
Exploiting Coarse-Grained Task, Data,
and Pipeline Parallelism in Stream Programs

Michael I. Gordon, William Thies, and Saman Amarasinghe
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
{mgordon, thies, saman}@mit.edu

Abstract
As multicore architectures enter the mainstream, there is a press-
ing demand for high-level programming models that can effectively
map to them. Stream programming offers an attractive way to ex-
pose coarse-grained parallelism, as streaming applications (image,
video, DSP, etc.) are naturally represented by independent filters
that communicate over explicit data channels.

In this paper, we demonstrate an end-to-end stream compiler
that attains robust multicore performance in the face of varying ap-
plication characteristics. As benchmarks exhibit different amounts
of task, data, and pipeline parallelism, we exploit all types of par-
allelism in a unified manner in order to achieve this generality. Our
compiler, which maps from the StreamIt language to the 16-core
Raw architecture, attains a 11.2x mean speedup over a single-core
baseline, and a 1.84x speedup over our previous work.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications–Data-flow languages; D.3.3
[Programming Languages]: Language Constructs and Features–
Concurrent programming structures; D.3.4 [Programming Lan-
guages]: Processors–Compilers, Optimization

General Terms Design, Languages, Performance

Keywords coarse-grained dataflow, multicore, Raw, software
pipelining, StreamIt, streams

1. Introduction
As centralized microprocessors are ceasing to scale effectively,
multicore architectures are becoming the industry standard. For ex-
ample, the IBM/Toshiba/Sony Cell processor has 9 cores [17], the
Sun Niagara has 8 cores [21], the RMI XLR732 has 8 cores [1], the
IBM/Microsoft Xbox 360 CPU has 3 cores [4], and most vendors
are shipping dual-core chips. Cisco has described a next-generation
network processor containing 192 Tensilica Xtensa cores [14]. This
trend has pushed the performance burden to the compiler, as fu-
ture application-level performance gains depend on effective paral-
lelization across the cores. Unfortunately, traditional programming
models such as C, C++ and FORTRAN are ill-suited to multicore
architectures because they assume a single instruction stream and a
monolithic memory. Extracting coarse-grained parallelism suitable
for multicore execution amounts to a heroic compiler analysis that
remains largely intractable.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

The stream programming paradigm offers a promising ap-
proach for exposing parallelism suitable for multicore archi-
tectures. Stream languages such as StreamIt [39], Brook [6],
SPUR [42], Cg [27], Baker [9], and Spidle [10] are motivated
not only by trends in computer architecture, but also by trends in
the application space, as network, image, voice, and multimedia
programs are becoming only more prevalent. In the StreamIt lan-
guage, a program is represented as a set of autonomous actors that
communicate through FIFO data channels (see Figure 1). During
program execution, actors fire repeatedly in a periodic schedule.
As each actor has a separate program counter and an independent
address space, all dependences between actors are made explicit by
the communication channels. Compilers can leverage this depen-
dence information to orchestrate parallel execution.

Despite the abundance of parallelism in stream programs, it is
nonetheless a challenging problem to obtain an efficient mapping
to a multicore architecture. Often the gains from parallel execution
can be overshadowed by the costs of communication and synchro-
nization. In addition, not all parallelism has equal benefits, as there
is sometimes a critical path that can only be reduced by running cer-
tain actors in parallel. Due to these concerns, it is critical to leverage
the right combination of task, data, and pipeline parallelism while
avoiding the hazards associated with each.

Task parallelism refers to pairs of actors that are on different
parallel branches of the original stream graph, as written by the
programmer. That is, the output of each actor never reaches the
input of the other. In stream programs, task parallelism reflects
logical parallelism in the underlying algorithm. It is easy to exploit
by mapping each task to an independent processor and splitting
or joining the data stream at the endpoints (see Figure 2b). The
hazards associated with task parallelism are the communication and
synchronization associated with the splits and joins. Also, as the
granularity of task parallelism depends on the application (and the
programmer), it is not sufficient as the only source of parallelism.

Data parallelism refers to any actor that has no dependences be-
tween one execution and the next. Such “stateless” actors1 offer
unlimited data parallelism, as different instances of the actor can
be spread across any number of computation units (see Figure 2c).
However, while data parallelism is well-suited to vector machines,
on coarse-grained multicore architectures it can introduce exces-
sive communication overhead. Previous data-parallel streaming ar-
chitectures have focused on designing a special memory hierarchy
to support this communication [18]. However, data parallelism has
the hazard of increasing buffering and latency, and the limitation of
being unable to parallelize actors with state.

Pipeline parallelism applies to chains of producers and con-
sumers that are directly connected in the stream graph. In our previ-

1 A stateless actor may still have read-only state.

151

ous work [15], we exploited pipeline parallelism by mapping clus-
ters of producers and consumers to different cores and using an
on-chip network for direct communication between actors (see Fig-
ure 2d). Compared to data parallelism, this approach offers reduced
latency, reduced buffering, and good locality. It does not introduce
any extraneous communication, and it provides the ability to exe-
cute any pair of stateful actors in parallel. However, this form of
pipelining introduces extra synchronization, as producers and con-
sumers must stay tightly coupled in their execution. In addition,
effective load balancing is critical, as the throughput of the stream
graph is equal to the minimum throughput across all of the proces-
sors.

In this paper, we describe a robust compiler system that lever-
ages the right combination of task, data, and pipeline parallelism
to achieve good multicore performance across a wide range of in-
put programs. Because no single type of parallelism is a perfect
fit for all situations, a unified approach is needed to obtain consis-
tent results. Using the StreamIt language as our input and targeting
the 16-core Raw architecture, our compiler demonstrates a mean
speedup of 11.2x over a single-core baseline; 7 out of 12 bench-
marks speedup by over 12x. This also represents a 1.84x improve-
ment over our previous work [15].

As part of this effort, we have developed two new compiler tech-
niques that are generally applicable to any coarse-grained multi-
core architecture. The first technique leverages data parallelism, but
avoids the communication overhead by first increasing the granu-
larity of the stream graph. Using a program analysis, we fuse actors
in the graph as much as possible so long as the result is stateless.
Each fused actor has a significantly higher computation to com-
munication ratio, and thus incurs significantly reduced communi-
cation overhead in being duplicated across cores. To further reduce
the communication costs, the technique also leverages task paral-
lelism; for example, two balanced task-parallel actors need only be
split across half of the cores in order to obtain high utilization. On
Raw, coarse-grained data parallelism achieves a mean speedup of
9.9x over a single core and 4.4x over a task-parallel baseline.

The second technique leverages pipeline parallelism. However,
to avoid the pitfall of synchronization, it employs software pipelin-
ing techniques to execute actors from different iterations in parallel.
While software pipelining is traditionally applied at the instruction
level, we leverage powerful properties of the stream programming
model to apply the same technique at a coarse level of granularity.
This effectively removes all dependences between actors scheduled
in a steady-state iteration of the stream graph, greatly increasing
the scheduling freedom. Like hardware-based pipelining, software
pipelining allows stateful actors to execute in parallel. However, it
avoids the synchronization overhead because processors are read-
ing and writing into a buffer rather than directly communicating
with another processor. On Raw, coarse-grained software pipelin-
ing achieves a 7.7x speedup over a single core and a 3.4x speedup
over a task-parallel baseline.

Combining the techniques yields the most general results, as
data parallelism offers good load balancing for stateless actors
while software pipelining enables stateful actors to execute in par-
allel. Any task parallelism in the application is also naturally uti-
lized, or judiciously collapsed during granularity adjustment. This
integrated treatment of coarse-grained parallelism leads to an over-
all speedup of 11.2x over a single core and 5.0x over a task-parallel
baseline.

2. The StreamIt Language
StreamIt is an architecture-independent programming language for
high-performance streaming applications [39, 2]. As described pre-
viously, it represents programs as a set of independent actors (re-
ferred to as filters in StreamIt) that use explicit data channels for

roundrobin(2,2)

duplicate

Adaptive DFT Adaptive DFT

RectToPolar

roundrobin(1,1)

UnwrapPhase

Difference

Amplify

Accumulate

roundrobin(1,1)

roundrobin(1,1)

roundrobin(1,1)

PolarToRect

UnwrapPhase

Difference

Amplify

Accumulate

F1 F2

F3

F4 F8

F5 F9

F6 F10

F7 F11

F12

work = 10
data-parallel

work = 3work = 3

work = 0.5
data-parallel

work = 0.5
data-parallel

work = 1work = 1

work = 0.5work = 0.5

work = 10
data-parallel

work = 0.5 work = 0.5

S1

J1

S2

S3

J3

J2

Figure 1. Stream graph for a simplified subset of our Vocoder
benchmark. Following a set of sliding DFTs, the signal is converted
to polar coordinates. Node S2 sends the magnitude component to
the left and the phase component to the right. In this simplified
example, no magnitude adjustment is needed.

all communication. Each filter contains a work function that exe-
cutes a single step of the filter. From within work, filters can push
items onto the output channel, pop items from the input channel, or
peek at an input item without removing it from the channel. While
peeking requires special care in parts of our analysis, it is critical
for exposing data parallelism in sliding-window filters (e.g., FIR
filters), as they would otherwise need internal state.

StreamIt provides three hierarchical primitives for composing
filters into larger stream graphs. A pipeline connects streams se-
quentially; for example, there is a four-element pipeline beginning
with UnwrapPhase in the Vocoder example (Figure 1). A splitjoin
specifies independent, task-parallel streams that diverge from a
common splitter and merge into a common joiner. For example,
the AdapativeDFT filters in Figure 1 form a two-element splitjoin
(each filter is configured with different parameters). The final hier-
archical primitive in StreamIt is the feedbackloop, which provides
a way to create cycles in the graph. In practice, feedbackloops are
rare and we do not consider them in this paper.

In this paper, we require that the push, pop, and peek rates of
each filter are known at compile time. This enables the compiler to
calculate a steady-state for the stream graph: a repetition of each fil-
ter that does not change the number of items buffered on any data
channel [26, 19]. In combination with a simple program analysis
that estimates the number of operations performed on each invo-
cation of a given work function, the steady-state repetitions offer
an estimate of the work performed by a given filter as a fraction of
the overall program execution. This estimate is important for our
software pipelining technique.

152

F3

F2F1

F5
F4

F6
F7

F8
F9
F10
F11

F12

S1

J1

S2
S3

F3 J2
J3

F3

Processors

Ti
m

e

(b) Task Parallel

F5

F3

F4

F2

F1

F6
F7
F8
F9
F10
F11

F12

Processors

Ti
m

e

(a) Sequential
Processors

Ti
m

e

(d) Task, Data and Pipeline Parallel

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

F2F1

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

F5

F4

F6
F7

F8

F9
F10
F11

J2
s1

j2

j1
S2
S3

J2
J3
s2

f3

f3

f12

f12

F2F1

F5
F4

F6
F7

F8
F9
F10
F11

S1

J1
s1

j1
S2
S3

F3
J2
J3
s2

f3 f3

f12 f12

j2

Processors

Ti
m

e

(c) Task and Data Parallel

f12f12f12f12f12f12f12f12f12f12f12f12f12f12f12f12

f3 f3 f3f3f3 f3 f3f3f3 f3 f3f3f3 f3 f3f3

Figure 2. Parallel execution models for stream programs. Each block corresponds to a filter in the Vocoder example (Figure 1). The height
of the block reflects the amount of work contained in the filter.

3. Coarse-Grained Data Parallelism
There is typically widespread data parallelism in a stream graph,
as stateless filters can be applied in parallel to different parts of the
data stream. For example, Figure 3a depicts our Filterbank bench-
mark, in which all of the filters are stateless. We detect stateless
filters using a simple program analysis that tests whether there are
any filter fields (state variables) that are written during one itera-
tion of the work function and read during another. To leverage the
implicit data parallelism of stateless filters, we convert the filters
into an explicit splitjoin of many filters, such that each filter can
be mapped to a separate processor. This process, which is called
filter fission, causes the steady-state work of the original filter to
be evenly split across the components of the splitjoin (though the
work function is largely unchanged, each fission product executes
less frequently than the original filter). Fission is described in more
detail elsewhere [15].

On a multicore architecture, it can be expensive to distribute
data to and from the parallel products of filter fission. As a start-
ing point, our technique only fisses filters in which the estimated
computation to communication ratio is above a given threshold. (In
our experiments, we use a threshold of 10 compute instructions to
1 item of communication.) To further mitigate the communication
cost, we introduce two new techniques: coarsening the granularity,
and complementing task parallelism.

3.1 Coarsening the Granularity

Stateless filters are often connected together in a pipeline (see Fig-
ure 3a). Using naive filter fission, each filter is converted to a

splitjoin that scatters and gathers data to and from the data-parallel
components. This corresponds to fine-grained data parallelism at
the loop level. However, as this introduces excessive communica-
tion, we instead aim to fiss the entire pipeline into many parallel
pipelines, such that each data-parallel unit maintains local com-
munication. We implement this functionality by first fusing the
pipeline into a single filter, and then fissing the filter into a data-
parallel splitjoin. We apply fusion first because we assume that each
data-parallel product will execute on a single core; fusion enables
powerful inter-node optimizations such as scalar replacement [35]
and algebraic simplification [3, 24].

Some pipelines in the application cannot be fully fused with-
out introducing internal state, thereby eliminating the data par-
allelism. For example, in Figure 3a, the LowPassFilters and
HighPassFilters perform peeking (a sliding window computa-
tion) and always require a number of data items to be present on
the input channel. If either filter is fused with filters above it, the
data items will become state of the fused filter, thereby prohibiting
data parallelism. In the general case, the number of persistent items
buffered between filters depends on the initialization schedule [20].

Thus, our algorithm for coarsening the granularity of data-
parallel regions operates by fusing pipeline segments as much as
possible so long as the result of each fusion is stateless. For every
pipeline in the application, the algorithm identifies the largest sub-
segments that contain neither stateful filters nor buffered items and
fuses the sub-segments into single filters. It is important to note
that pipelines may contain splitjoins in addition to filters, and thus
stateless splitjoins may be fused during this process. While such
fusion temporarily removes task parallelism, this parallelism will

153

LowPassFilter
push=1, pop=1, peek=128

HighPassFilter
push=1, pop=1, peek=128

Compressor
push=1, pop=8, peek=8

ProcessFilter
push=1, pop=1, peek=1

Expander
push=8, pop=1, peek=1

LowPassFilter
push=1, pop=1, peek=128

HighPassFilter
push=1, pop=1, peek=128

duplicate

roundrobin(1..1)

Adder
push=1, pop=8, peek=8

Adder
push=1, pop=2, peek=2

duplicate

roundrobin(1..1)

Adder
push=1, pop=8, peek=8

duplicate

LowPassFilter
push=1, pop=2, peek=128

LowPassFilter
push=1, pop=2, peek=129

roundrobin(1,1)

Fused

push=8, pop=16, peek=135

Fused

push=8, pop=16, peek=143

(HighPassFilter, Compressor,
ProcessFilter, Expander)

(HighPassFilter, Compressor,
ProcessFilter, Expander)

Fused

push=1, pop=2, peek=128

Fused

push=1, pop=2, peek=129

(LowPassFilter,
HighPassFilter, Adder)

(LowPassFilter,
HighPassFilter, Adder)

duplicate

roundrobin(1..1)

Adder
push=1, pop=8, peek=8

LowPassFilter
push=1, pop=2, peek=128

push=8, pop=16, peek=135

(HighPassFilter, Compressor,
ProcessFilter, Expander)

push=1, pop=2, peek=128

(LowPassFilter,
HighPassFilter, Adder)

Fused

Fused

(a) Original Stream Graph (b) After Granularity Coarsening (c) Followed by Judicious Filter Fission

duplicate

roundrobin(1,1)

duplicate

roundrobin(1,1)

duplicate

roundrobin(1,1)

Figure 3. Exploiting coarse-grained data parallelism in the FilterBank benchmark. Only one pipeline of the toplevel splitjoin is shown; the
other parallel streams are identical and are transformed in the same way.

be restored in the form of data parallelism once the resulting filter
is fissed. The output of the algorithm on the FilterBank benchmark
is illustrated in Figure 3b.

3.2 Complementing Task Parallelism

Even if every filter in an application is data-parallel, it may not be
desirable to fiss each filter across all of the cores. Doing so would
eliminate all task parallelism from the execution schedule, as only
one filter from the original application could execute at a given
time. An alternate approach is to preserve the task parallelism in the
original application, and only introduce enough data parallelism to
fill any idle processors. This serves to reduce the synchronization
imposed by filter fission, as filters are fissed to a smaller extent and
will span a more local area of the chip. Also, the task-parallel filters
are a natural part of the algorithm and avoid any computational
overhead imposed by filter fission (e.g., fission of peeking filters
introduces a decimation stage on each fission product).

In order to balance task and data parallelism, we employ a “ju-
dicious fission” heuristic that estimates the amount of work that is
task-parallel to a given filter and fisses the filter accordingly. De-
picted in Algorithm 1, this algorithm works by ascending through
the hierarchy of the stream graph. Whenever it reaches a splitjoin,
it calculates the ratio of work done by the stream containing the
filter of interest to the work done by the entire splitjoin (per steady
state execution). Rather than summing the work within a stream, it
considers the average work per filter in each stream so as to miti-
gate the effects of imbalanced pipelines. After estimating a filter’s
work as a fraction of those running in parallel, the algorithm at-
tempts to fiss the filter the minimum number of times needed to
ensure that none of the fission products contains more than 1/N of

Algorithm 1 Heuristic algorithm for fissing a filter as little as
possible while filling all cores with task or data-parallel work.
� F is the filter to fiss; N is the total number of cores
JUDICIOUSFISSION(filter F , int N)

� Estimate work done by F as fraction of
� everyone running task-parallel to F
fraction = 1.0
Stream parent ← GETPARENT(F)
Stream child← F
while parent �= null do

if parent is splitjoin then
total-work←�

c∈CHILDREN(parent) AVGWORKPERFILTER(c)
my-work← AVGWORKPERFILTER(child)
fraction← fraction ∗ my-work/total-work

end if
child← parent
parent← GETPARENT(parent)

end while
� Fiss F according to its weight in task-parallel unit
Fiss F into CEIL(fraction ∗N) filters

the total task-parallel work (where N is the total number of cores).
Note that if several filters are being fissed, the work estimation is
calculated ahead of time and is not updated during the course of
fission.

Figure 3c illustrates the outcome of performing judicious fission
on the coarsened-granularity stream graph from Figure 3b. Because

154

Fr

ac
tio

n
of

 s
ta

te
fu

l w
or

k
in

 th
e

he

av
ie

st
 s

ta
te

fu
l f

ilt
er

 (
/

)

0

2

4

6

8

10

12

14

16

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of total work that is in stateful filters ()

 S
pe

ed
up

 o
f D

at
a

an
d

Pi
pe

lin
e

Pa
ra

lle
l

ov

er
 D

at
a

Pa
ra

lle
l

1

1
2

1
4

1
8

1
16

1
32

1
64

1
128

0

Figure 4. Potential speedups of pure pipeline parallelism over
pure data parallelism for varying amounts of stateful work in the
application. Each line represents a different amount of work in the
heaviest stateful filter. The graph assumes 16 cores and does not
consider task parallelism or communication costs.

there is 8-way task parallelism between all of the pipelines, the
filters in each pipeline are fissed a maximum of 2 ways so as not
to overwhelm the communication resources. As described in the
Section 6, the combination of granularity coarsening and judicious
fission offers a 6.8x mean speedup over a naive fission policy.

4. Coarse-Grained Software Pipelining
4.1 Benefits of Pipeline Parallelism

Pipeline parallelism is an important mechanism for parallelizing
filters that have dependences from one iteration to another. Such
“stateful” filters are not data parallel and do not benefit from the
techniques described in the previous section. While many stream-
ing applications have abundant data parallelism, even a small num-
ber of stateful filters can greatly limit the performance of a purely
data-parallel approach on a large multicore architecture.

The potential benefits of pipeline parallelism are straightfor-
ward to quantify. Consider that the sequential execution of an ap-
plication requires unit time, and let σ denote the fraction of work
(sequential execution time) that is spent within stateful filters. Also
let μ denote the maximum work performed by any individual state-
ful filter. Given N processing cores, we model the execution time
achieved by two scheduling techniques: 1) data parallelism, and 2)
data parallelism plus pipeline parallelism. In this exercise, we as-
sume that execution time is purely a function of load balancing; we
do not model the costs of communication, synchronization, local-
ity, etc. We also do not model the impact of task parallelism.

1. Using data parallelism, 1−σ parts of the work are data-parallel
and can be spread across all N cores, yielding a parallel exe-
cution time of (1 − σ)/N . The stateful work must be run as
a separate stage on a single core, adding σ units to the overall
execution. The total execution time is σ + (1− σ)/N .

2. Using data and pipeline parallelism, any set of filters can exe-
cute in parallel during the steady state. (That is, each stateful
filter can now execute in parallel with others; the stateful filter
itself is not parallelized.) The stateful filters can be assigned to
the processors, minimizing the maximum amount of work allo-
cated to any processor. Even a greedy assignment (filling up one
processor at a time) guarantees that no processor exceeds the
lower-bound work balance of σ/N by more than μ, the heavi-
est stateful filter. Thus, the stateful work can always complete
in σ/N +μ time. Remaining data parallelism can be freely dis-
tributed across processors. If it fills each processor to σ/N + μ

or beyond, then there is perfect utilization and execution com-
pletes in 1/N time; otherwise, the state is the bottleneck. Thus
the general execution time is max(σ/N + μ, 1/N).

Using these modeled runtimes, Figure 4 illustrates the potential
speedup of adding pipeline parallelism to a data-parallel execution
model for various values of μ/σ on a 16-core architecture. In
the best case, μ/σ approaches 0 and the speedup is (σ + (1 −
σ)/N)/ max(σ/N, 1/N) = 1 + σ ∗ N . For example, if there
are 16 cores and even as little as 1/16th of the work is stateful,
then pipeline parallelism offers potential gains of 2x. For these
parameters, the worst-case gain (μ = σ) is also 2x. The best and
worst cases diverge for larger values of σ.

4.2 Exploiting Pipeline Parallelism

At any given time, pipeline-parallel actors are executing differ-
ent iterations from the original stream program. However, the dis-
tance between active iterations must be bounded, as otherwise the
amount of buffering required would grow toward infinity. To lever-
age pipeline parallelism, one needs to provide mechanisms for both
decoupling the schedule of each actor, and for bounding the buffer
sizes. This can be done in either hardware or software.

In coarse-grained hardware pipelining, groups of filters are as-
signed to independent processors that proceed at their own rate
(see Figure 5a). As the processors have decoupled program coun-
ters, filters early in the pipeline can advance to a later iteration of
the program. Buffer size is limited either by blocking FIFO com-
munication, or by other synchronization primitives (e.g., a shared-
memory data structure). However, hardware pipelining entails a
performance tradeoff:

• If each processor executes its filters in a single repeating pat-
tern, then it is only beneficial to map a contiguous2 set of filters
to a given processor. Since filters on the processor will always
be at the same iteration of the steady state, any filter missing
from the contiguous group and executing at a remote location
would only increase the latency of the processor’s schedule. The
requirement of contiguity can greatly constrain the partitioning
options and thereby worsen the load balancing.

• To avoid the constraints of a contiguous mapping, processors
could execute filters in a dynamic, data-driven manner. Each
processor monitors several filters and fires any who has data
available. This allows filters to advance to different iterations
of the original stream graph even if they are assigned to the
same processing node. However, because filters are executing
out-of-order, the communication pattern is no longer static and
a more complex flow-control mechanism (e.g., using credits)
may be needed. There is also some overhead due to the dynamic
dispatching step.

Coarse-grained software pipelining offers an alternative that
does not have the drawbacks of either of the above approaches (see
Figure 5b). Software pipelining provides decoupling by executing
two distinct schedules: a loop prologue and a steady-state loop.
The prologue serves to advance each filter to a different iteration
of the stream graph, even if those filters are mapped to the same
core. Because there are no dependences between filters within an
iteration of the steady-state loop, any set of filters (contiguous or
non-contiguous) can be assigned to a core. This offers a new degree
of freedom to the partitioner, thereby enhancing the load balancing.
Also, software pipelining avoids the overhead of the demand-driven
model by executing filters in a fixed and repeatable pattern on each

2 In an acyclic stream graph, a set of filters is contiguous if, in traversing a
directed path between any two filters in the set, the only filters encountered
are also within the set.

155

Processors
Ti

m
e

(a) Hardware Pipelining

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

F2F1

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

F5

F4

F6
F7

F8

F9
F10
F11

J2
s1

j2

j1
S2
S3

J2
J3
s2

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f3
f3

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

f12
f12

F2F1 F5

F4

F6
F7

F8

F9
F10
F11

Processors

Ti
m

e

(b) Software Pipelining

f12
f12

f12
f12

Figure 5. Comparison of hardware pipelining and software pipelining for the Vocoder example (see Figure 1). For clarity, the same
assignment of filters to processors is used in both cases, though software pipelining admits a more flexible set of assignments than hardware
pipelining. In software pipelining, filters read and write directly into buffers and communication is done at steady-state boundaries. The
prologue schedule for software pipelining is not shown.

core. Buffering can be bounded by the on-chip communication
networks, without needing to resort to software-based flow control.

4.3 Software Pipelining Implementation

Our software pipelining algorithm maps filters to cores in a simi-
lar manner that traditional algorithms map instructions to ALUs.
This transformation is enabled by an important property of the
StreamIt programming model, namely that the entire stream graph
is wrapped with an implicit outer loop. As the granularity of soft-
ware pipelining increases from instructions to filters, one needs
to consider the implications for managing buffers and scheduling
communication. We also describe our algorithm for mapping filters
to cores, and compare the process to conventional software pipelin-
ing.

We construct the loop prologue so as to buffer at least one steady
state of data items between each pair of dependent filters. This
allows each filter to execute completely independently during each
subsequent iteration of the stream graph, as they are reading and
writing to buffers rather than communicating directly. The buffers
could be stored in a variety of places, such as the local memory of
the core, a hardware FIFO, a shared on-chip cache, or an off-chip
DRAM. On Raw, off-chip DRAM offers higher throughput than
a core’s local memory, so we decided to store the buffers there.
However, we envision that on-chip storage would be the better
choice for most commodity multicores.

As filters are reading and writing into buffers in distributed
memory banks, there needs to be a separate communication stage
to shuffle data between buffers. Some of this communication is
a direct transfer of data, while others performs scatter or gather
operations corresponding to the splitjoins in StreamIt. The com-
munication stage could be implemented by DMA engines, on-chip
networks, vector permutations, or other mechanisms. On Raw, we
leverage the programmable static network to perform all communi-

cation in a single stage, which is situated between iterations of the
steady state. On architectures with DMA engines, it would be pos-
sible to parallelize the communication stage with the computation
stage by double-buffering the I/O of each filter.

In assigning filters to cores, the goal is to optimize the load bal-
ancing across cores while minimizing the synchronization needed
during the communication stage. We address these criteria in two
passes, first optimizing load balancing and then optimizing the lay-
out. As the load-balancing problem is NP-complete (by reduction
from SUBSET-SUM [29]), we use a greedy partitioning heuristic
that assigns each filter to one of N processors. The algorithm con-
siders filters in order of decreasing work, assigning each one to the
processor that has the least amount of work so far. As described
in Section 4.1, this heuristic ensures that the bottleneck processor
does not exceed the optimum by more than the amount of work in
the heaviest filter.

To minimize synchronization, we wrap the partitioning algo-
rithm with a selective fusion pass. This pass repeatedly fuses the
two adjacent filters in the graph that have the smallest combined
work. After each fusion step, the partitioning algorithm is re-
executed; if the bottleneck partition increases by more than a given
threshold (10%), then the fusion is reversed and the process termi-
nates. This process increases the computation to communication
ratio of the stream graph, while also leveraging the inter-node fu-
sion optimizations mentioned previously. It improves performance
by up to 2x on the Radar benchmark, with a geometric mean of
15% across all benchmarks.

Overall, coarse-grained software pipelining on a multicore ar-
chitecture avoids many of the complications and exposes many new
optimization opportunities versus traditional software pipelining.
In traditional software pipelining, the limited size of the register file
is always an adversary (register pressure), but there is ample mem-
ory available for buffering stream data. Another recurring issue tra-

156

ditionally is the length of the prologue to the software pipelined
loop, but this is less problematic in the streaming domain because
the steady-state executes longer. Lastly, and most importantly, we
can exploit these properties to fully pipeline the graph, removing all
dependences and thus removing all the constraints for our schedul-
ing algorithm.

5. Implementation and Methodology
5.1 The Raw Architecture

We target the Raw microprocessor [37, 40], which addresses the
wire delay problem by providing direct instruction set architecture
(ISA) analogs to three underlying physical resources of the pro-
cessor: gates, wires and pins. The architecture exposes the gate re-
sources as a scalable 2-D array of identical, programmable cores,
that are connected to their immediate neighbors by four on-chip
networks. Values routed through the networks off of the side of the
array appear on the pins, and values placed on the pins by external
devices (wide-word A/Ds, DRAMS, etc.) appear on the networks.
Each of the cores contains a compute processor, some memory and
two types of routers—one static, one dynamic—that control the
flow of data over the networks as well as into the compute pro-
cessor. The compute processor interfaces to the network through a
bypassed, register-mapped interface [37] that allows instructions to
use the networks and the register files interchangeably.

Because we generate bulk DRAM transfers, we do not want
these optimizable accesses to become the bottleneck of the hard-
ware configuration. So, we employ a simulation of a CL2 PC 3500
DDR DRAM, which provides enough bandwidth to saturate both
directions of a Raw port [38]. Additionally, each chipset contains
a streaming memory controller that supports a number of simple
streaming memory requests. In our configuration, 16 such DRAMs
are attached to the 16 logical ports of the chip. The chipset receives
request messages over the dynamic network for bulk transfers to
and from the DRAMs. The transfers themselves can use either the
static network or the general dynamic network (the desired network
is encoded in the request).

The results in this paper were generated using btl, a cycle-
accurate simulator that models arrays of Raw cores identical to
those in the .15 micron 16-core Raw prototype ASIC chip, with
a target clock rate of 450 MHz. The core employs as compute
processor an 8-stage, single issue, in-order MIPS-style pipeline that
has a 32 KB data cache, 32 KB of instruction memory, and 64
KB of static router memory. The simulator includes a 2-way set
associative hardware instruction caching mechanism (not present
in the hardware) that is serviced over the dynamic network, with
resource contention modeled accordingly.

5.2 StreamIt Compiler Infrastructure

The techniques presented in this paper are evaluated in the con-
text of the StreamIt compiler infrastructure. The system includes a
high-level stream IR with a host of graph transformations including
graph canonicalization, synchronization removal, refactoring, fu-
sion, and fission [15]. Also included are domain specific optimiza-
tions for linear filters (e.g., FIR, FFT, and DCT) [24], state-space
analysis [3], and cache optimizations [35]. We leverage StreamIt’s
spatially-aware Raw backend for this work.

Previously, we described hardware and software pipelining as
two distinct techniques for exploiting pipeline parallelism. The
StreamIt compiler has full support for each. It also implements a
hybrid approach where hardware pipelined units are scheduled in a
software pipelined loop. While we were excited by the possibilities
of the hybrid approach, it does not provide a benefit on Raw due the
tight coupling between processors and the limited FIFO buffering
of the network. Although these are not fundamental limits of the

architecture, they enforce fine-grained orchestration of communi-
cation and computation that is a mismatch for our coarse-grained
execution model.

In the compiler, we elected to buffer all streaming data off-
chip. Given the Raw configuration we are simulating and for the
regular bulk memory traffic we generate, it is more expensive to
stream data onto the network from a core’s local data cache than to
stream the data from the streaming memory controllers. A load hit
in the data cache incurs a 3-cycle latency. So although the networks
are register-mapped, two instructions must be performed to hide
the latency of the load, implying a maximum bandwidth of 1/2
word per cycle, while each streaming memory controller has a load
bandwidth of 1 word per cycle for unit-stride memory accesses.
When targeting an architecture with more modest off-chip memory
bandwidth, the stream buffers could reside completely in on-chip
memory. For example, the total buffer allocation for each of our
benchmarks in Section 6 would fit in Cell’s 512KB L2 cache.

Streaming computation requires that the target architecture pro-
vides an efficient mechanism for implementing split and join (scat-
ter and gather) operations. The StreamIt compiler programs the
switch processors to form a network to perform the splitting (in-
cluding duplication) and the joining of data streams. Since Raw’s
DRAM ports are banked, we must read all the data participating
in the reorganization from off-chip memory and write it back to
off-chip memory. The disadvantages to this scheme are that all
the data required for joining must be available before the join can
commence and the compute processors of the cores involved are
idle during the reorganization. Architectures that include decoupled
DMA engines (e.g., Cell) can overlap splitting/joining communica-
tion with useful computation.

5.2.1 Baseline Scheduler

To facilitate evaluation of coarse-grained software pipelining,
we implemented a separate scheduling path for a non-software-
pipelined schedule that executes the steady-state respecting the
dataflow dependencies of the stream graph. This scheduling path
ignores the presence of the encompassing outer loop in the stream
graph and is employed for the task and task + data parallel config-
urations of the evaluation section.

This scheduling problem is equivalent to static scheduling of
a coarse-grained dataflow DAG to a multiprocessor which has
been a well-studied problem over the last 40 years (see [23] for
a good review). We leverage simulated annealing as randomized
solutions to this static scheduling problem are superior to other
heuristics [22].

Briefly, we generate an initial layout by assigning the filters of
the stream graph to processors in dataflow order, assigning a ran-
dom processing core to each filter. The simulated annealing pertur-
bation function randomly selects a new core for a filter, inserting
the filter at the correct slot in the core’s schedule of filters based
on the dataflow dependencies of the graph. The cost function of the
annealer uses our static work estimation to calculate the maximum
critical path length (measured in cycles) from a source to a sink in
the graph. After the annealer is finished, we use the configuration
that achieved the minimum critical path length over the course of
the search.

5.2.2 Instruction-Level Optimizations

For the results detailed in the next section we ran a host of opti-
mizations including function inlining, constant propagation, con-
stant folding, array scalarization, and loop unrolling (with a factor
of 4). These optimizations are especially important for a fused fil-
ter, as we can possibly unroll enough to scalarize constituent split-
ter and joiner buffers, eliminating the shuffling operations. We do
not enable StreamIt’s aggressive cache optimizations [35] or linear

157

Peeking Comp / Task Parallel

Benchmark Description Filters Filters SplitJoins Comm Critical Path σ μ
BitonicSort Bitonic Sort 28 0 16 8 25% 0% 0%

ChannelVocoder Channel Voice Coder 54 34 1 22380 9% 0% 0%

DCT 16x16 IEEE Reference DCT 36 0 2 191 23% 0% 0%

DES DES Encryption 33 0 8 15 89% 0% 0%

FFT 256 Element FFT 17 0 0 63 100% 0% 0%

Filterbank Filter Bank for Multirate Signal Processing 68 32 9 2962 9% 0% 0%

FMRadio FM Radio with Equalizer 29 14 7 673 17% 0% 0%

Serpent Serpent Encryption 61 0 25 36 52% 0% 0%

TDE Time Delay Equalization for GMTI 28 0 0 335 100% 0% 0%

MPEG2Decoder MPEG-2 Block and Motion Vector Decoding 26 0 5 102 59% 1% 1%

Vocoder Bitrate Reduction Vocoder 96 17 8 180 85% 16% 1%

Radar Radar Array Front-End 54 0 2 1341 11% 98% 4%

Figure 6. Benchmark descriptions and characteristics.

optimizations [24], as they conflate too many factors into the ex-
periments. Finally, we produce a mix of C and assembly code that
is compiled with GCC 3.4 at optimization level 3.

6. Experimental Evaluation
In this section we present an evaluation of our full compiler system
and compare to previous techniques for compiling stream programs
to multicore architectures. This section will include an elaboration
of the following contributions and conclusions:

• Our compiler achieves consistent and excellent parallelization
of our benchmark suite to a 16-core architecture, with a mean
speedup of 11.2x over sequential, single-core performance.

• Our technique for exploiting coarse-grained data parallelism
achieves a mean performance gain of 9.9x over a sequential,
single-core baseline. This also represents a 6.8x speedup over a
fine-grained data parallel approach.

• Coarse-grained software pipelining is a an effective technique
for extracting parallelism beyond task and data parallelism,
with an additional mean speedup of 1.45x for our benchmarks
with stateful computation and 1.13x across all of our bench-
marks. On its own, our software pipelining technique affords a
7.7x performance gain over a sequential single-core baseline.

• Our compiler, employing the combination of the techniques
presented in this paper, improves upon our previous work that
exploited a combination of task and hardware pipeline paral-
lelism, with a mean speedup of 1.84x.

In the evaluation, speedup of configuration A over B is calcu-
lated as the throughput for an average steady-state of A divided
by B; the initialization and prologue schedules, if present, are not
included. Figure 7 presents a table of throughput speedups nor-
malized to single-core for most configurations. Previous work has
shown that sequential StreamIt executing on a single Raw core out-
performed hand-written C implementations executing on a single
core over a benchmark suite similar to ours [38]. Furthermore, we
have increased the performance of sequential compilation since this
previous evaluation.

6.1 Benchmark Suite

We evaluate our techniques using the benchmark suite given in Fig-
ure 6. The benchmark suite consists of 12 StreamIt applications.
MPEG2Decoder implements the block decoding and the motion
vector decoding of an MPEG-2 decoder, containing approximately
one-third of the computation of the entire MPEG-2 decoder. The
DCT benchmark implements a 16x16 IEEE reference DCT while
the MPEG2Decoder benchmark includes a fast 8x8 DCT as a com-
ponent. For additional information on MPEG2Decoder, Vocoder,
and Radar, please refer to [11], [34], and [25], respectively.

In the table, the measurements given in each column are ob-
tained from the stream graph as conceived by the programmer,
before it is transformed by our techniques. The “Filters” columns
gives the total number of filters in the stream (including file input
filters and file output filters that are not mapped to cores). The num-
ber of filters that perform peeking is important because peeking fil-
ters cannot be fused with upstream neighbors without introducing
internal state. “Comp / Comm” gives the static estimate of the com-
putation to communication ratio of each benchmark for one steady-
state execution. This is calculated by totaling the computation esti-
mates across all filters and dividing by the number of dynamic push
or pop statements executed in the steady-state (all items pushed and
popped are 32 bits). Notice that although the computation to com-
munication ratio is much larger than one across our benchmarks,
we will demonstrate that inter-core synchronization is an important
factor to consider. “Task Parallel Critical Path” calculates, using
static work estimates, the work that is on the critical path for a task
parallel model, assuming infinite processors, as a percentage of the
total work. Smaller percentages indicate the presence of more task
parallelism.

“σ” is defined in Section 4.1 as the fraction of total work that is
stateful. “μ” is the maximum fraction of total work performed by
any individual stateful filter. Referring to Figure 6, we see that three
of our benchmarks include stateful computation. Radar repeatedly
operates on long columns of an array requiring special behavior
at the boundaries; thus, the state tracks the position in the column
and does some internal buffering. Vocoder performs an adaptive
DFT that uses a stateful decay to ensure stability; it also needs
to retain the previous output across one iteration within a phase
transformation. MPEGDecoder has negligible state in retaining
predicted motion vectors across one iteration of work.

6.2 Task Parallelism

To motivate the necessity of our parallelism extraction techniques
let us first consider the task parallel execution model. This model
closely approximates a thread model of execution where the only
form of coarse-grained parallelism exploited is fork/join paral-
lelism. In our implementation, the sole form of parallelism ex-
ploited in this model is the parallelism across the children of a
splitjoin. The first bar of Figure 8 gives the speedup for the each
of our benchmarks running in the task parallel model executing
on 16-core Raw, normalized to sequential StreamIt executing on a
single core of Raw. For the remainder of the paper, unless other-
wise noted, we target all 16 cores of Raw. The mean performance
speedup for task parallelism is 2.27x over sequential performance.
We can see that for most of our benchmarks, little parallelism is
exploited; notable exceptions are Radar, ChannelVocoder, and Fil-
terBank. Each contains wide splitjoins of load-balanced children.
In the case of BitonicSort, the task parallelism is expressed at too
fine a granularity for the communication system. Given that we are

158

Hardware Task + Task + Data + Compute MFLOPS

Benchmark Task Pipelining Task + Data Soft Pipe Soft Pipe Utilization @ 450 MHz

BitonicSort 0.3 4.5 8.4 3.6 9.8 54.9% N/A

ChannelVocoder 9.1 4.4 12.0 10.2 12.4 59.7% 940

DCT 3.9 4.1 14.4 5.7 14.6 67.6% 1316

DES 1.2 4.2 13.9 6.8 13.9 86.8% N/A

FFT 1.0 8.4 7.9 7.7 7.9 45.7% 538

Filterbank 11.0 7.5 14.2 14.8 14.8 86.6% 1350

FMRadio 3.2 4.0 8.2 7.3 8.6 87.6% 1169

Serpent 2.6 16.4 15.7 14.0 15.7 56.6% N/A

TDE 1.0 14.0 8.8 9.5 9.6 45.5% 352

MPEG2Decoder 1.9 3.4 12.8 5.1 12.1 63.9% N/A

Vocoder 1.0 3.5 3.0 3.0 5.1 31.8% 192

Radar 8.5 10.9 9.2 19.6 17.7 97.7% 2006

Geometric Mean 2.3 6.1 9.9 7.7 11.2

Throughput Normalized to Single Core StreamIt Task + Data + Soft Pipe

Figure 7. Throughput speedup comparison and Task + Data + Software Pipelining performance results.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er DCT

DES FF
T

Fi
lte

rb
an

k

FM
Rad

io

Ser
pe

nt
TD

E

M
PE

G
2D

ec
od

er

Voc
od

er

Rad
ar

G
eo

m
et
ric

 M
ea

n

T
h

ro
u

g
h

p
u

t
N

o
rm

a
li

z
e

d
 t

o
 S

in
g

le
 C

o
re

 S
tr

e
a

m
It

Task

Task + Data

Task + Software Pipelining

Task + Data + Software Pipelining

Figure 8. Task, Task + Data, Task + Software Pipelining, and Task + Data + Software Pipelining normalized to single core.

targeting a 16-core processor, a mean speedup of 2.27x is inade-
quate.

6.3 Coarse-Grained Data Parallelism

The StreamIt programming model facilitates relatively simple anal-
ysis to determine opportunities for data parallelism. But the gran-
ularity of the transformations must account for the additional syn-
chronization incurred by data-parallelizing a filter. If we attempt
to exploit data parallelism at a fine granularity, by simply replicat-
ing each stateless filter across the cores of the architecture we run
the risk of overwhelming the communication substrate of the tar-
get architecture. To study this, we implemented a simple algorithm
for exposing data parallelism: replicate each filter by the number
of cores, mapping each fission product to its own core. We call
this fine-grained data parallelism. In Figure 9, we show this tech-
nique normalized to single-core performance. Fine-grained data
parallelism achieves a mean speedup of only 1.40x over sequential
StreamIt. Note that FilterBank is not included in Figure 9 because
the size of the fine-grained data parallel stream graph stressed our
infrastructure. For four of our benchmarks, fine-grained duplication
on 16 cores has lower throughput than single core.

This motivates the need for a more intelligent approach for
exploiting data parallelism in streaming applications when tar-
geting multicore architectures. The second bar of Figure 8 gives

the speedup of coarse-grained data parallelism over single-core
StreamIt. The mean speedup across our suite is 9.9x over single
core and 4.36x over our task parallel baseline. BitonicSort, whose
original granularity was too fine, now achieves a 8.4x speedup
over a single core. 6 of our 12 applications are stateless and non-
peeking (BitonicSort, DCT, DES, FFT, Serpent, and TDE) and thus
fuse to one filter that is fissed 16 ways. For these benchmarks the
mean speedup is 11.1x over the single core. For DCT, the algo-
rithm data-parallelizes the bottleneck of the application (a single
filter that performs more than 6x the work of each of the other
filters). Coarse-grained data parallelism achieves a 14.6x speedup
over single-core, while fine-grained achieves only 4.0x because it
fisses at too fine a granularity, ignoring synchronization. Coarsen-
ing and then parallelizing reduces the synchronization costs of data
parallelizing. For Radar and Vocoder, data parallelism is paralyzed
by the preponderance of stateful computation.

6.4 Coarse-Grained Software Pipelining

Our technique for coarse-grained software pipelining is effec-
tive for exploiting coarse-grained pipelined parallelism (though
it under-performs when compared to coarse-grained data paral-
lelism). More importantly, combining software pipelining with our
data parallelism techniques provides a cumulative performance
gain, especially for applications with stateful computation.

159

0

1

2

3

4

5

6

7

Bi
t o

nic
Sor

t

Cha
nn

elV
oc

od
er DCT

DES FF
T

FM
Rad

io

Se
rp
en

t
TD

E

M
PE

G
2D

ec
od

er

Vo
co

de
r

Rad
ar

T
h

ro
u

g
h

p
u

t
o

f
F

in
e

-G
ra

in
e

d
 D

a
ta

n
o

rm
a

li
z
e

d
 t

o
 S

in
g

le
 C

o
re

 S
tr

e
a

m
It

G
eo

m
et
ric

 M
ea

n

Figure 9. Fine-Grained Data Parallelism normalized to single
core.

The third bar of Figure 8 gives the speedup for software pipelin-
ing over single core. On average, software pipelining has a speedup
of 7.7x over single core (compare to 9.9x for data parallelism) and
a speedup of 3.4x over task parallelism. Software pipelining per-
forms well when it can effectively load-balance the packing of the
dependence-free steady-state. In the case of Radar, TDE, Filter-
Bank, and FFT, software pipelining achieves comparable or bet-
ter performance compared to data parallelism (see Figure 8). For
these applications, the workload is not dominated by a single fil-
ter and the resultant schedules are statically load-balanced across
cores. For the Radar application, software pipelining achieves a
2.3x speedup over data parallelism and task parallelism because
there is little coarse-grained data parallelism to exploit and it can
more effectively schedule the dependence-free steady-state.

However, when compared to data parallelism, software pipelin-
ing is hampered by its inability to reduce the bottleneck filter when
the bottleneck filter contains stateless work (e.g., DCT, MPEGDe-
coder). Also, our data parallelism techniques tend to coarsen the
stream graph more than the selective fusion stage of software
pipelining, removing more synchronization. For example, in DES,
selective fusion makes a greedy decision that it cannot remove com-
munication affecting the critical path workload. Software pipelin-
ing performs poorly for this application when compared to data par-
allelism, 6.9x versus 13.9x over single core, although it calculates
a load-balanced mapping. Another consideration when comparing
software pipelining to data parallelism is that the software pipelin-
ing techniques rely more heavily on the accuracy of the static work
estimation strategy, although it is difficult to quantify this effect.

6.5 Combining the Techniques

When we software pipeline the data-parallelized stream graph, we
achieve a 13% mean speedup over data parallelism alone. The cu-
mulative effect is most prominent when the application in question
contains stateful computation; for such benchmarks, there is a 45%
mean speedup over data parallelism. For example, the combined
technique achieves a 69% speedup over each individual technique
for Vocoder. For ChannelVocoder, FilterBank, and FM, software
pipelining further coarsens the stream graph without affecting the
critical path work (as estimated statically) and performs splitting
and joining in parallel. Each reduces the synchronization encoun-
tered on the critical path.

The combined technique depresses the performance of MPEG
by 6% because the selective fusion component of the software
pipeliner fuses one step too far. In most circumstances, fusion
will help to reduce inter-core synchronization by using the local

0

0.5

1

1.5

2

2.5

3

3.5

4

Bi
to
nic

So
rt

Cha
nn

elV
oc

od
er DCT

DES FF
T

Fi
lte

rb
an

k

FM
Rad

io

Se
rp
en

t
TD

E

M
PE

G
2D

ec
od

er

Vo
co

de
r

Rad
ar

G
eo

m
etr

ic
M
ea

n

T
h

ro
u

g
h

p
u

t
o

f
T

a
s

k
 +

 D
a

ta
 +

 S
o

ft
w

a
re

 P
ip

e
li

n
e

n
o

rm
a
li
z
e
d

 t
o

 H
a
rd

w
a
re

 P
ip

e
li
n

in
g

Figure 10. Task + Data + Software Pipelining normalized to Hard-
ware Pipelining.

memory of the core for buffering. Consequently, the algorithm does
not model the communication costs of each fusion step. In the case
of MPEG, it fuses too far and adds synchronization. The combined
technique also hurts Radar as compared to only software pipelining
because we fiss too aggressively and create synchronization across
the critical path.

In Figure 7, we report the compute utilization and the MFLOPS
performance (N/A for integer benchmarks) for each benchmark
employing the combination of our techniques, task plus data plus
software pipeline parallelism. Note that for our target architecture,
the maximum number of MFLOPS achievable is 7200. The com-
pute utilization is calculated as the number of instructions issued on
each computer processor divided by the total number possible for a
steady-state. The utilization accurately models pipeline hazards and
stalls of Raw’s single issue, in-order processing cores. We achieve
generally excellent compute utilization; in 7 cases the utilization is
60% or greater.

6.6 Comparison to our Previous Work: Hardware Pipelining

In Figure 10 we show our combined technique normalized to our
previous work for compiling streaming applications to multicore
architectures. This baseline configuration is a maturation of the
ideas presented in [15]3 and implements a task plus hardware
pipeline parallel execution model relying solely on on-chip buffer-
ing and the on-chip static network for communication and syn-
chronization. In this hardware pipelining model, we require that
the number of filters in the stream graph be less than or equal to the
number of processing cores of the target architecture. To achieve
this, we repeatedly apply fusion and fission transformations as di-
rected by a dynamic programming algorithm.

Our new techniques achieve a mean speedup of 1.84x over hard-
ware pipelining. For most of our benchmarks, the combined tech-
niques presented in this paper offer improved data parallelism, im-
proved scheduling flexibility, and reduced synchronization com-
pared to our previous work. This comparison demonstrates that
combining our techniques is important for generalization to stateful
benchmarks. For Radar, data parallelism loses to hardware pipelin-
ing by 19%, while the combined technique enjoys a 38% speedup.
For Vocoder, data parallelism is 18% slower, while the combined
technique is 30% faster.

Hardware pipelining performs well in 3 out of 12 benchmarks
(FFT, TDE, and Serpent). This is because these applications con-

3 Please note that due to a bug in our tools, the MFLOPS numbers reported
in the proceedings version of [15] were inaccurate.

160

tain long pipelines that can be load-balanced. For example, the
stream graph for Serpent is a pipeline of identical splitjoins that
is fused down to a balanced pipeline. Hardware pipelining incurs
less synchronization than usual in this case because the I/O rates
of the filters are matched; consequently, its compute utilization is
higher than our combined technique (64% versus 57%). The com-
bined approach fuses Serpent to a single filter and then fisses it 16
ways, converting the pipeline parallelism into data parallelism. In
this case, data-parallel communication is more expensive than the
hardware pipelined communication.

7. Related Work
In addition to StreamIt, there are a number of stream-oriented
languages drawing from domains such as functional, dataflow,
CSP and synchronous programming [36]. The Brook language
is architecture-independent and focuses on data parallelism [6].
Stream kernels are required to be stateless, though there is special
support for reducing streams to a single value. StreamC/KernelC
is lower level than Brook; kernels written in KernelC are stitched
together in StreamC and mapped to the data-parallel Imagine pro-
cessor [18]. SPUR adopts a similar decomposition between “mi-
crocode” stream kernels and skeleton programs to expose data par-
allelism [42]. Cg exploits pipeline parallelism and data parallelism,
though the programmer must write algorithms to exactly match the
two pipeline stages of a graphics processor [27]. Compared to these
languages, StreamIt places more emphasis on exposing task and
pipeline parallelism (all the languages expose data parallelism).
By adopting the synchronous dataflow model of execution [26],
StreamIt focuses on well-structured programs that can be aggres-
sively optimized. The implicit infinite loop around programs is
also a key StreamIt characteristic that enables the transformations
in this paper. Spidle [10] is also a recent stream language that was
influenced by StreamIt.

Liao et al. map Brook to multicore processors by leveraging the
affine partitioning model [41]. While affine partitioning is a power-
ful technique for parameterized loop-based programs, in StreamIt
we simplify the problem by fully resolving the program structure at
compile time. This allows us to schedule a single steady state using
flexible, non-affine techniques (e.g., simulated annealing) and to
repeat the found schedule for an indefinite period at runtime. Gum-
maraju and Rosenblum map stream programs to a general-purpose
hyperthreaded processor [16]. Such techniques could be integrated
with our spatial partitioning to optimize per-core performance. Gu
et al. expose data and pipeline parallelism in a Java-like language
and use a compiler analysis to efficiently extract coarse-grained
filter boundaries [12]. Ottoni et al. also extract decoupled threads
from sequential code, using hardware-based software pipelining to
distribute the resulting threads across cores [30]. By embedding
pipeline-parallel filters in the programming model, we focus on the
mapping step.

Previous work in scheduling computation graphs to parallel tar-
gets has focused on partitioning and scheduling techniques that ex-
ploit task and pipeline parallelism [33, 32, 28, 23, 13]. Applica-
tion of loop-conscious transformations to coarse-grained dataflow
graphs has been investigated. Unrolling (or “unfolding” in this do-
main) is employed for synchronous dataflow (SDF) graphs to re-
duce the initiation interval but they do not evaluate mappings to
actual architectures [7, 31]. Software pipelining techniques have
been applied to SDF graphs onto various embedded and DSP tar-
gets [5, 8], but has required programmer knowledge of both the
application and the architecture. To our knowledge, none of these
systems automatically exploit the combination of task, data, and
pipeline parallelism. Furthermore, these systems do not provide a
robust end-to-end path for application parallelization from a high-
level, portable programming language.

8. Conclusions
As multicore architectures become ubiquitous, it will be critical
to develop a high-level programming model that can automatically
exploit the coarse-grained parallelism of the underlying machine
without requiring heroic efforts on the part of the programmer.
Stream programming represents a promising approach to this prob-
lem, as high-level descriptions of streaming applications naturally
expose task, data, and pipeline parallelism.

In this paper, we develop general techniques for automatically
bridging the gap between the original granularity of the program
and the underlying granularity of the architecture. To bolster the
benefits of data parallelism on a multicore architecture, we build
coarse-grained data-parallel units that are duplicated as few times
as needed. And to leverage the benefits of pipeline parallelism,
we employ software pipelining techniques—traditionally applied
at the instruction level—to coarse-grained filters in the program.

A detailed evaluation in the context of the StreamIt language
and the 16-core Raw microprocessor offers very favorable results
that are also quite consistent across diverse applications. Coarse-
grained data parallelism offers a 4.4x speedup over a task-parallel
baseline and a 9.9x speedup over a sequential code. Without our
granularity coarsening pass, these reduce to 0.7x and 1.4x, respec-
tively. Coarse-grained software pipelining improves the generality
of the compiler, as it is able to parallelize stateful filters with de-
pendences from one iteration to the next. Our two techniques are
complementary and offer a combined speedup of 11.2x over the
baseline (and 1.84x over our previous work).

Though data parallelism is responsible for greater speedups on
a 16-core chip, pipeline parallelism may become more important
as multicore architectures scale. Data parallelism requires global
communication, and keeps resources sitting idle when it encounters
stateful filters (or feedback loops). According to our analysis in
Section 4.1, leveraging pipeline parallelism on a 64-core chip when
only 10% of the filters have state could offer up to a 6.4x speedup
(improvement in load balancing). Exposing pipeline parallelism in
combination with data parallelism for the stateful benchmarks in
our suite provided a 1.45x speedup over data parallelism alone.

As our techniques rely on specific features of the StreamIt
programming model, the results suggest that these features are a
good match for multicore architectures. Of particular importance
are the following two language features:

1. Exposing producer-consumer relationships between filters.
This enables us to coarsen the computation to communication
ratio via filter fusion, and also enables pipeline parallelism.

2. Exposing the outer loop around the entire stream graph. This
is central to the formulation of software pipelining; it also
enables data parallelism, as the products of filter fission may
span multiple steady-state iterations.

While our implementation targets Raw, the techniques devel-
oped should be applicable to other multicore architectures. As Raw
has a relatively high communication bandwidth, coarsening the
granularity of data parallelism may benefit commodity multicores
even more. In porting this transformation to a new architecture, one
may need to adjust the threshold computation-to-communication
ratio that justifies filter fission. As for coarse-grained software
pipelining, the scheduling freedom afforded should benefit many
multicore systems. One should consider the most efficient loca-
tion for intermediate buffers (local memory, shared memory, FI-
FOs, etc.) as well as the best mechanism for shuffling data (DMA,
on-chip network, etc.). The basic algorithms for coarsening granu-
larity, judicious fission, partitioning, and selective fusion are largely
architecture-independent.

161

Acknowledgments
We would like thank the members of the StreamIt team, both
past and present, and especially Jasper Lin, Rodric Rabbah, and
Allyn Dimock for their contributions to this work. We are very
grateful to Michael Taylor, Jonathan Eastep, and Samuel Larsen for
their help with the Raw infrastructure, and to Ronny Krashinsky
for his comments on this paper. This work is supported in part
by DARPA grants PCA-F29601-03-2-0065 and HPCA/PERCS-
W0133890, and NSF awards CNS-0305453 and EIA-0071841.

References
[1] Raza Microelectronics, Inc.

http://www.razamicroelectronics.com/products/xlr.htm.

[2] StreamIt Language Specification.
http://cag.lcs.mit.edu/streamit/papers/streamit-lang-spec.pdf.

[3] S. Agrawal, W. Thies, and S. Amarasinghe. Optimizing Stream
Programs Using Linear State Space Analysis. In CASES, San
Francisco, CA, Sept. 2005.

[4] J. Andrews and N. Baker. Xbox 360 System Architecture. IEEE
Micro, 26(2), 2006.

[5] S. Bakshi and D. D. Gajski. Partitioning and pipelining for
performance-constrained hardware/software systems. IEEE Trans.
Very Large Scale Integr. Syst., 7(4):419–432, 1999.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for GPUs: Stream Computing on Graphics
Hardware. In SIGGRAPH, 2004.

[7] L.-F. Chao and E. H.-M. Sha. Scheduling Data-Flow Graphs via
Retiming and Unfolding. IEEE Trans. on Parallel and Distributed
Systems, 08(12), 1997.

[8] K. S. Chatha and R. Vemuri. Hardware-Software partitioning and
pipelined s cheduling o f trans form ative applications . IEEE Trans.
Very Large Scale Integr. Syst., 10(3), 2002.

[9] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju.
Shangri-La: Achieving High Performance from Compiled Network
Applications While Enabling Ease of Programming. In PLDI, New
York, NY, USA, 2005.

[10] C. Consel, H. Hamdi, L. Rveillre, L. Singaravelu, H. Yu, and C. Pu.
Spidle: A DSL Approach to Specifying Streaming Applications. In
2nd Int. Conf. on Generative Prog. and Component Engineering,
2003.

[11] M. Drake, H. Hoffman, R. Rabbah, and S. Amarasinghe. MPEG-2
Decoding in a Stream Programming Language. In IPDPS, Rhodes
Island, Greece, April 2006.

[12] W. Du, R. Ferreira, and G. Agrawal. Compiler Support for Exploiting
Coarse-Grained Pipelined Parallelism. In Supercomputing, 2005.

[13] E. and D. Messerschmitt. Pipeline interleaved programmable DSP’s:
Synchronous data flow programming. IEEE Trans. on Signal
Processing, 35(9), 1987.

[14] W. Eatherton. The Push of Network Processing to the Top of
the Pyramid. Keynote Address, Symposium on Architectures for
Networking and Communications Systems, 2005.

[15] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb,
C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A
Stream Compiler for Communication-Exposed Architectures. In
ASPLOS, 2002.

[16] J. Gummaraju and M. Rosenblum. Stream Programming on General-
Purpose Processors. In MICRO, 2005.

[17] H. P. Hofstee. Power Efficient Processor Architecture and The Cell
Processor. HPCA, 00:258–262, 2005.

[18] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn,
P. Mattson, and J. D. Owens. Programmable stream processors.
IEEE Computer, 2003.

[19] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling
of stream programs. In LCTES, San Diego, CA, June 2003.

[20] M. A. Karczmarek. Constrained and Phased Scheduling of
Synchronous Data Flow Graphs for the StreamIt Language. Master’s
thesis, MIT, 2002.

[21] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way
Multithreaded Sparc Processor. IEEE Micro, 25(2):21–29, 2005.

[22] Y.-K. Kwok and I. Ahmad. FASTEST: A Practical Low-Complexity
Algorithm for Compile-Time Assignment of Parallel Programs to
Multiprocessors. IEEE Trans. on Parallel and Distributed Systems,
10(2), 1999.

[23] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Comput. Surv.,
31(4):406–471, 1999.

[24] A. A. Lamb, W. Thies, and S. Amarasinghe. Linear Analysis and
Optimization of Stream Programs. In PLDI, San Diego, CA, June
2003.

[25] J. Lebak. Polymorphous Computing Architecture (PCA) Example
Applications and Description. External Report, Lincoln Laboratory,
Mass. Inst. of Technology, 2001.

[26] E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing. IEEE Trans.
Comput., 36(1):24–35, 1987.

[27] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A
System for Programming Graphics Hardware in a C-like Language.
In SIGGRAPH, 2003.

[28] D. May, R. Shepherd, and C. Keane. Communicating Process
Architecture: Transputers and Occam. Future Parallel Computers:
An Advanced Course, Pisa, Lecture Notes in Computer Science, 272,
June 1987.

[29] Michael Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, 1997.

[30] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic Thread
Extraction with Decoupled Software Pipelining. In MICRO, 2005.

[31] K. Parhi and D. Messerschmitt. Static Rate-Optimal Scheduling
of Iterative Data-Flow Programs Via Optimum Unfolding. IEEE
Transactions on Computers, 40(2), 1991.

[32] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. A Hierarchical
Multiprocessor Scheduling Framework for Synchronous Dataflow
Graphs. Technical Report UCB/ERL M95/36, May 1995.

[33] J. L. Pino and E. A. Lee. Hierarchical Static Scheduling of Dataflow
Graphs onto Multiple Processors. Proc. of the IEEE Conference on
Acoustics, Speech, and Signal Processing, 1995.

[34] S. Seneff. Speech transformation system (spectrum and/or excitation)
without pitch extraction. Master’s thesis, MIT, 1980.

[35] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe. Cache
Aware Optimization of Stream Programs. In LCTES, Chicago, 2005.

[36] R. Stephens. A Survey of Stream Processing. Acta Informatica,
34(7), 1997.

[37] M. B. Taylor et al. The Raw Microprocessor: A Computational Fabric
for Software Circuits and General Purpose Programs. IEEE Micro
vol 22, Issue 2, 2002.

[38] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, et al. Evaluation of the
Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP
and Streams. In ISCA, Munich, Germany, June 2004.

[39] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
Language for Streaming Applications. In CC, France, 2002.

[40] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, et al. Baring
It All to Software: Raw Machines. IEEE Computer, 30(9), 1997.

[41] S. wei Liao, Z. Du, G. Wu, and G.-Y. Lueh. Data and Computation
Transformations for Brook Streaming Applications on Multiproces-
sors. In CGO, 2006.

[42] D. Zhang, Z.-Z. Li, H. Song, and L. Liu. A Programming Model for
an Embedded Media Processing Architecture. In SAMOS, 2005.

162

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

