly discuss what operations are needed to
support a wide range of multimedia applications. [10]

2. (a) Why is file or data compression necessary for Multimedia activities?
 [2]

(b) Briefly explain how the Discrete Cosine Transform Operates, and why is it so
important in data compression in Multimedia applications

[10]
(c) A Simple Transform Encoding procedure maybe described by the following

steps for a 2x2 block of monochrome pixels:

1. Take top left pixel as the base value for the block, pixel A.
2. Calculate three other transformed values by taking the difference between

these (respective) pixels and pixel A, i.e. B-A, C-A, D-A.
3. Store the base pixel and the differences as the values of the transform.

Given the above transform:

(i) What is the inverse transform? [2]
(ii) How may such a transform scheme be used to compress data?

[3]
(iii) Show how you would encode and compress the following image block:

10 20 20 25
15 25 15 20
20 25 10 20
15 20 15 25

[4]
(iv) Why is this scheme not very suitable for general image compression?

[3]

3 (a) What are the major factors when considering storage requirements for
Multimedia Systems?

[4]
 (b) What is RAID technology and what advantages does it offer as a medium for
the storage and delivery of large data?

[4]
 (c) Briefly explain the eight levels of RAID functionality .

[8]

(d) A digital video file is 40 Mb in size. The disk subsystem has four drives and
the controller is designed to support read and write onto each drive,
concurrently. The digital video is stored using the disk striping concept. A block
size of 8 Kb is used for each I/O operation.

 (i) What is the performance improvement in sequentially reading the
complete file when compared to a single drive subsystem?
 (ii) What is the percentage performance improvement for this system
compared to a single drive system?

[8]

4 (a) Give a definition of Virtual Reality. [2]
 (b) What specialised input and output devices have been developed for Virtual
Reality? Describe each device briefly. [8]
 (c) Virtual Reality is not only for entertainment. How can Virtual Reality help
in professional environments? Write a brief essay discussing this topic. Your
answer may include current applications in this field or address future avenues
for this application of the technology. [14]

Multimedia IGDS MSc Exam 1999 SOLUTIONS

Setter: ADM
Checker: OFR

Answer 3 Questions out of 4

1. (a) What is meant by the terms Multimedia and Hypermedia? Distinguish between
these two concepts.

Multimedia ---- An Application which uses a collection of multiple media sources
e.g. text, graphics, images, sound/audio, animation and/or video.

Hypermedia --- An application which uses associative relationships among
information contained within multiple media data for the purpose of facilitating
access to, and manipulation of, the information encapsulated by the data.

2 MARKS ---- BOOKWORK

(b) What is meant by the terms static media and dynamic media? Give examples of
each type of media.

Static Media – does not change over time, e.g. text, graphics

Dynamic Media --- Time dependent (Temporal), e.g. Video, sound, animation.

4 MARKS --- BOOKWORK

(c) What issues of functionality need to be provided in order to effectively use a wide
variety of media in Multimedia applications. Your answer should briefly address how
such functionality can facilitated in general Multimedia applications.

The following functionality should be provided:

• Digital Representation of Media --- Many formats for many media
• Capture: Digitisation of Media --- special Hardware/Software
• Creation and editing --- assemble media and alter it
• Storage Requirements --- significant for multimedia
• Compression --- related to above and below, ie can save on storage but can

hinder retrieval
• Structuring and retrieval methods of media --- simple to advanced DataBase

Storage
• Display or Playback methods --- effect of retrieval must view data

• Media Synchronisation --- display multimedia as it is intended
8 MARKS --- BOOKWORK

(d) Different types of media will require different types of supporting operations to
provide the adequate levels of functionality. For the examples of static and dynamic
media given in part 1(b) briefly discuss what operations are need to support a wide
range of multimedia applications.

A selection of the items below is reuired for good marks NOT ALL. Other Solns
Possible?

Typical Range of operations required for common media

Text: Editing
Formatting
Sorting
Indexing
Searching
Encrypting
ABOVE REQUIRE: :

 Character Manipulation
 String Manipulation

Audio: Audio Editing
Synchronisation
Conversion/Translation
Filtering/ Sound Enhancing Operators
Compression
Searching
Indexing

ABOVE REQUIRE: :
 Sample Manipulation

 Waveform Manipulation

Graphics: Graphic primitive Editing
Shading
Mapping
Lighting
Viewing
Rendering
Searching
Indexing
ABOVE REQUIRE: :

 Primitive Manipulation
 Structural/Group Manipulation

Image: Pixel operations
Geometric Operations
Filtering
Conversion
Indexing
Compression
Searching

Animation: Primitive/Group Editing
Structural Editing
Rendering
Synchronistaion
Searching
Indexing

Video: Pixel Operations
Frame Operations
Editing
Synchronisation
Conversion
Mixing
Indexing
Searching
Video Effects/Filtering

10 MARKS --- UNSEEN

2. (a) Why is file or data compression necessary for Multimedia activities?

Multimedia files are very large therefore for storage, file transfer etc. file sizes need to
be reduced. Text and other files may also be encoded/compressed for email and other
applications.

2 MARKS --- BOOKWORK

(b) Briefly explain how the Discrete Cosine Transform Operates and why is it so
important in data compression in Multimedia applications

The discrete cosine transform (DCT) helps separate the image into parts (or spectral
sub-bands) of differing importance (with respect to the image's
visual quality). The DCT is similar to the discrete Fourier transform: it transforms a
signal or image from the spatial domain to the frequency domain.

With an input image, A, the coefficients for the output "image," B, are:

The basic operation of the DCT is as follows:

• The input image is N2 pixels wide by N1 pixels high;
• A(i,j) is the intensity of the pixel in row i and column j;
• B(k1,k2) is the DCT coefficient in row k1 and column k2 of the DCT matrix.
• The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray

scale level;
• 8 bit pixels have levels from 0 to 255.
• he output array of DCT coefficients contains integers; these can range from -1024

to 1023.
• For most images, much of the signal energy lies at low frequencies; these appear

in the upper left corner of the DCT.
• The lower right values represent higher frequencies, and are often small - small

enough to be neglected with little visible distortion.

10 MARKS --- BOOKWORK

(c) A Simple Transform Encoding procedure maybe described by the following steps
for a 2x2 block of monochrome pixels:

1. Take top left pixel as the base value for the block, pixel A.
2. Calculate three other transformed values by taking the difference between

these (respective) pixels and pixel A, i.e. B-A, C-A, D-A.
3. Store the base pixel and the differences as the values of the transform.

Given the above transform

• What is the inverse transform?

Let transform be:
X0 = A
X1 = B – A
X2 = C – A
X3 = D- A

Then the inverse transform is:

An = X0
Bn = X1 + X0
Cn = X2 + X0
Dn = X3 + X0

• How may such a transform scheme be used to compress data?

Any Redundancy in the data has been transformed to values, Xi.
So We can compress the data by using fewer bits to represent the differences.
I.e if we use 8 bits per pixel then the 2x2 block uses 32 bits/
If we keep 8 bits for the base pixel, X0, and assign 4 bits for each difference then
we only use 20 bits. Which is better than an average 5 bits/pixel

• Show how you would encode with compression the following image block

10 20 20 25
15 25 15 20
20 25 10 20
15 20 15 25

Basically there are 4 2x2 blocks here so apply transform to each in turn

So we get For top left 2x2
X0 = 10
X1 = 10
X2 = 15
X3 = 15

NOTE: Easy to compress these values to 4 bits/pixel woth NO LOSS. Not general
though

For Top Right 2x2:
 X0 = 20

X1 = 5
X2 = -5
X3 = 0

Note: Here need 1 bit for negative value so 4 bits may not seem so BIG NOW.

Bottom left 2x2 identical to top right
Bottom Right 2x2 identical to top left

• Why is this scheme not very suitable general image compression?

TOO SIMPLE:
Needs to operate on larger blocks (typically 8x8 min)
Calculation is also too simple and from above we see that simple encoding

of differences for large values will result in loss of information --- v poor losses
possible here 4 bits per pixel = values 0-15 unsigned, -7 – 7 signed so either
quantise in multiples of 255/max vale or massive overflow!!

12 MARKS --- UNSEEN

3 (a) What are the major factors that need to be considered when considering
what storage requirements are necessary for Multimedia Systems?

Major factors:
 Large volume of date
 Real time delivery
 Data format
 Storage Medium
 Retrieval mechanisms

8 MARKS --- Unseen/applied bookwork

 (b) What is RAID technology and what advantages does it offer as a medium for
the storage and delivery of large data?

RAID --- Redundant Array of Inexpensive Disks

Offers:
 Affordable alternative to mass storage
 High throughput and reliability

RAID System:
 Set of disk drives viewed by user as one or more logical drives
 Data may be distributed across drives
 Redundancy added in order to allow for disk failure

4 MARKS --- BOOKWORK

 (c) Briefly explain the eight levels of RAID functionality .

Level 0 – Disk Striping --- distributing data across multiple drives
Level 1 – Disk Mirroring --- Fault tolerancing
Level 2 – Bit Interleaving and HEC Parity

Level 3 - Bit Interleaving with XOR Parity
Level 4 – Block Interleaving with XOR Parity
Level 5 - Block Interleaving with Parity Distribution
Level 6 – Fault Tolerant System --- Error recovery
Level 7 – Heterogeneuos System --- Fast access across whole system

8 MARKS --- BOOKWORK

(d) A digital video file is 40 Mb in size. The disk subsystem has four drives and
the controller is designed to support read and write onto each drive,
concurrently. The digital video stored using the disk striping concept. A block
size of 8 Kb is used for each I/O operation.

 (i) What is the performance improvement in sequentially reading the
complete file when compared to a single drive subsystem?

We have 5120 segments to write to RAID disks. Given 4 disks we have 1280
actual I/Os to perform

On 1 drive we clearly have 5120 operations to perform.

 (ii) What is the percentage performance improvement expressed as the
number of physical I/O operations to be executed in on the RAID and single
drive systems?

The improvement is
(5120 – 1280)/1280*100 = 300%. Obvious given 4 concurrent drives and RAID!!

8 MARKS --- UNSEEN

4 (a) Give a definition of Virtual Reality.

Virtual Reality provides a human interface such that computers and its devices
create a sensory environment which is dynamically controlled by the actions of
the individual, so that the environment appears real to the user.

2 MARKS --- BOOKWORK

 (b) What specialised input and output devices have been developed for Virtual
Reality? Describe each device briefly.

Head Mounted Displays
Glove input devices
Body Suits

Three dimensional auditory displays
Stereoscopic computer display
Touch feedback gloves/suits

8 MARKS --- BOOKWORK
 (c) Virtual Reality is not only for entertainment. How can Virtual Reality help
in professional environments? Write a brief essay discussing this topic. Your
answer may include current applications in this or address future avenues for
this application of the technology.

Open ended anwer could embrace any of the following plus many more

Advertising
Architecture/Science – exploration of buildings or other objects
Simulations
Cooperative Work environments
Meeting Room Telepresence

14 MARKS --- Unseen, discussion of points made in lectures/bookwork etc.

Multimedia IGDS MSc Exam 2000

Setter: ADM
Checker: ACJ

Additional Material:

SMIL Language Sheet

Answer 3 Questions out of 4

Time Allowed 2 Hours

1. (a) Why is data compression, including file compression, highly desirable for
 Multimedia activities? [2]

(b) Briefly explain how entropy coding and transform coding techniques work for
data compression, clearly identifying the differences between them. Illustrate your
answer with a simple example of each type of encoding. [7]

(c) (i) Show how you would use Huffman coding to encode the following set of
tokens:

 BABACACADADABBCBABEBEDDABEEEBB

 How is this message transmitted when encoded? [7]

 (ii) How many bits are needed to transfer this coded message? What is its
 entropy? [3]

 (iii) What amendments are required to this coding technique if data is
 generated live or is otherwise not wholly available? Show how you could
 use this modified scheme by appending the tokens ADADA to the end of the
 above message. [5]

2 (a) Give a definition of a Multimedia Authoring System. What key features
should such a system provide? [2]

 (b) What Multimedia Authoring paradigms exist? Describe each paradigm
briefly. [8]

 (c) You have been asked to provide a Multimedia presentation that can support
media in both English and French. You have been given a sequence of 10
images and a single 50 second digitised audio soundtrack in both languages.

Each image should be mapped over consecutive 5 second fragments of the
audio. All images are of the same 500x500 pixel dimension.

Describe, giving suitable code fragments, how you would assemble such a
presentation using SMIL. Your solution should cover all aspects of the SMIL
presentation. [14]

3. (a) What is meant by the Quality of Service of a multimedia application?
[2]

(b) What major factors affect the Quality of Service of a multimedia
application? [8]

(c) Perform a CORR analysis on the following Traffic scheduling problem:

A scheduler has an allocation cycle time of length 5 seconds and is serving
3 connections. The connections have rates of 2.5, 1.5 and 1 cells per cycle
respectively. You should assume that all three connections are initially
backlogged. What is the ideal delivery rate where fractional slots can be
allocated? How should the connections be scheduled using CORR?

[14]

4. (a) What is MIDI? How is a basic MIDI message structured? [6]
 (b) In what ways can MIDI be used effectively in Multimedia Applications, as

opposed to strictly musical applications? [8]
(c) How can MIDI be used with modern data compression techniques? Briefly

describe how such compression techniques may be implemented? [10]

Multimedia IGDS MSc Exam 2000 SOLUTIONS

Setter: ADM
Checker: ACJ

Answer 3 Questions out of 4

Time Allowed 2 Hours

1. (a) Why is data compression, including file compression, highly desirable for
 Multimedia activities?

Multimedia files are very large therefore for storage, file transfer etc. file sizes need to
be reduced. Text and other files may also be encoded/compressed for email and other
applications.

2 MARKS --- BOOKWORK

(b) Briefly explain, clearly identifying the differences between them, how entropy
coding and transform coding techniques work for data compression. Illustrate your
answer with a simple example of each type.

Compression can be categorised in two broad ways:

 Lossless Compression
 -- where data is compressed and can be reconstituted (uncompressed)
without loss of detail or information. These are referred to as bit-preserving
 or reversible compression systems also.
 Lossy Compression
 -- where the aim is to obtain the best possible fidelity for a given bit-rate
or minimizing the bit-rate to achieve a given fidelity measure. Video and
 audio compression techniques are most suited to this form of
compression.

 Lossless compression frequently involves some form of entropy encoding
and are based in information theoretic techniques

 Lossy compression use source encoding techniques that may involve
transform encoding, differential encoding or vector quantisation.

ENTROPY METHODS:

The entropy of an information source S is defined as:

H(S) = SUMI (PI Log2 (1/PI)

 where PI is the probability that symbol SI in S will occur.

 Log2 (1/PI) indicates the amount of information contained in SI, i.e., the number of
bits needed to code SI.

Encoding for the Shannon-Fano Algorithm:

A top-down approach

 1. Sort symbols according to their frequencies/probabilities, e.g., ABCDE.

3 Recursively divide into two parts, each with approx. same number of counts.

(Huffman algorithm also valid indicated below)

A simple transform coding example

 A Simple Transform Encoding procedure maybe described by the following
steps for a 2x2 block of monochrome pixels:

 1. Take top left pixel as the base value for the block, pixel A.
 2. Calculate three other transformed values by taking the difference between
these (respective) pixels and pixel A, i.e. B-A, C-A, D-A.
 3. Store the base pixel and the differences as the values of the transform.
 Given the above we can easily for the forward transform:

 and the inverse transform is trivial

 The above transform scheme may be used to compress data by exploiting
redundancy in the data:

 Any Redundancy in the data has been transformed to values, Xi. So We can
compress the data by using fewer bits to represent the differences. I.e if we
 use 8 bits per pixel then the 2x2 block uses 32 bits/ If we keep 8 bits for the base
pixel, X0, and assign 4 bits for each difference then we only use 20 bits.
 Which is better than an average 5 bits/pixel

7 MARKS --- BOOKWORK

(c) (i) Show how you would use Huffman coding to encode the following set of tokens:

 BABACACADADABBCBABEBEDDABEEEBB

 How is this message transmitted when encoded?

 The Huffman algorithm is now briefly summarised:

 1. Initialization: Put all nodes in an OPEN list, keep it sorted at all times
(e.g., ABCDE).

 2. Repeat until the OPEN list has only one node left:

 (a) From OPEN pick two nodes having the lowest
frequencies/probabilities, create a parent node of them.

 (b) Assign the sum of the children's frequencies/probabilities to the
parent node and insert it into OPEN.

 (c) Assign code 0, 1 to the two branches of the tree, and delete the
children from OPEN.

Symbol Count OPEN (1) OPEN (2) OPEN (3)
A 8 18
B 10 -
C 3 7 12
D 4 -
E 5 -

Total 30

8 indicate merge node with other node with number in column

Finished Huffman Tree:

Symbol Code
A 10
B 11
C 010
D 011
E 00

How is this message transmitted when encoded?

Send code book and then bit code for each symbol.

7 Marks --- UNSEEN

 (ii) How many bits are needed transfer this coded message and what is its
Entropy?

Symbol Count Subtotal # of bits
A 8 16
B 10 20
C 3 9
D 4 12
E 5 10

D(4)
C(3)

P1(7)

E(5)

P2(12)

A(8)

P3(18)

B(10)

P4(30)

0

0

0

0
1

1

1

1

Total Number bits (excluding code book) = 62

Entropy = 62/30 = 2.06667

8 MARKS --- UNSEEN

(iii) What amendments are required to this coding technique if data is
 generated live or is otherwise not wholly available? Show how you could
 use this modified scheme by appending the tokens ADADA to the end of the

 above message.

Adaptive method needed:

Basic idea (encoding)

 Initialize_model();
 while ((c = getc (input)) != eof)
 {
 encode (c, output);
 update_model (c);
 }

So encode message as before:

A= 01 D = 0000

So addd stream:

01000001000001

Modify Tree:
Symbol Count OPEN (1) OPEN (2) OPEN (3)
A 11 21
B 10 -
C 3 8 14
D 6 -

 E 5 -

5 Marks --- UNSEEN

D(6)

C(3)

P1(8)

E(5)

P2(14)

A(11)

P3(21)

B(10)

P4(35)

0

0

0

0
1

1

1

1

2 (a) Give a definition of a Multimedia Authoring System. What key features
should such a system provide?

An Authoring System is a program which has pre-programmed elements for the
development of interactive multimedia software titles.
Authoring systems vary widely in orientation, capabilities, and learning curve.

There is no such thing (at this time) as a completely point-and-click automated
authoring system; some knowledge of heuristic thinking and algorithm design is
necessary.

Authoring is basically just a speeded-up form of programming --- VISUAL
PROGRAMMING; you don't need to know the intricacies of a programming
language, or worse, an API, but you do need to understand how programs work.

2 MARKS ---- BOOKWORK

 (b) What Multimedia Authoring paradigms exist? Describe each paradigm
briefly.

There are various paradigms, including:

Scripting Language

The Scripting paradigm is the authoring method closest in form to traditional
programming. The paradigm is that of a programming language, which specifies (by
filename) multimedia elements, sequencing, hotspots, synchronization, etc. A
powerful, object-oriented scripting language is usually the centerpiece of such a
system; in-program editing of elements (still graphics, video, audio, etc.) tends to be
minimal or non-existent. Scripting languages do vary; check out how much the
language is object-based or object-oriented. The scripting paradigm tends to be longer
in development time (it takes longer to code an individual interaction), but generally
more powerful interactivity is possible. Since most Scripting languages are
interpreted, instead of compiled, the runtime speed gains over other authoring
methods are minimal.

The media handling can vary widely; check out your system with your contributing
package formats carefully. The Apple’s HyperTalk for HyperCard, Assymetrix’s

OpenScript for ToolBook and Lingo scripting language of Macromedia Director are
examples of a Multimedia scripting language.

Here is an example lingo script to jump to a frame

glob
al
gNav

Spri
te

on exitFrame
go the frame
play sprite gNavSprite
end

Iconic/Flow Control
This tends to be the speediest (in development time) authoring style; it is best suited
for rapid prototyping and short-development time projects. Many of these tools are
also optimized for developing Computer-Based Training (CBT). The core of the
paradigm is the Icon Palette, containing the possible functions/interactions of a
program, and the Flow Line, which shows the actual links between the icons. These
programs tend to be the slowest runtimes, because each interaction carries with it all
of its possible permutations; the higher end packages, such as Authorware or
IconAuthor, are extremely powerful and suffer least from runtime speed problems.

Frame

The Frame paradigm is similar to the Iconic/Flow Control paradigm in that it usually
incorporates an icon palette; however, the links drawn between icons are conceptual
and do not always represent the actual flow of the program. This is a very fast
development system, but requires a good auto-debugging function, as it is visually
un-debuggable. The best of these have bundled compiled-language scripting, such as
Quest (whose scripting language is C) or Apple Media Kit.

Card/Scripting
The Card/Scripting paradigm provides a great deal of power (via the incorporated
scripting language) but suffers from the index-card structure. It is excellently
suitedfor Hypertext applications, and supremely suited for navigation intensive (a la
Cyan’s “MYST” game) applications. Such programs are easily extensible via
XCMDs andDLLs; they are widely used for shareware applications. The best
applications allow all objects (including individual graphic elements) to be scripted;
many entertainment applications are prototyped in a card/scripting system prior to
compiled-language coding.

Cast/Score/Scripting
The Cast/Score/Scripting paradigm uses a music score as its primary authoring
metaphor; the synchronous elements are shown in various horizontal tracks
withsimultaneity shown via the vertical columns. The true power of this metaphor lies
in the ability to script the behavior of each of the cast members. The most
popularmember of this paradigm is Director, which is used in the creation of many
commercial applications. These programs are best suited for animation-intensive
orsynchronized media applications; they are easily extensible to handle other
functions (such as hypertext) via XOBJs, XCMDs, and DLLs.

Macromedia Director uses this .

Hierarchical Object
The Hierarchical Object paradigm uses a object metaphor (like OOP) which is
visually represented by embedded objects and iconic properties. Although the
learning curve is non-trivial, the visual representation of objects can make very
complicated constructions possible.

Hypermedia Linkage
The Hypermedia Linkage paradigm is similar to the Frame paradigm in that it shows
conceptual links between elements; however, it lacks the Frame paradigm’s visual
linkage metaphor.

Tagging
The Tagging paradigm uses tags in text files (for instance, SGML/HTML, SMIL
(Synchronised Media Integration Language), VRML, 3DML and WinHelp) to link
pages, provide interactivity and integrate multimedia elements.

8 Marks --- BOOKWORK

(c) You have been asked to provide a Multimedia presentation that can support
media in both English and French. You have been given a sequence of 10 images
and a single 50 second digitised audio soundtrack in both languages. Each Image
should be mapped over consecutive 5 second fragments of the audio. All Images
are of the same 500x500 pixel dimension.

Describe, giving suitable code fragments, how you would assemble such a
presentation using SMIL. Your solution should cover all aspects of the
SMIL presentation

<smil>
 <head>
 <layout>
 <root-layout height="500" width="500" background-
color="#000000" title="MultiLingual"/>
 <region id="image1" width="500" height="500" top="0"
left="0" background-color="#000000" z-index="1" />
 <region id="image2" width="500" height="500" top="0"
left="0" background-color="#000000" z-index="1" />
……….
 </layout>
 </head>

<body>
 <par>
 <switch>

 <!-- English only -->
 < audio system-language="en" src ="english.au" />

 <!-- French only -->
 <audio system-language="fr" src ="francais.au" />
 </switch>

<seq>
 <img src="image1.jpg" region="image1" begin="0.00s"
dur="5.00s" />
 <img src="image2.jpg" region="image2" begin="5.00s"
dur="5.00s" />

…….

</seq>
</par>

</body>
</smil>

14 Marks ---- UNSEEN

3. (a) What is meant by the Quality of Service of a multimedia application?

Quality of Service (Qos) DEFN:
• this is basically a collection of parameters that relate to a

sequence as seen at the source and as seen at the destination of
a multimedia presentation.

•
2 Marks --- BOOKWORK

 (b) What major factors affect the Quality of Service of a multimedia
application?

The QoS measure probably is the ultimate measure of a multimedia
system. Four essential parameters are:

• Bandwidth -- capacity of the transfer mechanism between
source and destination.

• Delay -- the time a multimedia unit spends in tranmission from
sourse to destination.

• Delay Jitter -- Variation in delay delivery of data
• Loss Probability -- the ratio of units of information that an

application can afford to lose.

• Hardware problems:

• Network Connection
• Traffic Analysis --- scheduling, buffer design, congestion

control and synchronisation

8 Marks -- BOOKWORK

 (c) Perform a CORR analysis on the following Traffic scheduling problem:

A scheduler has an allocation cycle time of length 5 seconds and is
serving 3 connections. The connections have rates of 2.5, 1.5 and 1 cells
per cycle respectively. You should assume that all three connections are
initially backlogged. What is the ideal delivery rate where fractional slots
can be allocated? How should the connections be scheduled using CORR?

BASIC CORR ALGORITHM:

time-line divide and allocate policy moderated by a queuing schedule. Distributes excess
bandwidth over active connections.

• The Maximum length of allocation cycle is T
• Max. No. of cells transmitted in on cycle is T -- assuming cell transmission time is

unit of time
• At time of admission, each connetion Ci is allocated a Rate Ri ---
• Ri s real numbers.
• Scheduling Goal: To allocate each connection Ciclose to Ri
• slots in each cycle.

• Excatly Ri slots of a long time frame

• 3 Event CORR Scheduler: Asynchronous ~~~
• Initilaize --- invoked for each new admitted connection

• add connection to list Ci .
• Sort Ci in decreasing Ri .

• Enqueue--- Activate on arrival of a packet
• Put packet in appropriate connection queue
• update cell count of connection

• Dispatch--- invoked at begining of busy periods
• Ensures that connections cannot swamp othersa

CORR Algorithm:

For each connetion Ci scheduler:

• maintains a separate queue, ni

• keeps count of the waiting cells
• holds the number of current slots credited, ri .

 Slot allocation divided into 2 cycles:
• Major Cycle --- integral requrement of each connection satisfied first

• Slots left over assigned to minor cycle.
• Minor Cycle --- Elligible connections assigned allocated a full slot

each in minor cycle (can't have fraction slot allocations!!)
•

At the begining of a busy period ({\em Dispatch})

• All ri 's set to zero
• New cycle started for each new cycle,

1. current number of unallocated slots T is initialised to T.
2. For each major cycle, cycle through each Ci update ri to ri + Ri

• If number of cells queued, ni < ri set ri to n
• Dispatch minumum of T and ri cells from C_{i}

3. A minor cycle starts with slots left over from preceding major cycle
• `cylce through connection list, if slots are left dispatch connection

• IF AND ONLY IF (a) packets queued or (b) ri > 0
• if t =0 or no connection end cycle

SOLUTION:

CYCLE LENGTH T = 5

RATES = CELLS PER CYCLE
R1 = 2.5, R2 = 1.5, R3 = 1

FIRST MAJOR CYCLE:

[R1] = 2, [R2] = 1, [R3] = 1

1ST MINOR Cycle:
r1 = 0.5, r2 = 0.5, r3 = 0

SLOT left over for C1
 Update ri

r1 = -0.5, r2 = 0.5, r3 = 0

 Second MAJOR CYCLE:

Update Ri = ri + Ri

 So R1 = 2.0, R2 = 2.0, R3 = 1.0

All integer so satisfy MAJOR CYCLE

Schedule is:

3 slots r1, 2 slots r2 1 slots R3 (as expected?)

14 Marks -- UNSEEN

R1 = 2.5

R2 = 1.5

R3 = 1.0

CYCLE 1

[R1] =2 r1 = 0.5

major cycle minor cycle

[R2] =1 r2 = 0.5

[R3] =1 r3 = 0

R1 = 2.0

R2 = 2.0

R3 = 1.0

CYCLE 2

[R1] =0 r1 = 0

major cycle minor cycle

[R2] =0 r2 = 0

[R3] =0 r3 = 0

4. (a) What is MIDI? How is a basic MIDI message structured?

MIDI: a protocol that enables computer, synthesizers, keyboards, and other
musical or (even) multimedia devices to communicate with each other.

MIDI MESSAGE:

• MIDI message includes a status byte and up to two data bytes.
• Status byte
The most significant bit of status byte is set to 1.
• The 4 low-order bits identify which channel it belongs to

(four bits produce 16 possible channels).
• The 3 remaining bits identify the message.

• The most significant bit of data byte is set to 0.

4 Marks --- Bookwork

 (b) In what ways can MIDI be used effectively in Multimedia Applications, as
opposed to strictly musical applications?

Many Application:
Low Bandwidth/(Low Quality?) Music on Web, Quicktime etc supports
Midi musical instrument set
Sound Effectts --- Low Bandwidth alternative to audio samples, Sound Set
part of GM soundset
Control of external devices --- e.g Synchronistaion of Video and Audio
(SMPTE), Midi System Exclusive, AUDIO RECORDERS, SAMPLERS
Control of synthesis --- envelope control etc
MPEG 4 Compression control --- see Part (c)
Digital Audio

8 Marks --- Applied Bookwork: Discussion of Information mentioned in
Notes/Lectures.

(c) How can MIDI be used with modern data compression techniques?
Briefly describe how such compression techniques may be implemented?

• We have seen the need for compression already in Digital
Audio -- Large Data Files

• Basic Ideas of compression (see next Chapter) used as integral
part of audio format -- MP3, real audio etc.

• Mpeg-4 audio -- actually combines compression synthesis and
midi to have a massive impact on compression.

• Midi, Synthesis encode what note to play and how to play it
with a small number of parameters -- Much greater reduction
than simply having some encoded bits of audio.

• Responsibility to create audio delegated to generation side.

MPEG-4 comprises of 6 Structured Audio tools are:

• SAOL the Structured Audio Orchestra Language

• SASL the Structured Audio Score Language
• SASBF the Structured Audio Sample Bank Format
• a set of MIDI semantics which describes how to control SAOL with

MIDI
• a scheduler which describes how to take the above parts and create

sound
• the AudioBIFS part of BIFS, which lets you make audio soundtracks

in MPEG-4 using a variety of tools and effects-processing techniques

MIDI IS the control language for the synthesis part:

• As well as controlling synthesis with SASL scripts, it can be controlled with
MIDI files and scores in MPEG-4. MIDI is today's most commonly used
representation for music score data, and many sophisticated authoring tools
(such as sequencers) work with MIDI.

• The MIDI syntax is external to the MPEG-4 Structured Audio standard; only
references to the MIDI Manufacturers Association's definition in the standard.
But in order to make the MIDI controls work right in the MPEG context,
some semantics (what the instructions "mean") have been redefined in MPEG-
4. The new semantics are carefully defined as part of the MPEG-4
specification.

10 Marks --- Basic Ideas mentioned in lectures. Details application of
Lecture notes material

BSc Multimedia (CM0340)
Assessed Exercises

● Exercise 1 (PDF)
● Exercise 2 (PDF)

BSc Multimedia (CM0340) Lab
Worksheets

● Lab Worksheet 1 (PDF)

Multimedia
Module No: CM0340
Assessed Exercise 1:

Macromedia Director/Lingo Scripting

Dr. D. Marshall

October 3, 2001

Submission of Coursework

Please hand in the exercise below as part of your assessed coursework for this
module. Only the first question below is assessed.

• Hand in Date: Hand in a hard copy of the exercise in the Lecture
(11.10 AM) on Monday Nov 12rd

• In order to verify that you interactive programs work you must also get
you exercise submission sheet signed by the tutor to verify that the
programs work according to specification.

• The tutor is only guaranteed to be available to sign at Multimedia
Laboratory Sessions.

• The coursework is worth 50% of the coursework component,i.e. 10
Marks for the whole module.

Submission Details

The exercises involve developing a Macromedia Director Movie. You hard
copy solution must convey all the appropriate information to demonstrate
and explain your programming philosophy.

You solution must include:

1

• An overview of you program design and implementation.

• A complete list of all Cast members and their use, and

• Any lingo scripts and their use.

• All lingo scripts source must be given.

In the exercise high marks will be awarded for solutions that provide good
solutions to the basic problems and also some novel extensions/additional
features.

Assessed Exercises

1. Implement an interface to play the game checkers in a Macromedia
Director Movie:

• You need only concern yourself with providing an adequate in-
terface — There are no real marks for fancy graphics. A basic
looking Interface is all that is required.

• Your Movie need only check for valid moves — Your Movie is not
required to play the game.

• Your movie should however be able to replay the most recent game

Not Assessed Coursework

The following exercise does not form part of your assessed coursework.

1. Write a Macromedia Director (or Flash) Movie that given a valid URL
of an HTML file:

• Scans the html for the first occurence of a director movie (you
could look for .dir extension for example)

• Having found a file stream the file to your movie.

• You should inform the user if a file is not found.

• You should be able to play a file from any valid URL:

2

– A file from a local disk

• Example director files are freely available on the Internet, for ex-
ample:

– www.shockrave.com

– http://www.macromedia.com/support/director/ Director de-
veloper’s centre

3

Multimedia
Module No: CM0340
Assessed Exercise 2:

SMIL/Quicktime

Dr. D. Marshall

Submission of Coursework

Please hand in the exercises below as part of your assessed coursework for
this module.

• Hand out Date: Monday 12th Nov, 2001.

• Hand in Date: Friday Dec 14th, 2001.

• The Hard copy should be handed in between to Dr. A.D. Marshall in
his office (Room S 2.20) between 3.00-4.00 PM Friday 14th December.

• In order to verify that you interactive programs work you must also get
you exercise submission sheet signed by the tutor to verify that the
programs work according to specification.

• The tutor is only guaranteed to be available to sign at Multimedia
Laboratory Sessions.

• The coursework is worth 50% of the coursework component,i.e. 10
Marks for the whole module.

1

Submission Details

The exercises involve developing a Multimedia Presentation using SMIL and
Quicktime.

You should submit a hard copy (as below) and mount your presentation
on the local project web space.

Your submission must include:

• Complete SMIL code listings

• Demonstrable printouts of program output that clearly illustrates that
the program works to specification.

• The hard copy must clearly indicate a URL to your project web space
where the presentation should be mounted and it should remain there
until the coursework is marked.

• A link from your project web space home page to the presentation is
also required.

Aims and Objectives

The Aims and objectives of this exercise is to:

• Create a Multimedia Presentation using SMIL and Quicktime.

• To gain experience of developing and delivering a multimedia presen-
tation

• To gain practical experience of SMIL

• To gain a practical experience of using Quicktime

• To investigate what Media formats may be supported by Quicktime
and utilise these effectively in a Multimedia presentation.

2

Assessed Exercise

1. This exercise involves creating and delivering a multimedia presentation
using SMIL and Quicktime.

The topic of the presentation is JPEG Compression

You may use any material to base your presentation on. You may for
example use the lecture notes and online Lecture Web Pages:

http://www.cs.cf.ac.uk/Dave/Multimedia

for sample material.

Your presentation however will be marked according the following cri-
teria:

• Cohesive and logical presentation of material

• Effectiveness of the presentation in terms of teaching about the
topic

• Effective and varied use of Multimedia (simple text pages presen-
tation is not adequate)

• Presentation requirements (see below) satisfied.

• SMIL requirements (see below) satisfied.

• Quicktime requirements (see below) satisfied.

The following requirements should be included in your presentation:

Presentation :

• The presentation must include a variety of multimedia. You
will be marked accordingly on use of a good variety of mul-
timedia. However, the presentation must be coherent as a
whole. I.e. You there must be good justification of the use of
the media.

• The presentation must include at least one piece of animated
or video multimedia. You should use Macromedia Flash to
produce some animation and include it in Quicktime.

3

• The presentation must include some audio facility in the pre-
sentation also.
Microphones are connected to the Macintosh G3/G4 Power-
Macs in the Multimedia Lab (S 2.21a). The Microphones are
not ordinary microphones: They do not work on other plat-
forms.
A variety of Macintosh applications can import sound. Flash
can do it, Macromedia Soundedit is the main sound editing
application available on the Macintoshes in the Multimedia
Lab.
You may of course use any computer facility available to you
to create component parts of your multimedia presentation.

SMIL :

• Logical layout of multimedia within a SMIL presentation

• Smooth transitions between SMIL pages or different media.

• Good use of SMIL commands.

• Your SMIL presentation must include at least one alternative
path or configuration within the presentation. I.e. You must
use the SMIL switch statement and appropriate test-attributes.
The exact nature of the use of this is left to your individual
creativity.

Quicktime :

• You should investigates and aim to support as wide a range of
multimedia that Quicktime supports that is appropriate for
the presentation.

• You must be able to display at least one animation or video
sequence. Hint: Quicktime supports Flash.

4

Multimedia
Module No: CM0340

Laboratory Worksheet 1:
Macromedia Director/Lingo Scripting, Flash

Dr. D. Marshall

October 6, 2000

Aims and Objectives

After working through this worksheet you should be familiar with:

• The basic operation of Director and Flash

• How to creat movies in Director.

• How to use Lingo Scripts

• Know a basic set of the Lingo Language

• Produce Web-based Director Movies

Director

1. Follow the guided tour of Director in the Director Manual/Online Di-
rector Help, Familiarise yourself with all the basic functions of Director:

• Setting up Director Movies

• Using Vector shapes

• Creating and using Cast members

1

• Creating and Using Sprites

• Attaching behaviours

• Lingo: How does this enhance Director? How does one use Lingo?
Examine some simple Lingo examples in Director.

• Familiarise yourself with all the basics of Director: Work Area,
Score, Stage, Casts and Sprites Channels, Markers etc.

2. Run the guided tour Director movies in the Director:Show me folder.
The Lingo movie is particularly relevant

3. Try Creating your own simple Banner as per the example in the guided
tour of Director.

4. Prepare the Web banner for Web delivery with Aftershock.

5. Develop a Director presentation using Lingo e.g on that can Play a
sound using Lingo, create basic interactive presentations opening Lingo
scripts, or play a video clip in Lingo.

6. Write a Lingo script (attached to a Director Movie) that can detect
when a single cast member has been moved on the stage. You should
inform the user of a motion with an alert window prompt.

7. Write a lingo script that move a sprite randomly around the stage.

8. Write a lingo script attached to an appropriate means of data entry
that can dynamically resize a sprite on the stage.

9. Write a lingo script attached to an appropriate means of data entry
that can dynamically set simple paths of motion on a stage (e.g circular,
square, simple curved paths

10. Write a Lingo script that can accept text from a given field and down-
load and display data pointed to by a URL if valid URL is given.

11. Write a Lingo script that will scan through a given text of field cast
member for an appropriate piece of text and print out the number lines
in another cast member.

12. Write a Lingo script that will search through a given text of field cast
member for an appropriate piece of text and print out the lines that
match the search in another text cast member.

2

Flash

1. Follow the Flash Basics Chapter 1 in the Flash Manual/Online Flash
Help, Familiarise yourself with all the basic functions of Flash:

• How to create Flash Movies for the Web.

• What the stage, timeline, frame, inspector concepts mean in Flash.

• How to use layers, scenes and libraries.

• How to import media.

• How to deliver Flash movies in a Web presentation.

2. Application: Produce an animation where the words multimedia stream
out of simple 2d (or 3d) box character by character.

3. Application: Produce a simple Web Banner.

4. Application: Include the Flash applications on a web page

3

	www.cs.cf.ac.uk
	Introduction to Multimedia
	About This Course
	Aims of Module
	Objectives of Module
	Syllabus Outline
	Recommended Course Books
	Introduction
	History of Multimedia Systems
	Multimedia/Hypermedia
	What is Multimedia?
	What is HyperText and HyperMedia?
	Multimedia Systems
	Characteristics of a Multimedia System
	Challenges for Multimedia Systems
	Desirable Features for a Multimedia System
	Components of a Multimedia System
	Applications
	Trends in Multimedia
	Further Reading/Exploration
	http://www.cs.cf.ac.uk/Dave/Multimedia/node20.html
	Multimedia Authoring:Systems and Applications
	What is an Authoring System?
	Why should you use an authoring system?
	Multimedia Authoring Paradigms
	Multimedia Programming vs Multimedia Authoring
	http://www.cs.cf.ac.uk/Dave/Multimedia/node26.html
	Content Design
	2.1.1 Scripting (writing)
	Rules for good writing:
	2.1.2 Graphics (illustrating)
	Graphics Styles
	2.1.3 Animation (wiggling)
	2.1.4 Audio (hearing)
	Types of Audio in Multimedia Applications:
	2.1.5 Interactivity (interacting)
	Types of Interactive Multimedia Applications:
	Technical Design
	Visual Design
	Storyboarding
	Overview of Multimedia Software Tools
	Digital Audio
	Music Sequencing and Notation
	Image/Graphics Editing
	Image/Graphics Editing
	Animation
	Multimedia Authoring
	Further Information
	Multimedia Programming:Scripting (Lingo)
	Director programming/Lingo Scripting
	Director Basics
	Overview and Definitions
	The Score and the Stage
	Using The Score
	The playback head
	Channels
	Frames
	Sprites
	Cast members
	Lingo
	Markers
	Editing Frames
	Identifying Frames with Lingo
	Lingo Scripting
	When does Lingo run?
	The Lingo language
	Dot Syntax
	Parentheses
	Character spaces
	Comments
	Optional keywords and abbreviated commands
	Literal Values
	Identifying cast members and casts
	Lingo operators
	Lingo Lists
	Types of Scripts
	Messages and Events
	Director Example 1: Simple Animation
	Director Example 2:Importing media
	Director Example 3:Simple Lingo Scripting
	Director Example 4:Controlling Navigation with Lingo
	Multimedia Programming:Tagging (SMIL)
	What it is SMIL?
	SMIL support
	Running SMIL Applications
	Using Quicktime
	Using RealPlayer G2
	Using the SOJA applet
	another SMILE viewer:GRINS
	Let us begin to SMIL -- SMIL Authoring
	SMIL Syntax Overview
	Basic Layout
	SMIL Layout
	Window settings
	Positioning Media
	The Region tag
	The img tag
	Relative Position Example
	Overlaying Regions
	Support for Other Media
	fitting media to regions
	Synchronisation
	Adding a duration of time to media -- dur
	Delaying Media -- the begin tag
	Sequencing Media -- the seq tag
	Parallel Media -- the par tag
	Synchronisation Example 1: Planets Soundtrack
	Synchronisation Example 2: Slides 'N' Sound
	SMIL Events
	begin events
	The switch Tag
	SMIL ON
	Multimedia Technology
	Multimedia Systems Technology
	Discrete v continuous media
	Analog and Digital Signals
	Input Devices and Storage
	Text and Static Data
	Graphics
	Images
	Audio
	Video
	Output Devices
	Storage Media
	High performance I/O
	Basic Storage
	RAID -- Redundant Array of Inexpensive Disks
	Optical Storage
	CD Storage
	CD Standards
	DVD
	What are the features of DVD-Video?
	Quality of DVD-Video
	What are the disadvantages of DVD?
	Compatibility of DVD
	http://www.cs.cf.ac.uk/Dave/Multimedia/node135.html
	DVD video details
	DVD audio
	http://www.cs.cf.ac.uk/Dave/Multimedia/node138.html
	DVD and computers
	Further Information
	Multimedia Data
	Multimedia Data Representations
	Basics of Digital Audio
	Application of Digital Audio -- Selected Examples
	Digitization of Sound
	Digitizing Audio
	Computer Manipulation of Sound
	Sample Rates and Bit Size
	Nyquist's Sampling Theorem
	Implications of Sample Rate and Bit Size
	Typical Audio Formats
	Delivering Audio over a Network
	Streaming Audio
	Synthetic Sounds
	Introduction to MIDI (Musical Instrument Digital Interface)
	Components of a MIDI System
	Hardware Aspects of MIDI
	MIDI Messages
	General MIDI
	Additional MIDI Specifications
	Digital Audio and MIDI
	Digital Audio, Synthesis, Midi and Compression -- MPEG 4 Structured Audio
	MPEG 4 Structured Audio
	Further Reading/Information for Digital Audio and Midi
	Graphic/Image File Formats
	Graphic/Image Data Structures
	Monochrome/Bit-Map Images
	Gray-scale Images
	8-bit Colour Images
	24-bit Colour Images
	Standard System Independent Formats
	GIF (GIF87a, GIF89a)
	JPEG
	TIFF
	Graphics Animation Files
	Postscript/Encapsulated Postscript
	System Dependent Formats
	Microsoft Windows: BMP
	Macintosh: PAINT and PICT
	X-windows: XBM
	Further Reading/Information
	Colour in Image and Video
	Basics of Colour
	Light and Spectra
	The Human Retina
	Cones and Perception
	CIE Chromaticity Diagram
	CRT Displays
	Colour Image and Video Representations
	Conversion between RGB and CMY:
	Summary of Colour
	Basics of Video
	Types of Colour Video Signals
	Analog Video
	Digital Video
	Chroma Subsampling
	CCIR Standards for Digital Video
	ATSC Digital Television Standard
	Further Reading/Information
	Video and Audio Compression
	Classifying Compression Algorithms
	What is Compression?
	Lossless Compression Algorithms (Repetitive Sequence Suppression)
	Simple Repetition Suppresion
	Run-length Encoding
	Lossless Compression Algorithms (Pattern Substitution)
	Lossless Compression Algorithms (Entropy Encoding)
	Basics of Information Theory
	The Shannon-Fano Algorithm
	Huffman Coding
	Huffman Coding of Images
	Adaptive Huffman Coding
	Arithmetic Coding
	Lempel-Ziv-Welch (LZW) Algorithm
	Entropy Encoding Summary
	Further Reading/Information
	Source Coding Techniques
	Transform Coding
	A simple transform coding example
	Frequency Domain Methods
	1D Example
	2D (Image) Example
	What do frequencies mean in an image?
	How can transforms into the Frequecny Domain Help?
	Fourier Theory
	1D Case
	2D Case
	The Discrete Fourier Transform (DFT)
	Compression
	http://www.cs.cf.ac.uk/Dave/Multimedia/node230.html
	The Discrete Cosine Transform (DCT)
	Differential Encoding
	Vector Quantisation
	JPEG Compression
	Quantization
	Uniform quantization
	Quantization Tables
	Zig-zag Scan
	Differential Pulse Code Modulation (DPCM) on DC component
	Run Length Encode (RLE) on AC components
	Entropy Coding
	Summary of the JPEG bitstream
	Practical JPEG Compression
	Further Reading
	Video Compression
	H. 261 Compression
	Overview of H.261
	Intra Frame Coding
	Inter-frame (P-frame) Coding
	The H.261 Bitstream Structure
	Hard Problems in H.261
	Motion Vector Search
	Propagation of Errors
	Bit-rate Control
	MPEG Compression
	MPEG Video
	MPEG Video Layers
	B-Frames
	Motion Estimation
	Coding of Predicted Frames:Coding Residual Errors
	Differences from H.261
	The MPEG Video Bitstream
	Decoding MPEG Video in Software
	Intra Frame Decoding
	Non-Intra Frame Decoding
	MPEG-2, MPEG-3, and MPEG-4
	Further Reading/Information
	Audio Compression
	Simple Audio Compression Methods
	Psychoacoustics
	Human hearing and voice
	Frequency Masking
	Critical Bands
	Temporal masking
	Summary
	MPEG Audio Compression
	Some facts
	Steps in algorithm:
	Example:
	MPEG Layers
	Effectiveness of MPEG audio
	Streaming Audio (and video)
	Further Exploration
	Multimedia Integration, Interaction and Interchange
	Integrating Multimedia
	Interactive Multimedia
	Multimedia Interchange
	Quicktime
	Introduction
	Quicktime Support of Media Formats
	QuickTime Concepts
	The QuickTime Architecture
	QuickTime Components
	Quicktime File Format
	Further Information
	Open Media Framework Interchange (OMFI) Format
	Multimedia and Hypermedia Information Encoding Expert Group (MHEG)
	The family of MHEG standards
	MHEG-5 overview
	MHEG Programming Principles
	Interaction within a Scene
	Availability; Running Status
	Interactibles
	Visual Representation
	Object Sharing Between Scenes
	Object Encoding
	Conformance
	MHEG Coding Examples
	An MHEG Player Java Applet -- Futher MHEG Examples
	Running the MHEG Engine
	MHEG Example -- The Simple MHEG Presentation
	MHEG Example -- The Demo MHEG Presentation
	More Examples
	Relationships to Major Standards
	MHEG Implementation
	MHEG Future
	Further Reading/Information
	Multimedia Programming
	QuickTime for Java
	The Java for Quicktime SDK, Example Programs and Online Documentation
	Using QuickTime in Multimedia Production
	The QuickTime for Java API
	An Overview of QuickTime for Java
	The Quicktime API: A Set of Java Classes with 2 Layers
	http://www.cs.cf.ac.uk/Dave/Multimedia/node325.html
	The QuickTime for Java Core Packages
	The Quicktime for Java Application Framework Packages
	Quicktime for Java Classes and Interfaces
	The QTCanvas Class
	Interacting With Java Layout Managers
	The QTDrawable Interface
	Working with the QTDrawable interface
	The QTFactory Class
	The Spaces and Controllers Architecture
	Displaying and Streaming Movies
	Playing a Streaming Movie
	Using The Detached Controller
	Converting To Full Screen
	Using Movie Callbacks
	Media AND Presenters
	Media Data and Movies
	The ImageSpec Interface
	QuickTime For Java Presenters
	Subclasses of ImagePresenter
	Imaging and Effects
	Drawing An Image File
	Quicktime to Java Imaging
	Image Producing
	Using the QTImageDrawer Class
	Visual Effects
	Animation and Compositing
	The SWCompositor Class
	The SWController
	The Compositor
	Composited Effects
	Transition Effects
	The Java for Quicktime Example Programs
	About this document ...
	Multimedia Module No: CM0340
	CM0340 Multimedia Lecture and Tutorial TimetableSemester 1 2001
	About this document ...
	MM_Timetable2001.tex
	Multimedia Past Exam Papers
	Microsoft Word - Multimedia MOCK EXAM 1999
	http://www.cs.cf.ac.uk/Dave/Multimedia/EXAMS/MM_BSC_EXAM_2000.pdf
	Microsoft Word - Multimedia BSc Exam 2000 SOLNS
	Synchronized Multimedia Integration Language
	Microsoft Word - Multimedia BSC EXAM 2001
	Microsoft Word - Multimedia BSc Exam 2001 SOLNS
	Microsoft Word - Multimedia IGDS MSc Exam 1999
	Microsoft Word - Multimedia MSc Exam 1999 SOLNS
	Microsoft Word - Multimedia IGDS MSc Exam 2000
	Microsoft Word - MM IGDS Exam 2000 SOLNs
	BSc Multimedia (CM0340) Assessed Exercises
	ex1_bsc.tex
	ex2_bsc.tex
	mm_lab1_bsc.tex

